Abstract

We present an iterative method for solving large sparse nonsymmetric linear systems of equations that
enhances Manteuffel’s adaptive Chebyshev method with a conjugate gradient-like method. The new
method replaces the modified power method for computing needed eigenvalue estimates with Arnoldi’s
method, which can be used to simultaneously compute eigenvalues and to improve the approximate
solution. Convergence analysis and numerical experiments suggest that the method is more efficient
than the original adaptive Chebyshev algorithm.
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1. Introduction
The adaptive Chebyshev algorithm of Manteuffel [11, 13] is an iterative method for solving large

sparse real nonsymmetric systems of linear equations of the form
Ax = b, (1)

where the coefficient matrix A has positive-definite symmetric part. Starting from an initial guess, Xgs

the method generates a sequence of iterates {xj} whose residuals {rj =b- ij} satisfy

= Pj(A)ro, (2

where
P =T(%) / 7(5)- 3)

Tj is the j’th Chebyshev polynomial of the first kind

Tj(z) = cosh(j cosh™\(z)),
and ¢ and d are iteration parameters that depend on the convex hull of the spectrum of A. Two
properties of the Chebyshev polynomials make this algorithm effective. First, for an appropriate choice
of the iteration parameters, the residual polynomials Pj(A) decrease rapidly in norm, so that the

algorithm is rapidly convergent [13]. Second, the three-term recurrence for Chebyshev

polynomials induces an inexpensive recurrence for the computation of each iterate X;.

Because the iteration parameters depend on the convex hull of the spectrum of A, estimates of the
extreme eigenvalues of A are needed. Manteuffel’s algorithm computes these estimates dynamically [11].
It starts with a (possibly arbitrary) guess for the required parameters and monitors the convergence of
the iterates generated. If convergence is deemed unsatisfactory, then information produced during the
iteration is used to compute eigenvalue estimates. These, in turn, are used to compute new iteration
parameters, and the Chebyshev iteration is restarted with the new parameters. This adaptive procedure
is repeated until good iteration parameters are found, after which the Chebyshev method can proceed
with no further adaptive steps.

The eigenvalue computation makes use of the residuals generated by the previous Chebyshev iteration.
The underlying numerical method is a modified version of the power method. If the values of the
iteration parameters used by the Chebyshev iteration are inaccurate, then the residuals generated may
diverge. Although divergent residuals may enhance the ability of the adaptive procedure to obtain

accurate eigenvalue estimates and iteration parameters, the residual norms may increase by several




orders of magnitude before good iteration parameters are found [5, 7]. Thus, the adaptive Chebyshev
method may do a considerable amount of work to compute iteration parameters before it makes any

improvement in the accuracy of the approximate solution of the linear system.

In this paper, we present an alternative to the eigenvalue computation part of the Manteuffel
algorithm that decreases the sensitivity of the Chebyshev method to iteration parameters. We replace
the modified power method for computing eigenvalues with Arnoldi’s method [1, 18], a generalization of
the Lanczos method [16] that estimates the eigenvalues of a nonsymmetric matrix A by reducing it to
upper-Hessenberg form. An advantage of this method comes from its relationship to conjugate gradient-
like iterative methods for solving nonsymmetric linear systems [5, 17, 20]. At relatively little extra
expense, information provided by Arnoldi’s method can be used to perform several steps of an iterative
method that improves the quality of the solution iterate prior to restarting the Chebyshev iteration with
new parameters. The hybrid method combines the basic Chebyshev method with this conjugate

gradient-like iteration, which is performed whenever new eigenvalue estimates are computed.

In Section 2, we briefly describe the original adaptive Chebyshev method. In Section 3, we describe
Arnoldi’s method and its relationship to conjugate gradient-like iterative methods for nonsymmetric
linear systems, and we present a convergence result for one of these iterative methods. In Section 4, we
define the hybrid method and discuss its advantages, and in Section 5, we present the results of some
numerical experiments comparing the performances of the hybrid method, the adaptive Chebyshev
method and the CG-like method Orthomin [4, 5, 23, 25] in solving some discretized non-self-adjoint
elliptic partial differential equations.




