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In this paper we generalize the results and greatly

simplify the proofs of the basic papers of Bosarge and Johnson

cf. [2], [3], and [4], on a variational method for approximating
the solution of the "state regulator problem" in optimal control.
In particular, we consider the Lagrange formulation of the problem
and show that the Lagrange multiplier can be characterized as the
solution of the variational problem of minimizing a quadratic,
positive definite functional, F, over an appropriate function

n
space, ¢ .

We obtain approximate solutions by using Ritz's idea of
minimizing F over finite dimensional subspaces of ™ and derive
general a priori error bounds for this procedure in terms of
quantities in "approximation theory." Finally, we apply these
results to obtain asymptotic error bounds for the special case

of spline type subspaces of Qn

Let Q(t) and R(t) be an n X r symmetric, positive definite
matrix and an r X r symmetric, positive definite matrix both of
which are continuous functions of t € [0,T] . For each k >0

k

let @~ denote the set of functions from [0,T] to Rk which are

piecewise differentiable with bounded derivative.



The state regulator problem in optimal control is to find

r and x* ¢ o which minimize

%
u €290

(1) Jlu,x] = 1/2 j’g fx(t),Q(e)x(t) )+ (u(t),R(E)u(t)) }dt

over all u € " s where =x(t) is given by

(2) x(t) = A(t)x(t) + B(t)u(t) , t > 0
and
(3 =0 =% ,
2 _ - ° n
IY'n = 6"Y>n = X yl for ally €2 .
i=1
9 r
lzlr = <z’Z>r = _z_ z.2 , for all z € Rr" .
i=1 i

A(t) is an n x n matrix and B(t) dis an n x r matrix both

of which are piecewise continuous with respect to t € [0,T] .

By standard arguments in the calculus of variations, cf. [1],
one can show that the above problem is equivalent to the variational

problem of finding \* € ¢" which minimizes



(4) -Llu,x3A,vy] = J[u,x] + jg (MB), = k(6) + ADX(E) + Be)u(e) )ae
+(4, x(0) = xg)

subject to the constraint

(5) A(T) =0,

where vy, u(t) , and x(t) are given by

(6) Y = ‘A(O)’

(7)  u(v) - R-l(t) BT (t)A(t) , for all t £ [0,T], and

-7ty Ge) + AT(A()), for all t € [0,T].

[}

8)  =x(t)

Using the characterizations (6), (7), and (8), we can express

~ L{u,x; A,y] in terms of only A. In fact,

T

o " f g (i + ATA,X) dt

= Llusx;A,v] = = Ju,x] + (A(t), x(t))-n t

"fg ('BT’\»“)I_ de 4+ (A0, x(0) - x5, = Jlu,x] = (MO, x.) .



T - -
But 1/2 fo (u, Ru)rdt = 1/2 fg (R 1BTA, RR 1 bT}‘ N

EN

¥ -1.T
=1/2 _,-fo {(BR "B"A,A )n dt

and
T " - — 1t T -1 Ta ~12 T . :
1/2 jo (x,Qz ) dt = 1/2 }‘0 @A % +Q A, A x+a ) gt
T w]® o T s T\ T
= 1/2 fo @Q AM) dt + 1/2 fo (Q A A,A L) dt
T =17 o r w10 T
+ 1/2 ]0 (Q ATA,.\,\. at + 1/2 fg (R, An )y at
n
T -1 T -1 7T
= /27 ¢Q A yde+ 1/2 [ (AQ A\ ) dt
0 n ¢ n
T -1.
+ fo (AQ A2 ) de.  Thus,
_ . S, J T -1T
F[Al 2 = Liu,x;2,8] = 1/2 fc (Q A,y dt + 1/2 fo (AQ A A, )n dt

-1

1T dt + T A dt 0
A,A)nt+j0( Q x,x)n - (X ),xo)n.

