Abstract: The parsing of speech can be viewed as the parsing
of probébilistic input. The problem is formally stated and
two algorithms are presented for efficient probabilistic
parsing. A proof that these algorithms discover the most
likely parse is given. The advantages of this algorithm over
the conventional backtracking and ad hoc methods are also

out lined.

On the Optimal Parsing of Speech

Richard J. Lipton and Lawrence Snyder

Research Report #37

October 1974

1. Introduction

Recently there has been considerable interest in the understanding of
speech [1-5]. Although several approaches are under consideration, each
approach has the follwing -basic structure (see figure 1): First an acoustic
process converts the stream of speech to a sequence of distributions

Pys +ees P The distribution P4 assigns to each possible "word" the

"Jikelihood" that this word occurs in the ith position. Here 'word" can
be -an English word as in Levinson's recognizer of discrete speech [4] or it
can be a phoneme as in [5]. The “1ikelihood9 is a real number that repre-
sents the confidence the acoustic process has in the belief that a given

word occurs in the given position.

Speech ACOUSTIC -
‘signal =7 | PROCESS | = Py’ Ppr crrs Py =p | PA¥ser | = 0,0,..:0,

Spoken Probabilities Recognized
Input of words sentences

Figure 1. Speech Recognition Schema.

No assumption is made on whether or not the distributions Py» ++v» P

must actually be probability distributions, i.e.

) py (W)

all words w

need not equal 1. The second part of the current approaches to speech under-

standing attempt to "parse" the sequence of distributions Py» +oes P- The

speech that is being analyzed comes from some language L. For example,
Hearsay uses the language of possible chess moves [3], BBN uses a query lan-
guage [2], while Levinson uses a simple Fortran-like programming language
[4]. Parsing the sequence of distributions means finding a sequence of words
01090, such that

(1) 010yt =20 € L and

(2) pl(ol) oo pn(cn) is maximum.

Informally, parsing as it is used here means finding the most likely sentence

in the language L. Thus the basic assumption is:

The actual sentence (input to the acoustic process) is the most

likely sentence in L with respect to Pys eeey P
L

Of the two phases of the current speech understanding systems - creation
of the distributions and parsing of those distributions - the latter is the
subject of this report.

Precisely, the problem is:

*
Given A language L ¢ § and a sequence Py ve» P of

distributions where Pyt I + [0,1] ST

* .
+ L is the set of all strings over the alphabet x; [0,1] is the set
of real numbers from 0 to 1.

Find A sequence 0y+++0 €L such that pl(dl) cen pn(on)

is maximum.

Call this problem the Probabilistic Parsing Problem (PPP): essentially it

is the classic parsing problem except that the input is a "fuzzy" input in
the sense of [10]. To be accurate, of course, the parsing problem should

produce a derivation for the Tyves0 with respect to a particular grammar

for L. No confusion should arise, so we retain this usage which is consis-
tent with the speech understanding literature.
A popular method currently used to solve the PPP is based on back-

tracking [5]. Suppose that Pys sves P is a sequence of distributions.

Order all strings in i (i.e. all strings of exactly length n) as follows:

Xy e X <:) Yy o0t Vg
provided there is a k such that S TRERIES TS REERES % and

() < pk+1(yk+l)' Ties are possible, of course, since the distri-

Pyt ¥
bution is not required to make unique assignments to symbols. Whether ties

are ordered by some rule or taken arbitrarily makes little difference and

does not affect the argument given below. Thus x1 e xn (:) yl o yn

provided the first place, say k, that two sentences differ (going left to

right) has Xl less likely than Yit1 with respect to the distribution

Prty The o?dering (:) is easily seen to be a linear ordering; hence, the

strings of 5 are linearly ordered. The backtracking method is to search
this linear order al(i)...(:>am starting from o and stopping at the
first ay which is in the given language L. Although there are many em-
bellishments to this method, the fact remains that the search is the funda-
mental feature.

The disadvantages of this method are, basically, two. First, back-
tracking is a potentially slow algorithm, i.e. in worst case the backtrack-
ing algorithm can take exponential time on the order |Z|n (exponential in
n).. While this fact is well known to other users of backtracking type al-
gorithms [11], it is not often acknowledged in the speech recognition area.
The problem is that a small increase in the complexity of the speech recog-
nition task (i.e. increase length of sentences, increase input set's size
and so on) may lead to a huge increase in the running time of the backtrack-
ing algorithm, |

The second disadvantage is even more important. The backtracking

algorithm does not solve the PPP. Not only is it possibly slow but it is

incorrect. A simple example should suffice to demonstrate this assertion.
Let I, the input alphabet, be {a,b}, let the language L = {ab,bal,

and let be

PPy

pl(a) =1, pl(b) = .3, Pz(a) =1, Pz(b) = ,01.