2. The Adaptive Chebyshev Mecthod
In this section, we give 2 brief overview of Manteuffel's adaptive Chebyshev method. For given
iteration parameters ¢ and d, the basic Chebyshev iteration is [13]:

Algorithm 1: The Chebyshev method.
1. Start: Choose an initial guess x;, compute ro = b — Ax; and p, = ;11 Iy
2. Iterate: FOR j==0 STEP 1 UNTIL convergence DO:

X1 =X+ P
Ny =b-Ax,,

2d/(2d? - ¢?), j=0
X541 =

d- (c/2)2aj]'l, i>1
Bipr=dojy, -1
Pit1 = %prfjer APy -

The cost is one matrix-vector product plus 2N multiplications per step. The storage required is 4N

words for X; AX;, T, and p;r The residuals {rj} satisfy (2) and (3), and Pj is a member of
Pj = {real polynomials of degree j such that Pj(0)=1}. (4)

The parameters ¢ and d define the center, d, and foci, d+c, of a family of confocal ellipses in the
complex plane. There is a smallest member of this family, the smallest ellipse, that contains the
spectrum of A. If the closure of the smallest ellipse does not contain the origin, then Algorithm
1 converges. Moreover, convergence is nearly optimum in the sense that as j increases, Pj rapidly

approaches the polynomial in PJ with minimum uniform norm over the smallest ellipse.

If the spectrum of A lies in the right half plane, then there is an infinite number of smallest ellipses,
each of which uniquely corresponds to a set of Chebyshev iteration parameters. For any particular

choice of parameters, the rate of convergence of the Chebyshev iteration is [13, 22, 24]

~ log (max S(V)), (5)
where
d-z + [(d-2)? - ¢F]/?
d + [d2-cF'/2

S(z) = S, 4(z) = (6)
The iteration count for convergence is (approximately) inversely proportional to the reciprocal of the rate
of convergence. Hence, the best ellipse is defined to be that smallest ellipse for which the rate of
convergence is greatest. The adaptive Chebyshev method starts with (possibly arbitrary) initial values




for the iteration parameters and monitors the convergence of the Chebyshev iteration (Algorithm 1). If
convergence is deemed unsatisfactory (i.e. the residuals are diverging or converging less rapidly than (5)
suggests) after step s, then the adaptive procedure

1. estimates eigenvalues on the convex hull of the spectrum of A [11], and

2. computes the iteration parameters for the best ellipse containing these eigenvalue
estimates [13].
The Chebyshev iteration is then restarted with the new parameters. The adaptive procedure is repeated
as often as is deemed necessary, until good parameters are found, after which the Chebyshev iteration is

performed until convergence.

The second step of the adaptive procedure, the computation of iteration parameters, requires negligible

machine resources, and we omit a discussion of it here.

The eigenvalue estimates are computed by a mods fied power method, which is based on the fact that,

asymptotically,

Pi) ~ S(a¥ ,
so that

r, ~ S(AYry ,
where S(A) is the linear operator induced by S(z). That is, the residuals resemble the vectors generated
by the power method for S(A). If, for given iteration parameters, some eigenvalue of S(A) has modulus
greater than one and r, has a component in the corresponding eigenvector, then the residuals will diverge

but will eventually become rich in that eigenvector. If there are m such eigenvalues, then eventually the

sequence of m+1 residuals

{rs,rs+l,...,rs+m}
will be nearly linearly dependent. Estimates for m eigenvalues of S(A) are then given by the roots of the
m’th-degree polynomial

o, +opz+ ...+ azmzm'l + ™,
whose coefficients { @ };‘;l are the solution to the least squares problem

min ||[rs,...,r8+m_l]a + rs_l_mll2 , (7

,] denotes the matrix with columns {rj s+m-1111], Estimates for eigenvalues of A can

where [r,.. A

“Fs+m-
be computed from the relationship




p=S(})
between eigenvalues {u} of S(A) and {\} of A.

Hence, the modified power method consists of m Chebyshev steps to generate the residuals {rj ?::H’
followed by the computation of the least squares solution to (7), and the computation of new eigenvalue
estimates and iteration parameters. The Chebyshev steps require m matrix-vector products and 2mN
multiplications. If (7) is solved using the normal equations, then [(m2+3m)/2]N multiplications are

needed to compute the inner products

(o) 0SiSmel, 0<k<m. ®)

Therefore, the dominant cost is m matrix-vector products plus [(m?+7m)/2]N additional multiplications.
The storage requirement (over that of the Chebyshev iteration) is mN words to save the vectors
m
{rgitimr
Note that an “unmodified” power method could be used instead of the modified power method by
replacing {r, +j};n=l with {Ajrs};ll in (7) [11]. We will examine a technique that is mathematically

equivalent to the unmodified power method in Section 5.

