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Abstfact

The Partial Order Search (POS) problem is to find an optimal
search strategy to locate an arbitrary element of a given partially or-
dered set S. Questions that may be asked during the search are of the
form, “Is s the target element?” (s € S); the response states the rela-
tionship between the queried element s and the target: “=", “<”, >”,
or “incomparable”. An optimal strategy is one that requires the fewest
questions in the worst case. POS is shown to be NP-Complete by ex-
hibiting a polynomial-time reduction from the Exact 3-Cover problem.
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Introduction

The Partial-Order Search Problem (POS) is as follows:

We are given a set S, a partial order < on S, and and integer
k. Is there a strategy which identifies an arbitrary element of S
by asking at most k questions of the form “s?”, with answers of
the form “>7, “<”, “=" or “¢” according to whether the target
element is greater than, less than, equal to, or incomparable to
s?

We may assume (without loss of generality) that 1 < k < |S].

This problem generalizes the familiar binary-search problem for which the or-
dering is total. When the set being searched has n elements, the binary-search
strategy identifies an arbitrary element in [logn| + 1 queries; thus the answer to
the corresponding decision problem is “yes” iff k > |logn| + 1. We would like to
know if there is an efficient algorithm to find an optimal search strategy for an
arbitrary partial order. The NP-completeness result suggests that there is not.

The Exact 3-Cover Problem (X3C) is as follows:

We are given a set X of 3¢ elements (z1, ..., z34) and a set
T of 3-element subsets £;, ..., ¢, of X (also called “tests”). Is
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there a collection fl,...,fq of tests in T that partition X into
subsets of size 37
We may assume (without loss of generality) that ¢ < r < (33?)

X3C is known to be NP-complete ([GJ79]). In [HR76] X3C is reduced to the
problem of constructing optimal binary decision trees, thereby proving the latter
NP-complete. The proof below is also a reduction from X3C to decision trees for
the partial-order search strategy, but the specific reduction and the proof technique
(adversary) are quite different.

We model a search strategy for an instance (S, <,k) of POS by a decision tree.
The internal nodes are labeled by questions (“s?”, where s € S), and have two,
three, or four outgoing edges labeled by possible responses (<, >, =, or #£). The
leaf nodes are labeled by elements of S. The height of the tree is the maximum
number of questions needed to identify an element uniquely. There is no need to
consider less than optimal trees, so we may assume that every element of S appears
at exactly one leaf and that no useless questions occur internally. In particular,
the size of a (correct) decision tree is O (|S]).

To see that POS is in NP, we envision a non-deterministic Turing Machine M
which solves the POS decision problem on input of S, the relation <, and the
integer k in binary. In time polynomial in |S|, M can write down a decision tree
and check that

e no more than k questions occur on any path.
e every s in S occurs on some leaf.

e cach path correctly and uniquely identifies the leaf.

We now show that POS is NP-complete by showing how to reduce an arbitrary
instance of X3C to POS in polynomial time.

The Reduction

Let (X,T) be an instance of X3C. Construct POS(S, <, ¢ + 3) as follows:

S consists of the 3¢ elements of X, plus the set {a,b,c} of new elements (not
in X), plus the set of tests T, plus another set T' of new elements distinct from T
with |T'| = |T’|, plus a set ¥ of additional elements, enough so that the cardinality




Figure 1: The partial order <.

[TUT'UY| = 2™ — 1, where m = [log|T|] + 2. With this number, a complete
binary tree can be built from the elements of TUT' UY, with T and T at the
leaves (see Figure 1). Note that m < [log (¥)] + 2 € O (logg).

The partial order on S is constructed as follows:

e Each t € T is greater than the z’s it covers.
® a, b, and c are incomparable to all other elements.

e The elements of T, T', and Y form a complete binary tree, with yo as
the root (minimal element), and the elements of T UT' (and possibly
some Y’s as well) as leaves (maximal elements).

