LECTURE NOTES ON THE COMPLEXITY OF
SOME PROBLEMS IN NUMBER THEORY

Dana Angluin

Technical report 243, August 1982

Table of Contents
TIntroduction . . . v v v vt e e e e e e e e e e e e e e e e e e e
2 A note on complexitytheoryo e e e e
3 Some definitions, notations, facts. oo e ..
4 Computing the greatest common divisorof twopumbers L.
5 Multiplicative inverses in 2
8 The theorems of Eulerand Fermat
7 The Chinese Remainder Theorem.
8 Exponentlatxon Modulom oo
9Z iscyclicif pisprime« c v v v v vt e e
J0PRIMES € NP .« o o v e e i e e e e e e e e e e e
11 Primitiveroots andindices00 e e e e .,
12 Quadraticresidues o e e e e e
13 The Jacobisymbol. o o oo oo
14 Recognizing primes: Solovay and Strassen’s randomized procedure
15 Carmichael’'s Theorem o 00000 o oo
16 Squareroots of 1. Lo e
17 Recognizing primes: Miller’s procedure
18 Squarerootsof — 1
19 Finding square roots modulo n, overview.
20 Finding square roots: Berlekamp's procedure
21 Finding square roots: the procedure of Adleman, Manders, and Miller.
22 Finding SOME square root, composite modulus.
23 Finding the LEAST square root, composite modulus
24 Acknowledgement and Warning.o L0000 L
I Appendix: three tablesof powers oo

LECTURE NOTES ON THE COMPLEXITY OF
. SOME PROBLEMS IN NUMBER THEORY .

Dana Angluin! i

Department of Computer Science, Yale University

Abstract

Some basic results and algorithms from number theory are described, sncluding the greatest common
divisor, inverses, exponentiation, the theorems of Euler and Fermat, the Chinese Remainder Theorem,
testing primality, the Legendre and Jacobi symbols, and finding square roots modulo primes and
composites. This material is intended to provide a foundation for the study of cryptographic systems
based on number theoretic probiems. Some familiarity with the concepts of analysis of algorithmse
and complezity theory is assumed. The number theory portion is intended to be largely self-contained.

1. Introduction

These notes describe some complexity-theoretic results concerning problems of classical
number theory. We assume the standard machinery of complexity theory: definitions of
polynomial-time computation, the class P of sets recognizable in polynomial time, the class NP

of sets recognizable nondeterministically in polynomial time, NP-completeness, and related

results. On the number-theory side, the aim is to make these notes nearly self-contained,
except for material on the Extended Riemann Hypothesis, occasional details, and some

elementary results from group theory.

A good basic treatment of analysis of algorithms and complexity theory may be found in

YPreparation of these notes was partially funded by the National Science Foundation under grant number
MCS-8002447. These notes were originally prepared as part of the postgraduate lectures in Artificial Intelligence
and Computer Science at the University of Edinburgh.

-3-

the text of Aho, Hopcroft, and Ullman [4]. Basic results on number theory and the
computational aspects of the greatest common divisor, the Chinese remainder theorem,
médular arithmetic, factoring, and primality-testing may be found in the-monographs of Niven
and Zuckermann [12], Vinogradov {15}, and Knuth [9]. The other material covered in these
notes max be found in the anicle§ of Adleman, Manders, and Miller [3], Berlekamp [5],
Carmichvael [8]. Manders and Adleman [10], Miller [11], Pratt [13], and Solovay and

Strassen [14].

2. A note on complexity theory

These notes are concerned with very broad distinctions of whether a computational
problem is “easy” or “hard”. It has been customary to identify “easy” w'ith “solvable in
polynomial time”. This identiﬁcati'on must be taken with a grain of salt: the nonpolynomial

bound n!es tog n

does not overtake the polynomial bound 119 until n = 1024. Nonetheless, the
class of functions computable in polynomial time has certain desirable properties. It is closed
under composition, or, to put it in computational terms, we may use polynomial time
subroutines with impunity. Also, it is invariant under a variety of chaﬁges to ‘the mode] of
computation, so we do not have to bother about details of the model in our analyses of

running times. (If you want a more definite model, assume a log-cost RAM or a multi-tape

Turing machine [4].)

If polynomial time is “easy”, what about “hard”? At first glance, it seems that “not
computable in polynomial time” is a reasonable interpretation of %hard”. There are some

problems with this identification, which we consider below.

The first problem is the major embarrassment of complexity theory: the NP-complete
problems. While a number of natural problems have been proved to require exponential (or
more) time, the NP-complete problems are not among them. Nor do we have polynomial time
algorithms for the NP-complete problems. What we do have is a large collection of polynomial
time reductions showing that if problem A has a polynomial time algorithm then so does
problem B. The NP-complete problems stand or fall together: if any one of them has a
polynomial time algorithm, then they all do. This would not Be so bad, but there are literally
. bundreds (see Garey and Johnson's collection [7]) of problems, some of them very important

practical problems, that have been proved to be NP-complete.

There is a seductive argument, which may be termed the argument from tgnorance, to
the effect that if all these bright people have been working all this time on these very
important problems without coming up with a polynomial time algorithﬁ, then it is likely that
the reason is that no such algorithm exists. (Or more succinctly: we don’t know how to do it,
theref ore'ﬁit is impossible.) The argument from ignorance is antithetical to the guiding spirit of
science, and ought to be handled with great care. However, it has become customary to accept)

a proof of the NP-completeness of a problem as some kind of evidence of its computational

“hardpess”.

Another problem with the identification of “hard” with “not computable in polynomial
time” has to do with the purposes involved. In the customary problem setting, we imagine
that our job is to compute the answer efficiently for every possible input, and an infinite
collection of inputs, however sparse, where we cannot do this is synonymous with failure. In
this case, “easy” means “easy everywhere”, and “hard” means “hard on infinitely many
inputs”. However, in proposals to use “hard” problems to produce secure cryptosystems, the
setting changes. In particular, we imagine that our job is to make it hard for the adversary to
decrypt any of our encrypted messages, so that “hard” now means “hard everywhere” and
“

‘easy” means “easy somewhere”. Thus, infinitely often hard is not “hard enough” in the

context of cryptosystems.

One important concept that has been developed to help deal with these issues is the
notion of a randomized algorithm. This is an algorithm that may call 2 random number
generator in the course of its computation. The analysis of sueh an algorithm has a
probabilistic aspect. There are two basic forms that this may take. The algorithm may

sometimes give the wrong answer (depending on the values supplied by the random number

-6.

generator) - the analysis then bounds the probability of this kind of error. Or, the a!gorithm
may be guaranteed to give a correct answer always, but jts running time may be longer or
shorter depending on the values provided b& the random number generator — in this case, the
analysis bounds the expected value of the running time (or provides more information about its
probabilii}' distribution). The first type of algorithm has been called a “Monte Carlo”
algorithm; an example is the primality testing procedure of Solovay and Strassen [14]. The
second type of algorithm has been called 2 “Las Vegas™ algorithm; examples are the square
root finding procedures of Berlekamp 5] or Adleman, Manders, and Miller [3. Note that in
neither case is there randomization over the input -- the probabilities depend only on the

random number generator.

In the context of cryptosystems, and in a wider practical sense, it may be reasonable to
take “easy” to be “computable in polynomial tim by a randomized algorithm”. Unfortunately
there is no single reference for the basjc concepts of randomized atgorithms, but the papers of

Gill [8] and Adleman and Manders [1, 2] may provide helpful pointers.

Most of the algorithms described in these notes have inputs and outputs that are
integers. We assume that these integers are represented in binary notation (or some other
notation that is related to it by polynomial time translations, e.g., decimal notation). Thus,
the length of the input n is bounded by O(log n), and a polynomial time algorithm is one that
runs in time O((log n)¥) elementary computation steps, for some constant k. All logarithms are

to the base 2.

3. Some definitions, notations, facts

Z = all the integers: 0, 1, =1, 2, =2, ...

N = the natural numbers: 1, 2, 3, 4, ...

Let a,b_.d"E Z, m,n,p,q € N in the following.

a | b & there exists d so that b = a-d

a + b is the negation of a | b

a=b(modn)en|(a—>b)

ged(a.b) = max{d: d | ¢ and d | b}, a and b not both 0.

lem(a,b) = min{m: a | m and b | m}, neither a nor b = 0.

zZ = {0,1,..,n—1}

Z; = {m:1 < m < n and ged(m,n) = 1}

m and n are relatively prime & ged(m,n) =1

é(n) = }Z;[(Euler’s totient function)
pisprime @ ps¢ landforalll < m<p,m+p

a is a quadratic residue mod n & there exists b such that a = b? (mod n)
a is a quadratic nonresidue mod n ¢ a is not a quadratic residue mod n

(%) = + 1if a is a quadratic residue mod n, — 1 if not (Legendre symbol)

a) — (a)(2) .. (&
(5) (pl)(pg) (pn)'
where @ = p,p, = P, each p_ is an odd prime, and ged(a,Q) = 1 (Jacobi symbol)
@ is a g—th residue mod n < the equation z¢ = a (mod n) is solvable

a is a g—th nonresidue mod n < a is not a g—th residue mod n

A(n) = lem {6(p,*), ..., ¢(p,"¥)},

Qq

where n = pl°'Xp,, 2---p Ok is the unique prime factorization of n (Carmichael’s X function)

Mn)=lem {p, - 1, .., P, — 1},
where n = p1°1p2°2---pk‘fk is the unique prime factorization of n (Miller’s A’ function)
We note some facts.
1. é6(mn) = ¢(m)é(n) if ged(m,n) = 1.
2. 0(p®) = p®~Yp — 1) if p is prime and a > 1.
3.6(p) =p— 1« pis prime.
4. The unique factorization theorem.