3. Arnoldi’s Method and Its Relation to Iterative Linear Solvers
In this section, we describe Arnoldi’s method for computing eigenvalues of nonsymmetric matrices,
show how it can be used as the basis for iterative methods for solving linear systems, and derive a

convergence bound for one of these linear solvers.

Given an arbitrary vector v, such that ||v,[|, = 1, Arnoldi’s method [1, 18] is a Galerkin method on
the Krylov subspace K, = span{vl,Avl,...,Am'lvl} for approximating the eigenvalues of A. That is, it
finds a set of eigenvalue estimates {A}-A,} such that there exist nonzero v, € K , i=1,...,m, for which

(Ay; - N\y,v) =0, i=1,.,m 9)

for all v.€ K . It accomplishes this by constructing an orthonormal matrix vV, = [vl,...,vm] whose

columns {vj};‘:_l span K, and then computing the eigenvalues of VgAVm.




Algorithm 2: Arnoldi’s method.
1. Start: Choose an initial vector v, such that ||v,[|,=1, and a step number m.
2. Iterate: FOR j=1 STEP 1 UNTIL m DO

hij = (Avj,vi), . i=1,....)

j
ﬁ. == Av. -— E h..v.
j+1 I i ut

b1 = 1¥50ll2

Vier = Vipr/bypy -

Notice that this method is essentially a Gram-Schmidt process for orthomormalizing the Krylov
sequence {vl,Avl,...,Am'lvl}. In a practical implementation, it is usually more suitable to use a modified
Gram-Schmidt process. The orthonormal matrix V_ is such that VgAVm = H,, where H_ is the mxm
upper-Hessenberg matrix whose (i,j) entry is the scalar hij‘ The method generalizes the symmetric
Lanczos algorithm to nonsymmetric matrices. Recall that in the symmetric case, H  is symmetric and

tridiagonal [16].

In an implementation, it is not necessary to compute the normalized vectors {vj}; it suffices to
compute and save the norms {Ili'j ll2}. It is also not necessary to compute ¥ . ,. With these conventions,
the cost of Arnoldi's method is m matrix-vector products and (m2+m)N multiplications. The storage
requirement is (m+1)N words for {vj}}‘:_l and Av [20].

Suppose now that x, is a guess to the solution of (1), with residual r;, = b — Ax,. Let K, =
span{ro,Aro,...,Am°lro}. One way to solve (1) iteratively is to compute an approximate solution Xm € X
+ K such that the Galerkin condition

(rpv) =0, VvEK_ (10)
holds. But if v; = r,/|[r,ll,, then the Arnoldi vectors {vj};:ml span K_, so that
Xm = Xo + mem ’
r,=ro— Az =|rll,v,-AV_ y_,
for some y _ € R™. Since the Arnoldi vectors are orthonormal,(10) is imposed by computing
Ym = H;;"rouzep

where ¢ is the j’th unit vector in R™. Hence, the algorithm [17]:



Algorithm 3: The full orthogonalization method (FOM).
1. Start: Choose an initial guess x, compute ry = b — Ax, and v,=r/|Ir ||,
2. Iterate: Perform m steps of Algorithm 2 starting with vy
3. Form the solution:
Solve H y = |r,llse, »
compute x, =Xg + V_ y_,
where V| and H  are determined by Arnoldi’s method.

Algorithm 3 is also referred to as Arnoldi's method for solving linear systems. It is theoretically
equivalent to the ORTHORES method developed by Young and Jea [25], which is modelled after a
version of the conjugate gradient method described by Engeli et. al. [8].