The ordering defined for the backtracking is

bb (i) ba (g) ab (i) aa

with the search proceeding from right to left. The backtracking algorithm
would stop after finding that aa % L and ab € L. The likelihood of ab

is pl(a)pz(b) = ,01. However, ba € L and the likelihood of ba is
pl(b)pz(a) = ,3. Thus the backtracking method has failed to find the most

likely sentence. Since the basic assumption was that the most likely sen-
tence was the one input to the speech system this failure is very damaging.
Obviously, searching the list in reverse order won't improve performance,
generally. It should also be noted that this difficulty is independent of
how complex the language is that is being recognized. 1In an effort, presuma-
bly, to ameiiorate these difficulties, heuristics have been added which in
effect reoraer the 1ist to improve the likelihood of a correct solution.

A disadvantage of these heuristics is they are ad hoc and they must be tai-
lored carefully to language L. This makes it almost impossible to have a
general speech understanding system since the heuristics of one language
probably won't be applicable to the next. Also, since the heuristics are
only "frequently" helpful (as opposed to "always' helpful) there is no in-
fluence on worst case execution time. Moreover, it is virtually impossible
to predict average behavior on new data.

In contrast to the current attempts to solve the PPP we will present
an algorithm that is efficient and correct, i.e. the algorithm will always
find a most likely sentence. More exactly we will show that if L is a con-
text free language [6] with q productions, then our algorithm finds a most

likely sentence corresponding to the distributions Pys cevs P in 0(qn3)

time. This algorithm is a generalization of Younger's n3 parser for context

free languages. In addition we will show that if L 1s a regular language
[6] with q productions, then there is an algorithm that solves the PPP with
distributions Py» ++es P in 0(qn) time. The advantages of these algo-
rithms are that they are efficient in worst case 0(qn3) and O0(qn) vs.
0(|Z|n) and that they correctly solve the PPP while the backtracking
techniqﬁes do not. Moreover our algorithms need no heuristics at all;
therefore, one can imagine using them in a general (i.e. language indepen-
dent) speech system.

Note that our algorithms work for languages that are context free or
regular, This is not restrictive for two reasons. First, several of the
current speech systems use languages that are regular, while in general the
rest appear to be context free. For example, the chess language of
Hearsay [3] can be written as a regular language with approximately 110
productions., Second, context free languages or even regular languages with
many productions (i.e. with q large) can approximate, to a high degree,
‘languages that are not context free [12]. Since the running times of our
algorithms are all linear in q we can potentially handie languages with
many productions, say q = 1000. Thus, we can potentially handle languages

which, although they are context free, have great power and diversity.

2. PPP for Regular Languages

In this section the PPP is studied for the case where the input lan-
guage L 1s regular. As stated earlier many languages currently used in the
speech understanding area are actually regular (e.g. Hearsay [3]); more-

over, regular languages with many productions can closely approximate complex

domains of discourse. Since the algorithm presented here requires 0(qn)
time (where q = the number of productions in a grammar for L and n = the
number of input distributions), our algorithm can handle large regular lan-
guages,

Let L be a regular language over the jnput alphabet I which is
accepted by the nondeterministic finite state automaton < Q, Z, QO, s, 6 >

where (see [6])

1. Q 1is the set of states,

2, I is the input alphabet,

3. QO{ is the set of accepting states,
4, s ; Q 1is the start state, and

5. § <Qx X xQ is the set of transitionms.

Also let q be the cardinality of the set &§. (Note, q cdrresponds to the
number of productions in a grammar for L.)

Let Pys «ves P be the input distributions; hence, each p; maps

I to [0,1]. The algorithm we are about to define will operate on the

data structures Qk(x) and fk(x) vhere 0 <k <n and x e Q. The
values of ¢k(x) are real numbers, while the values of fk(x) are strings

over . Intuitively,

¢k(x) = 1l1ikelihood that the acceptor is in state x after scanning
the first k terms of the "probabilistic" input;
fk(x) = 0y e 9 provided SPRRRE) sends the acceptor into

'state x and pl(ol) cen pk(ok) = ¢k(x).