5. The division theorem: a = bg + r, 0 < r < b.

6. The order of a subgroup of a group divides the order of the group; the order of an
element of a group divides any power of the element which is equal to the

identity, and other facts of elementary group theory.

-9-

4. Computing the greatest common divisor of two numbers
For this we have a 2300 year old algorithm due to Euclid (or possibly Eudoxus). Let a

and b be positive integers. By repeated application of the division theorem we may find a

sequence:
a=bq +r 0<f1<6
b=rg,+ 1o 0<r,<r
Ty =Trogy + T3 0<r<r,

Theo =T 19+ 7, 0<r,<r._,
Tk-1= T+
which terminates when we find some r, ., = 0. (Which we must do since the sequence of

nonnegative integers b, r,. r,, ... is strictly decreasing.)

Theorem 1: r, = gcd(a.b).

Proof: Clearly r, | r,_,.s0r,|r,_o 507, |r, 5 andsoon until we find that r, | a and
r. | b. If d is any positive integer which divides both @ and b, then d | r, because r, = a — bq,,
so d | r, since r, = b — r,q,, and so on until we find that d | r,, so d < r,. Hencer, =

ged(a.b). : O

Corollary 2: gcd(a,b) is a multiple of every common divisor of @ and b.

- 10 -

Example 3: Find ged(234,108), ged(233,144).

234
108

108-2 + 18
18-6

Hence gcd(234,108) = 18

233 = 144-1 + 89
144 = B9-1 + 55
89 = 551 + 34
56 = 341 + 21
34 = 21-1 + 13
21 = 131 + 8
13=81+5

8 =51+3
5=31+2
3=21+1

2 =21

Hence gcd{233,144) = 1

It is not difficult to show that a comsecutive pair of Fibonacci numbers (eg. 144 and 233)
are the worst case for Euclid's algorithm in terms of the number of applications of the division
theorem required for numbers of a given magnitude. Since the k—th Fibonacci number exceeds

=2 where r is the golden ratio, we obtain:

Theorem 4: If a,b < n then the number of division stages in Euclid’s algorithm will be less

than 1.5 log n + O(1).

This bound is an exponential improvement over the bound of & implicit in the argument above

for termination; it means that Euclid's algorithm runs in time polynomial in the lengths of the

- 11 -

binary representations of a and b.

Corollary 35: lc'm(a,b) can be computed in polynomial time.
Proof: Use the identity lem(a,b) = a-b/ged(a,b). : O

Looking again at the algorithm we note that
rp=a- qlb
ro=1b — gor, = —qy0 + (1 + g,q,)b
ry =1, — qgts = (1 + g39,)8 — (q; + g3 + G399,)b

In general, each r; is expressible as an integer linear combination of a and b, including the ged
r,. We may keep track of the coefficients at each stage as follows. Initially, set 2, =1, y, =

—q,, and 7, = —q,. Y, = (1 + goq,). Then at stage i compute
Ty = Tice T 9%
Y= Yo~ ¥y
By induction we see that r, = z.a + y> for all { = 1,2,...,k. Thus we have proved the

following theorem.

Theorem 6: There is a polynomial time algorithm which on inputs a and b computes d,z,y

such that d = ged(a,b) and d = za + yb.

-192-

L]
5. Multiplicative inverses in zZ
The version of Euclid’s algorithm just developed is of use in computing multiplicative

inverses.

Theorem 7: There is a polynomial time algorithm which on integers a and m such that

ged(a,m) = 1 computes b such that ab = 1 (mod m).

Proof: By the preceding procedure find integers z and y such that

ar + my = ged(a,m) = 1.
Then m | (az — 1), so az = 1 (mod m). Let b be z reduced modulo m. Then
ab =1 (mod m). Also any common divisor of b and m must divide 1, so ged(b,m) = 1 and

bez, . O

In practice of course z; and y; are reduced modulo m at each stage. Asa consequence of the

existence of multiplicative inverses in Z, we have the following.

. . . . * . ye .
Theorem 8: If m is any positive integer, Z,_ forms a group under multiplication modulo m.

. «ppe . s . g .
Proof: It is not difficult to verify that Z_ is closed under multiplication modulo m. It
contains the multiplicative identity 1, and by the preceding theorem contains a multiplicative

inverse for each of its elements. 0

- 13-
Example 9: The multiplication table of Z;S is

1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 132 14 7 11
7 7 14 13 4 1 2 1 8
8 8 1 2 11 4 13 14 7
11 11 7 14 2 13 1 8 4
13 18 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

Notes:
1. The equation 27 = 1 (mod 15) has solutions z = 1,—1,4,—4 (mod 15).

2. Z;S is isomorphic to Z, X Z, (under addition) via (i,5) — (—1)2%

<14 -

6. The theorems of Euler and Fermat
We have just seen that Z_ is a group under multiplication modulo n. The order of the

group Z_ is o(n); recalling a little group theory, we have Euler’s Theorem:
Theorem 10: For all n and all a such that ged(a,n) =1,

0¥ =1 (mod n).
- As a special case, also Fermat's Theorem:

Theorem 11: If p is prime then for all a such that ged(a,p) = 1,

et l= (mod p).

The converse of Fermat's Theorem would give us a test for primality if it were true. It is not

true. This will be seen in the section on Carmichael Numbers.

-15-
7. The Chinese Remainder Theorem

Theorem 12: Let m,,m,,...,m_be relatively prime in pairs. Let m = m -m, - m_ Let
a,.a,....,a_ be any integers. Then there is a unique y € Z such that y = o, (mod m,) for i =

1,2,...,r.

Proof: For each i, m/m_ is an integer, call it n;, and ged(m;,n;) = 1. Thus we may find an

inverse b, such that n b, = 1 (mod m.). Now let

y' = E ﬂ.b.a

i=1r PP Y
T

and let y be y* reduced modulo m. Clearly for each ¢ = 1,2,...,r, since m, | n; if £ 5% 3, we

have
y=y =nba (mod m).

If z € Z_ is any other integer with the property that z = g, (mod m,) for each 1 = 1,2,...,r

then because the m_s are relatively prime in pairs, z =y (mod m), so z = y. @]

Since the key operation in the above is the computation of the multiplicative inverses &,

we may apply previous results to get the following.

Corollary 13: There is a polynomial time procedure to compute y from m;,m,....,m_and

a,.....0,_ 10 the above.

- 16 -

Example 14: Solve the simultaneous equations

z =13 (mod 15), 2 = 5 (mod 16), z = 4 (mod 7).

Then m = 1680,

n, = 112 = 7 (mod 15), and b, = 13,
n, = 105 = 9 (mod 16), and b, = 9,
n, 27240 = 2 (mod 7), and b, = 4.

Solution is
x = 112-13-13 + 105-9-5 + 240-4-4 (mod 1680),
x = 613 (mod 1680).

(Remark: see also the section on modular arithmetic in Knuth, Vol. II [9].)

-17 -
8. Exponentiation Modulo n

Example 15: Calculate 257 (mod 22).

2l =9

22 = 4

2 = 16

28 = 256 = 14

218 = 14.14 = 20

232 = 2020 = 4

264 = 4.4 = 16

287 = 2640291 = 16.4.2 = 18 (mod 22).

Theorem 18: There is a polynomial time procedure which on inputs a,m.n calculates a

number y € Z_ such that y = a™ (mod n).

Proof: Suppose m is written out in binary notation as the string blb,, bk' where each b, is 0

or 1. Start with z; = 1. Inductively calculate Ti1 from z; as follows.

\
I

If bi == (then T is zig reduced mod n.

If bz. == 1 then z, is a«:zri2 reduced mod n.

+1

Output z,.

This procedure correctly computes y, and calculates at most 2-[1092 m] products modulo n of

numbers from Z_. so runs in polynomial time in the lengths of a,m,n. O

(Remark: if ged(a,n) = 1 and we happen to know ¢(n) then we can use Euler’s Theorem

to reduce m modulo ¢(n) before we start this procedure.)

- This theorem shows that we can exponentiate efficiently modulo n, but what about the

- 18-

inverse operations? Finding roots of numbers modulo n appears a little less tractable, and
finding logarithms (or indices) of numbers modulo n seems sufficiently intractable that it has
been proposed as the basis of certain schemes for cryptography. These two problems are

discussed in later sections.

-19-

E]
9. Zp is cyclic if p is prime
Recall that for each positive integer n, Z; is a group under multiplication modulo n.

The goal of this section is to show the following theorem.

Theorem 17: If p is prime then Z; is a cyclic group of order p — 1.

(At this point a certain confusion is possible: it is an elementary result of group theory that
every group of prime order is cyclic, so why is this a Big Theorem? The reason is that the

order of the group Z; is p — 1, which is pot a prime!)

Proof: Let p be a prime. Clearly, the order of Z; is ¢(p) = p — 1. To see that Z; is cyclic,
we show that it has an element of order p — 1. This is achieved by counting elements of

different orders. Let d be any positive integer such that d | (p — 1). Define

\
IS

S;=1{a€ Z;:aisoforderd}.
These sets partition Z;, so we have

s IS =1Zl=p-1 ()

Fix d such that d | (p — 1). We show that either |S,| = 0 or |S;| = ¢(d). Suppose S is

4 are all distinct modulo p and each one is a

nonempty and choose some ¢ € S, Then a,az,...,a
solution of 29 =1 (mod p). By the lemma below, this equation has at most d solutions
modulo p, so these are all of the solutions. Hence

S, C{ak:1<k<d).

