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Abstract

We define an extension of the call-by-name lambda cal-
culus with additional constructs and reduction rules
that represent mutable variables and assignments. The
extended calculus has neither a concept of an explicit
store nor a concept of evaluation order; nevertheless, we
show that programs in the calculus can be implemented
using a single-threaded store. We also show that the
new calculus has the Church-Rosser property and that
it is a conservative extension of classical lambda calcu-
lus with respect to operational equivalence; that is, all
algebraic laws of the functional subset are preserved.

1 Introduction

Are assignments harmful? Common wisdom in the func-
tional programming community has it that they are:
seemingly, they destroy referential transparency, they
require a determinate evaluation order, and they weaken
otherwise powerful type systems such as ML’s. Con-
sequently, programming languages with a strong func-
tional orientation often forbid or at least discourage the
use of assignments.

On the other hand, assignments are useful. With
them, one can implement mutable, implicit, distributed
state—a powerful abstraction, even if it is easily mis-
used. The traditional alternative offered by functional
programming is to make state explicit. The result-
ing “plumbing” problems can be ameliorated by hid-
ing the state parameter using monads [20] or by us-
ing continuation-passing style [10]. Wadler, for exam-
ple, uses the monad technique in [22] to present “pure”
functional programming as an alternative to “impure”
programming with assignments. Monads are indeed
successful in eliminating explicit mention of state ar-
guments, but they still require a centralized definition
of state.

We show here that one need not choose between purity
and convenience. We develop a framework that com-
bines the worlds of functions and state in a way that can
naturally express advanced imperative constructs with-
out destroying the algebraic properties of the functional
subset. The combinations are referentially transparent:
names can be freely exchanged with their definitions.
More generally, we show that every meaningful opera-
tional equivalence of the functional subset carries over
to the augmented language.

Since we would like to abstract away from the issues
of a particular programming language, we will concen-
trate in this paper on a calculus for reasoning about

functions and assignments. The calculus is notable in
that it has neither a concept of an explicit store nor a
concept of evaluation order. Instead, expanding on an
idea of Boehm [2], we represent “state” by the collection
of assignment statements in a term. A Church-Rosser
property guarantees that every reduction sequence to
normal form yields the same result. Following Plotkin
[15] and Felleisen [3], we derive from the reduction rules
both a theory and an evaluator and study the relation-
ship between them.

The main contributions of this paper are:

o We define (in Section 2) syntax and reduction rules
of Ayar, a calculus for functions and state.

o We show (in Section 3) that A4, is Church-Rosser
and that it admits a deterministic evaluation func-
tion which acts as a semi-decision procedure for
equations between terms and answers.

e Even though the syntax of A, is storeless, we show
(in Section 4) that Ay.-programs can still be effi-
ciently implemented using a single-threaded store.

e We show (in Section 5) a strong conservative ex-
tension theorem: every operational equivalence be-
tween terms in classical applied A-calculus also
holds in Ayqr (provided the domain of basic con-
stants and constructors is sufficiently rich). This is
to our knowledge the first time such a result has
been established for an imperative extension of the
A-calculus.

These properties make A4, suitable as a basis for the
design of wide-spectrum languages which combine func-
tional and imperative elements. On the functional side,
we generally assume call-by-name, but call-by-value can
also be expressed, since strictness can be defined by a
é-rule. On the imperative side, first class variables and
procedures can be used as building blocks for muta-
ble objects (Section 6 presents an example making use
of these constructs). We do not impose any particular
restrictions on either functions or side-effecting proce-
dures, except for requiring that their difference is made
explicit.

Building on A4 is attractive because it gives us an
equational semantics that makes reasoning about pro-
grams quite straightforward. In contrast, the traditional
store-based denotational or operational semantics of im-
perative languages impose a much heavier burden on
program derivations and proofs: at every step, one has
to consider the global layout of the store, including a
map from names to locations and a map from locations
to values. Other semantic approaches, such as Hoare
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Figure 1: Syntax of Ay,

logic or weakest predicate transformers might accommo-
date simpler reasoning methods, but they are not easily
extended to structure sharing or higher-order functions.

2 Term Syntax and Reduction
Rules of )\,

The term-forming productions of Ay, fall into three
groups, each presented on one line in Figure 1. The first
group consists of clauses defining A-calculus with primi-
tive function symbols and data constructors. We refer to
this basic calculus as the applied A-calculus. The second
group adds the constructs for modeling assignment; the
third introduces constructs for mediating between the
world of assignments and the world of functions.

Basic applied A-terms. We denote functional ab-
straction (z.M) without the customary leading J; this
modification makes some of our reduction rules more
legible. The presence of primitive function symbols f
and fixed-arity constructors ¢™ shows the applied na-
ture of the calculus. Basic constants are included as
constructors of arity 0. We assume that every calcu-
lus we consider has at least the unit value () as basic
constant.

Store tags and primitive state transformers.
The scope of a mutable variable v is delimited by the
construct var v.M. Mutable variables, also called tags,
are syntactically distinct from the immutable variables
introduced by abstractions z.M. We denote tags by the
letters u, v, w, and immutable variables by z, y, z.

Tag readers M? and assignments M; =: M, are the

primitive state transformers. If M computes a tag, M?
is the state transformer that produces the value associ-
ated with that tag without altering the store. Dually,
if M computes a tag, M; =: M, is the state trans-
former that sets that tag to M; and produces an ignor-
able value.