+1/2 fz ( BR



e STy T TII m e T o -

5

If we define

1

@ 1= ot A ae o [T (et At ac

-+

. | ' T -1s ~1e
Jo (BRTTBTAM) de + fo {¢aQ ™A, m)_ + (aQ n,A) }de,

for all A and n in ¢n, then

(10) Pl = [LAT = A, xp)_

If we use the notation that for any t*X t matrix M, t > 0,

*

'Mlt = max { lMxlt | x€R and lx!t 11},
we may prove
Theorem 1. The optimal Lagrange multiplier exists and is the

{¢ € 6"] ¢(T) = 0} of

unique solution in ®

i

(11) [A,m] = {(n(), %, )n, for all n € @8 .

Moreover, [A,n] is symmetric,

[

az il = 5o CRAD e < 237 lll, + olla™l, 0,

and

(13) B Y 2 0?1,




where A

i

min { a(t)] a(t) is an eigenvalue of Q(t)},
O<t<T

2 _ T 2 w2 _ T [, T,.2 T, T
hally; = folay ae, atlly = [, |a o] at, la'l] = 0;%? | )]

. T o
and o= fofl, C2falj) "2 I

Proof. The existence part of the Theorem is a standard result
in optimal control theory , cf. [1]. Ifn ¢ @8 and o € R,
F[A* + an] > F[A*] with equality if and only ifo = 0. Hence, we

F %
must have %& A + an] (0) = 0 and this implies that (11) holds.

Clearly, {A,n] is symmetric in A and n and

T T
) - f -
[(xA,A1 =1/2 ] (u,Ru) dt 1/2 f (x,Qx )n dt

|v

vz [ T d
/ IO {x,Qx )n at > 1/2 AQ IO { %,x >n t

where u and x are given by (7) and (8). From (8) w~ have

2 , t
YGIE <"(t)’“t)>il < loll, I, + [, 187 @] {a@)| as.

By Gronwall's megnality, cf, [5], this implies that

T
Ny < i, @Aty T2 T ey

Thus [A,A] > 1/2AQ0—2 lﬂlé s which proves {13).



Moreover,

180y < oy sty + sty Il < thall, + e st i,

and hence ALA1 > l/ZAQ [UQ“Z +p “ATH?] _2, which proves (12).

lioreover, if ) and u both satisfy (11), then

-2

0= D=u, x=ul > /2, o “A-u“% and A=y which proves

the uniqueness result. Q.E.D.

To define the Ritz approximation method, let S be any finite

n
0

minimizing F over S and determine an approximation, U, to u via

%
dimensional subspace of ¢,.. We find an approximation, AS, to ) by
equation (7). When we apply the computed control we obtain the state
X, determined by (2). It is important to note that xg is not the state

S

which can be computed via equation (8).

We now show that the Ritz procedure yields a unique approximation,

Theorem 2. There exists a unique ks € S which minimizes F over 8.

Proof. Let {Bﬁ(t)}?él be a basis for S.

-

i i
e.BiJ = 1/2 !

~

=

M M
i=1 i iél Bj.Bi - :<I.Zl B:lB:L('())"xO >n

I o~1t2
T
t

it~

1

[
Considering F l
151

ML .
as a function of B ¢ R, it is clear that F is -twice continuously



%
differentiable and hence F has a minimum at § if and only if

E g

(14) {[8'1=0, for all 1<i<N,
9B - -
i
[ ]
and the Hessian wmatrix of F, H = I ——— | is posiuive defipite.

Calculating the equaticns (14} we chtein

Q

Les ]

*
il e B4

(15) 33 BT = (e ,B.j - {B,(0), Xq ) o 1gi<H,

or
(16) A8 = k
where

(17) A= [[Bi,Bj]]

-

and

1 = y,%
Clearly A is symmetric and positive definite.In fact, if B # 0, then

T H« i R
B™ AB = B.B.. } B,B. Y2 x 07 f) BRI, >0,
lizp 117 45 4 i G i= "2

v

where we have used (13). Moreove:s, it Fcilows from (15) that H = A and

* M
hence 8 is the unique minimum of F over Rd. C.E.D.