The algorithm first initializes the data structures as follows:

1 1if x = s;
¢0(x) =

0 otherwise.
fo(x) = A all x

where A 1s the null string. Now for x e Q and 0 < k < n, ¢k+l(x)

and f are calculated inductively for each state x as follows:

w41 &

* 1 a
(*) Let (y, 0, x) € § be such that ¢k(y)pk+1(c) is as large

as possible.

If several o's satisfy this condition we can, without loss of generality,

make an arbitrary choice. Then

21X = 2 (P ()

and

£ X £, (y)o
The solution to the PPP is then determined as follows: Find a ¢n(x)
which is maximum where x 1s an accepting state. The answer to the PPP is
then the string fn(x).

Next we establish in the following theorem that the above algoxithm
does indeed solve the PPP. Let the notation

W Woe W)
s x abbreviate "the symbol sequence Wis Wos vees w, carries

k

the nondeterministic finite automaton from state s to state x."

Theorem For all k > 0 and x € Q,

¢k(x) = max pl(wl) cos pk(wk) .

W, e oW
s '—!L———J£§ X

Proof We will prove by induction on k the stronger result:

' Gy ene0y
(la) § ——> x and pl(cl) v pk(ck) = ¢k(x)

where Oy see Op = fk(x)

(1b) ¢k(x) = max pl(wl) . pk(wk)

Clearly (la) and (1b) are true for k = 0. [By convention an empty
product is 1.]) Now consider kt+l case. By the definition of the algo-

rithm £ (x) = fk(y)o and ¢

k+1 x) = Qk(y)pk+l(0), where

k+1
¢k(y)pk+1(o)

is as large as possible such that y 5 x. By induction we know

CPEERL
(2) s ————> y and pl(ol) .os pk(ok) = ¢k(y)

where Gy wee O = fk(y)

10

(2b) ¢k(y) = max pl(wl) ves pk(wk) .
wl LN] .wk
5 >y
o LN] .0
1 k o .
Now fk+l(x) = 0404:0,0, s >y » x, and
¢k+1(x) = Qk(y)pk+1(o) = pl(ol) ces pk(ok)pk+l(o); hence, (la) is
true. Next
o1 X = mzx 2, (9)Pyq (0
y —>«x

Therefore, by induction (2b), we have

Q1 X = max - pyq(0) - max Py(y) e py (9)
y I s o . Wyee Wy .y
.= max max pl(Wl) ces pk(wk)pk+l (0)
(o] Wy ee oW
y —_— s 1 k 3 y
= max pl(wl) o pk(wk)pk+l (0)
W, .o W, O
R S
g ———> X
Thus, (1b) is true for k+l. O

It only remains to show that the running time of this algorithm, for

some reasonable machine model, is 0(qn). It should be clear that the running

time is dominated by how fast one can compute (*). Let q, be the number
of transitions of the form (y, o, x), for some y and some 0, i.e. the

in-degree of x in the state graph, Clearly,

. Z q = q .

xeQ x
The cost of computing (*) for a fixed x and fixed k is O(qx). Therefore,
the total cost of computing (*) is

n-1

I 1 0
k=0 xeQ

which sums to 0(gn). It thus follows that the running of this algorithm
is 0(gqn). Using well known programming techniques, the space requirement

is clearly 0O(mn), for m states.

3. PPP for Context Free Languages

The last section studied the PPP for input languages that are regular.
Here an algorithm is presented that solves the PPP when the input lan-
guage is context free [6]. This algorithm is a straightforward generali-
zation of Younger's parser [7,6] to handle "probabilistic' input. The
algorithm presented heré operates in 0(qn3) time where q = the number of
productions in a Chomsky Normal Form grammar for the input language and
n = the number of input distributioms.

Let L be a context free language over the input alphabet I which

12

is generated by the Chomsky Normal Form grammar G =<V, T, S, P > (see

[6]) where

1. V is the set of nonterminals,

2. T 41is the set of terminals,
3. S 1s the start symbol,

4. P 1is the set of productions.

Let q be the size of the set P,

Let Pys ++es P be the input distributions. The algorithm we are
about to define will operate on the data structures ¢ij(x) and fij(x)

where 0 <1< j<n and x € V., The values of ¢ij(x) are real numbers,

while the values of f,,(x) are strings. Intuitively, ¢ij(x) and fij(x)

i3

behave as follows:

*
o, (%) likelihood that x == the substring of the input from

1]

position i to position j;

® .
fij(x) = oi...cj provided x ==§>oi...oj and pi(oi)...pj(oj) =

¢ij(x).