A drawback of Algorithm 3 is that the approximate solution x, does mot satisfy an optimality
property. An alternative is the generalized minimal residual method (GMRES) developed by Saad and
Schultz [20], which uses the Arnoldi basis to compute the point Xy € g + K whose residual norm
Ib — Ax_[l, is minimum. Let v, = ro/|rgll,, let 8 = [Iryll,, and let ﬁm denote the (m+1)xm matrix

obtained by appending to H A a row with single nonzero entry h in column m. Then the Arnoldi

m+1,m

basis matrices V and V| = [v,,..,v +l] satisfy

~

AV, =vV__H (11)

m+1 "m’

The GMRES iterate is given by Xy + z, where z is the solution of the least squares problem

in ||b- A(x,+2)|, = mi - Azl], = mi — AV y], . 12
min lIb - Alxg+z)ll, min lIrg — Azll, min I8v, Yl (12)

Using (11) and the fact that V__, is orthonormal, the last expression in (12) is equal to

min 18V 016, ~ Vg ¥l = min e, = Tl (13)
Hence, the GMRES iterate is given by Xg + V¥, Where y_ is the solution to the upper-Hessenberg
least squares problem on the right hand side of (13).

Algorithm 4: The generalized minimal residual method.
1. Start: Choose an initial guess x;, compute ry = b — Ax, and v,=r,/[Ir,[l,, set 8 = ||z,
2. Iterate: Perform m steps of Algorithm 2 starting with vy

3. Form the solution: Find ¥, Mimimizing |Be

t -H yll, and compute x | = X+ V_y_, where
V, and H_ are determined by Arnoldi’s methoJ. " " o

GMRES is a generalization of the MINRES algorithm presented by Paige and Saunders [15]. It is
mathematically equivalent to Young and Jea’s ORTHODIR [25], for arbitrary nonsingular matrices A.

For matrices with positive-definite symmetric part, it is also equivalent to the genmeralized conjugate




residual method [4, 5] and a method of Axelsson [2]. For large step numbers, it requires one third the
multiplications and one half the storage of these methods [20].

For both FOM and GMRES, once {vj}}t-l and H are computed, the dominant cost of computing x |
is mN multiplications. Hence, the cost of both methods is m matrix-vector products plus (m2+2m)N
multiplications. In addition to storage for X5 (m+1)N words are needed for the Arnoldi computation.
We remark that for both methods, the residual norm ||b — Ax_||, can be monitored during Step 2
without explicitly computing x_, so that Step 2 can be stopped as soon as the approximate solution is

sufficiently accurate [20].

An error analysis of GMRES can be found in [20]. We derive a new result here that will demonstrate
its effectiveness in the hybrid method. Note that the residualr ="b - Ax_ satisfies

Irglly = min [Po(Argl

where P_ is defined by (4). Assume that A is diagonalizable,

A = UAUL (14)

N

where A is the diagonal matrix of eigenvalues {)‘j} j=1

and U = [u,,...,u\] is the matrix of eigenvectors of
A. Note that U and 4 may be complex. Suppose that the initial residual is dominated by m

eigenvectors, i.e.

Iy = ijl oy +e, (15)

where ||e]|,, is small in comparison to ||Z ajuj||2, and that, moreover the sum in (15) satisfies
=1
m
if some complex u, appears in £ au;, then its conjugate W, appears also. (16)
if1
(In general, this might require including small components in the sum, with a corresponding increase in
m.)

Theorem 1: If A is diagonalizable and the initial residual satisfies (15) - (16), then the
residual norm after m steps of GMRES satisfies

lIrglly < NUNGNU, <,y el »
m Xk-k.
where ¢ = max II I
k>m j=1 J
Proof: Let U = [u,..,u_], A, = diag(A,...,\ ), and a = (al,...,am)T, so that (15) is

equivalent to

Iy = Uma + e.



Consider the polynomial

~ Ll Z'xj
Pm(z) = J__I_Il':x; ’

which satisfies Pm()\j) =0,1<j<m, P_(0) = 1. Hence
P_(AU_=U_P_(4_)=0,

so that

P _(A)r,=P_(A)U_a+P_(A)e =P_(A)e.
Moreover, by 16, ﬁmhw real coefficients so that

I lly = min [P (A)rgll, < P (Aell,
< U0y 1B (A)M llelly -
The assertion then follows with
= [P (A, = max [F () (17
Q.E.D.
Note that the constant ¢ does depend on {)‘j};‘:_l, and it may not be small if, for example, these

eigenvalues are small relative to the others. However, if {)\j};’:_l are the m dominant eigenvalues of A

(i.e. I)‘k2>‘j) for j<m, k>m), then
M < 20
for k > m, so that
¢, <2™.
Moreover, if {)‘j};’;l are large relative to the remaining eigenvalues, then typically
NN S AL
In this case, ¢ will be of order one, and the m steps of GMRES reduce the residual norm to the order of
llell, provided that the condition number of U is not too large.

