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Abstract

We show that the real line is computationally a fractal.

1 Introduction

One of the truly remarkable mathematical discoveries of this century is the geometry of
fractals by B. Mandelbrot and others. There has been enormous fascination with these
weird objects called fractals in the mathematics community. Much research has been done
in the area of dynamic systems, which yield deep insight to the topological/geometric nature
of those beauties (or monsters, according to one’s taste.)

For centuries, we are so used to the notion that smooth objects = tractable objects =
nice objects, that any deviation from such are viewed with suspicion. Certainly we like
Euclidean space, or manifolds (locally Euclidean); they are smooth, tractable and nice. To
be sure, the intuitive mathematical view of the real line is, as its visualization suggests, a
smooth set of points without individual distinguishing characteristics. However we claim
that, from a computational complexity point of view, the tepresentations of the real numbers
form a very complex object.

We prove that the complexity graph of the real line is a fracfal: i.e., we consider a
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well-defined function that assigns to each real number its complezity (technical definitions
will be given in section 2), and show that the graph of this function is a fractal. Thus,
computationally all real numbers are not born equal!

We note that for a wide class of functions such as any non-constant polynomial with
rational coefficients, or, analytic functions with uniformly computable coefficients, the com-
plexity of a real number is invariant under the transformation. Thus, the fractal nature of
the complexity graph is preserved by iterations of such computable functions.

This and other considerations lead us to believe that there must be interesting connec-
tions between the fractal nature of the computational domains and, using Mandelbrot’s
words, “the fractal geometry of nature”.

We hope that this note may initiate a systematic investigation of the computational
complexity properties of fractals and dynamic systems and how their properties are related
to the fractal nature of the underlying computational domains.

2 Definitions and Preliminaries

What is randomness? And what is a random object? Surely a large object with any easily
distinguishable patterns, or one which can be generated by any well specified short proce-
dure, should not be considered random. The Kolmogorov complezity K (z) of a binary string
z is defined to be the information content of z, i.e., the size in bits of the smallest input
string—program—which will cause a fixed universal Turing machine to produce z. (The
choice of the fixed universal Turing machine introduces at most an additive constant in the
value of K(x), which asymptotically can be ignored. We shall fix one universal machine
once and for all.) The notion of Kolmogorov complexity was due to Solomonoff, Kolmogorov
and Chaitin [S][K][C]. There have been quite a few variations of the original notion of Kol-
mogorov complexity, most notably by Chaitin and Levin on self-delimiting Kolmogorov com-
plexity [C][L], and the resource-bounded versions, such as polynomial time/space bounded
Kolmogorov complexity [Ba][H]. However, the result of this paper is robust, in the sense
that any and all such definitions lead to the same conclusion—the computational line is a
fractal. For definiteness, we adopt the classical definition through out this paper.

To define the complexity of a real number z, we consider any reasonable representation
of z, such as binary expansion. We take the n-bit prefix z,, of z, and consider its normalized
Kolmogorov complexity K (zn)/n. It should be clear that the choice of which particular
enumeration scheme to represent z (for instance, ternary, decimal or continued fraction o)
is of no significance, asymptotically speaking, as long as the conversion between them is
computable. (If we are using polynomial time bounded Kolmogorov complexity, then we
should require polynomial time conversion algorithms, which certainly exist for those we




mentioned.) Now we define the complexity of z as
K(z)= Jim K (zn)/n.

We denote the graph of the function K by Gg.
A technical note. When the limit does not exist, we may take any reasonable value,
such as the arithmetic mean of upper and lower limit: !

K(z) = 3 (liminf K (2,)/n + lim sup K (zn) /).
2" n—oo n—00
It follows from the definition that Gk has perfect scaling properties:
K(rz+s)= K(z),Vz€eR,r,s€ Q,r # 0.

In fact this scaling property can be significantly strengthened to arbitrary polynomials (or
even analytic functions) with (uniformly) computable coefficients. To see this, we first note
that the zero set of any such function f (and therefore that of its derivative f') is discrete in
the domain of its definition, and consists of computable numbers (in the sense of Turing).
Thus, modulo a discrete set of points, where K (z) = 0= K (f(z)), the function f is locally
monotonic with a non-zero derivative. This enables us to prove K (z) = K(f(z)), for all z.
As a consequence of this scaling property, we will only consider the function K as defined
on the unit interval I = [0, 1].
The following definition is from Mandelbrot:

Definition 2.1 A set F is a fractal if its Hausdor[f dimension is greater than its topological
dimension.

We first state the definitions of these concepts of dimension. A general reference on
dimension theory can be found in [HW].

Definition 2.2 Given a set S in a metric space X , and any real number p > 0, let € > 0
and

mg(S) = inf Y _ 6(S:)P,

21
where S = U2, S; is any decomposition of S in a countable number of subsets of diameter
8(S;) less than €, and the superscript p denotes ezponentiation. Let

my(S) = eh_x% mg(S).

my(S) is called the p—dimensional (Hausdorff) measure of S.

1Such arbitrariness is perhaps disquieting; however the reassuring fact is that it does not matter as we
will see.