Fixk,1 < k < d. If ged(k,d) = ¢ > 1, then
(a))¥¢ = (a*/)! = 1 (mod p),

-920-

so a* has order less than d and of € S, 1f ged(k,d) = 1, then there exists ! such that

kl =1 (mod d). Hence a¥ = ¢ (mod p). Foranye, 1 <e<d-1,
((a"))' = a* 5= 1 (mod p),

so a¥ is of order d,ie. aF e Sy

Thus we have shown

S;={af:1 < k< d. ged(k,d) = 1},

so |S,| = d(d), as required.

Now suppose that for some d such that d | (p — 1), IS, = 0. Then

‘-" . S (d).
Tp-1 14 < Gy oY

By the second lemma below,

© =y —
t?ip—l o(d) p—1 |
which gives a contradiction with (*) above. Hence, for each d such that d | (p — 1), we have

IS, = &(d). so in particular, the number of elements of order p—1lisg(p— 1)

Lemma 18: If p is prime and flz) = a,z" + al:r""1 + ... +a_ is such that fib) % 0 (mod p)

for some b, then fiz) = 0 (mod p) has at most n distinct solutions modulo p.

Proof: By induction.

i) Forn = 0, filz) = a;. so if flb) %= 0 (mod p) for some b then g, = 0 (mod p) so

a, = 0 (mod p) has no solutions.

i1) Assume the result for n — 1. Let fiz) = a,z" + al:r"'1 + ...+ a_and let b be such that
- fit) 3= 0 (mod p). Suppose Ay;) = 0 (mod p) for Yp¥or¥pyp all distinct modulo p. If

a, = 0 (mod p) then the polynomial ¢(z) = al:r"—l + ... + @, has more than n — 1 distinct

-91-

solutions modulo p, contradicting the induction hypothesis. So we may assume that

a, =% 0 (mod p).

Form
glz) = aj(z —y Nz — y)) = (z — v,)
and let h(z) = fiz) — g(z). Then
h(z) = byz""1 + b, "2 L+ b

n-1

for some integers b;,b,.....0, _, and h(yn_H) %= 0 (mod p). (This depends on the fact that the
product of numbers that are not congruent to 0 mod p cannot be congruent to 0 mod p.)
However, h(y,) = 0 (mod p) for y;,y5,-..,9, which are all distinct modulo p, contradicting the

induction hypothesis.

Hence, fizr) = 0 (mod p) can have at most n solutions modulo p. O
Note that
1. 22 = 1 (mod 15) has four distinct solutions: z =1, —1, 4, —4 (mod 15).

2. 22 = 0 (mod 9) has three distinct solutions: z = 0, 3, 6 (mod 9).

Lemma 19: For all positive integers n, 531 o(d) = n.
7

Proof: Let n be some positive integer. For each d such that d | n define
Rd={m-f:m=n/dandiez;}.
Clearly R, C {1,2,...n} and |R;| = ¢(d). Consider any z € {1,2,...,n}. Let m = gecd(z,n), d

= n/m, and { = z/m. Then since z = m- and n = m-d, ged(1,d) = 1,50 z € R;. If for

some e such that e | n we have z € R, then z = m’i’ where n = m’e and ged(e,i’) = 1.

-929.

Hence m’ = ged(z.n) = m and e = d. Thus foreach z € {1,2,...,n}, z belongs to one and
only one of the sets R 4 Hence

—T RI=F ().
n=Z.Bd=3, o

Example 20: Let n = 18, which has divisors d =1,236,09,18.

18

12

M WO O W AN
N W oo m
o

A stronger theorem may be proved:

.’

Theorem 21: (Niven and Zuckerman [12], p. 52) Z; is cyclic if and only if n is 1, 2, 4, p¥, or

2p* for some odd prime number p and some positive integer k.

The proof of this theorem is omitted, though we use the cyclicity of Z;,,. in what follows.

-93-

10. PRIMES € NP
PRIMES will denote the set of binary representations of the prime numbers, and

COMPOSITES will denote the set of binary representations of the pumbers that are not prime.

It is easy to see that COMPOSITES € NP: if the input is n > 1 then we guess two
iin-egers m and d such that 1 < m,d < n and then check whether n = m-d. If so, we accept

n.

It is not as easy to show that the complement set, PRIMES, is in NP. We follow Pratt’s

proof of this result [13]. First we have:

Theorem 22: n is prime if and only if n 5% 1 and Z; contains an element of order n — 1.

Proof: Suppose n is prime. Then n % 1 and Z; is ¢yclic, so Z; contains an element of order
6(n) = n — 1. Conversely, if n £ 1 and Z; contains an element of order n — 1, then the

order of Z; is at least n — 1. Then we must have ¢(n) = n — 1, so n is prime.]

Verifyving that g € Z; is of order n — 1 entails verifying that ¢"~! =1 (mod n), (which can be
done in polynomial time). but also that ¢ &= 1 (mod n) for all i = 1,2,....n — 2. The following

theorem reduces the latter work:

-’

Theorem 23: Let n > 1. The element g is of order n — 1 in Z; if and only if

¢""1=1 (mod n) and g("'l)/p %= 1 (mod n) for all primes p which divide n — 1.

Proof: The necessity of the condition is clear. Suppose g € Z;, g ! =1 (mod n) and

-94 -

gin—1/p # 1 (mod n) for all primes p dividing n — 1. If m is the order of gin Z;, then we
must have m | (n — 1). If m < (n — 1) then there exisits a prime p dividing n — 1 such that

m | (n — 1)/p, say (n — 1)/p = m-d. Thus
g("-l)/P = (gm)d =1 (mod n)

contradicting the hypotheses on g. Hence m = n — 1 and gisof order n — 1 in Z;. ' O

Thus, 1f we knew all the prime divisors of n — 1, we could verify that g is of order n — 1 in
polynomial time, since at most [log n] distinct primes divide n — 1. This may not seem like
much progress; we've reduced prime testing to finding prime factorizations. However, the

availability of nondeterminism now comes to the rescue.

We construct a nondeterministic procedure to test primality as follows. Given n, guess a
“generator” g and a “prime factorization” of n — 1. (The quotes signify that this is what we
would like these things to be, but they must still be checked.) Recursively check each “prime”
in the “prime factorization” for primality, and then use the procedure derived from the
theorem above to verify that g is of order n — 1 in Z;. If all of this succeeds, accept n as

prime -- otherwise reject n.

Example 24: Let n = 79.

1. For 79 guess g = 3 and the factorization 78 = 2.3.13
a. Check primality of 2, 3, and 13:
~1. Recognize 2 as prime
2. For 3 guess g = 2 and the factorization 2 = 2
2. Check primality of 2:
1. Recognize 2 as prime
b. Check correctness of the order of 2 mod 3:
22 =1 (mod 3)

-925-

c. Conclude that 3 is a3 prime
3. For 13 guess g = 2 and the factorization 12 = 223
a. Check primality of 2, 3:
1. Recognize 2 as prime 3
2. Recognize 3 as prime (1,2,2 sbove)
b. Check correctness of the order of 2 mod 13:
2!2 = 1 (mod 13)
2% # 1 (mod 13)
2* # 1 (mod 13)
c. Conclude that 13 is 2 prime
b. Check correctness of the order of 3 mod 79:
37 = 1 (mod 79)
339 % 1 (mod 79)
3% % 1 (mod 79)
3% %= 1 (mod 79)
c. Conclude that 79 is a prime.

(Remark: Knuth's example [9] of the factorization of 9214 4 1 may be interesting in this

connection (Vol. II, p. 349).)

To verify that this procedure runs in nondeterministic polynomial time we note that the
number of and total space required by all the guesses at each level of recursion are both
O(log n), and the number of levels of recursion is at most [log n]. The various checking

operations can be done in time polynomial in [log n], so we have:

Theorem 25: PRIMES € NP.

(Remark: the procedures of Miller and Solovay and Strassen, discussed in later sections, do not
directly adapt to give this result because both procedures are based on finding witnesses for

compositeness rather than primality.)

-9 -

11. Primitive roots and indices

Let p be a prime. We have seen that Z; is a cyclic group, and that Z; has ¢(p — 1)

*

v of order of p — 1 is called a generator or

elements of order p — 1. Any element g € Z
primitive root of p. Let g be a fixed primitive root of p. Eacha € Z; has associated with it a
unique integer k € {0,1,...,p — 1} such that a = ¢* (mod p). This k is denoted by indy(a) and

is called the tndex of a with respect to g.

Primitive roots and their associated tables of indices are useful aids to hand calculation
modulo primes of moderate size, analogous to tables of logarithms, reducing multiplication and

division modulo p to addition and subtraction modulo p — 1. (See Appendix 1.)

It appears to be an open problem whether or not indy(a) can be calculated in
deterministic polynomial time given g, p, g where g is guaranteed to be a primitive root of p
and p is guaranteed to be prime, even assuming the Extended Riemann Hypothesis or an oracle
for factoring. On the other hand, the ability to calculate indices in polynomial time doesn’t
seem to help much with other problems (factoring, root-finding). The apparent computational
intractability of index-finding has been used as the basis of certain cryptographic schemes, for
example, the proposal of Micali and Blum for the generation of cryptographically secure

pseudo-random numbers (to appear in FOCS 82).

Indices are often quite useful in proofs, for example:

Theorem 28: If p is an odd prime and g is any primitive root of p thena € Z; has a square

root modulo p if and only if indg(a) is even.

-97-

Proof: Suppose a = ¢°™ (mod p) for some integer m. Then, letting b = ¢™ (mod p), we have
a = b° (mod p). Conversely, suppose a = 2 (mod p). Let m = indg(b), so b = ¢" (mod p)

and a = ¢°™ (mod p). Thus
indg(a) = 2m (mod (p — 1)).

Since p =1 is a multiple of 2, this implies that indg(a) is even. 8]

Corollary 27: If p is an odd prime, exactly half the elements of Z; have square roots.

