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Abstract _

Recursive methods for finding a local minimum are multiplexed with a diffusion process to
produce a technique for global minimization. Application to neural nets and to quantum
computing is made. The diffusion supplies the latter with a probability concentration feature for
favoring the extraction of the global minimum from among the local minima.

Keywords - Annealing, averaging, diffusion, energy function, global minimization, Hopfield
nets, quantum computing

1. INTRODUCTION

Suppose we apply a recursive method for finding a local minimum of a function H(V), such as
a method of steepest descent or the input-output dynamics of a Hopfield net in the case that H(V)
is the energy function of the net. We propose to replace H(V) by a diffused version (in
discretized form) of itself recursively, weaving the diffusion process into the minimization
recursion (possibly alternating between both procedures). Diffusion will cause minima to flatten.
In optimal circumstances the shallowest will disappear, and only the most robust minimum will
remain as an attractor of the multiplexed recursion. This method is not universal, producing the
global minimum only in some cases. Itis of interest because of the role the diffusion playsin a
quantum computer implementation. Minimization with diffusion could be contrasted to its
opposite, annealing (Kirkpatrick, Gelatt, Vecchi, 1983).

We shall show how such a multiplexed recursion can be performed as a parallel quantum
computation on the superposition of all possible minimization paths. Moreover the diffusion
supplies a probability concentration process for the quantum computation, so that the
culminating spin measurements for extracting the solution have increased likelihood of
producing the global minimum.

In the general case we expect the multiplexed recursion to deliver, if not the smallest, then a
smaller minimum than would have been found without the ancillary diffusion. The interleaved
diffusion/minimization-dynamics will cause both the location and the value of the minimum
found to be drifted away approximations to their values sought. A way to accommodate this
drifting is to use the multiplexed process as a preprocessing phase, and to restart the
minimization dynamics at the location delivered by the preprocessing. To avoid drifting, a final
phase should be performed without the diffusion. Other strategies recommend themselves.




In Sections 2 we describe the diffusion process in a simple case. Sections 3 and 4 treat the
application to neural nets. The general diffusion process is described in Sections 5 and 6.
Finally in Section 7, the application to a parallel quantum computation is made.

2. DIFFUSION

We shall use a discrete approximation to the diffusion process. So let AV be a vector of
increments in V. Then a step of diffusion replaces H(V) by H, ay (V), where

2.1 Hue (V)= MHV + AV) + H(V - AV)) + 1-2X)H(V).

*, the familiar
ratio of increments arising in the flmte difference approximation to the diffusion equatlon where
D is the diffusion constant.) For convenience we shall write AV asA.

Next define the shift operators §* (with §*= §) as

2.2) S*H({V)=H(V £A).

LetM = —;—[ § + §7] denote the averaging operator, and let D . D ,ﬁ( A) denote the following

discrete diffusion operator.

@4 D= Alem +& ‘A”) 1,
Then
2.5) Hyy (V)= D H(V).

Note that diffusion reduces to averaging for A =1/2in which case we write H ay as H

av*

3. HOPFIELD NETS

The dynamics of a Hopfield net with N neurons are given by (Haykin, 1999)

G.1) < Ewug(u) i=14N.

T,—
dt ol




Here u, is the total weighted input to the i-th neuron whose output is denoted by V.. gisthe
neuronal gain function, and the (N-vectors of) inputs and outputs are related by

32) V=g V,=gw), Vi.

Under appropriate conditions on the weight matrix W = (w,.j) (namely, w, =w, Vi,j) and on g

(namely, g'> 0), the net’s dynamics (3.1) drives the associated energy (Lyapunov) function

v,
(3) W)= =2 Swyv, + 3 [5* @
tJ 0

3
to a relative minimum.

