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Abstract

This paper presents a method for incrementally segmenting images over time using
both intensity and motion information. This is done by formulating a simple model of
surface patches using local constraints on intensity and motion and then finding the op-
timal segmentation over time using an incremental stochastic minimization technique.
The result is a robust and dynamic segmentation of the scene over a sequence of images.
The approach has a number of benefits. First, discontinuities are extracted and tracked
simultaneously. Second, a segmentation is always available and it improves over time.
Finally, by combining motion and intensity, the structural properties of discontinuities
can be recovered; that is, discontinuities can be classified as surface markings or actual
surface boundaries.

*Submitted: Second European Conference on Computer Vision, May 1992.

tThis work was supported by a grant from the National Aeronautics and Space Administration (NGT-
50749), by the NASA Ames Research Center, Aerospace Human Factors Research Division, NASA RTOP
506-47, and by a grant from the Whitaker Foundation.




1 Introduction

Our goal is to efficiently and dynamically build useful and perspicuous descriptions of the
visible world over a sequence of images. In the case of a moving observer or a dynamic
environment this description must be computed from a constantly changing retinal image.
Recent work in Markov random fields models [12], recovering discontinuities [5], segmentation
[9, 11], motion estimation [3, 4, 18], motion segmentation [6, 10, 14, 21], and incremental
algorithms [3, 13, 20, 24] makes it possible to begin building such a structural description of
the scene over time by compensating for and exploiting motion information.

As an initial step towards the goal, this paper proposes a method for incrementally
segmenting images over time using both intensity and motion information. The result is a
robust and dynamic segmentation of the scene over a sequence of images. The approach
has a number of benefits. First, discontinuities are extracted and tracked simultaneously.
Second, a segmentation is always available and it improves over time. Finally, by combining
motion and intensity, the structural properties of discontinuities can be recovered; that is,
discontinuities can be classified as surface markings or actual surface boundaries.

By jointly modeling intensity and motion we extract those regions which correspond to
perceptually and physically significant properties of a scene. The approach we take is to
formulate a simple model of surface patches using local constraints on intensity and motion.
The formulation of the constraints accounts for surface patch boundaries as discontinuities
in intensity and motion. These constraints are modeled probabilistically using a Gibbs
distribution. The segmentation problem is then represented as a Markov random field with
line processes.

Scene segmentation is performed dynamically over a sequence of images by exploiting
the techniques of incremental stochastic minimization (ISM) [3, 4] developed for motion
estimation. The result is a robust segmentation of the scene into surface patches, an estimate
of the intensity and motion of each patch, and a classification of the structural properties of
the patch discontinuities.

Previous Work

Previous approaches to scene segmentation have typically focused on either static image
segmentation or motion segmentation. Static approaches which attempt to recover sur-
face segmentations from the 2D properties of a single image are usually not sufficient for a
structural description of the scene. These techniques include the recovery of perceptually
significant image properties; for example segmentation based on intensity [5, 8] or texture
[9, 11], location of intensity discontinuities, and perceptual grouping of regions or edges.
While there are serious limitations in using these techniques alone to recover structure, they
can be used heuristically as cues to possible surface segmentations due the fact that different
surfaces often have different material properties and hence may have different texture or
intensity.

Structural information about image features can be gained by analyzing their behavior
over time. Attempts to deal with image features in a dynamic environment have focused on
the tracking of features over time [22, 29]. A notable exception to the tracking approach
detects moving intensity edges over time by observing the space-time behavior of the edge




moving across a fixed detector array [16].

Motion segmentation, on the other hand, attempts to segment the scene into structurally
significant regions using image motion. Early approaches focused on the segmentation and
analysis of the computed flow field [26]. Other approaches have attempted to incorporate
discontinuities into the flow field computation [3, 21], thus computing flow and segmenting
simultaneously. There has been recent emphasis on segmenting and tracking image regions
using motion, but without computing the flow field [6, 7, 10, 23]. While these approaches
are promising since they provide structural information, they typically provide only a coarse
segmentation of the scene.

In attempt to improve motion segmentation a number of researchers have attempted
to combine intensity and motion information. Thompson [27] describes a region merging
technique which uses similarity constraints on brightness and motion for segmentation. Heitz
and Bouthemy [14] combine gradient based and edge based motion estimation and realize
improved motion estimates and the localization of motion discontinuities. In the context of
stereo reconstruction, Luo and Maitre [19] use a segmented intensity image to correct and
improve disparity estimates. )

Advantages

The approach described here has significant advantages over single frame segmentation tech-
niques. By extending segmentation over time the effect of noise in any single image is reduced.
Only perceptual features which persist over an image sequence are recovered. Additionally,
the cost of segmenting a scene is amortized over time.