We now obtain a seneral error hound.

Theorem 3. 1If AS denotes the minimizing elemen: of ¥ over S,

1/2

* %
(19) [A" = A = dinf |x - w|.

| = D = e AT =2
st = s? e

gl

Proof. If w €S, Flw]l = 1/2 [w,w] - (w(O),xo % and

Flwl = PA°] = 1/2 [w,w] - 172 5257 + (x,, A7(0) = w(0) y.

()5
* % % *
But taking n=A in (11) gives that [x ,A ] = (xo A (0))n and hence
* * %
Flwl = FIN] = 1/2 [wwl + 1/2 01+ (x4, = w(0) .

*
Taking n=w in (11) gives that [A ,w] = (XO,W(0)>H and hence
* * % %*
F{W] - F[)\ ] = 1/2[“39“3] + 1/2 [A sA ] - [)\ awl

* * %
=1/2 [ -w, A =-w] = 1/2|A - w!z

Thus, |A" - A |?

2
g I

s

= 2(FA ] - FID) < 2(FIwl - FVD) = 2 - w

and we have  inf lA* - w| g_ll* - AS‘ < dinf IA* -w| . 0.E.D.
wéS wtS

Combining Theorems 1 and 3, we have the following
Corollary. If X, denotes the minimizing element of F over S,
()

gl = (2151) l/zp inf lx* - |

weS

20 pF -2
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and

—1)1/2

@) I8 - Agl, < @ghM2dall, + olla®ll) e - wl

w€S
Using the results of this Corollary we may prove the following

results.

i

Theorem 4. If us(t) - R—l(t)BT(t)XS(t), 0<t<T,

is the computed optimal control,

&

@2y o - o, < IR Y. @HY % ine 0 - w|
572 - ® Q wé€Ss '
where ”Rﬁl BT“oo = sup {Rﬂl(t)BT(t)]r .
0<t<T
Proof. In fact, ss(t). = u*(t) - uS(t) satisfies the equation
5() = = R0 0 @) - ag0)

and (22) follows from

logh, = ™ 870" = a9l < =™ BT, 1" - agll,

and  (20). | | Q.E.D.

Theorem 5. If is(t) = A(t)xs(t) + B(t)us(t), 0<t<T and xS(O) = %55

@3 " = xgll, < ol T @ h % e 37 - o
Q w €S
and
@6 N5 = xgl, = Crllall, + BBl IR 87, @ 20 me [0 - W],

Q w€s



;»akrm”" P LR U S it BB

oA _dz

where T = 7f[8]l, € , Al = sup A,
_ o<t<r - °
and ‘BmOE sup { |B(t)w| | w€R" and lw] =1 1.
0<t<T n .

n

*
Proof. Let es(t) x (t) - xs(t), 0 <t<T. Then

E(6) = A()eg(t) + B(E)(u (£) - ug(8)), 0 <tc<T,
and eS(O) = 0. This iﬁplies that

eg(t) = [ A@)eg(2)az + [ B(2)8 (2)dz.

By the Gronwéll inequality, cf. [5],

. T
) 1/2 ) IO IA(Z)lndz
@l < T2l il <

and

N | 2 IT IA(z)[ dz
legl2 = ¥ Jego 12 db < Bl o2 e 0

Ut

[IPAN

i

Pl - uglll

which when combined with (22), proves (23). Moreover,

e, < Mlall, fegte |, + Bl ") - ugo)] . 0<e s,

and hence

leghy < Ball, legll, + sl e = wugll, < crllall, + Bl l™ = ull,-
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*
Inequality (24) follows by using (22) to bound jju - u&,z. GQ.E.D.