4. The Hybrid Method
The hybrid method combines the approaches of the previous two sections. It uses the basic Chebyshev
iteration of Algorithm 1, but replaces the modified power method for computing eigenvalues with

Arnoldi's method, from which information is also used to improve the solution iterate. Either FOM or
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GMRES could be used for the solution update; we favor GMRES because of its minimization property.
In the following implementation, the convergence of the Chebyshev iteration is monitored by examining
the norms of the generated residuals, and the adaptive procedure is invoked if the residual norm exceeds
a specified tolerance r relative to the norm of Frin = rmin(c,d), the smallest residual encountered with
the current iteration parameters. In addition, the adaptive procedure is invoked periodically, after at
most s Chebyshev steps, and it is used to generate initial eigenvalue estimates from which initial

iteration parameters are obtained.!

Algorithm 5: The hybrid method.

Choose x,. Compute ry = b — Ax,,.
UNTIL Convergence DO

Adaptive Steps: Set v, = the current normalized residual, perform m
Arnoldi/GMRES steps (Algorithm 4), and use the new eigenvalue
estimates to update (or initialize) the iteration parameters.

Chebyshev Steps: Set j . =j+s.

WHILE (|l iyl < 7 and +1<i, )
Compute Xj41 by the Chebyshev iteration.

The Chebyshev step requires one matrix-vector product and 2N multiplications per iteration, and the
adaptive step requires m matrix-vector products and (m?+2m)N multiplications. As with the modified
power method, the eigenvalue estimates provided by Arnoldi’s method lie in the field of values of A but
not necessarily in the convex hull of the spectrum of A, so that the hybrid method is only rigorously
applicable to linear systems with positive-definite symmetric part. The storage requirement for the
adaptive step is mN words, the same as for the modified power method, since the first Arnoldi vector

can share storage with the residual of the Chebyshev iteration.

There are two main differences between the original adaptive Chebyshev method and the hybrid
method:
1. Different eigenvalue computations: the adaptive Chebyshev method uses the modified
power method based on the operator S(A), whereas the hybrid method uses Arnoldi’s
method, which is based on a Krylov subspace in A.

2. Purification: the hybrid method uses the GMRES steps to improve the approximate

!Manteuffel’s method [13] for computing iteration parameters from eigenvalue estimates is still used.
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solution.
A third difference is that in the hybrid method, the initial eigenvalue estimates provided by Arnoldi’s
method can be used to compute initial iteration parameters; the original Chebyshev method requires an

initial guess.

We do not know whether the use of Arnoldi’s method alone offers any advantage, i.e. whether
Arnoldi’s method provides more accurate eigenvalue estimates than the modified power method.
Arnoldi’s method is mathematically equivalent to the “unmodified” power method discussed by
Manteuffel [11], who observed no significant difference between the unmodified and modified methods.

Numerical experiments comparing the two techniques are described in Section 5.

The effect of the GMRES steps can be explained by a heuristic analysis based on Theorem 1. Assume
that A is diagonalizable as in (14). If the initial residual for the hybrid method has the form

N
= .U.
T j{l_l'v, i

then after s Chebyshev iterations, the residual is approximately equal to [13]

N
F=ZI 77y, (18)
where
d-). + [(d-)\.)? - ¢2]1/2
=50y = [(d-X,)° - <] ,

d + [d%- cH/?

and c, d are the iteration parameters used in the Chebyshev step. Suppose that these parameters are
inaccurate, so that the components in the directions of some eigenvectors are not being damped out.
This means that some of the {1}} satisfy |1:i|>l, so that |1‘;’[ > 1 and the terms with these coefficients
dominate (18). Note that lrjl = |?J|, so that if some complex eigenvector is not being damped out, then
neither is its conjugate. For some m, therefore, T satisfies (15) (with a; = 1‘j’7j) and (16). If the
corresponding eigenvalues {)‘j} of A are the dominant ones, then Theorem 1 suggests that the m GMRES
steps puri fy the residual of the eigenvectors whose coefficients had been growing during the Chebyshev
iteration. Moreover, since T is the starting vector for the Arnoldi computation and is presumably rich in
these eigenvectors, the new eigenvalue estimates will be good approximations to the corresponding
eigenvalues. Hence, the new iteration parameters will produce Chebyshev polynomials that continue to

damp out these components.