Jointly modeling intensity and motion produces a more robust segmentation than can be
achieved with either piece of information alone. Motion information is also used to distinguish
between structural and intensity discontinuities. Furthermore, structural boundaries can be
classified as occluding, disoccluding.

One of the major advantages of the approach is that it is incremental and dynamic.
Feature-based approaches to motion estimation begin with static feature extraction and
proceed to track the features over a number of frames. The advantage of the approach
presented here is that the features themselves can be extracted dynamically over a sequence
of images. Hence, we are extracting features over time as opposed to tracking them over
time.

The following section formalizes the notion of a surface patch in terms of constraints
on image motion and intensity. Section 3 describes the incremental minimization scheme
used to estimate patch regions. Section 4 presents experimental results with real image
sequences. Finally, before concluding, section 5 discusses issues with the approach and
possible extensions of this work.

2 Joint Modeling of Discontinuous Intensity and Mo-
tion

To model our assumptions about the intensity structure and motion in the scene we adopt a
Markov random field (MRF) approach [12]. MRF models have proved useful in representing




Figure 1: Arrangement of patch sites (o) and discontinuities (|, —).

the spatial properties of scenes for segmentation [9, 11], restoration [12], and motion esti-
mation [3, 4, 18]. We formalize the prior model in terms of constraints, defined as energy
functions over local neighborhoods in a grid. For an image of size n x n pixels we define a
grid of sites: '

S = {s1,82,--+,8n2 | Y 0 < i(8y),j(sw) <n—1},

where (i(s),7(s)) denotes the pixel coordinates of site s.
For the first order constraints employed here we define a neighborhood system G = {G,, s €
S} in terms of the nearest neighbor relations (North, South, East, West) in the grid:

G, ={t | (i(t), 5(1)) = (i(s) + &, j(s) +§;) —1<6;,6; <1}

We define a clique to be a set of 51tes C C S, such that if s,t € C' and s # ¢, then t € G,.
Let C be a set of cliques.

We also define a “dual” lattice, I(s, t), of connections between sites s and their neighboring
sitest € G,. This line process defines the boundaries of the surface patches. If I(s,t) = 1 then
the sites s and t are said to belong to the same surface patch. In the case where I(s,t) = 0,
the neighboring sites are disconnected and hence a discontinuity exists. Figure 1 illustrates
the relationship between the patch sites and the boundary lattice.

Associated with each site s is a random vector X(t) = [u,¢, ] which represents the hori-
zontal and vertical image motion u = (u,v), the intensity ¢, and the discontinuity estimates
l at time t. A discrete state space A,(t) defines the possible values that the random vector
can take on at time ¢.

To model surface patches we formulate three energy terms, Ea, E7, and E; which
express our prior beliefs about the motion field, the intensity structure, and the organization
of discontinuities respectively. The energy terms are combined into an objective function
which is to be minimized:

E(u,u™,7,:7,1,17) = Ep(u,u™, 1) + Ez(¢,s7,1) + Ec(I,17). (1)

The terms u™, 7, and [~ are predicted values given the history of the sequence, and are used
to express temporal continuity. In this section, we assume that these values are available.
The following section will address the prediction and propagation of these values in the
context of incremental minimization.

We convert the energy function, E, into a probability measure II by exploiting the equiv-
alence between Gibbs distributions [12, 17, 21] and MRF’s:

N(X(1) = 27" e EX@)IT0) @)




where Z is the normalizing constant:

Z= Y e BXOTO, (3)
X(t)eA(2)

and where T(t) is a temperature constant at time ¢ which serves to sharpen (or flatten) the
distribution. Minimizing the objective function is equivalent to finding the maxium of II.

2.1 The Intensity Model

We adopt a piecewise constant, or weak membrane, model of intensity [5]. This first order
approximation to image intensity can easily be extended to higher order approximations
[5] or to more complex texture models [11]. The current formulation differs from previous
formulations in that we add a temporal continuity term to express the expected change in
the image over time.

The prior model of image intensity is formulated as the energy term:

Ez(1,1,:7,1,s) =wp,D1(1,1,8)+ wTITI(i, i7,8)+ wSISI(i, l,s), (4)

where the w, are constant weights which control the relative importance of the constraints,
and where the data consistency term is defined as:

Dr(1,i,5) = (I(s) —i(s))". ()

This expresses the constraint that the current estimate z should be close to the current
intensity image I.