3.1 The replacement energy H_,(V)and the replacement gain function /(1)
Let the displacement vector be A =(A,,...,A ). Then using (3.3) and specializing diffusion
to the case of averaging (the general case is treated in Section 5), we define

(3.4 2H, (V) =2MH(V)
1 1
= -ng,.j(v,. +A)Y, +A,)-5;wi,(w ~A)(V;-A)

. E D;Vzm, +j;Vj'Ai ]g_l(E)dE
J
- —.2,- A/ 2/ wiAA,
*E[ﬁ.g'l@*r A;)d§+fA g (&~ Aj)dg]
J ! j
+ ED‘OVJg'l(§ +A)dE +ﬂ)ng—l(§ _ Aj)d{.,‘].
J

=2H(V)+2J(A).
Here
(3.5 H(V)=—%%_)w,,m NGNS
where
3.6) W@ =g E+ 8+ 5@ -]

J(A) is a constant independent of V. In particular,

3B.7 J(A =%2w,.jA,.Aj +-21-2 [f_OA g E+ Al.)d§+j:0A g YE- Aj)d{.i].
7 ! J




For purposes of minimization, this constant may be neglected in (3.4). Then comparing (3.3)
and (3.4), we see that the Hopfield net corresponding to H is the same as the original net that
corresponds to H except that the gain function g is replaced by the neuron dependent gain
function h; given in (3.6). These observations allow us to perform each diffusion step in a

repetitive manner.

For convenience, we shall take all of the displacements A ; to be equal. Then we may drop the
subscripts on the &; and on the A;. Note that if g is linear in its argument, averaging changes
nothing since then 4 and g are identical.

4. SOLVING FOR THE REPLACEMENT GAIN FUNCTION

Since u=g™'(V), we have 4 glw)= L and iz-g"(V) A Then employing
’ dv g’ av? 8wy
Taylor’s theorem, we find
A g'w A

4.1 gVEA)=g"'(V)= e

g (W) 2
Inserting this into (3.6) gives

g'w A
(gW)* 2

This specifies an equation for determining the input-output relation

“4.2) h(V)=g"(V) -

4.3) V =h(u
for the averaged Hopfield net. In particular, combining (4.2) and (4.3) gives

gw A
€Wy 2

4.4) u=g"(V)-

From this, we find the gain function # of the averaged net in terms of the gain function g of the
original net. Namely,

4.5) h(u) = g(u + AN + )

(g'u)’ 2

Since we are to repeat this net averaging process (equivalently, the net’s gain function
replacement process) recursively, we index the successive stages with z. Let us denote the gain
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functions for the succession of averaged neural nets as 8,(W),n=0,1... Then g,(u) = g(u), the
original gain function and g,(u) = h(u), the gain function of the first averaged net. Let us also
denote with A(n) the displacement A used at the #-th stage (A(0) =0), and with V() the output
of the neural net relevant to the n-th stage. Then from (4.5) (using Taylor’s theorem), we may
derive the following approximation to the successive input-output relations V, = g, (1), n =0, all
in terms of the original gain function g(x). Namely,

4.6) gn(u)=g(u)+2"'2-(7gg";(7u)))2_A2(n)+..., n=0.

To avoid divergence of this expression as n — o, the displacement A(n) must be made to tend

. . . . . . . l_ﬁ .
to zero as 7 increases. A convenient choice for achieving this is A(n) =2 28, where & is a

n
constant chosen suitably small, namely so that expressions likeé%z))séz are small for all values
of u that may arise in the course of running the computation. Notice that these choices of the
A(n) may be interpreted as requiring that the average of the original energy function H(V) (see
(3.3)) be taken over ever smaller displacements in the independent variable V. This is a common
feature of recursive minimization methods wherein the displacements toward the minimum
sought (are made to) tend to zero as the location of that minimum is approached.

5. DIFFUSION

It is a simple matter to translate the development for averaging a Hopfield net to the general
case of diffusion. Referring to Sections 2 and 3 (and writing h(u) as is h5 (1)), we see that

1) H (V) = 42(1- NH,, (V) + 20J ().