Composition of state transformers. State trans-
formers are composed into sequences using the monad-
bind expression M; > .M. This construct connects
a state transformer M; with a functional abstraction
z.M;. It denotes the state transformer that passes the
value produced by M; to z.M in the state resulting
from the computation of M;. We take (>) to be right-
associative and often employ the following abbreviation:

def

N;M = Novoz.M (z ¢ fv M).

Coercion of state transformers. The Ay
expression return M allows a pure expression M to be
used as a state transformer; the expression pure M per-
mits (under certain conditions) the coercion of a state
transformer to a pure expression.

Correspondence with programming languages.
Figure 2 relates terms of A, with constructs of tra-
ditional imperative programming languages. We use
Modula as a representative of such a language.

The Ayar-calculus deviates from common imperative
programming languages in its notation for assignments,
which goes from left to right, and in its variable-readers,
which are explicit state transformers rather than expres-
sions. These notational conventions make tag-matching
in the reduction rules easier to follow. In particular, be-
cause of the re-orientation of assignments, information




Avar Modula
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M=v vi=M
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return M RETURN M
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variable lookup (implicit in Modula)
procedure call, z is result parameter
variable definition

assignment

sequential composition

return statement

effect masking, implicit in Modula

Figure 2: Correspondence between A4 and Modula

and computation in a state transformer flows uniformly
from left to right. In each case, the conventional nota-
tion can be obtained by syntactic sugaring, if desired.
We would expect that such sugaring is introduced for
any programming languages based on Ayqr.

Notational conventions for reduction. We use
bv M (fv M) to denote the bound (free) variables and
tags in a term M. A term is closed if fu M = 0. Closed
terms are also called programs. We use M = N for
syntactic equality of terms (modulo a-renaming) and
reserve M = N for convertibility. If R is a notion of
reduction, we use M & N to express that M reduces
in one R reduction step to N, and M - N to express
that M reduces in zero or more R-steps to N. The
subscript is dropped if the notion of reduction is clear
from the context. A value V is a A-abstraction, a prim-
itive function, or a (possibly applied) constructor. An
observable value (or answer) A is an element of some
nonempty subset of the basic constants!.

V o= oM | f|c®M..M, (0<m<n)
A C °

A contert C is a term with a hole [] in it. A state prefir
S is a special context that is of one of the forms

S u= [] | varv.S | M=:v;8

and that satisfies in addition the requirement that
wr § C bv S. The set of variables written in S, wr S,
is defined as follows:

wr[] = 0
wr (var v.5) = wrS
wr (M =:v;S5) = {v}UwrS.

! Other observations such as convergence to an arbitrary value
can be encoded using suitable 3-rules.

Following Barendregt [1], we take terms that differ only
in the names of bound variables to be equal. Hence all
terms we write are representatives of equivalence classes
of a-convertible terms. We follow the “hygiene” rule
that bound and free variables in a representative are
distinct, and we use the same conventions for tags.

Figure 3 gives the reduction rules of \yg,.

Rule (B) is the usual S-rule of applied A-calculus. It is
the only rule whose reduction involves substitution.

Rule (8) expresses rewriting of applied basic functions.
To abstract from particular constants and their rewrite
rules, we only require the existence of a partial func-
tion § from primitive functions? f and values to terms.
We restrict § not to “look inside” the structure of its
argument term, except when the term is a fully ap-
plied constructor at top-level. That is, we postulate
that for every primitive function f there exist terms Ny
and N .n (c" € Constrs) such that for all values V for
which §(f, V) is defined:

5. V) = { Neo My .. My 3V = ¢ My .. M,
NV otherwise.

State transformers obey two of the three laws of a Kleisli

monad: (>) is associative and return is a left unit. The

third law, stating that return is a right unit, fails. A

counter-example is

1> (z.returnz) # 1.

Note, however, that this example would be typically
regarded as a type error in a statically typed language,
since the number 1 is not a state transformer. In fact,
every reasonable type system should establish the third
monad law as an operational equivalence for well-typed
terms.

2Primitive functions of more than one argument are obtained
by currying.




M =M, ; (z.M3) ()

(6(f, V) defined)

M1 > .‘L‘.(Mg > y.M3)
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N=:v;(zM)N
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-_—)
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wlvbz . N=v; M

w?>zr.varv. M

(v # w)
(v # w)

c¢” (pure (S[return M])) ... (pure (S[return My])) (k < n)
z . pure (S[return M))

Figure 3: Reduction rules for Ayqr.

Rule (vp) extends the scope of a tag over a (>) to the
right. Variable capture is prevented by the hygiene con-
dition (bound and free variables are always different).
Rule (=:p) passes (), the result value of an assignment,
to the term that follows the assignment.

Rules (f), (b1), and (b2) deal with assignments. The
fusion rule (f) reduces a pair of an assignment and a
dereference with the same tag. The bubble rules (b;)
and (bz) allow variable-readers to “bubble” to the left
past assignments and introductions involving other tags.
Note that bubble and fusion reductions are defined only
on tags v whereas the corresponding productions M,?
and M; =: M, in the context-free syntax (Figure 1)
admit arbitrary terms in place of M,. This is a conse-
quence of tags being first class, for even if M, is not a
tag it might still be reducible to one.