The temporal coherence term expresses the notion that the current estimate is related to
the predicted value :~:

Tr(iyi®ys) = (i(s) —i7(s)) (6)

Finally, the spatial coherence term expresses an expectation of piecewise constant image
patches with discontinuities:

i,ls) = 3 Us,n)(i(s) —i(n))”. (7)

negGs

When no discontinuity is present between sites s and n (I(s,n) = 1) we expect the differences
in neighboring intensity values to be similar. If, however, a discontinuity is present (I(s,n) =
0) the difference between neighbors does not contribute to the energy term.

2.2 The Boundary Model

We want to constrain the use of discontinuities based on our expectations of how they occur
in images. For example, we expect discontinuities to be rare and particular combinations to
be more likely than others. Hence, we will penalize discontinuities which do not conform to
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Figure 2: Examples of local surface patch discontinuities. Configuration V (no discontinu-
ities) is preferred to the situation, V;, where a discontinuity is introduced. A corner V; is
deemed less likely than a single discontinuity. Cliques V3, Vj, and V;, are highly penalized
as they do not admit plausible physical interpretations.

expectations. The boundary model can then be expressed as the sum of a temporal coherence
term and a penalty term defined as the sum of clique potentials V¢ over a set of cliques C:

Ec(l,17,8) = wr, Z (I(s,n) = 1" (s,n))* + wp, Z Ve (D), (8)

neg, ceC

where wr, and wp, are constant weights.

One component of the penalty term expresses our expectation about the local configu-
ration of discontinuities about a site. Figure 2 shows the possible local configurations up
to rotation. We also express expectations about the local organization of boundaries; for
example we express notions like “good continuation” and “closure” which correspond to as-
sumptions about surface boundaries (figure 3). The values for these clique potentials were
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Figure 3: Examples of local organization of discontinuities based on continuity with neigh-
boring patches. The lack of continuation in Vg is penalized, while good continuation, V7 is
rewarded. Corners, Vg, and steps, Vs, are also rewarded.




determined experimentally and are similar to those of previous approaches [8, 21].

2.3 The Motion Model

As with the intensity model, we express our prior assumptions about the motion in terms
of three constraints: data consistency, temporal coherence, and spatial coherence. The
data consistency constraint Dy states that the image measurements corresponding to an
environmental surface patch change slowly over time. The spatial coherence constraint Sy is
derived from the observation that surfaces have spatial extent and hence neighboring points
on a surface will have similar motion. Finally, the temporal coherence constraint Ty is based
on the observation that the velocity of an image patch changes gradually over time.
This prior motion model is formulated as an energy term:

Em(1n, Ingr,u,u™, 1, s) = wp, Dm(In, Ing1,u,8) + wry, Taa(u,u™, s) + wsSm(u,l,8), (9)

where the w. are constant weights, and where the spatial term is analogous to that of the
intensity model:

Su(wls) = Yl dlluls) —u@l. (10)

teg,

The temporal term, as with the other terms, is formulated in the image plane. Assuming
constant acceleration, the term is formulated as:

Tm(u,u™,s) = Jlu(s) = (u™(s) + Au(s))]l, (11)
where, at time t:
Auy(s) =u; (s) — ui_(s). (12)

The data conservation constraint embodies the assumption that the intensity of a surface
element remains constant over time, although its image location may change. We adopt a
correlation based approach in which a correlation surface at a site s is defined over the space
of possible displacements (u,v) with the height of the surface corresponding to an estimate
of the data error of that displacement. The minimum of this surface corresponds to the best
motion estimate with respect to the data conservation assumption.

Let s and ¢ denote image locations, or sites, in S. We define a neighborhood for the data
conservation constraint as :

G = {t1(i(1),3(1) = (i(s) + A, j(s) + Aj), —e < Ai,Aj < ¢},

which defines a square “window” of size (—2c + 1) x (2¢ + 1).

Data error is defined as the the difference between predicted and measured intensity
values. Given image intensity functions I,, and I 41 between two successive frames, the local
contribution to the data conservation constraint is defined as:

D (I, Ing1,w,8) = 3 ¢p(Ia(i(t),5(t)) = T (i(2) + v, j(t) + v)). (13)

tegp




where, if ¢p(z) = z2, we have the standard quadratic sum of squared difference surface [1].
Instead, following [3, 4], we adopt the following estimation function:

-1
P2 = TG A

where Ap is a constant scale factor (Ap = 5.0 in our experiments). This measure is more
robust in the presence of noise and outliers resulting from multiple motions within the
correlation window.