The algorithm will first initialize the data structures as follows:

9, . (x)

11 max{pi(o)l x > o 1s a production in P}

fii(x) = ¢ provided x -+ o is in P and ®ii(x) = pi(o).

Now for all x inVand 0 <1< j <n, ¢ij(x) and fij(x) are calculated

13

inductively as follows:

* rtd
(*) Let x 2 yz be a production such that Qik(y)¢k+lj(z) is as

large as possible.
There may be several values of y, z and k satisfying this requirement, but

an arbitrary choice can be made without loss of generality. Then

¢ij(X) = ¢ik(y)¢k+1j(2)

and

h

~
»

~r
[

fik(y)f (z)

k+1j
The solution to the PPP is then obtained as follows: the string fln(S)
is the solution.,

The proof that this algorithm indeed does solve the PPP is similar to
the proof for the regular case and is omitted.

The running time of this algorithm is easily seen to be dominated by
the step (%), Let q, be the number of productions with x on the left
hand side., Clearly,

la = q.
xeV X
For a fixed i1 and j and a fixed x € V the cost of step (%) is at most

0(qxn). The running time of the algorithm 1s therefore bounded above by

»)) 0(q n)
0i<jsn xeV

14

which sums to at most 0(qn3). Thus the running time of this algorithm is

at most 0(qn3).

4. Conclusions

The PPP has been solved efficiently for both regular and context free
languages. While we have been mainly motivated by applications to the
parsing of spéech, the results presented here should have application in
other areas of pattern recognition. For example, the recognition of signals
such as EKG ([13]) should be expressable as a PPP. Note that the usual
parsing task is a special case of the PPP, i.e. if 0102...0n is the input
then pi(oi) =1 and pi(oj) =0 for 1 # j. Thus any better solution to
the PPP for context free grammars will provide an improved context free
parsing algorithm.

It is also interesting to observe that the problem of "error correction
in parsing" ([8]) is a speclal case of what we call the PPP. For suppose

that o ..on is an input that we wish to parse for some language L. De-

1.
fine distributions Pys ves P by
1, if x = 0,3
Pi(x) =
1/2, otherwise.
Observe that pl(xl)...pn(xn) = ;E if and only if the Hamming distance

from cl...cn to Xyoe ok is k. Therefore, solving the PPP is equivalent

15

to finding a sentence xl...xn in the language that is as close to

01...0n as possible, with respect to the Hamming distance. The problems
of insertion and deletion do not seem to present any problem and are

currently being studied.

Acknowledgement

The authors wish to thank Jerry Hobbs for a number of helpful comments.

16

References
[1] A, Newell et al.
Speech understanding systems: final report of a study group.
Carnegie-Mellon University, Pittsburgh, May 1971.
[2] W. A. Woods et al.
The lunar sciences natural language information system: final report.
BBN Report 2378, Bolt, Beranek and Newman, Cambridge, June 1972.
13] D. R. Reddy et al.
The Hearsay speech understanding system: an example of the recognition
process,
3rd International Joint Conference on Artificial Intelligence, Stanford
Research Institute, August 1973.
[4] S. E. Levinson.
An Artificial Intelligence Approach to Automatic Speech Recognition.
PhD thesis, University of Rhode Island, 1974.
[5] D. E. Walker.
Speech understanding through syntactic and semantic analysis.
3rd International Joint Conference on Artificial Intelligence, Stanford
Research Institute, August 1973.
[6] J. E. Hopcroft and J. D. Ullman.
Formal Languages and Their Relation to Automata.
Addison-Wesley, 1969.
[7] D. H. Younger.
Recognition and parsing of context—free languages in time n3,
Information and Control 10(2), 1967.
[8] G. Lyon.
Syntax-directed least-errors analysis for context-free languages: a
practical approach.
CACM 17(1), 1974.
[9] R. E. Bellman.
Dynamic Programming.
Princeton University Press, 1957. P
[10] L. A. Zadeh.
Fuzzy sets.
Information and Control 8, 1965.
[11] M. Held and R. M. Karp.
A dynamic programming approach to sequencing problems.
J. SIAM 10, 1962.
[12] J. R. Hobbs

A Metalanguage for Expressing Grammatical Restrictions in Nodal Spans
Parsing of Natural Language.
PhD thesis, New York University, 1974.

[13] G. C. Stockman, L. N. Kanal, and M. C. Kyle.

Design of a waveform parsing system.
University of Maryland Technical Report TR-266, October 1973.

17