The final three rules implement “effect masking”, by
which local state manipulation can be isolated for use
in a purely functional context. These three rules can
be applied only if the argument to pure is of form
S[return V] where V is a value and S is a state pre-
fix. The context-condition (wr S C bv §) for state
prefixes S ensures that evaluation of the argument to
pure neither affects nor observes global storage. Effect
masking “pushes state inwards”, and thus exposes the
outermost structure of the result of the pure expression.
In the special cases where the result is a basic constant
or primitive function the state disappears altogether.3

3Initially, we studied a calculus that had only one effect mask-
ing rule: A context pure (S[return [ ]]) can be dropped if

Example 2.1 (Counters) To illustrate the syntax and
reduction semantics of A4, We construct a function to
generate counter objects. The generated counters en-
capsulate an accumulator cnt. They export a function
that takes an increment (inc) and yields the state trans-
former that adds inc to the “current” value of cnt while
returning cnt’s “old” value. This is expressed in Ayq, as
follows (with layout indicating grouping):

mkcounter =
initial . var cnt .
initial =: ent
return inc. cnt?p
c. c+inc=:cnt,;
return ¢

The reduction rules define a reduction relation between
terms in the usual way: we take — to be the smallest
relation on Aygr X Ayer that contains the rules in Fig-
ure 3 and that, for any context C, is closed under the
impliciation

M =N = C[M]= CIN].

The sample reduction given in Figure 4 illustrates the
use of mkcounter in a program that defines a counter

global storage is unaffected and none of the variables bound in §
appear in the term in the hole. This approach looks simpler at
first glance, but it is not clear how a standard evaluation function
for the resulting calculus can be constructed.




mkcounter 0> ctr . ctr 1; ctr 0

(var cnt . 0 =: cnt ; return CTR) > ctr . ctr 1; ctr 0

var cnt . (0 =: ent ; return CTR) > ctr . ctr 1 ; ctr 0

var cnt . 0 =: cnt ;return CTRo ctr . ctr1; ctr 0

var cnt .0 =: cnt ; (ctr . ctr 1; ctr 0) CTR

varcnt .0 =:¢nt ; CTR1; CTRO

var cnt . 0 =: ¢ent ; (inc . cnt?> c . c+ inc =: cnt ;returnc) 1; CTRO

varcent .0 =:cnt;cnt?>c.c+1=:cnt;returnc; CTRO

varcnt .0=:cnt;(c.c+1=:cnt;returnc)0; CTRO

varcnt .0 =:cnt ;0+1=: cnt ;return0; CTR 0

varcnt .0 =:cnt ;0+1=:c¢nt ; CTR(

3l =l el Wl g 5] 5] =l

varcent .0=:cnt;0+1=:¢nt;0+1+40=:cnt ;returnl

Figure 4: A sample reduction.

ctr, increments it, and then inspects the final value.
We use the abbreviation CTR = inc . cnt?pc . ¢ +
inc =: cnt ; return c. For each step in the reduction,
the redex for the next reduction is underlined. Other
reduction sequences are possible as well, but they all
yield the same normal form, since \yq, is Church-Rosser
(Section 3).

3 Fundamental Theorems

In this section, we establish that our calculus has the
fundamental properties that make it suitable as a basis
for reasoning about programs. We first show that re-
duction is confluent; we then derive from the reduction
relation a theory A4, for equational reasoning about
Ayar terms. We also derive from the reduction relation
an evaluation function that takes programs to answers.
We conclude by showing that the evaluation function is
a semi-decision procedure for equations between pro-
grams and answers. Due to space limitations, most
proofs are sketched or omitted; full proofs can be found
in [14].

In the sequel, let = be the union of all reductions in
Figure 3 except (8) and (4).

Proposition 3.1 —» is strongly normalizing: every se-
quence of —>-reductions terminates.

Proof: A standard termination measure argument. W

Proposition 3.2 — is Church-Rosser: if M > M
and M - M, then there exists M3 such that M, - M3
and M, > Ms.

Proof: A case analysis on the relative positions of re-
dexes coupled with a case analysis on reduction rules
shows that — is weakly Church-Rosser. The proposi-
tion then follows by Newman’s lemma ([1], Proposition
3.1.25) and Proposition 3.1. ®

This leads us to the confluence result of the full reduc-
tion relation:

Theorem 3.3 — is Church-Rosser.

Proof: The purely functional reduction relation T is

easily shown to be Church-Rosser (using Mitschke’s the-
orem ([1], Theorem 15.3.3), for instance). By Proposi-
tion 3.2, —» is Church-Rosser. A straightforward case
analysis on the relative positions of redexes establishes
that —» commutes with g By the lemma of Hindley

and Rosen ([1], Proposition 3.3.5), the combined notion
of reduction — is Church-Rosser. ®

Reduction gives rise in the standard way to an equa-
tional theory. As usual, we define equality (=) to be the
smallest equivalence relation that contains reduction.

Definition. The theory A4, has as formulas equations
M = N between terms M,N € Ays,. Equality (=)
is the smallest equivalence relation between terms that
contains reduction (—).




We now define a computable procedure, or evaluation
function, that maps a program to an answer if it re-
duces to one. We define our evaluation function via a
context machine. At every step, a context machine sep-
arates its argument term into a head redez that occupies
a uniquely-determined evaluation contezt and then per-
forms a reduction on the redex. Evaluation stops once
the argument is an answer.

Evaluation contexts for Ayq, are defined as follows:
E I EM | fE

varv.E | E? | M=E

EvzM | M=:voz.E

pure E | pure S[return E]

.o
.o

The productions on the first line generate evaluation
contexts in classical A-calculus with constants; the other
productions deal with the evaluation of state transform-
ers.