(Remark: This applies, mutatis mutandis, to g—th roots, for g | (p — 1).)

-98.

12. Quadratic residues
Recall that if p is an odd prime and a is relatively prime to p then @ is a quadratic
residue modulo p if and only if a has a square root modulo p. The Legendre symbol is defined

thus:)
(ﬂ) = +1if @ has a square root mod p,

—1if a has no square root mod p.
Let g be any primitive root of p. We have shown that ¢ has a square root modulo p if and

only if indg('a) is even. From this we obtain:
Theorem 28: For all primes p and all a, b € Z;.
aby _ (a)(b
(5)=G)G)
We also note:

Theorem 29: If p is an odd prime and ¢ is a primitive root of p then

gP 12 = (mod p).

Proof: (g(”—l)/z)2 = 1 (mod p). There are two distinct square roots of 1 modulo p, 1 and —1.

Since g is of order p — 1, ¢(P=1)/2 % 1 (mod p). O

In turn we get a way of calculating the Legendre symbol:

Theorem 30: If p is an odd prime and a is relat}ively’prime. to p then

alP=1)/2 = (}27) (mod p). '

Proof: Suppose (g-) = 1. Then there exists b € Z; such that ¢ = §° (mod p). Hence"

-99-

PN =ppl=1= (;—’) (mod p).

If (%) = —1 and ¢ is any primitive root of p, we have a = gz""H (mod p) for some integer m.

Hence

aP=1/2 = gnle-1+(=1)/2 = (p=1)/2 = _1 (mod p).

This theorem gives us one method of calculating the Legendre symbol of a with respect to p in

polynomial time; the section on the Jacobi symbol gives another.

-30-

13. The Jacobi symbol
The Jacobi symbol generalizes the Legendre symbol, but not in the respect of indicating

the existence of square roots.

If @ is an odd number greater than 1, and Q = PPy = P Where each p_ is prime, and o
is relativéiy prime to @ then the Jacobi symbol is defined in terms of the Legendre symbol as

follows:

@=G)G) -G

Example 31: (%‘) = (%—)(%—) = 1. However, the equation z° = 2 (mod 9) has no solutions.

It seems that the primary importance of the Jacobi symbol is that it satisfies certain identities
(including the law of quadratic reciprocity) that allow it (and consequently the Legendre
symbol) to be calculated by a variant of Euclid's algorithm for the ged. The following

A
identities may be found in the texts of Niven and Zuckerman [12] and Vinogradov [15].

1.1f @ = b (mod Q) then (%) - (-”-)
z(é—) =1

3. (-‘él) = (-1)(@-1/2,

()= @)©)

. (_é_) = (=1)lP*-1)/8,

. If @ and P are relatively prime odd numbers then

o

[J]]

o)

(%) = (-1){P-Ne-1)/4 (@E) (Quadratic reciprocity)

-31-

Example 32: A§ an example of these identities, we compute (—12-}—‘.‘—71—)
(121771-) =+ (Z) (by 6)
| =+ () Gy 1)
- () oy © x
=+ () (by 1)
=+ (D) (by &)
= - (537-—) (by 5)
= - (%Z-) (by 6)
= - (-lé-) (by 1)
=-1 (by 2)
Since 271 is a prime, we have in fact calculated the Legendre symbol (-12%71—) and we may

conclude that 117 has no square root modulo 271. Of course, another way to artive at the

same conclusion is to note that 117133 = 270 (mod 271).

Theorem 33: There is 2 polynomial time algorithm to compute the Jacobi symbol (%)

whenever Q is an odd number greater than 1 and a is relatively prime to Q.

Proof: Devise an appropriate algorithm using the identities -- note that it is basically the same
as Euclid's algorithm for the greatest common divisor, with some extra bookkeeping and

special rules to cast out 2’s. O

-39.-

14. Recognizing primes: Solovay and Strassen’s randomized procedure
This section describes Solovay and Strassen's Monte Carlo algorithm for testing

primality [14].
Solovay and Strassen’s algorithm

The input is an odd integer n > 1.

1. Choose at random a € {1,2,...,n—1}.

[N}

. If ged(a.n) > 1 then output “composite” and halt.
3. Calculate the quantities:
§ = aln=1)/2 (mod n),
€ = (%) (The Jacobi symbol).
a.If 6 & ¢ (mod n) ‘t.hen output “composite” and halt.

b. If 6 = ¢ (mod n) then output “possibly prime” and halt.

Theorem 34:

1. This randomized procedure runs in polynomial time.
2. If nis prime then this procedure must output “possibly prime”

3. If n is composite then this procedure outputs “composite” with probability at least

1/2.

Proof: For (1). we have seen in previous sections that ged, exponentiation modulo n, and the

Jacobi symbol can be computed in polynomial time.

-33-

For (2), suppose that n is prime. Then ged(a,n) = 1 and we have seen that
(ﬂ—l) 2 = 9.
a = (ﬂ) (mod n),

so neither step (2) nor step (3a) can output “composite” for n. Hence the output must be

“possibly prime”.

For (3), s\ippose that n is composite. We must argue that for at least half the possible choices

of a, the output will be “composite”. Define

={a€Z, : an=1/2 = (%) (mod n)}.
The elements of S are the only choices of @ which will lead to an output of “possibly prime”.

We show that they comprise at most half of {1,2,...,n—1}.

S is a subgroup of Z; because it is closed under product (using the identity (a_b) = (ﬁ)(-b-) for
n n/\n :

the Jacobi symbol). Thus |S| must divide Z'|, so either
n

*
S=12,

or
15| < (1/2)1Z] < (n = 1)/2.

We now show that the first alternative is impossible.

Assume that

Q=12 = (g) (mod n) for all 6 € Z..

’fhen also

a"1=1(mod n)foralla € Z;.
Let n = p1°1p,,°2---p ¢ be the prime factorization of n. We consider two cases: either a; 2> 2

for some ¢, or a; =1 for all i = 1,2,...,k.

Suppose 1 is such that a; > 2. Let m = poi. Z:n is a cyclic group of order ¢(p.%i) =

(p; — l)pi°n"l. Choose a generator g of Z:n. By the Chinese Remainder Theorem, we may

-34-

choose a 1o be the unique element of Z,_ such that
¢ = g (mod m) and @ =1 (mod n/m).

Then a must be relatively prime to n, i.e., a € Z;. By our assumptions then
a =1 (mod n), and

1 (mod m).

Q
]

Since the order of g is p’."i‘l(pi —. 1), we must have
PN, = 1) | (n = 1)

Since @; > 1, this implies that p; | (n —1). But p; | n, so p; | 1, a contradiction.

For the second case, assume that a,=1forall{ = 1,2,...k. Thus,
n = p].p2 cen pk.

. . . . *
Since n is composite, we must have k 2 2. In this case we choose g to be a generator of Zp ,
1

and, using the Chinese Remainder Theorem, a € Z; such that

@ = g (mod p,) and ¢ = 1 (mod n/pl).
Then a is relatively prime to n, so by our assumptions,

a1/ = (%) (mod n).

But by the definition of the Jacobi symbol,
©)- () - (2)

However. a = ¢ (mod p,). so (;a_) = (f-) Also, since P; divides n/pl for y5£ 1 and
1 1

a =1 (mod n/p). we get a = 1 (mod pj) for 7 1. Hence,

&) =FG) - G)

Thus, (%) = (‘5‘) = —1 because p, is prime and g is a primitive root of Py Thus,
an=1/2 = 4 (mod n).

Thus,
an=0/2 = (mod n/pl),

which contradicts the fact that

a = 1(mod n/p,)
because £ > 2 and n odd implies
1 5= —1(mod n/p)).
Thus, in both cases the assumption t.hat
a"=1/2 = (£) (mod n) forall a € Z,
“leads to a contradiction, so we coﬂclude that S 3£ Z;. Hence, |S| < (n — 1)/2, so fewer than

half the choices of a € {1,2,...,n — 1} lead to the output “possibly prime”. O

(The proof above is more complex than that given in Solovay and Strassen's paper [14]; the

latter is somewhat incorrect.)

Note that if the random choices of a are independent in successive runs of the algorithm,

we improve the probability of error. In particular, if n is composite then

Prob(k successive runs output “possibly prime”) < (1 /2)".

-36-
15. Carmichael’s Theorem

Theorem 35: Let n be an odd number greater than 1. Then A(n) | (n — 1) if and only if for

alla € Z; we have a1 = | (mod n).

Proof: Suppose n= p]°1p2°’2---pm°’m is the prime factorization of n. Recalling the definition

of Carmichael’s lambda function,

An) = lem {8(p,°), ... 8(p,,m)}.

Suppose Mn) | (n — 1), and ged(a,n) = 1. Fix 1,1 < i < m. Then ged(a,p,%) = 1, so by

Evuler’s Theorem,

a®P) = 1 (mod 2,%).

Since ¢(p,%) | X(n) and Mn) | (n — 1), we have

a"" ! =1 (mod p.%).
This is true for each of the pairwise relatively prime moduli p°1,p,%,...,p, °m, so we have by

the Chinese Remainder Theorem,

a" " !=1 (mod n).

Conversely. suppose that ¢~ 1 = 1 (mod n) for all @ such that ged(a,n) = 1. Fix ¢, 1 <:<
m. Z;’o'. is a cyclic group of order ¢(p‘.°i), so we may choose ¢ to be an element of order
é(b‘."i). By the Chinese Remainder Theorem, we may find an element a € Z, such that

a =g (mod p,%) and ¢ = 1 (mod pj"j) for all y = 1,2,...,m such that j 5 . Then ged(a,n) =

1 and by our hypothesis, a"~! = 1 (mod n). Then

a" ! =1 (mod %),

SO

¢ !=1(mod ;%)

- 37-

But the order of g is é(pi":’), so we must have

o(p;*) | (n = 1).
This is true for each = 1,2....,m, so (n — 1) is a common multiple of each of
¢(p1°1),...,¢(pm°m). But A(n) is the least common multiple of these numbers, so we conclude

that \(n)](n — 1). A ' 0O

Corollary 38: In particular, for the composite number 561,

a%%% = 1 (mod 561)

for all a such that ged(a,561) = 1.