Note that the z’s are incomparable to all but the elements of T. Asking a
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question about an element of T/ or Y that returns an answer of “£” yields no
information about the z’s, and vice versa.

We claim that there is a POS decision tree of height ¢ + 3 iff there is an exact
3-cover, for all but finitely many q.

Suppose there is an exact 3-cover. Let fj,... ,fq € T be a 3-cover. A decision
tree for identifying an arbitrary element is as follows:
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Figure 2: Decision Tree

Here, Ag is a tree of height m — 1 that identifies an element of TUT'UY, and
A; are trees of height 2 that identify the three elements of X covered by tHat; (for
1<i<yg).

Since m € O (logg), the height of Ag is less than the height of the rest of the
tree for almost all ¢. Thus the length of the longest path of the entire decision
tree (and hence the maximum number of questions) is ¢ + 3.

The correctness of this decision tree is apparent. Note that it is not the only
correct one of height ¢ + 3 (for example, the yo and f; tests can be interchanged).
But we claim that at least ¢ + 4 questions are required in the worst case if there is
no exact 3-cover. The argument employs an adversary to show that ¢+ 3 questions
are insufficient to identify an element uniquely.




Adversary: The adversary maintains two sets A and B. Initially, A = XU{a,b,c}
and B=TUT'UY. In response to each question (determined by the decision
tree), the adversary removes some elements from A and/or B and responds to the
question. Specifically,

1. If the question is “z?” (where z € X U {a,b,c}),

e If A has any elements other than z, then remove z from A, remove
from B all those elements t € B which dominate z, and reply “%£”.

e Else if B has an element b such that b # z, then remove z from
A and all elements of B that dominate z, and reply “#£”.

e Else if |B| > 1, then reply “>” and remove z from A.
e Else reply “=".

2. If the question is “6?” (where £ tests {z1, 72, 23}),

e If A contains any elements other than {z1,x2,z3}, then reply “%£”,
replace A by A — {z1,22,z3}, and remove from B all elements
comparable to t.

e Else if B contains any elements incomparable to {, then reply
“t” replace A by @, and remove from B the element t and all
elements comparable to it.

e Else if AU B = {{}, then reply “=".

»

e Else reply “<” and remove { from B.

3. If the question is “y?” (where y € XUT),

o If A # (), then reply “4£” and remove from B all elements com-
parable to y.

e Else if B = {y}, then reply “=".

e Else reply “¢”, “>” or “<” according to whether the most el-
ements of B are incomparable to, greater than, or less than y.
Remove from B all elements inconsistent with the response.

We now observe the following:

e The adversary is correct: it removes from A and B all elements in-
consistent with the response, and replies “=" when there is only one
possible response. (Note that the correctness of the adversary depends
on the assumption that no useless questions are asked.)



e No more than three elements of A are removed in response to one
question. Thus ¢ is an immediate lower bound on the number of
questions required. This improves to ¢ + 2 as soon as we observe that
{a,b,c} are removed from A only by questions “a?”, “b?”, and “c?”.

e At least one question about the elements in 7' UY is required, for
otherwise questions of types (1) and (2) will eliminate from B only
those elements comparable to the t’s in T, leaving the elements of 7"
(at least g of them) and some of the Y’s in the tree. Thus ¢+ 3 is a
lower bound on the number of questions required.

e Suppose there is no exact 3-cover. Then at least ¢ + 1 elements of T
are required to cover the 3¢ elements of X. Hence, to remove all but
one element of A requires at least ¢ + 3 questions:

— If the target is in {a,b,c}, then ¢ + 1 questions are needed to
eliminate the X’s and two to rule out the other two elements.

— If the target is in X, then three questions are needed to eliminate

{a,b,c}, and at least ¢ questions to eliminate all but one of the
x’s.

Together with the previous observation that at least one more question is re-
quired, this proves that ¢ + 4 questions are required if there is no exact 3-cover.

Thus the POS problem is solvable in g+ 3 questions iff there is an exact 3-cover,
for sufficiently large ¢. This completes the proof.
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