Given a Ayg-term, a step of the evaluation function
starts at the root of the term. If it is a redex, it is
reduced; otherwise, the term’s abstract syntax tree is
matched against the E-productions, and the subterm
occupying the position of the F is recursively checked.
If no redex is found, evaluation stops; otherwise the
process is repeated.

Definition. A redex A is a left reder of a Ayqr term
M if M = E[A], for some evaluation context E. A
left redex A of M is the head redex of M if, for all left
redexes A’ of M, A’ C A.

Definition. The evaluation function eval,s, on Ayqr
programs is defined as follows:

eval E[M]

eval E[N] if M is head redex
in E]M] and M = N,
eval A = A

What is the relation between A,qor and evaly,,,? We
can show (by adapting a proof of the Curry-Feys stan-
dardization theorem in [1], Section 11.4) that eval,qs, is
a semi-decision procedure for equations in Ay, of the
form M = A where M is a program and A is an answer
(a constant c):

Theorem 3.4 (Correspondence) For every closed term
M € Ayar and answer A,

Avar F M= A & evalye M = A.

4 Simulation by a
Single-Threaded Store

We now show that assignments in A,4r can be imple-
mented using a single sequentially-accessed store. In
order to do this, we define a translation from A4, into
another calculus, )\,, that represents stores explicitly.
This calculus has reduction rules that closely resem-
ble the usual meanings of store-operations in imperative
models of computation; furthermore, we can define an
evaluation function on the language A, that evaluates
sequences of such operations in the expected temporal
order. We establish that the evaluation functions for
Ao and Aygr agree on those terms that are present in
both languages. This simulation result shows both that
Avar pOssesses a reasonable implementation as a pro-
gramming language and also that A4, indeed reasons
about assignment as claimed.

To form the new term language A,, we make stores ex-
plicit by extending the defining grammar of A4 (Fig-
ure 1) with the additional production M := o - M.
Here, 0 = {v; : My,...,v, : M,} is a state, repre-
sented by a set of pairs v: M of tags v and terms M.
dom o = {v,...,v,} is called the domain of o. Tags in
dom o are considered to be bound by o.

Reduction rules for states are derived from the reduction
rules of Ay4r, with the following modifications: We keep
(B) and (8) reduction as well as the flattening rules (>p),
(r>), (v>), (=:>). We replace the remaining bubble, fu-
sion, and effect masking rules by rules that construct,
access, update, and destroy states, as shown in Figure 5.
The new basic constant undef is used to flag an unitial-
ized variable. The rules in Figure 5 define a reduction
relation A\, between terms in A,. This relation can be
shown to be confluent:

Theorem 4.1 —, is Church-Rosser.

Note that, even though a state o can be duplicated in
rule o, the resulting states are all read-only. Therefore
it suffices to copy a pointer to the state instead of the
state itself: state in A, is single-threaded [17].

The evaluation contexts in A, are given by the grammar:

E == []| EM | fE
| E? | M= E
| Evz.M |
| pureE | pure S[return E]
| o-E

Based on this definition of evaluation context, we define
the notion of head redex and the standard evaluation




Definition. Let )\, be some extension of the \-calculus.
Two terms N and M are operationally equivalent in \,,
written A\, | N = M, if for all contexts C in A, such
that C[M] and C[N] are closed, and for all answers A,

A FCIN]J=A4 & A\ F CM]=A.

Lemma 5.1 For any terms M, N, and context C,

AMFM=N & A F CM]=C[N]

Proposition 5.2 The following are operational equiv-
alences in Ayq,:

(1) v?’oz.w?lby. M = wlby.vicz. M

() N==v;N==w;M = N =w;N=v;M
(v # w)

3) wvarv.N==w;M = N=w;varv.M
(v # w0 ¢ fo N)

(4) varv.varw. M = varw.varv.M

(6) N=tv;N'==v;M = N==v;M

(6) S[S'[M]) = S'[M] (S"#£[],

bv SN fo S'[M] = 0)

Proof: One uses the correspondence and simulation re-
sults of Sections 3 and 4, together with an induction on
the definition of eval,. W

Equation (1) says that variable lookups commute.
Equations (2), (3) and (4) say that assignments and
variable introductions commute with themselves and
with each other. Equation (5) says that if a variable
is written twice in a row, the second assigned value is
the one that counts.

Equation (6) implements “garbage collection”: it says
that a state prefix S of an expression S[S/[M]] can
be dropped if every variable written in S is unused
in §’[M]. The reason for the second state prefix S’ is
to prevent false operational equivalences involving non-
sense terms, as in var v.1 2 1. Note that, using the
“bubble” conversion laws and the commutative laws (2),
(3) and (4), garbage can always be moved to a state pre-
fix.

Relationship between )\, and classical A-calcul-
us. Clearly, convertibility in A implies convertibility in
Avar, since () and (&) are reduction rules in Ay,r. How-
ever, this goes only part of the way. For instance, the
equation tail o cons r = id between list processing func-
tions is not an equality in the sense of 3§-convertibility,

but it is an operational equivalence. Other opera-
tional equivalences are those that identify some diverg-
ing terms or terms that involve fixpoints. Since equiv-
alences like these are routinely used when reasoning
about programs, we would like them to be preserved in
Avar- We establish now the result that A,,, indeed pre-
serves the operational equivalences of A, and, further-
more, that Ay, does not introduce any new operational
equivalences between A-terms. The only provision on
this result is that the underlying set of constructors and
basic function symbols needs to be “sufficiently rich”
(meaning that we can always find enough constructors
that are not used in the reduction of some given pro-
gram).