Although the correct value of m to use in the adaptive step is not known in general, this analysis still

shows that m GMRES steps will tend to damp out the m dominant components of (18). The analysis
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applies as well even if the iteration parameters are accurate but not optimal, i.e. the Chebyshev iteration
is damping out all components but better parameters exist. In this case, some components will not be
damped out as rapidly as others during the Chebyshev step, and these will eventually be dominant in
(18).

Since the purification step seems to provide the important advantage of the hybrid method, it is
natural to ask whether a similar idea can be implemented with the modified power method, which uses

{ry; ~ S(A)s"'jro};';o to compute eigenvalue estimates. One such procedure consists of computing

X € x o +span{r,..r. .} (19)
for which [|f]l, = ||b — AX||, is minimum. This requires the solution of the least squares problem
m-1
min |r,, =~ jE__)o OszrH_j"2 . (20)
To solve (20) using the normal equations, it is necessary to compute the inner products
(Ar Ay 0<j<k<ml, (21)
(rs+m’Ars+j)’ 0 Sj S m-1. (22)

Note that the recurrence for the Chebyshev iteration induces a three-term residual recurrence

B- 1+5.
S N —dr Ll
Ar.i a; Tt a; T a; Ti+1-
Therefore, except when j=0, all the quantities of (21) can be computed in terms of

(23)

(rs+t’rs+u)’ t= j'lyj’j"'lr u = k°l’k’k+lr

which are available from the modified power method (see (8) above). Similarly, except when j=0 and
j=m-1, the terms of (22) are available from the modified power method. Moreover, the same trick can
be used for j=0 in (21) if r_, is saved and {(r_,r, +k)};{n:-l are computed; and for j=0 and j=m-1 in
(22) if (rpyr,) and (r,, or..

products. The computation of X requires an additional mN multiplications, so that purification can be

) are computed. Hence (20) can be solved with a total of m+3 inner

added to the modified power method with (2m+3)N multiplications. Combining this with the
[(m24+7m)/2]N multiplications and m matrix-vector products required for the modified power method,
the cost of this adaptive procedure is m matrix-vector products plus [(m2+11m+6)/ 2]N multiplications.
This contrasts with m matrix-vector products and (m2+2m)N multiplications for the hybrid method.
Thus, the number of matrix-vector products is the same as for the hybrid method, but the number of
additional operations is different. The coefficient of N for the additional operation counts of both

methods, for several values of m, is shown in Table 4-1. The storage requirement is (m+1)N words, for
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{r, +j}m and r_,, which is N greater than for the hybrid method.?

=1
o e e e +
I m = 2 4 6 8 10 |
e e et T +
| Hybrid | 8 24 48 80 120 |
T i e o +
| Modified Power with Purification | 16 33 54 79 108 |
D e o +

Table 4-1: Coefficient of N in multiplication count of purification adaptive steps.

Finally, we note that similar methods for annihilating eigencomponents have been developed in slightly
different contexts by Saad and Sameh [19] and by Jesperson and Buning [10].

5. Numerical Experiments

In this section, we describe the results of numerical experiments in which the methods discussed above
are used to solve some nonsymmetric linear systems arising from the discretization of non-self-adjoint
elliptic boundary value problems. We examine four methods based on four choices for the adaptive

procedure:

(A) CHEB: the modified power method with no purification;
(B) HYBRID: Arnoldi’s method with purification by GMRES;
(C) CHEB-MIN: the modified power method with purification added by solving (20);

(D) CHEB-ARNOLDI: Arnoldi’s method without purification.

The experiments were run on a VAX11-780 in double precision (55 bit mantissa). The Chebyshev
iterations were based on a slightly modified version of Manteuffel's Chebyshev code [12]. The
eigenvalues of the upper-Hessenberg matrix H  generated by Arnoldi’s method were computed using
EISPACK [21].

Table 5-1 summarizes the work and storage requirements for the adaptive procedures of each of the

four methods. The matrix-vector products are denoted by Av.