>

Proof: 561 = 3-11-17, so \(561) = lem {2, 10, 16} = 80. Thus, A\(561) | 560. 0

(Remark: numbers n such that \(n) | n — 1 are called Carmichael numbers. It is not

known whether there are infinitely many Carmichael numbers.)

- 38 -

16. Square roots of' 1
- We have shown that if p is prime then the only square roots of 1 are 1 and —1.
However, 1 has four square roots modulo 15, namely: 1, 4, -1, —4. We show that this is a

general phenomenon.

Theorem 37: Let n be divisible by two distinct odd prime numbers. Then 1 has at least four

distinct square roots modulo n.
q

Proof: Let p be an odd prime number dividing n. Let @ > 1 be the largest integer such that

¢ | n. Then n = p®-m, where gcd(m,p®) = 1 and mv> 2.

By the Chinese Remainder Theorem there exist unique a, b € Z,_ such that
a =1 (mod p°) and a = -1 (mod m),

b= -1 (mod p°) and b =1 (mod m).
Since 1 5= —1 modulo either m or p?, we have that 1, —1, a, b are all distinct modulo n. We

have:
¢ =1 (mod p°) and a® =1 (mod m),

b =1 (mod p®) and b2 =1 (mod m).

So, by another application of the Chinese Remainder Theorem,

a-=b

Hence 1, —1, a, b are distinct square roots of 1 modulo n. O

Miller’s procedure for testing primality uses the detection of one of these “peculiar” square
p g P P q

~roots of 1 (i.e., not 1 or —1) as one of the key methods of discovering the compositeness of n.

-39 -

17. Recognizing primes: Miller’s procedure

The primality testing procedure of Miller [11], like that of Solovay and Strassen, is based
on searching for’ a value a € {1,2,...,n — 1} that is a “witness” to the compositeness of n. The
difference is that deterministic search replaces random selection. Values a = 2,3,5,7,... are
tried until either one is found that is a witness to the compositeness of n, or some bound is
reached (in which case n is declaxged to be prime). The problem of the existence of “small”
witnesses a for a composite 1 is efficiently reduced to the existence of certain “small”
nonresidues. Work of Ankeny shows that the Extended Riemann Hypothesis (abbreviated
ERH in what follows) implies a bound of O(log n) on the least such nonresidues, which in turn
implies a pol};nomial time algorithm to recognize primes. (The reader is referred to Miller’s
paper for further details of the work of Ankeny and the ERH.) We now describe Miller’s

procedure.

Miller’s procedure for testing primality

The input is an odd number n > 1.

Let s be the largest integer such that 2° | n — 1, and let @ = (n = 1)/2%
Let K be a fixed constant and let fin) = min {[K(log n?)], n}.

1. If n is a perfect power (i.e., n = mF for some k > 2) then output “composite” and halt.
2. Let a run through all primes less than f{n) in:

a. If a | n then output “composite” and halt.

b. If a"~! 5= 1 (mod n) then output “composite” and halt.

c. I a® % 1 (mod n) then set J = max {s5: e % 1 (mod n)}
and if a* € 3= —1 (mod n) then output “composite” and halt.

3. 1f all primes @ < f{n) have been tested in step (2) without halting then

- 40-

output “prime” and halt.

Theorem 38: For any constant K, Miller's procedure runs in deterministic polynomial time.

Proof: Testing whether n is a perfect power can be done in polynomial time (the only possible ~
values of k are 2,3,...,|log n]). Since fin) = O((log n)?) all primes a < fin) may be found in
polynomial time with a sieve. Checking whether a divides n and computing the appropriate

powers of a can be done in polynomial time. D

The following are the required definitions and theorems on least nonresidues.

Definition 39: If p is a prime and ¢ is a prime dividing p — 1 then Jet
N(p.g) = the least g—th nonresidue mod p.
That is, N(p.q) is the least nonnegative integer a such that z9 = g (mod p) has no solution.

Theorem 40: (Ankeny) The ERH implies that N(p,q) = O((log p)?).

Definition 41: If p and g are distinct primes, define Nl(pg) to be the least positive integer a

a)_ _
such that (1—’71) 1.
Theorem 42: (Ankeny) The ERH implies that N{pq) = O((log pq)g).

" (Remark: by index arguments mod p and ¢ it may be seen that Mp,g) and N(pq) are both

- 41 -

necessarily prime.)

Theorem 43: The ERH implies that there exists a constant K such that Miller's procedure

correctly recognizes the prime numbers.

Proof: We consider the two cases: n is prime, and n is composite.

Suppose n is prime. Then 7n is not a perfect power and for each prime ¢ < fin), a 4 n. Also

a"~! =1 (mod n) by Fermat’s Theorem, and since 1 can only have the square roots 1 and —1
J J

modulo 2 prime, we must have a% @ % 1 (mod n) and a° = (mod n) implies that

@ =_1 (mod n). Hence for each a tested, none of steps (2a), (2b), or (2¢c) can output

“composite”. Thus the procedure correctly outputs “prime”, independent of K.

Suppose that n is composite. If n is a power of a single prime, then n is a perfect power, so

step (1) will output “composite”. Thus, we may assume that n is not a prime power. Let n =

Gy Gl

P10 p kok be the prime factorization of n. Recall the definitions of Carmichael’s and

Miller's lambda functions:
An) = lcm {(_f’(pl"’l)y ey ¢(pk°k)},
A(n)=1Im{p, - 1,.,p, —1}.

Note that A ’(n) | N(n). We consider two cases based on whether \’(n) divides n — 1 or not.

Suppose A’(n) 4+ n — 1. Then clearly A(n) 4+ n — 1, so by Carmichael’s Theorem, there

exists a € Z; such that ¢"~! = 1 (mod n). Furthermore, we have:

Proposition 44: There exist primes p and ¢ and an integer m such that

Lpln(p=1)+(n—1)andg” |(p—1),¢" +(n-1)

- 492 -

2. If a is any g—th nonresidue modulo p then ¢"~! 5= 1 (mod n).

Thus, if a = N{p,q) then a = O((log p)2) = C((log n)2) by Ankeny’s Theorem, and a would

lead to an output of “composite” in step (2b).

For the é;her case, assume that X\’(n) | (n — 1). We distinguish two subcases within this one.

Let \'(n) = 2’@1, where Q, is odd. (Note that @, | @ because A'(n) | (n - 1) and

(n — 1) = 2°Q.) There must be some prime divisor of n, say p, such that 2/ |(p — 1). Clearly,
(p—1)= 2[Q2 where @, is odd. The two cases we consider are based on whether there exists

a prime g dividing n such that 2/ does not divide (g —1).

Suppose there exists a prime g such that 9! ~+ (g — 1). In this case we write g — 1 = 2’"Q3,
where @, is odd and m < . Choose s = N[p,2). We now show that a would lead to an
output of “composite” in step (2). Suppose @ + n and a"~! = (mod n). Then since a is a

quadratic ponresidue mod p (this is how it was chosen),

alP=1/2 = (%) = —1 (mod p).

Since @ is odd,
(a9)P~1/2 = (=1)€ = -1 (mod p).

\
Thus, a© = 1 (mod n) and the body of step (2¢) must be executed.

Let r = [— 1. Note that 2'Q is a multiple of g — 1 because m < r. Also, 2"Q is an odd

multiple of (p — 1)/2. Thus
a*? = (a9 =1 (mod g),

a?'Q = (a(p—l)/2)2t+l = (_1)2t+1 = —1 (mod p).
Suppose a2’ = 1 (mod n). Then 2@ =_1 (mod g), so J < r. But also

a?’? = 1 (mod p), so J = r, a contradiction. Thus a2’@ %= —1 (mod n), and a leads to an

- 43 -
output of “composite” in step (2c).

For the second subcase, assume that for all primes g dividing n, 9! divides (g — 1). In this
case, let g be any prime distinct from p which divides n. Then ¢ = 2’Q3, where Q, is odd.

Choose a = N{(pg). We show that this o would lead to an output of “composite” in step (2).

Suppose that @ + n and ¢"~! = 1 (mod n). Since
-1 = () = (6)G)
pq p/\g/’
we may assume without loss of generality that (;—’;) = —1 and (%) = 1. Then

(a@)r=1/2 = (=1)° = -1 (mod p)
so a2 %= 1 (mod n), and the body of step (2c) must be executed if this a is tested in step (2).

Let r = [— 1. Then 27Q is an odd multiple of (p — 1)/2 and of (¢ — 1)/2. Thus
a‘.!'Q = (a(p-l)/2)2u+l = (_1)2u+1 = —1 (mod p),

a'.’rQ = (a(q—l)/‘l)’lt-i-l = (1)2t+l = 1 (mod g).
Let us assume that a"’JQ = —1 (mod n). Then 2@ = -1 (mod g), so J = r, and
a"‘JQ = —1 (mod g), so J < r, which is a contradiction. Thus, a“)lQ %= —1 (mod n), and a

leads to an output of “composite” in step (2¢) if a is tested in step (2).

Thus in either of these two subcases, there exists an element a = O((log n)?) which must lead

to an output of “composite” if it is tested.

" Thus if K is chosen to exceed the constants implied in the applications of Ankeny's Theorems,

then the ERH implies that Miller's procedure will output “composite” for all composite inputs

n.]

To conclude this section, we give a proof of Proposition 44.