Definition. An (extension of) applied A calculus A,
has a sufficiently rich set of constants if

(a) The constructor alphabet includes for every arity
n an infinite number of constructors that do not form
part of any of the terms Ny cn, Ny used to define the §
function.

(b) For every type constructor c" one can define in A,
a projection function proj_c™ such that

projc® (c" My .. Mpy)PQ = PM ..M,
proj_c™ VP @ = QV
for any other value V.

(¢) One can define in A, a function projector proj_f such
that

proj_f(c"My .. M,)PQ = Q(c" M .. M,)
for any data value ¢™ M; ... M,
projg.f VP Q = PV
for any non-data value V (i.e. for any function).

Clearly, these projection functions can be defined by
suitable é-rules. The functions proj_c™ represent a
stripped down version of pattern matching on data
types, as it is found in many functional programming
languages. Function proj_f can be thought to be a dy-
namic type test, similar to procedure? in Scheme.

Theorem 5.3 (Conservative Extension) Assume that
A and Ay, have the same, sufficiently rich set of con-
stants. Then for any two terms M, N € A,

AEM=N & Aoy EM=N.

Proof: The proof is based on finding a syntactic em-
bedding F from the store-based calculus A, to terms in

A




Oyar o - var v.M -

o=. cU{v:N'} - N=v;M —

o7 ocU{v:N} - v?’bz.M —

Opure pure M - 0 - M
Opc o-return[c” M; ... My] -

Op o -return [z.M] -

Op; o - return [f] = f

oU{v:undef} - M
cU{v:N} - M
oU{v:N} - (z.M) N

(N # undef).

c” (o -return [M;)]) ... (o - return [Mi]) (k < n)
z .0 -return [M]

Figure 5: Modified reduction rules for A,.

function eval, for programs in A, as was done for A4,
in Section 3. eval, closely corresponds to usual notions
of store-based computations with store access and up-
date as single reduction steps. Analogously to the sit-
uation in Ay,r, eval, is a semi-decision procedure for
equations between terms and answers in A,.

Theorem 4.2 (Correspondence) For every closed term
M € A, and answer A,

A P M=A & eval, M = A.

Since Ayar C Ao, it makes sense to apply eval, to a
term in A,.-. Moreover, both evaluation functions are
equivalent if we consider only observable results:

Theorem 4.3 (Simulation) For every closed term M
in A,y and answer A,

Avar F M=A & A F M =A.

Proof: There is a close correspondence between states
in A, and state prefixes in A,qr. Every state prefix S
corresponds to a state og, defined by

domos=bv S
S=S5[N=v;C[l,vdwr C = (v:N)eos
vebv S,vdwrS = (v:undef) € os

Define S[pure (S[M])] = o5 - M and extend S canon-
ically to all of Aysr. S is surjective but not injective:
every non-empty state corresponds to an infinite num-
ber of state prefixes. We define a right inverse S~! of
S by picking for each state o one of the state prefixes
that corresponds to 0. Assume that tag identifiers are
totally ordered, and that the identifiers vy, ..., v, in a
state ¢ = {v; : My,...,vp : M, } form an ascending se-
quence. Define

S e-M] =

pure (var v;. ... var v,.
M =v ;... M, = v, ; M)

and extend S~! canonically to a mapping from A, to
Ayar. It is straightforward to verify that

(1) M o» S[M],
(i1) Ao F S[S7Y[e]] =0,
(111) Avar E STH[S[M]] = M (operational equivalence

2 is defined in the next section).

Using these laws, one shows by a case analysis over the
respective notions of reduction in Ayq, and A, that

(i) If M — N by contracting a head redex A in M,
and N —» A then )\, + S[M] = S[N],

(v) If M —> N then Ayor F S™[M] = S™[N].

The theorem then follows from laws (i — v) by an induc-
tion on the length of the reduction sequence from M to
A, B

5 Operational Equivalence

Operational equivalence is intended to reflect the notion
of interchangeability of program fragments. It equates
strictly more terms than does convertibility. We will
define operational equivalence for arbitrary extensions
of the A-calculus.

Definition. An equational theory A, over terms in A,
is an ertension of A (wrt conversion), if A C A,, and,
for any terms M, N in A,

AFM=N=AMAFM=N

An extension is conservative if the implication in the
last statement can be strengthened to an equivalence.




Definition. Let A, be an extension of A\. Let R be
an unspecified domain of environments. A mapping £ :
A. - R — A is a syntactic embedding from ), to ) if
£ is compositional?, i.e.

VCeA[]VpeRIp e RYM € A,
A+ E[CIM]]p = (E[C)p)[EIM]P),

£ is the identity on A programs, i.e. for all closed M € A,
pPeER,

AF E[M]p=M,
and £ is semantics preserving, i.e.