As in Algorithm 5, the adaptive procedure of each method is invoked if

Note that the space in (19) does not contain the most recent information available , since T, m 18 excluded. We exclude it
to avoid the computation of Ar__ in (20). Also, a less expensive purification, with no reference to I,y could be performed if r,
were excluded. The given method is a compromise between these two alternatives.
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B e ———— B t—— B e P +

| CHEB | HYBRID | CHEB-MIN | CHEB-ARNOLDI |
o ————— et ettt B e L B +
| Work ] mAv + | mAv + | mAv + | mAv + |
I | (m2+7mIN/2 | (m2+2m)N | (m2+11m+6)N/2 | (m2+m)N |
o ————— tmmmmm————————— pmmm e 4 tom e +
| Storage | mN | mN I (m+1N I mN I
fmmm—————— fmmmm—————————— e o ———— o ——————— +

Table 5-1: Work and storage requirements for the adaptive procedures.

lirlly > 7 lirpinlly (24)
where r_. is the smallest residual encountered for the current parameters, and 7=2. For HYBRID and
CHEB-MIN, it is also invoked after at most s=20 Chebyshev steps so that the purification step is
performed periodically. Since no purification occurs in CHEB and CHEB-ARNOLDI, these techniques
allow the Chebyshev iteration to proceed if the convergence seems to agree with the predicted rate of
convergence.> HYBRID and CHEB-ARNOLDI compute initial values for the iteration parameters ¢ and d
from eigenvalue estimates provided by Arnoldi’s method applied to the initial residual. CHEB and
CHEB-MIN use ¢=0 and d=1 as the initial iteration parameters. Following [11], we use m=4 as the
size of the Arnoldi and modified power bases in an effort to identify the dominant and subdominant
complex eigenvalue pair. Table 5-2 contains the work and storage costs of the adaptive procedures for

this value of m.

pommm—————————— o ——————— o —————— e ————— +
I CHEB | HYBRID | CHEB-MIN | CHEB-ARNOLDI |
o ——————— D e ettt e —— +
| Work | 4Av + 22N | 4 Av + 24N | 4 Av + 33N | 4 Av + 20N |
e ——————— B et Fomm————————— T e Fmm e +
| Storage | 4N I 4N I 5N I 4N I
o ———————— S pommm———————— Fmmm— e +
Table 5-2: Costs of the adaptive procedures, m==4.
For the test problem, we use the elliptic partial differential equation
~eu,) - (Pu), + A(x+y)uy + (x+y)u)y] + [1/(14x+y)le =1, (25)

where 7 is a real scalar parameter and the right hand side f is chosen so that the solution is

3t j is the index of the first Chebyshev iterate corresponding to the current iteration parameters, then asymptotically
llr o ollo/ Ml i b'ounded by max S(]\])* {or M € o(A) [13]. The heuristic, built into the original code [12], is to compute new
parameters only if |[r;  [l,/lIr;ll; > 2 S(d)"



15

u(x,y) = x €*¥ sin(mx) sin(7y).
We pose (25) on the unit square {0<x,y<1} with homogeneous Dirichlet boundary conditions and
discretize using the five-point second order centered finite difference scheme on a uniform 47x47 grid,
producing a linear system

Ax=Db ‘ (26)

of order N = 2209. We use the values =5 and 4=50. In addition, we precondition (26) with
incomplete factorizations. We use both the incomplete LU (ILU) and modified incomplete LU (MILU)
factorizations with no extra fill-in (see [3, 5, 9, 14] for the details concerning these techniques). The

actual linear systems on which the various iterative methods are tested have the form
Ax=[AQ'] (@] =b=h,
where Q is the preconditioning matriz. We thus have four test problems:
e Problem 1: =5, ILU preconditioning
e Problem 2: 7==5, MILU preconditioning
e Problem 3: =50, ILU preconditioning
e Problem 4: =50, MILU preconditioning.