- 44 -

Proof: If X’(n) 4 (n — 1) then for some p such thatp | n, (p — 1) 4 (n — 1). If every prime
power that divides a number a also divides the number b then ¢ | b, so there exists a prime ¢

such that ¢ | (p — 1) and ¢™ 4 (n — 1) for some m > 1.

Let a be any g—th nonresidue mod p. Let g be a primitive rcot modulo p and suppose

a‘='=_ ¢" (mod p). Assume ¢""! =1 (mod n). Then

(67" ! =1 (mod p).
Since the order of g is p — 1, this implies that (p — 1) | (n — 1). Thus ¢™ | r(n — 1) while

g" 4+ (n —1). Henceq|r, say r = t-g. Then

a=g = (g (modp),

so a is a g—th residue modulo p, contradicting our choice of a. Thus, a"! % 1 (mod n). O

Restating the main result of this section: if the Extended Riemann Hypothesis is true, then

there is a deterministic polynomial time algorithm to test primality.

18. Square roots of — 1

Let p be an odd prime number. Does —1 have a square root? Recall that
:_]; = {— (p-—l)/?
() =1 e (mod p)
so

(-—);——- +1 if p=1/(mod 4),
7 —1 ¢f p=3(mod 4).

That is, —1 has a square root mod p if and only if p is congruent to 1 modulo 4. Thus:

Theorem 45: If p is an odd prime and ¢ € Z; then

1. If p = 3 (mod 4) then one of a and —a is a quadratic residue, the other is a

quadratic nonresidue.

2.1f p =1 (mod 4) then both a and —a are quadratic residues or quadratic

nonresidues.

Thus, in the case p = 3 (mod 4) we can easily lay hands on a quadratic nonresidue; for

p = 1 (mod 4) it appears to be not so easy.

In the case p = 1 (mod 4), we may ask whether the square roots of '—1 themselves have

square roots. If a® = —1 (mod p) then we have
(%) = alP~1/2 (mod p) = +1if p=1 (mod 8),

—1if p =5 (mod 8).
Continuing in this way, if p — 1 = 2°Q, where @ is odd, we can build a binary tree of height

s — 1 whose root is —1 and such that the two sons of each node are its square roots modulo p,

- 46 -

and the leaves are quadratic nonresidues. Two examples are shown in the following.

Example 48:

Tree of square roots of -1 for p = a1

40
/\
9 32
/N /N
3 3814 27

Tree of square roots of -1 for p = 17

16
/ \
4 13
/N /N
2 15 8 9

/N /NN N
6 11 7 10 5 12 3 14

The trees illustrated in above have the interesting property that n\u]tiplying a leaf by some
ancestor of the leaf produces another leaf in the tree whose location is predictable from the

level of the ancestor, namely:

leal X immediate ancestor — some leaf in other half of tree
leal X grandfather — some leaf in other half of this half of tree

- 47 -
leaf X root — leaf in other half of this pair

For example, in the second tree, 6 is in the first eighth of the tree and its ancestors are 2, 4,
16. Mod 17, mukiplying 6 by 2 gives 12, in the second half of the tree, by 4 gives 7, in the
second quarter of the tree, by 16 givés 11, in the second eighth of the tree. This property is -

exploited in the procedure of AdleAinan, Manders, and Miller (3] to find square roots modulo p.

o

- 48 -

19. Finding square roots modulo n, overview
In the next few sections, the problem considered is that of solving the equation

7° = a (mod n) given 6 and n. We first summarize the results to be_deséribed.

1. Determining whether z° = a (mod n) is solvable.

a. If nis prime and n + g, then c#lculating (%) may be done in polynomial
time and tells us whether the equation is solvable.

b. If n is composite and we know the prime factorization of n, then
Vinogradov gives easily computed necessary and sufficient conditions for
the solvability of ° = a (mod n) when ged(a,n) = 1.

(See [15], Chapter V, Section 4.)
2. Finding solutions of z° = a (mod n).

a. If n is prime then there are randomized polynomial time Y(Las Vegas)
procedures to find solutions of 22 = a (mod n). Procedures of Berlekamp,
and of Adleman, Manders, and Miller are described. The latter procedure
can be modified to be a deterministic polynomial time procedure if the
ERH is true.

b. If n is composite and we have the prime factorization of n, then:

i. The algorithm of Adleman, Manders, and Miller can be used to find
some solution of z° = a (mod n).
ii. Finding the least solution of z° = a (mod n) in positive integers is

an NP-hard problem.

- 49 -

20. Finding square roots: Berlekamp’s procedure

Solve: z° = a (mod p), where p is an odd prime and ged{a,p) = 1.
Berlekamp's procedure for finding square roots

_ 1. Check that (g) =1, i‘ev., that the equation is solvable.

. 2
2. Find a number + such that (';2 — a) is a2 quadratic nonresidue, i.e., ('7 ;a) = —1.
3. Compute (:z(”-l)/2 — 1) mod ((z — 4)® — a). The result will be a linear

polynomial §(z — p). Output (p —) as a square root of a.

Theorem 47: If a is a quadratic residue mod p and Berlekamp’s procedure terminates, then

its output is a square root of a.

Proof: Suppose a is a quadratic residue and the procedure succeeds in finding a suitable 4.
Since z° — a = 0 (mod p) is solvable, (z — 7)? — 6 = 0 (mod p) is also solvable. Suppose p

and o are the solutions of the latter equation. Then

po = (4° — a) (mod p),

\
so, since (%‘7—) = (f)—)(%) and (ﬁp:—a) = —1, we must have
5--6)

Without loss of generality, assume that (%—) = 1. Then (z — p) is a factor of z(P~1)/2 _

)

modulo p, but (z — o) is not. Thus the greatest common divisor of (z — 7)~ — @ and

2P=1/2 _ 1 is (z — p). Hence computing

(z(""l)/z — 1) mod ((z - '7)2 —a)

* will produce é§(z — p) and the value (p — =) is a square root of a.

‘For the question of “finding” ~, note that if p = 3 (mod 4), then (:—p_a) = —(%) == —1, so the
choice 4 = 0 suffices in this case. In the case p = 1 (mod 4), choose 4's at random from Z;
until one is found that has the desired property. For this case, we show that at least half the
possible choices of 4 have the desired property. Thus, this 1s an algorithm whose output is .

correct. but whose running time depends on random choices -- we show that the expected value

of the running time is polynomial in the length of the input.
Simplified Cyclotomy Theory

Lemma 48: Let p be a prime such that p = 1 (mod 4) and let g be any primitive r-ootj of p.

Define for each ¢ and j € {0,1}:
S‘]={ (z.y) € Zp—lxzp—l 'z

\
I

Then [Sy)l = =1 + (p — 1)/4.

Proof: Note that the sets Sy, S;.. S, S, are pairwise disjoint. For each z except

7= (p — 1)/2, we have ¢ + 1 %= 0 (mod p) so there is a unique y € Zp_ such that

1
¢+ 1= gY(mod p). Thus:

L |Sgol + 1Sg)l + 1Sl + 1S}yl = » — 2.

2.18,,1 = |Sol- This is true because
g2m+l +1= g2n+l (mod p)
implies

g—(2m+l) +1= 92(n—m) (mod p).

- 51 -

Thus, (z,y) — (—z, y — z) is a one to one correspondence between S, and S0

3. 18l = ISq;|. This is true because
g’.’.m+.l +1= gﬁn (mod P)
implies

2m+1 (mod P),

’.w_g2n+ 1 -—=—'—g

which in turn implies

92n+(p-])/2 +1= g?,m+1+(p—-l)/2 (mod p),
and (p — 1)/2 is even. Thus, (z,y) = (y + (p—1)/2, z + (p=1)/2) is a one to one
correspondence between S, and Sor
4.8}, + 15,0l = (p — 1)/2. This is true because
S;;U S, ={(zy):2=1(mod 2) and ¢+ 1= ¢ (modp) }.
Thus,
1S14] + IS0l = 1S}, U Spl = (p — 1)/2.
So, combining (2). (3), and (4), we have
'Sul = lsml = lsml = (p — 1)/4,

and substituting this into (1), we obtain

ISO()' = -1+ (p-1)/4

Lemma 49: Let p be prime. Suppose p = 1 (mod 4). Leta € Z; be any element such that

(2) = 1. Then at most half of the elements ~ of Z. have (ﬁ:ﬁ) = 1.
p p P

Proof: Let g be any primitive root modulo p. Let Sy, be defined with respect to g as in the

preceding lemma. Define

-52-

R={7€Z;: (3%'3)=1},

>S={bE‘Z;:(é-g—‘—z-)=land(§)=l}.

Then each element of S gives rise to two elements of R, so [R| = 2|S].

Since (%) = 1 and p = 1 (mod 4), (—-;) =1, so0 indg(—a) is some even integer, say 2m, so
—a = ¢°™ (mod p). Let b € S. Then indg(b) is even, say 2n, and indg(b—a) is even, say 2r.

So we have

2n 2m

g"" + ¢°™ = ¢ (mod p),

SO

92("_"‘) +1= g?'("m) (mod p).
Thus, if v is 2(n — m) reduced modulo p — 1 and w is 2(r — m) reduced modulo p — 1, then
(v.w) € Sy
Clearly, b — (v,w’) is a one to one map of S into Sogr SO

IS] < lsoo| = -1+ (p—1)/4,

(by the preceding lemma), and

|Rl = 2|S| < -2 + (p — 1)/2.

(Remark: the interested reader may find this treated more generally under “cyclotomy” in

Hall's Combinatorial Theory, p. 147.)