(14)

3 The Computational Problem

The objective function defined in the previous section will typically have many local minima,
making the task of minimizing it difficult. One possible approach to solving this minimization
problem is to exploit stochastic techniques like simulated annealing [12,17]. These techniques
(in this case a Gtbbs Sampler [12]) can be used to find the minimum X (¢) by sampling from
the state space A according to the distribution II with logarithmicly decreasing temperatures.
As the temperature is lowered, the probability distribution II becomes concentrated about
the minimum while the stochastic nature of the process prevents the estimate from getting
trapped in local minima. The result is that at high temperatures the sampling process freely
chooses values of X(t), but as the temperature is lowered, the minimum is chosen with
increasing probability. In the limit, this process converges to the correct solution when a
logarithmic cooling schedule is used. In practice, a sufficiently slow linear cooling schedule
appears to provide acceptable convergence.

As mentioned earlier, each site contains random vector X (t) = [u,¢,!] which represents
the motion, intensity, and discontinuity estimates at time ¢t. The discontinuity component
of this state space is taken to be binary, so that [ € {0,1}. While this works well in practice,
it does not allow sub-pixel localization of the discontinuities. We are currently exploring
ways of representing and recovering sub-pixel estimates by allowing real valued connections
between sites [2, 25].

The intensity component ¢ can take on any intensity value in the range [0,255]. For
efficiency, we can restrict z to take on only integer values in that range. This, however, still
results in a large state space. We make the further approximation that the value of : at site
s is taken from the union of intervals of intensity values about i(s), the neighbors () of s,
and the current data value I,(s). Small intervals result in a smaller state space without any
apparent degradation in performance.

The motion component u = (u,v) is defined over a continuous range of displacements u
and v. Continuous annealing techniques (3, 28] allow accurate sub-pixel motion estimates by
making the state space for the flow component adapt to the local properties of the function
being minimized.

Simulated annealing has a number of desirable properties. First, due to the local nature
of the constraints, the algorithm is highly parallel, and the current Connection Machine
implementation fully exploits this parallelism with a processor at each site in the MRF.
More importantly, simulated annealing has the ability to cope with non-convex objective
functions. Unfortunately, stochastic algorithms remain expensive, particularly without par-
allel hardware. For reasonable results, hundreds, or thousands, of iterations of the annealing
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Figure 4: Incremental Stochastic Minimization.

algorithm may be necessary to settle into the global minimum energy configuration. This
has a decidedly non-dynamic flavor. Ideally a motion algorithm should involve fast simple
computations between a pair of frames, and exploit the fact that tremendous amounts of
data are available over time.

By tracking small patches of a scene over an image sequence, we will modify the basic
annealing concept to work on changing data over time. The strict convergence results of
simulated annealing will be lost, but the result will be an incremental algorithm which
produces good empirical results and meets many of the requirements of a truly dynamic
motion algorithm.

3.1 Incremental Minimization

In the context of optical flow, Black and Anandan [3] describe an incremental stochastic
minimization (ISM) algorithm (figure 4) that has the benefits of simulated annealing without
many of the shortcomings. As opposed to minimizing the objective function for a pair of
frames, the ISM approach is designed to minimize an objective function which is changing
slowly over time. The assumption of a slowly changing objective function is made possible
by exploiting current motion estimates to compensate for the effects of the motion on the
objective function. Estimates are propagated using the current optic flow estimate and
refined with each new frame resulting in an incremental minimization algorithm. The cost
of computing the motion estimate is spread over an entire sequence of images.

When a new image is acquired, the current predicted values [u~,:~,17] at a given site are
used as the starting point for the annealing process. The current temperature at that site is
used as the initial temperature, and is then lowered according to the annealing schedule.

After a fixed (usually small) number of iterations of the annealing process, each site has
new estimates ([u,z,/]) and a new temperature. The various properties of the associated
surface are then propagated to the new site where the patch has moved. These properties
include the patch’s motion, intensity, discontinuities, temperature, and state space. This
propagation can be viewed as warping the sites according to the motion estimate [3, 13].
Since motion is not discrete, the field is resampled using a weighted bi-linear interpolation,
where the weighting reflects the confidence in the motion estimates.