For all tests, the initial guess is x;=0 and the stopping criterion is |[r;(l,/lIr,ll, < 108,

Table 5-3 shows the number of iterations required to satisfy the stopping criterion, where an iteration
for the four adaptive Chebyshev methods is defined to be either a Chebyshev step or an Arnoldi step.
Thus, one iteration does not correspond to a fixed amount of work, although each iteration contains one

matrix-vector product.

fmmmm——— b ———— e O tmmm———— +
| CHEB | HYBRID| CHEB- | CHEB- | ORTHO-|
| | | MIN |ARNOLDI| MIN(1)]

o T o pom————— o . +

| Problem1 | 90 | 60 | 64 | 77 | 78 |

R o meee o T PO tmm———— +

| Problem2 | 35 | 27 | 34 | 44 | 32 |

e tomm——— D pommm———— pmmm tm————— +

| Problem 3 | 36 | 42 | 31 | 59 | 32 |

O B pm—————— tmm————— Fmmm——— 4o+

| Problem4 | 33 | 27 | 31 | 3 | 21 |

T po—————— b ————— O pm—————— e +

Table 5-3: Iterations to convergence.

Figures 5.1 - 5.4 show the performance of the methods on each of the four problems. The coordinates
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Figure 6-1: Problem 1: y=>5, ILU preconditioning.
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are residual norm ||r;||, (on a logarithmic scale) vs. multiplications. As a benchmark, for each problem
we also include the performance of the conjugate gradient-like method Orthomin(1) [4, 5, 23, 25]. Note
that numerical experiments indicating that Chebyshev methods (as well as Orthomin) are more effective
than the conjugate gradient method applied to the normal equations and the biconjugate gradient
method are presented in [5, 6, 7).

In examining this data, we consider three main issues:

1. the effect of the purification steps in HYBRID and CHEB-MIN;

2. the effect of the different eigenvalue estimators: Arnoldi’s method in HYBRID and CHEB-
ARNOLDI vs. the modified power method in CHEB and CHEB-MIN;

3. the different choice of initial parameters: an initial Arnoldi computation in HYBRID and
CHEB-ARNOLDI vs. initial guesses of d==1, ¢=0 in CHEB and CHEB-MIN.

The first issue is clearcut: for all four problems, the method with purification is superior to its
analogue without purification. This is explained by the analysis of Section 4: if the residuals from the
Chebyshev steps are diverging, then the purification essentially annihilates the eigenvector components

that are growing, at relatively little extra cost.

A direct comparison between the two techniques for estimating eigenvalues is somewhat difficult
because of the different roles of the growth tolerance parameter 7. In the modified power method, four
Chebyshev iterations are performed a fter the condition (24) is violated, so that the residuals will become
very rich in the needed eigenvectors. In contrast, Arnoldi’s method is performed as soon as (24) is
violated, so that the residuals will probably not be dominated as much by these eigenvectors. Without
purification, Arnoldi’s method (in CHEB-ARNOLDI) does not seem as effective as the modified power
method (in CHEB). However, the combined Arnoldi/GMRES step of HYBRID appears to be more
effective than the purified modified power step of CHEB-MIN. It is both less expensive (for m=4), and
it strongly limits the growth of the residual.

For the third issue, note that inaccurate initial iteration parameters cause the residuals generated by
CHEB and CHEB-MIN to diverge by several orders of magnitude in Problems 1, 2 and 4 (the missing
eigenvalues take some time to assert themselves in Problem 1). This difficulty is avoided by HYBRID in
Problems 1 and 2, where fairly accurate initial eigenvalue estimates combine with the strict growth
tolerance =2 to prevent divergence. HYBRID does not handle Problem 4 as well. This is because the

initial Arnoldi estimates determine a domain of convergence for the Chebyshev iteration that just misses
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one eigenvalue, and the next Chebyshev iteration diverges too slowly for the adaptive procedure to be
invoked until the maximum number of 20 stéps is performed. In Problem 3, the eigenvalues are
clustered near 1 so that the initial parameters for CHEB and CHEB-MIN are accurate, whereas Arnoldi’s
method has some difficulty identifying them. The use of Arnoldi’s method for initial eigenvalue
estimates tends to make the overall performance somewhat smoother, although it may not be necessary

if good initial parameters are available.

Finally, note that the performances of Orthomin(1) and the Chebyshev methods are very close. The
slopes of the Chebyshev curves are steeper, reflecting their lower cost per step [4, 5, 13], but the overhead
of the adaptive steps increases their total cost.
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Chebyshev code, without which this project would have been nearly impossible, and Martin Schultz and
Stan Eisenstat for several helpful suggestions during the preparation of this paper.
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