2
~ Theorem 50: With random selection of ~ from Z; until a 4 is found such that (lp;a) = -1,

the expected running time of Berlekamp's procedure is polynomial in the lengths of a and p-

- 53-

Proof: Step (1) is the computation of the Legendre symbol, which can be done in time
polynomial in the lengths of a and p. As each random choice in step (2) has a probability of at

least 1/2 of succeeding, the expected number of choices required is bounded by 2. For each

2
choice, we may compute ('7 ’ a

(zP=1/2 — 1) mod ((z - 7)% - a)

) in polynomial time. In step (3) the computation of

can be done by successively squaring z and reducing it modulo ((z — 4)*> — a), as in the

computation of ¢” (mod n). O

(Remark: The procedure described above is a special case of a part of the general procedure in

Berlekamp's paper [5], to which the reader is referred for more details.)

-54 -

21. Finding square roots: the procedure of Adleman, Manders, and Miller

Solve: z° = a (mod p), where p is an odd prime and gcd(a,p) = 1.
AMM'’s procedure for finding square roots

1. Check that z° = 6 (mod p) is solvable, i.e., that (;—,) =].
2. Find the largest positive integer k such that 2F | (p — 1) and let Q = (p — 1)/2F.
3.1fa9 =1 {mod p) then output a(@+1/2 reduced modulo p and halt.

4. Find integers s and ¢ such that 8-2F + t-Q = 1.

()]

. Choose at random 4 € Z® until (1) = -1,
P P

8. Set [to '-;Q (mod p).

-1

. Find the least integer J such that
a:"JQ = 1* (mod)
for some integer r € [J+1, k—1], and let m be the least such r for this J.

om-—1

a. If J =0, then output a7l (mod p) and halt.
b. If J > 0, then set [to e (mod p) and go back to the

beginning of step (7).

‘Theorem 51: If a is a quadratic residue mod p and the procedure of Adleman, Manders, and

Miller terminates, then its output is a square root of @ mod p.

Proof: If the output is

= g(@+1)/2

from step (3) then a© = 1 (mod p), so

8> = a9*! = a (mod p).

If the output is

2k—1 qm—lt

&1 " (mod p)

b=ga

from step (72), then

2= o2 = 2249 = ¢ (mod p)
because I2° = a9 (mod p) and s2F+1Q =1. 5

"Theorem 52: The running time of the procedure of Adleman, Manders, and Miller is bounded

by 2 polynomial in the lengths of p and g, plus the time required to find ~ in step (5).

Proof: Since gcd(Q,?k) =1, s and t in step (4) can be computed using the gcd algorithm. By
previous results, the computations in steps (1), (2), (3), (4), 2nd (8) can be done in polynomial
time. Now assume that the procedure reaches step (7), so that a? % 1 (mod p), and a A has

been found such that (g) = —1.

. .
Inductively assume that the value of ! is such that = (mod p). This is certainly true

the first time step (7) is executed, since | = 10 (mod p), so that

ok-l _ .,2"—‘Q = A1) = ()= -
2= A2 = _(p)_ 1 (mod p).

The first time step (7) is executed, since a9 %= 1 (mod p) and

N (%) = 1 (mod p),
we must have k > 1, and there exists a 5,0 < 5 < k — 1 such that
0¥ = -1 =" (mod p).
Hence some j with the required property exists and we may take J to be the least one. (J can

be found in polynomial time.) Then J < k — 1. Now suppose that J > 0 and m is the

 associated value in the range [J+1, k—1]. The new value of ! will be I” = e,

- 56 -

For this value of !’ we have

: (I’)gk_l = 12&—11221:4.—1’
SO
ok—1
(')” = —-1(mod p),

because m < k — 1. Also,

(1,)2"»-] = Izm—llgk—l’

om-—1 om—1

|
-~
&

(")

and finally
am—-1 oJ-1
a* €,

)y =
because a> @ = 2" but o> '@ #*= l2m_1,so we must have 02{_1‘2 = —12""". Hence the
inductive hypothesis is verified regarding [, and the new value of j cannot exceed J — 1.
Hence, step (7) is repeated at most k — 1 times before J is reduced to 0 and the procedure

terminates. Since £ = O(log p), we conclude that step (7) contributes only a polynomial

amount of computation to the running time of this procedure. 0

Theorem 53: If 7 is selected at random in step (5) of the procedure of Adleman, Manders,

and Miller, then the procedure runs in expected polynomial time in the lengths of p and a.

* . .
Proof: Above we saw that exactly half the elements of ZP are quadratic nonresidues. Thus
the chance of success at each choice of 5 is 1/2, and the expected number of choices required is

2. The computation for each choice is done in polynomial time. 0O

’

We may replace the random choice of ~ in step (5) by a deterministic search for the least

- 57 -

~
!

element ~ such that (1—]) = —1. This does not affect the correctness of the procedure, and we

obtain the following theorem.

Theorem 54: If the ERH is true, then the version of the procedure of Adleman, Manders, and

Miller that searches in order v = 2,3,4,..., runs in deterministic polynomial time.

Proof: By Theorem 40, the ERH implies that the least quadratic nonresidue of p is of

0
-

magnitude O{(log p)°). O

Remarks:

1. If p = 3 (mod 4), step 3 applies.

2. With respect to the tree of square roots of —1, a9 is some element in the tree if
k—m

a® % 1 (mod p), each value of [is a leaf of the tree, and replacing { by 1P
corresponds to multiplying ! by the appropriate ancestor to obtain a leaf in the

“other” subtree of the common ancestor of a© and ! in the tree. We thus narrow

down to a leaf descended from a€.

3. For generalizations to roots other than the square root, see the paper of Adleman,

Manders, and Miller [3].

-58-

Example 55: Solve z2 = 21 (mod 41).

The tree of square roots of -1 for p = 41: 40

/N /N
3 38 14 27

Then we write p - 1 = 40 = 225, so k

=2end Q=25.
Compute 215 =9
2110 = 40
2120 = 1, so 21 has 2 square root mod 41.

Suppose we guess the quadratic nonresidue 6:

6% = 27
610 = 32
620 = 40

Hence we have 272 %= 21° and 27% = 2110,

Compute 271*2 = 3, giving a leaf in the other half of the
tree from 27.
We find 32 = 215
Taking 1=22%-35 we have
21 = 21'8(21%)73
= 2115393
= (21837%)2

(12)2 (mod 41)

-59-

22. Finding SOME square root, composite modulus

(<4

Solve: 22 = a (mod m) given the prime factorization m = pl°1p2°’2--~pk t, and a such

that ged(a,m) = 1.

It suffices to find - NE SN such that

z2="a (mod p;) fori= 1,2,k

1
since by the Chinese Remainder Theorem, we may findy € Z | such that

y=z; (mod p) fori= 1,2,...k.

Then

y* =z =a (mod p) fori = 1,2,...,k,

so by another application of the Chinese Remainder Theorem,

]
-

y° = a (mod m).

If p is an odd prime, it suffices to find z, such that 202 = g (mod p); we show how this

can be built up to a solution of z° = a (mod p®) fora > 1.

Ifz,isa solution of z° = & (mod p), then p divides (a — 202), so let g be the quotient of

(a — zog) and p. 2z, is relatively prime to pz, so choose r such that 2z,r =1 (mod pg). Then

2z pgr = 2zyr(a — 202) = (¢ — 102) (mod p?).

Thus

]

(24 + par)’ 102 + (a — 302) + p>¢r® (mod p?),

and so

(zo + pgr)> = a (mod p°).
Hence z, = (z, + pgr) (mod p°) is a solution of the equation 22 = a (mod p2). This step may
be repeated with p* for p; p® for p2, z, for z, and z, for z; to obtain a solution to

. z° = a (mod ps), and so on, until a solution is obtained to z° = a (mod p°%).

- 60 -

This procedure can be carried out in polynomial time, so the problem is reduced to one
of finding square roots modulo p, for which the procedures of Berlekamp or Adleman, Manders,

and Miller can be used. (For the solution of 22 = a (mod 2™) see Vinogradov [15].)

Example 58: Solve 22 = 7 (mod 27).

N

=7 =1 (mod 3) has solution Xg = 1

ey
~

q=(7-1/3=2
2xy =2, sor =5 since 25 =1 (mod 9)
2. Thus x; =4 =1+ 325 (mod 9) is a solution of x2 = 7 (mod 9).

q = (7 - 16)/9

-1

n

2x, = 8, sor =17 since 817 = 1 (mod ?7)

1

3. Thus X, = 13 = 4 + 9-(-1)-17 (mod 27) is 2 solution of x2 =7 (mod 27)

And, indeed, 13% = 169 = 7 (mod 27).

]

-8l -

23. Finding the LEAST square root, composite modulus
This section describes a result of Manders and Adleman [10] showing the following

decision problem is NP-complete.

Given integers a, H, m, to determine whether there is an
integer z satisfying:

1.0 < z < H, and
(1)

2. 22 = a (mod m).

Theorem 57: This problem is NP-complete, even if the prime factorization of m is given.

Proof: The problem is clearly in NP: we may guess a nonegative integer z < H and check

that the second condition of (I) is satisfied.

To see that it is complete in NP, we reduce to it the problem of deciding whether a
propositional formula in conjunctive normal form with three literals per clause is satisfiable.
(The latter problem is called 3SAT.) Let ¢ be a propositional formula of the appropriate form
with variables }L’O‘Xl,...,Xl_1 and clauses CO’CI""’Cm—l‘ Define for all { and jsuch that ¢ €
[0,l~1] and j € [0,m—1]:
€= +1 ¢f X, occurs in_ CJ.

-1 ¢f ~X, occurs in Cj

0 1f neither occurs tn CJ.
(We assume that any clauses containing both X and ~X have been eliminated.) Let

n =l + 2m and let p,p,,...,p,_, be the first n “sufficiently large” primes (that is, greater

than the n—th root of 4n16™). Define for each s = 0,1,...,.n — 1:

-62-

e . n
m,=p..