We now prove a result which gives us an error bound for
the cost criteria, i.e., if we actually use the cdmputed control
us(t) and the system behaves according to xS(t) how does
J[us,xs] compare with J{u*,x*]. The proof is essentlally the

same as the one for the analogous result in [4].
Theorem 6. Under the above hypctheses,

x %
(25)  Jlu ,x ] ¢« Jlu_,x. 1]
8757 -

< 01+ R 2 a0t ans - wl? dlalr® + i) -
‘ wES

*
Proof, 1If 6S(t) u (&) - us(t) , 0<t<T, and

*
es(t) = x (t) - xs(t), 0<t<T,

Tlugsxgl = 1/2 [ (x(£),0(Dxg(£)y_ dt + 1/2f ((ug (£ ,R(D)ug (1)) _ dt

]

T % %* X %*
12f) (x" + e,Qx" + ey dt + 1/2fg<u’° +6RM + 6)) ar

x % T % T * )
Jlu ,x 1 + fo (85,Ru’) . dt + [ (eg,0x ), dt

+

T T
/ LA
1/2 fO <6S’R6S>r dt + 1/2[O (85’Q€S>n at.
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* *
But since (7) must hold for the optimal . and u , we have ‘
T # T T_* . T *
(26) fo (85> Ru) dt= - fo (8> B'AD) _dt = - fo (BSgoA ) -

However, from the dynamical equation (2) we have that

e's(t) = A(t)eg(t) + B(t) 8§5(t) and combining this with (26) yields
T X T o %
@7 fy(8 s Ru) dt = - [ (eg = Aegs A ) dE .

Integrating the right-hand side of (27) by parts, using the

% % %
boundary conditions on ¢, and A , and using (8) for A and x yields

S

T % _qT o % T % . a T %
of8goRu) de = [ {{e,d) 4+ (eg AN )Mt = - [ (el Qx ) dt.

Thus,

kK T T
= T z 1 1 2 .
J{us,xs] Jiu ,x 1+ 1/2 fO(SS,Rés)r dt + 1/2 fo(eS,QeS)ﬁ dt

A

W I VPN ssila + 1/2 [l lieglly

)~lp2 inf IA* - W}z

weE S

I’ w1+ 12)) 0 RTET2

IA

Q

(-21 o® ine N* - w]? o r?+ IRl 2>

wES

+ 1/2 K187 2 a

where we have used (22) and (23). Q.E.D.
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We now consider how these error bounds can be used for the
example of finite dimensional spaces of smooth polynomial spline

functions. Let A: 0 = X <xl<°°='<xN+1 = T be a partition of

{0,7], SO‘(d,A) z {piecewise polynomials, S(x), of degree d with
respect to A ' S{x) € Cd [0,T] and S(T) =0}, and

X,)e

h £ max \xi+l - 1

0<i<N

As is well known, cf. [6], these spline spaces have a

i

convenient set of basis functions, {Bd i(tj ﬁ;? s P = dim So(d,A),
R 1

which have small support i.e., supp Bi(t) = {t €{0,T] | Bi(t) # 01}

is “thin" in [0,T]. Thus, if we use a finite dimensional subspace

of @3 of the form §,(A)= { ‘gl ﬁin,i(t) | B, €R”, l<ic<p}
1=

we will obtain for the matrix A in (10) a sparse block-banded

. %
matrix, cf. {2]1,[3], and [4]. Moreover, if every component of )
is d+1 times piecewise, continuously differentiable with respect

to t there exists a positive constant, Kd, independent of A, such

%*
that inf A - A} < K hd fi

51 %
< ; Dd'
wesd ;

1Alj2, where Kd can be

explicitly determined, cf. [6]. Combining these results we obtain

%
Theorem 7. If each component of A is a4+l times piecewise

continuously differentiable with respect to t, there exists a positive



constant, K q° independent of A, such that

—l) 1/2 d+1

@n ¥ - sl = @O ex nd o7,

and

% % * *
(29) J[u ,x 1 < J{u s X ] < Jlu,x] -
78 ,(8)° TS (a)

2,-1 2

+ IR A 0% ol r? 4 Rl ) kF p2 R

YH

15

* L=1T 1/2 d, d+1 %
(28) |Jju - usd(A)“?_ < |iR BT“ 2A ) th |ID A“z,
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