During the warping process, the total flow into a site is measured. This allows us to
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Figure 5: Can and Canny: a) First image in the soda can sequence. b) Edges in the image
extracted with the Canny edge operator.

classify motion discontinuities as occluding or disoccluding [3, 4]. In the absence of motion
discontinuities the in-flow should be approximately unity. However, a site located at an
occlusion boundary will have multiple sites projecting to it, thereby increasing the total
in-flow. Similarly, at a disocclusion, we may expect the total flow to be less than unity.
Hence, sites can be classified as locations of occlusion or disocclusion using two thresholds,
one above and one below unity respectively.

A disoccluded site indicates a new patch of the environment which was previously hidden
from view. For this new patch, there is no prior motion estimate, hence the annealing process
should be initially uncommitted about the motion. This is achieved by initializing the site
to have a high temperature.

Unlike standard annealing, the incremental algorithm uses different temperatures for
the different sites and dynamically modifies the temperature according to the information
available at a site. As a patch is tracked, its temperature will decrease over time. Hence,
the temperatures of patches that have been tracked over many frames and whose motion is
precisely known tend to be lower than those of more recently disoccluded patches.

4 Experimental Results

A number of experiments have been performed using real image sequences. For these ex-
periments, the parameters of the model were determined empirically. The intensity model
parameters were: wp, = wr, = 1/40? and ws, = 1/202. For the boundary model, we
set the weights as follows: wr, = 0.5 and wp, = 1.0. Finally, for the motion model, we
have: wp,, = 0.5, wr,, = 0.1, and wg,, = 1.5, with a 3 x 3 correlation window. An initial
temperature of T'(0) = 0.3 was chosen with a linear cooling rate of T'(t + 1) = T'(¢) — 0.0025.

The Pepsi Sequence!

'This image sequence was provided by Joachim Heel.
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Figure 6: Feature extraction. a) Intensity based segmentation without motion. b) Seg-
mentation using joint intensity and motion model. ¢) Structural features in the scene.

The first sequence consists of ten 64 x 64 square images; the first image in the sequence is
shown in figure 5a. The images contain a soda can in the foreground; the motion of which is
slightly less than one pixel to the left between each frame. The can is moving in front of a
textured background which is also undergoing a slight motion to the left; there is no vertical
motion.

As an example of traditional, intensity-based, segmentation techniques, the Canny edge
operator was applied to the image. The edges are shown in figure 5b. For comparison, figure
6a shows an intensity based segmentation using a piecewise constant intensity model with
no motion information. The figure shows the estimate for a single static image after 25
iterations of the annealing algorithm. As with the Canny edges, the results correspond to
intensity markings.

Figure 6b shows the results for the same image when a joint intensity and motion model is
used. The results are from a two image sequence after 25 iterations. Compare the boundaries
corresponding to the right and left edges of the can. In figure 6a the similarity of intensity
between the can and the background results in smoothing across the object boundary. When
motion information is added in figure 6b the object boundary is detected and smoothing does
not occur across it.

Not only does the joint intensity and motion model improve the segmentation process,
it provides additional information about the scene. In particular, it allows us to classify
discontinuities as structural properties of the scene or purely surface markings. Figure 6¢
shows the motion boundary detected with the joint model.

The power of the approach does not lie in the ability to segment a scene using one or two
frames, but rather in the ability to perform the segmentation incrementally over an image
sequence. Figure 7 shows the results of processing the full ten image sequence. Figure 7a
shows the last image in the sequence.

The horizontal and vertical motion is shown in figures 7b and c respectively. Dark areas
indicate leftward or upward motion and similarly, bright areas indicate motion to the right
and down. Notice that motion estimates are available in homogeneous areas where motion
estimates are typically poor. Also, the modeling of discontinuities allows sharp motion
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Figure 7: Incremental Feature Extraction. Results for a ten image sequence. a) Last
image in the sequence. b) Horizontal component of image motion. ¢) Vertical component of
image motion. d) Reconstructed intensity image. e) Motion boundaries. f) Occlusion and
disocclusion boundaries.

boundaries and prevents over-smoothing.

Figure 7d shows the reconstructed intensity image which reflects the intensity estimates
in the patches. Figure Te shows the detected motion boundaries, while figure 7f shows the
classification of the boundaries as occluding (bright areas) or disoccluding (dark areas).

Figure 8 shows the evolution of the features over the ten image sequence. The estimates
start out noisy and are refined over time. Only five iterations of the annealing algorithm
were used between each pair of frames. By carrying out the minimization over the sequence,
the amount of computation between frames is kept small without sacrificing segmentation
quality.