Let @ = mym -~ m and define for each ¢ = 0,1,....n — 1:

n,= Q/m.

n=1’

Fori=10,1,..,l = 1let X, be the least positive integer such that
An. =% . eijlﬁj (mod 16"‘), and

[

2t g=0,m-—

An;% 0 (mod p).
For i = Ll+1,..,l+2m—1 choose X, to be the least positive integer such that

A\n, = 16l(=0/2] (mod 16™), and

“Am; ¥ 0 (mod p).

Finally, let

r=73 167
7=0,m-1
=T A
H 1=0n-1 * 1

m=2-16m-Q

e = (216" + Q)" NQ-7 + 2:16™-H?) (mod m).

(The inverse in the last expression is modulo m. Note that ris odd.)

Lemma 58: The conditions (I) are equivalent to
1.0<z<H,

o
-

(Im 2.z 7 (mod 2-18™),

]

o
-

3. 2° = H* (mod Q).

(l

- 63-

Proof: By the Chinese Remainder Theorem.

Lemma 59: The conditions (II) are equivalent to

1.0 < |z} < H,
() 2.z = r(mod 16™),

3. 2% = H® (mod Q).

Proof: Verify that for r odd we have

(z—1(z+7)=0 (mod 2"“)

»’

if and only if

(z—=1 =0 (mod 2¥) or(z +7) =0 (mod 2F).

Lemma 80: The solutions of

1.0 < |z| £ H,

awvy
2. z° = H- (mod Q)
are precisely z = :S=0,n-l a\n;, where each o; € {1,—1}.

Proof: Because n;n. = 0 (mod Q) if ¢ 5% 7 we have

4
o

H- =)\i“Zni2 (mod @), and

2y 2.2
o1 0"\ n (mod Q).

On-1
2

x© =

T e
“M

?

Since each a; € {1,~1}, each °‘i2 =1, so

22 — H* =0 (mod Q).

Also, |z| < H, and so all the z's of the indicated form are solutions of (IV).

-84 -

Conversely, if y is any solution of (IV) then @ | (y — H)(y + H). For each prime p; it cannot
be the case that p; divides both (y — H) and (y + H), for then p; | 2H,s0o p; | H. Since p, | n;

for i 5% j, this implies that p; | A\, contrary to our choice of A We now define

o, = +1 if m;|(y — H)

y=H=An=oaln, =z (mod m).

If m_|(y + H) then

y=-—-H= -—X'-ni = C!'-X,-n; =z (mOd m,‘):

by our choice of o, Hence forall i = 0,1,...n — 1,

z=y (mod m;),

so by the Chinese Remainder Theorem,

z =y (mod Q).

We note that [z] < H by construction.

By our choice of the p.'s and the fact that \; < 2-16™, each term of H is bounded by Q/2n, so
2H < Q. But |y| < Hand |z| £ Himply |z — y| < 2H < Q and since z = y (mod Q), we
must have z = y. Thus y is of the indicated form. O

A

Thus conditions (1) and (3) of set (II) guarantee a collection of independent binary choices
(whether a, = 1 or —1) in the solution space. We now go on to show that condition (2),
= 7 (mod 16™), constrains these binary choices to correspond to a satisfying assignment of

truth values for ¢ according to the following scheme:

VX, = T ifa;=+1,
F ifa;=-1

-85 -

The first [o,'s correspond to an assignment; the remaining 2m «a's are available as “padding’
-- two a s for each clause to bring its “value”up to a standard figure if the chosen assignment
satisfies it. The condition on the 7—th hexadecimal digit of z corresponds to the condition of

the j—th clause of ¢.

Lemma B1: ¢ is satisfiable if and only if there exists a solution of (III).

Proof: Suppose there is a solution of (III). Then by the preceding lemma, it must be of the
form

U

where each o € {1,-1}. Define a truth value assignment by

X, = T ifa,=+1,
F ifa,=-1

We show now that V satisfies the formula ¢. From condition (2) of (III), z = r(mod 16™), so

T Am. — T 16/ =0 (mod 16™),
t=0n—-1 * **? s=0m-1
therefore
p ' v 187 r . L= =
= oiet a; (j';O,m—l eUIG) + 2 oot (aH_._,J 00 1)16/ = 0 (mod 18),
thus
T A . . L - = ™).
Z oot ((;0,1-1 aiciJ) + 0t i 1) 16/ = 0 (mod 18™)
Letting
—_— (T -
Ry= (2,) %) * %oy T Clom — b
we note that I(ij! = 1 for exactly three values of ¢ for each j(because each clause contains
1
exactly three literals), and each o, is either 1 or —1, so for each j, RJ. € [-6,4]. Hence
T R167=0 (mod 16™)
7=0m-1

if and only if

Rj= 0 foryj=01,.,m—1.

- 66 -

The possible values of

v €.
f=0,0—1 11

are 3, 1, —1, —3 corresponding respectively to 3, 2, 1, or no literals of CJ. satisfied by the

assignment V. The only possible values of

0o Cpoiy — 1
are 1, —1, —3, so in order that RJf = 0, the assignment must satisfy some literal in Cy soV

satisfies CJ; Since Cj was an arbitrarily chosen clause, V satisfies the formula 6.

Conversely, suppose that ¢ is satisfiable, and let V be any satisfying assignment. For ¢ =

0,1,...,1 — 1 define

a; = +1 if VX))
-1 if X))

T
F.
Then for each j = 0,1,....,m — 1 we evaluate

b €.
i=0,1-1 4]

This must be 3, 1, or —1 because V satisfies some literal in CJ, S0 @ = 1 for some 1. Then

respectively choose (°l+2f °1+2j+1) to be (—1,-1), (1,—1), or (1,1) in order that
= (T — ==
Ry= (2), 0) T opypit o, —1 =0

Then we have

=73 aln,
t=0n-1 *+ ¥ ¢

satisfies conditions (1) and (3) of (III) by the preceding lemma, and

z—r=7 R 16’ (mod 16™),
=0m-1 J

from above,

z—r=0 (mod .16'").

Thus z satisfies condition (2) and therefore is a solution of (III).

To conclude the proof of the theorem, it is not difficult to verify that a, H, m may be

LY

- 67 -

constructed in polynomial time from the formula ¢ -- the primes are small (they may be taken
to be the first n primes exceeding 16), and the rest depends on computing ged, inverses, and
the Chinese Remainder Theorem. It is also clear that m is such that its factorization may be

given (or found in polynomial time) without affecting the result. O

- 88 -

24. Acknowledgement and Warning

I am happy to acknowledge my indebtedness to Gary Miller for mary bours of
enlightening conversation on these topics when we both were graduate stv;ldents at Berkeley,
and after. Manuel Blum'’s enthusiastic and repeated insistence is the reason I have undertaken
to make these notes a more accessible than they were previously. Responsibility for the

(inevitable!) errors is mine alone, however.

These notes were originally prepared as part of the postgraduate course in Artificial
Intelligence and Computer Science at Edinburgh University in 1977-78, and are currently
rather out of date. They contain no treatment of factorization, and no account of the work of
Adleman, Rumely, and Pomerance on testing primality, nor of Adleman’s work on the discrete
logarithm problem. There are doubtless many other topics that should be included for a
complete treatment, and many places where the current treatment is inadequate. I would be

happy to receive any suggestions or comments on the notes.

-89 -

I. Appendix: three tables of powers

11

MOD

10

10

10

10

10

10

10

15

mMaD

9 10 11 12 13 14

8

11

11

11

11

11

13
14

13
14

14

14

14

14

14

14

MOD 9

(3]

[10]

11]

-70 -

References

L. Adleman and K. Manders.
Reducibility, randomness, and intractability.
In 9th ACM Symposium on Theory of Computing, pages 151-163. ACM, 1977.

L. Adleman and K. Manders..

Reductions that lie.

In 20th IEEE Symposium on Foundations of Computer Seience, pages 397-410. IEEE
1979.

2

L. Adleman, K. Manders, and G. Miller.

On taking roots in finite fields.

In 18th IEEE Symposium on Foundations of Computer Science, pages 175-177. 1EEE,
1977.

A. V. Aho, J. E. Hopcropft, and J. D. Ullman.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1974.

E. R. Berlekamp.
Factoring polynomials over large finite fields.
Mathematics of Computation 24:713-735, 1970.

R. D. Carmichael.
On composite numbers which satisfy the Fermat congruence.
American Mathematical Monthly 19:22-27, 1912.

M. R. Garey and D. S. Johnson.
Computers and Intractability: a Guide to the Theory of NP-Completeness.
Freeman, 1979.

J. Gill.
Computational complexity of probabilistic Turing machines.
SIAM J. Comput. 6:675-695, 1977.

D. E. Knuth. v
The Art of Computer Programming, Vol. II: Seminumerical Algorithms.
Addison-Wesley, Reading, Mass., 1969.

K. Manders and L. Adleman.
NP-complete decision problems for quadratic polynomials.
In 8th Annual ACM Symposium on Theory of Computing, pages 23-29. ACM, 1976.

G. Miller.
Riemann’s hypothesis and tests for primality.
J. Comp. Sys. Sei. 13:300-317, 1976.

[12]

[13]

[14)

18]

I. Niven and H. S. Zuckerman.
An Iniroduction to the Theory of Numbers.
John Wiley and Somns, N. Y., 1960.

V. Pratt.
Every prime has a succinct certificate.
SIAM J. Comput. 4:214-220, 1975.

R.Solovay and V. Strassen.
A fast Monte-Carlo test for primality.
SIAM J. Comput. 6:84-85, 1977.

I. M. Vinogradov.
Elements of Number Theory.
Dover, 1954.