MFEM=As)F E[M]p= A

For technical reasons, we use a variant of \,, in which
states are represented as sequences of bindings v : M,
rather than as sets of such bindings. The reduction
rules in Figure 5§ carry over, except that the first three
rules are now defined on sequences rather than sets:

o -varv. M —
o [v:undef] - M
ot [v:N]4o¢ - N=v; M >
ot [v:N]+o - M
ot [v:N]#o - v?b2z.M —
ot [v:N]+ o' - (z.M) N (N # undef).

where + is the append operator on lists. Clearly, The-
orem 4.3 holds for the new just as for the original A,
calculus. Assuming for the moment that we have found

a syntactic embedding F from the new ), to A, we can

then prove Theorem 5.3 as follows:

“=”: Assume that A | M = N and let A be an answer.
Then, for all A-contexts Cy such that Cy\[M] and C\[N]
are closed:

AF G[M]=A& X+ C[N]=A.
Assume first that both M and N are closed. Let C
be an arbitrary closed A4 -context and let p be in the

environment domain of F. Since F is compositional,
there exists an environment p’ with

FICMlp = (FIClp)[F[M]p).

4We assume that syntactic embeddings are extended canoni-
cally to contexts, e.g. E[[]] = [].

Furthermore,

Avar F C[M]= A
& (Theorem 4.3)
Ao F C[M]=A
< (F is semantics preserving)
AF FICIM]lp=4
& (F is compositional)
A F (FICIFIM]) = A
< (F is the identity on A programs)
A F (FICIp)M]=A
< (premise: A E M = N)
A F(FICI)[N] = 4
<> (reverse the argument)

Avar F C[N] = A.

Now let M and N be arbitary A terms, with fv M U
fo N ={z,...,z,}. Then,

AFM=N
= (Lemma 5.1)

Ab oz, M=2. ... 2,.N
= (first part of proof)

Avar P 21 ..z M=y, ... 2,.N

= (Lemma 5.1)
Avar W M= N.

“4=”. Assume Aysr = M = N. Then we have
Avar F CIM]= A& Ao F C[N]= A
for all contexts C in Ay, such that C[M] and C[N]

are closed and therefore also for all such contexts C
in A. Since terms M € A have only # and § redexes,
and since A is closed under 8¢ reduction, this implies

AEM=N. =

The remainder of this section is devoted to the defini-
tion of the syntactic embedding F from ), to A. This
construction is actually of a broader importance than
Just as a technique for the proof of conservative exten-
sion, for it also gives us a way to construct models for
Avar, by composing any denotational semantics of ap-
plied A calculus with F. We assume from now on that
Avar has a sufficiently rich set of constants.

F is defined in Figure 6. It takes as environment a stack
of symbol tables. Each symbol table contains bindings
for mutable and immutable variables local to some pure
scope. (A pure scope extends over a subterm with
outermost constructor pure, but excludes any nested
pure-terms). Symbol tables are represented as sets of



Flr s = f
Flc"] ts = "
Flz] (¢:ts) = ifiM{z—» M} Ctthen M

else outer (F[z] ts)
y-FIM)(({z = y}ut):ts)
where y ¢ fo(t:ts)
(FIM] ts) (F[Mo] ts)
if IM{v— M} C tthen M
else outer (F[v] ts)
Var

(v-FIMI(({v = y} U t):ts))
where y ¢ fu(t:ts)
Deref (F[M] ts)
Assign (F[M] ts) (F[M-] ts)
Return (F[M] ts)
bind (F[M] ts) (F[z.M,] ts)
erec € (F[M] ts)
evec s (F[M] (t:ts))

Flz.M] (t:ts)

f[Ml M2] ts
Flvl(t:ts)

Flvar v M] (t:ts)

FIM? ts
FIM =: My] ts
Flreturn M] ts
.7"|[M1 D:L‘.Mz]l ts
Flpure M] ts
Flo-M] ts

where

[vi: My, ..o M,] = o

s = [F[M] (t:ts),..., F[M,] (¢:ts)]

t = {v1— Tag0,...,v, — Tag (n—1)}

Figure 6: Syntactic embedding F

bindings £ — M and v — M. The stack is implemented
as a list, using ¢ for the empty list and (:) as constructor
symbol.

The translation scheme mentions constructors Var,
Deref, Assign, Bind, Return, Tag in Figure 6, as well as
In, Out, Undef, which are defined later. We call these
constructors F-internal, and assume that they do not
occur in the terms F is applied to. This can always be
achieved by a suitable renaming since \Aq, is sufficiently
rich.

F maps state transformers in A,. to data structures
in A that are then passed to one of two “interpreter”
functions bind or ezxec. To define these functions and
others used in the definition of F, we use a functional
notation similar to Haskell, rather than a formulation
in terms of projection functions in order to aid legibil-
ity. Functional abstractions are still expressed as z.M
instead of Haskell’s \z — M.
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bind (Bind z f) g
bind (Return z) g
bind (Var f) g

Bind z (y.bind (f y) g)
gz
Var (y.bind (f y) g)

Intuitively, bind simulates A, reductions (bv), (o),
and (v>). The remaining non-functional A, reductions,
which all reference state, are simulated by function ezec.

erec s (Var f) =
ezxec (s 4 [Undef]) (f (Tag (length s)))
erec s (Bind (Assign z (Tag 1)) g) =
exec (take i s 4 [z] # (drop (i+1) s)) (g ()
exec s (Bind (Deref (Tag 1)) g) | s!li # Undef =
ezec s (g (s!))
erec s (Return (c™ zy ... z,)) =
c” (exec s (Return z,)) ... (ezec s (Return z,))
erec s (Return f) | f not a data value
z . exec s (Return (f z))

In the second-to-last clause c¢™ ranges over all data con-
structors ezcept those that are F-internal. In the last
clause f ranges over all non-data values (i.e. values that
do not consist of a fully applied constructor at top-
level). The syntax of values ensures that non-data val-
ues are always functions.