Here J(A) is given in (3.5), and

— 1 Vi
(5.2) H, (V)= —E‘ZW,.,V,.VJ. + 2 [ ®ae,
where
ey MG+ M)+ 1-20)g7(®) + AgE-A)
(53) Ko &)= ih .
The analog of (4.2) is




(5:4) ar (V) =

-1 _ g”(u) éj
2 - A)[ 0 * ]

&'wy)* 2

The input-output relation (4.3) becomes V = h a5 (4), Where

) Cpe— 8w A
(5.5) hd,ﬁ(u)—g[4l(l AMu+ 2(1_)')(g,(u))3 ) + ],

the latter being the analog of (4.5). Finally the analog of the input-output relation (4.6) is

2n-—2gll(u)

(5.6) V(n) =4A(1- A)g(u) + - DEW)

AN(n)+-, n>0.

6. AVERAGING IN N DIMENSIONS

In this section we describe some formalism for specifying and computing averages in N
dimensions (V = (V,,--+,V,)). To proceed, define the shift operators § j» J =L:--N appropriate to

each coordinate (S jH(V) =HWV,,---,V,,V; + ALV,

j410°**»Vy)). Next define a grid of lattice points
in N dimensions, G*, where

6.1) G={0,£1-,=N},

and a corresponding grid V(G) in V space. Namely,
(6.2) V(G)= 1—[ V,={0#A - xNA }, j=1.-.N.
We say that the grid V(G) is centered at the origin, V =0. Then

N
(6.3) s'@ =[] s
j=1 i€EG

is a shift operator, which when applied to H(V)delivers the sum of its values over the grid V(G).

Let A be an array of real numbers that sum to unity. A has the configuration of the grid G*.
Thatis, Ais a (2N + 1)" array in N dimensions. Let

(6.4) M,=-A® S Y@G),




where ® denotes the direct (element-wise) product. Then M a 18 a generalized averaging
operator in N dimensions. Note that by inserting zeros appropriately into the array A
(maintaining the sum to unity property), the grid in question may be shaped into a desired stencil
of points. Application of M, to H(V) delivers a generalized average of H(V) over a grid of the
form V(G) that is centered at V (more precisely, over a stencil specified by A). Discretized
diffusion operators in N dimensions correspond to particular choices of A, i.e., they are special
cases of M ,.

7. THE MULTIPLEXED RECURSION ON A QUANTUM COMPUTER

We use the parallelism of quantum computing to accelerate the global minimization iteration.
Suppose that the computation is conducted on the binary integers N = {0,1,---,2" ~1}. In
particular the gain function g is replaced by a rounded version itself (that is, g followed by
rounding into N, say, rounding to nearest). So g is an endomorphism of N, the latter being a
group with addition mod 2. Similarly, suppose that the entries of the matrix W are also
rounded into N. Suppose also in what follows that products of the form Wi, (where the
components of the vector v, are in N) denote the product also rounded into N. These
arrangements assure that the net’s dynamics are defined on the vertices of the binary N-cube.
Correspondingly, the minima of the energy function are located at the cube vertices. (For
examples, see Hertz, Krogh, Palmer, 1991.)

Any vertex v of the cube may be encoded as a quantum state’v), that state decoded into a
binary integer by N spin measurements, as is well known. This is conveniently written as

encoded

ey
decoded via
measurement

7.1 |v), Vi, vEN.

Since 2" =10---0 (in binary), the kets in (7.1) are specified as tensor products of qubits:
N

0D O e )

N

Let [14,) be the quantum state consisting of superposition of all of the vertices of the N-cube Ge.,
of all of the kets in (7.2)).

oN-1

1
73 o) = N7
(73) o =gz 2 1)

. x=0

- (H®-@H)0--0).

N N




As indicated, this superposition of 2" states can be generated by N applications of the unitary

1
Hadamard transformation H = %[ }, as is well known.

211 -

Note according to (7.1), 4, is a sum of integers in N. Now consider the quantum circuit in
Figure 7.1. The third output register contains the vector-valued ket that encodes the function gw
applied to the superposition of states ]1/10).

o)

|0) 2 o) Wapo ) g(Wapy))
|0)

Figure 7.1 Quantum evaluation of multiplication of W followed by the evaluation of g.