The knowledge of motion boundaries along with the first order flow estimates may provide
enough information for many purposive vision tasks. If more detail is required, the scene can
be reconstructed from the patch data. Figure 9 illustrates such a reconstruction. In figure
9a the disparity data and patch boundaries are used to reconstruct a segmented version of
the 2% dimensional scene. Motion discontinuities correspond to depth discontinuities, while
intensity discontinuities appear as surface markings. In figure 96 the intensity of the patches
is used to construct a realistic rendering of the original scene.

11




Figure 8: Incremental Feature Extraction. The images show the evolution (left to right,
top to bottom) of features over a ten image sequence.

Equal Time for Coke?

The second image sequence contains 38 images of size 128 x 128 pixels. The camera is
translating along the camera axis with the focus of expansion centered on the can. Figures
10a and b show the first and last images in the sequence. Figure 10c shows the image features
at the end of the image sequence. Unlike standard segmentation, these features have been
tracked over the length of the sequence. Figure 10d shows only features which are likely to
correspond to surface boundaries. The pencils and metal bracket are correctly interpreted
as physically significant while the sweater is interpreted as purely surface marking. Notice
that the Coke can boundary is incorrectly interpreted as surface marking. This is a result
of small interframe displacements; the motion of the can boundary is not significant enough
to classify it as structural with the current scheme. This suggests the use of a different
classification scheme which takes into account the behavior of features over time; we are
currently exploring alternate schemes.

Figure 11 shows the evolution of the image features over time. Ten iterations of the

2This sequence was collected at the NASA Ames Research Center and is provided courtesy of Banavar
Sridhar.
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Figure 9: Reconstructed views of the scene: a) intensity discontinuities, b) estimated inten-
sity.

annealing algorithm were used between frames. The segmentation improves as the features
are tracked over the image sequence. Due to the relatively large homogeneous regions in
the image, the dense motion estimates are poor. Accurate dense flow however is not re-
quired for incremental segmentation. All that is required is that the motion estimates at the
discontinuities be accurate; in fact, only accurate normal flow estimates are required.

5 Issues and Future Work

There are a number of issues to be addressed regarding the approach described. First,
the current implementation employs only simple first order models of intensity and motion.
While such a model may produce useful qualitative results in many situations, it is clearly not
sufficient. In particular, to cope with textured surfaces more complicated image segmentation
models will be required. Such an extension is straightforward as texture segmentation has
been formulated by many authors in the MRF framework (see [9, 11]).

A second issue which must be addressed is one shared by many minimization approaches;
that is the parameter estimation problem. The construction of an objective function with
weights controlling the importance of the various terms is often based on intuition, empirical
studies or, in the worst case, “tweaking” the parameters until the desired output is obtained.
The problem of parameter estimation becomes more pronounced as the complexity of the
model increases. In the model proposed here there are eight weights, ten clique energies,
one scaling factor, an initial temperature and a cooling rate which must be determined.
Experiments with the current model indicate that it is relatively insensitive to changes in
the parameters. The general problem, however, remains open.

Finally, the local optimization approach to recovering surface patches is only the first step

13
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Figure 10: The Coke Sequence. Figures a and b are the first and last images in the
sequence respectively. Figure ¢ shows the image features at the end of the sequence. Figure
d shows only those features which are likely to have a physical interpretation.

in recovering the structure of the scene. If our goal is to recover environmental structure then
we must recover the surfaces present, their properties, and their relationships to each other.
For this a more accurate modeling of surfaces will be required; for example 3D parameterized
surface models [15]. Non-local properties of the patches will need to be computed and
additional perceptual organization processes will likely be needed to group patches which
are consistent with the surface models.

6 Conclusion

We have presented an incremental approach to extracting stable perceptual features over
time. The approach formulates a model of surface patches in terms of constraints on intensity
and motion while accounting for discontinuities. An incremental minimization scheme is used
to segment the scene over a sequence of images.

The approach has advantages over traditional segmentation and motion estimation tech-
niques. In particular, it is incremental and dynamic. This allows segmentation and motion
estimation to be performed over time, while reducing the amount of computation between
frames and increasing robustness.

Additionally, the approach provides information about the structural properties of the
scene. While intensity based segmentation alone provides information about the spatial
structure of the image, motion provides information about object boundaries. Motion seg-
mentation alone, however, provides fairly coarse information. Combining the two types of
information provides a richer description of the scene.
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