The translation scheme represents states as lists of
terms, and tags as values Tag ¢ where 7 acts as an index
into the “state” list®. This scheme poses one rather dif-
ficult problem: A, uses globally unique tag names, but
the representation of a tag as an index is unique only
among all tags bound in the same state prefix. How-
ever, it is mandatory to be able to distinguish between
tags bound in a given state prefix and tags that are free
in it. Otherwise, global variable accesses and updates
in a pure go undetected. There is no hope of finding
a syntactic embedding F that assigns globally unique
names to tags; every such mapping would have to pass
a name supply between pure terms. This would violate
the condition that F maps purely functional A-terms
to themselves, and hence F would not be a syntactic
embedding.

We overcome this problem by introducing the mutually
recursive functions outer and inner. Function outer
marks occurrences of (mutable and immutable) vari-
ables in pure scopes other than the one in which the
variables are defined. The number of outer operators
applied to such variables equals the difference in nest-
ing level of the pure scope that defines the variable and

5This part of the embedding is similar to the presentation of
monadic state transformers in [22]




data QFntry a Cons a (Var (QEntry a))

type Queuea = { put a — Proc (),
get Proc a,
isempty Proc Bool }

mkqueue Proc (Queue a)

mkqueue = varv.

var front . v =: front ;

var rear . v =: rear ;

return { put z
get
isempty

rear?>y . var w. Cons r w =: y; w =: rear,
front?eby. y?o Cons z z . 2z =: front ; return r,
front?>y. rear?oz . returny =z }

Figure 7: A queue implementation

mkqueue > q . qlput z; qlgeto M =
glput z; qlput y; qlget =
mkqueue > q . qlisemplyo M =

glput z ; qlisempty

mkqueue>q. M z
glputz ; qlgetez . qlput y;return z

mkqueue > q . M True

gl put = ; return False

Figure 8: Axioms for an imperative queue abstract data type

the pure scope in which it is used. Function inner can-
cels out the effect of outer. The definition of these two
functions is as follows:

outer (Tag M) = Out (Tag M)
outer (Out M) = Out (Out M)
outer (InM) = M
inner (Tag M) = In (M)
inner (Out M) = M
inner (In M) = In(In M)
For every other data value c® M ... My, including val-

ues formed from F-internal constructors:

outer(c™ M, ... My)
inner(c” My ... My)

c” (outer M) ...(outer M)
c” (inner M) ...(inner M,,)

For every non-data value f:

outer f z.outer (f (inner z))

inner f z.inner (f (outer z))

Proposition 5.4 F is a syntactic embedding.
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Proof: 1t is straightforward to verify that F is composi-
tional and that it maps A-programs to themselves. That
F also preserves semantics is shown using a technique
similar to the proof of Theorem 4.3. ®

Proposition 5.4 gives us a way to treat A4 programs
as syntactic sugar for functional programs. In the ter-
minology of [4], A can express Ayqr. One might ask why
one should bother with Ay, at all, if all its terms can
be mapped via F to functional values. We believe that
the main reason for studying A4, independently lies in
its simplicity, compared to the translated image under
F. In the next section, we give an example showing
how the laws of Aye, can help reasoning about imper-
ative programs that previously required very complex
proofs.

6 Example: Queue ADT

Figure 7 presents an imperative implementation of an
abstract data type “Queue”. A queue is represented
as a record whose fields are closures implementing the
operations put (i.e. append to end), get (remove from




front) and isempty.

Internally, a queue is implemented by two references to
a linked list of entries. Each entry has a data field and
a link field. The link field is a mutable variable pointing
to the next entry in the list. The last link field in the list
is always uninitialized. front always refers to a variable
that in turn either refers to the first entry in the queue,
or is uninitialized, if the queue is empty. rear always
refers to the last link field of the queue.

For conciseness we augment the basic calculus with pat-
tern matching and records. Field selection is expressed
by infix ({), of higher precendence than function ap-
plication. Also, even though Ay, is untyped, we still
write type declarations and function signatures in order
to help understanding. Var a designates the type of
mutable variables that contain values of type a. Proc a
designates the type of state transformers that return
results of type a.

One feature of Ay, not discussed so far concerns vari-
able identity: In the last line of the example, y = 2
is intended to be true iff y and z designate the same
tag. (=) cannot be defined via (J) since tags are not
values. We define (=) instead by adding reduction rules
v=v > trueand v = w - falseif v # w. It is
straightforward to show that this addition does not in-

validate any of the results presented in earlier sections.

The implementation in Figure 7 satisfies the axioms for
queues shown in Figure 8. This can be shown using
Avar’s conversion rules and the operational equivalences
of Proposition 5.2. For the second axiom, a structural
induction on terms is needed. As an example, we show
in Figure 9 the proof that our implementation satis-
fies the first queue axiom. Even though this proof is
far from short, all its steps are simple and amenable
to machine-assisted proof-checking. Also, some of the
proof’s size is due to the detailed level of presentation.
By contrast, the traditional approach to verifying pro-
grams with pointers treats pointer-threaded structures
as graphs. This requires complex arguments when iso-
morphism between graphs needs to be shown.