For convenience, we shall omit the parentheses surrounding W1, in Figure 7.1, since confusion
should not occur. Then iterating this quantum circuit & times, as indicated in Figure 7.2, delivers
the quantum state

k
(7.4) o) = heo)] [ LW 1w LW Vo).
j=1
|1p0) %
[0) g
[0)
w
|0) 2%

10)

Figure 7.2 Quantum circuit for the k-fold evaluation of the circuit of Figure 1.

The final value of the last output register (say after m applications of the circuit) is the quantum
state |[gW ]’”]wo». N spin measurements of this register deliver a vertex of the N-cube as a

candidate for the global minimum.




7.1 Concentration of probability

To be effective, the quantum computation must concentrate the probability so that the
likelihood of delivery of the global minimum is increased. To accomplish this, we employ
the technique of Sections 3 and 4. Namely, we replace the gain function g used in each stage
of the quantum circuits by g j» Where g, is the round into N of the g ; givenin (4.6). In

particular, the expression [gW / in (7.4) is replaced by g,W . A recursive circuit
corresponding to Figure 7.1 and 7.2, showing the use of 8; s displayed in Figure 7.3.

initial value of input register

el _L
I%>—' W
o -

[0) I

terminating spin a vertex

measurements of of the
output register -cube

Figure 7.3 A recursive quantum circuit for performing the multiplexed recursion
followed by the N terminating spin measurements that yield a vertex of the unit N-cube.

7.2 Interpretation

The 2" vertices of the N-cube are represented by the initial state ]1/}0) (N successive qubits per
vertex). As the recursion commences, there emanates from each such vertex a path along N-cube
edges. Paths grow, one edge per recursion. After the J-th recursion, the output register of the
circuit in Figure 7.3 contains a state (denoted |q;j>), the last N x 2" qubits of which represent the

concatenation of all the leading vertices of these paths. Since the energy function H decreases as
each path is developed, N-cube vertices are steadily being discarded from ltpj>. Of course, |¢j>

always contains 2" vertices, so there are an increasing number of repetitions (i.e., paths begin to
overlay; equivalently, probabilities begin to concentrate). Each path will approach a relative
minimum of the diffused energy function. Because of the diffusion, the larger relative minima
tend to disappear as j increases, so increasingly more of the lead vertices of each of the 2" paths
will approach the location of the global minimum. Thus the probability of the terminating
measurement being the location of the global minimum increases with J. (In optimal
circumstances this probability will approach unity.) As noted in the penultimate paragraph of




Section 1, to accommodate drifting a second stage of processing is suggested. The discreteness
of the domain of H may enable that second stage to be replaced by an examination of H values.

These arguments are not restricted to the minimizing dynamics (3.4) of the Hopfield net.
They are valid for descending recursions (such as steepest descent...), generally.

7.3 The case' of unitary W

If the matrix W is unitary, the evaluation of the function W (i.e., multiplication by W) allows
us to eliminate the second input register of W, thereby saving approximately one third of the
circuitry.

In the case of basic Hopfield nets, W is symmetric with zero entries on the diagonal. The
symmetry implies that the eigenvalues of W are real. The unitarity implies that these ei genvalues
have modulus unity. Then all eigenvalues equal +1. Since tr W =0, the positive and negative
eigenvalue have the same multiplicity. Then W can be written in the form

7.5) w U["‘ 0 U
(' = O —Im 2

Ul 1 U12

where U is unitary and the order of W, n=2m. Then writing U =[ ] in terms of its

21 22
m x m blocks, we have

v, v, T
(7.6) W=2[ “][ “] -1,
U21 U21

The columns of the n x m matrices here are orthonormal and the rows have norm 1/2.

X x| . , x[x]
As an example, take V2U = [Y Y] with X and Y unitary. Then [Y][Y] - I satisfies all

conditions.
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