7 Related Work

Hoare et. al. [9] present a normalizing set of equations
for an imperative language with assignment, conditional
and nondeterministic choice. Functional abstraction is
not considered. Field [7] extends the deterministic part
of their theory with shared variables. Boehm [2] gives
an equational semantics for a first-order Algol-like lan-
guage. In his setting, expressions have both values and
effects, which are defined by different fragments of his
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calculus.

Felleisen, Friedman, and Hieb [5, 6] have developed a
succession of calculi for reasoning about Scheme pro-
grams. Since their target programming language is call-
by-value, they have based their work on the Ay -calculus
of Plotkin[15] instead of the pure A-calculus. It is inher-
ent in their goal of reasoning about Scheme that their
theories are not a conservative extension with respect to
operational equivalence of either the classical A-calculus
or of A\y. Mason and Talcott [11, 12] have also de-
veloped equational calculi with motivations similar to
those of Felleisen et. al. and with comparable results.

Our work was influenced in part by the Imperative
Lambda Calculus (ILC) of Swarup, Reddy and Ireland
[18]. Like Ayar, ILC assumes call-by-name and mod-
els assignment by rewriting variable uses to approach
and merge with their definitions. Unlike Ayqp, ILC is
defined in terms of a three-level type system of values,
references and observers. This somewhat restricts ex-
pressiveness on the imperative side: references to ob-
jects that encapsulate state cannot be expressed, and
all procedures have to be formulated in continuation-
passing style. Also, unlike A,qr, ILC is strongly nor-
malizing, and, as a consequence, not Turing-equivalent
(e.g. recursion is prohibited).

A programming language with motivation similar to
that of Aysr is Forsythe [16]. The language distin-
guishes between mutable and immutable variables, and
also between value expressions and commands; however,
it does so by means of a refined type system that is
based on intersection types. Forsythe essentially uses a
two-phase semantics, in which a term is first expanded
to some potentially infinite program which is then exe-
cuted in a second phase. Some common programming
idioms such as procedure variables do not fit in this
framework and therefore cannot be expressed.

8 Conclusions and Future Work

We have extended the applied A-calculus with assign-
ment. We have shown that the resulting calculus is
confluent, preserves all operational equivalences of the
original calculus, and permits implementation by a con-
ventional, sequentially updated, store. We hope that
Avar Will prove useful as a framework for extending lazy
functional programming languages with imperative con-
structs.

An important step to that goal will be the study of type
systems for A,q-. We have intentionally kept the present
treatment untyped in order that many of our results
may be applied immediately to versions of Ayq- with ar-




R

R

R

mkqueuet q . qlput z ; gl geto M

(expand mkqueue)

var v . var front . v =: front ; var rear . v =: rear ;return @ > gq .
glput z ;qlget> M

where Q = {put = ..., get = ..., isempty = ...}, as in Figure 7
(r> on return @, followed by )

var v . var front . v =: front ; var rear . v =: rear ;
Qlputz; Qlgetv[Q/qI M

(expand Q| put, Q| get)

var v . var front . v =: front ; var rear . v =: rear ;

rear?py . var w. Cons z w =: y ; w =: rear ;

front?>y' . y’'?76 Cons 2’ z . z =: front ;returnz’v> [Q/q) M
(fuse on rear)

var v . var front . v =: front ; var rear . v =: rear ;

var w . Cons r w =: v ; w =: rear ;

front?oy' . y'?> Cons ' z . 2 =: front ;return z’ v [Q/q] M
(bubble and fuse on front)

var v . var front . v =: front ; var rear . v =: rear ;

var w . Cons z w =: v ; w =: rear ;

v?> Cons z' 2z . 2z =: front ;returnz’' > [Q/q] M

(bubble and fuse on v)

var v . var front . v =: front ; var rear . v =: rear ;

var w . Cons z w =: v ; w =: rear ;

w =: front ;returnz o [Q/q] M

(rearrange, using Proposition 5.2 (2), (3), (4))
varw.varv.Consz w=:v;

var front . v =: front ; w =: front ;

var rear . v =: rear ; w =: rear ;

returnzo [Q/q] M

(Proposition 5.2 (5), twice)

var w.varv.Consz w =: v ;

var front . w =: front ;

var rear . w =: rear ;

returnzo [Q/q] M

(Proposition 5.2 (6), eliminating var v . Cons z w =: v ; [])
var w . var front . w =: front ; var rear . w =: rear ;
returnz o [Q/q] M

(r>, = not free in Q)

var w . var front . w =: front ; var rear . w =: rear ; [Q/q] (M z)
(B,r> in reverse)

var w . var front . w =: front ; var rear . w =: rear ; return Q o (M z)
(collapse definition of mkqueue, using that v and w not free in Q, M)
mkqueueq . M z

Figure 9: Proof of a law on queues.
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bitrary descriptive type systems. Had we started out
with a typed calculus instead, all our results would hold
only for the particular type system used. This would re-
sult in a loss in generality, since there are many possible
candidates for such a type system. In particular, there
are several widely differing approaches to implementing
the effect checking required by the pure rule (examples
are [8, 13, 18, 19, 21]). By keeping Ayar untyped we
avoid being overly specific.

Also left to future research is the investigation of vari-
ants of Ayqr. A call-by-value variant promises to be a
useful tool for reasoning about programs in existing im-
perative or impurely functional languages. A variant
with control-operators could provide an equational the-
ory for a language with call/cc or exceptions.
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