We observe that the limit in the definition exists (including infinity o), since mg(S)
is monotonic non-decreasing as € — 0. We also note that p < ¢ and m,(S) < oo imply

Definition 2.8 Given a set S in a metric space X, the Hausdorff dimension of S, dimg(S),
18 the supremum of all real numbers p such that my(S) > 0.

Clearly the above definition of the Hausdorff dimension of S can be equivalently stated

in terms of the following limit,

551(1) mfgé(D,-)p,
where the infimum takes over all countable coverings of S by open (or closed) discs 0 =
{Dili > 1}, with Sup;>; 6(D;) < €. In what follows, we will use the notion of a covering to
compute the Hausdorff dimension.

As an example, it is well-known that the (classical) Cantor set C has Hausdorff dimension
log2/log3. This can be seen intuitively by the following family of finite coverings for C
inductively defined. 0; consists of a single interval [0, 1];' Ok consists of all the intervals that
are the first or the last third of any interval in Op_;. (Although a rigorous proof can be
given along this line, this only shows that dim #(C) < log2/log3. Note also that in general
a countable cover is used instead of a finite one.)

We now define the notion of the topological dimension of a space X. It turns out
that there are three commonly used concepts of dimension in the literature. Although for
more general spaces they do not necessarily agree, they do agree on all separable metric
spaces (spaces with a countable dense subset.) Since this is the case for our investigation
(subspaces of Euclidean space) we will give just one definition of the topological dimension,
also known as the Urysohn-Menger (small inductive) dimension.

Definition 2.4 Given a metric space X,

1. dimp(X) = -1, if X = ¢;

2. dimr(X) < n, if for every P € X and open set U containing p there is an open set V
satisfying
PEV CU and dimr(dV) < n - 1.

8. dimr(X) = n, if dimr(X) < n and dimz(X) € n - 1.
4. dim7(X) = oo, if dimy(X) £ n for all n.

We note that when X is a subspace, say of an Euclidean space, the topology on X is
the induced topology. If X is everywhere dense, then the boundary of an open set in X,




0x(0 N X), equals 80 N X.

As an example, any non-empty finite or countable space is 0-dimensional. Any subset
of the real line that does not contain any interval also has topological dimension 0. And as
a consequence of the Brouwer Fix-Point Theorem, the Euclidean n—space has topological
dimension n [Br]. (The non-trivial part is to show that dimp(R") £ n — 1).

Note that the topological dimension of a space is always an integer (if it is finite). It
is known that the Hausdorff dimension is always greater than or equal to the topological
dimension. Mandelbrot defined a space to be a fractal if they do not agree, i.e., X is called
a fractal if dimg (X) > dim7(X). For our set Gk, we will establish just that.

3 The Hausdorff Dimension of Gg

The main theorem in this section is the following

Theorem 8.1 For any numbers 0 < a < b < 1, the Hausdorff dimension of the set Gg N
([0,1] x [a,b]) s 1+ .

An immediate corollary is
Corollary 8.2 The Hausdorff dimension of the graph dimg (G k) =2.

We first investigate the “fibre sets” F, = {z € [0,1]|K(2) = a}, for 0 < a < 1. We will
show that dimpg (F,) = a; from which the main theorem will follow.

Lemma 3.3 Almost all points in [0, 1] have complezity 1. i.e. Fy has full Lebesgue measure.
The proof is a simple counting argument, which we shall omit here.

Lemma 3.4 For alla, 0< a <1, F, is non-empty. In fact, F, is an uncountable infinite
set.

Proof We prove this theorem using an argument analogous to that of Riemann in
showing that every convergent but not absolutely convergent series can be rearranged to
converge to any given number.

For notational simplicity we assume 0 < a < 1. (For a = 1 it is implied by Lemma 3.3.)
To exhibit a real number z with complexity a, we first take a random string as the initial
segment of z, so long that the normalized complexity is “pushed” above a. Then we append
any “simple” string such as all 0’s, so long that the normalized complexity is “pushed” below
a. Now we repeat the process, with ever smaller oscillation. The number z defined by this
infinite sequence of bits clearly has complexity a. Moreover, if we used simple strings such
as all 1’s in addition to all 0’s, it is clear there are uncountably many points in F. QED

A consequence of this lemma and the scaling property noted in Section 2 is that




Corollary 3.5 The graph Gk s everywhere dense in the unit square.

Consider the Cantor set C again. We claim that the fibre set F, where ¢ = log2/log3
contains “almost all” the points of C. It follows that dimg (F,) > c, for ¢ = log2/log 3. First
we have to clarify the meaning of “almost all” here, as the Cantor set itself has Lebesgue
measure zero. Intuitively the notion of a “random” Cantor set point should be clear, as
points in C are represented by ternary numbers with 0 or 2 as its bits. This can be formalized
as follows: Define a map e from the Cantor set C onto the unit interval [0, 1] that is one-to-
one except on a countable subset of C. Furthermore modulo a countable subset the map e is
an isomorphism between the measure space C endowed with the c—dimensional Hausdorff
measure and the unit interval with the Lebesgue measure. The map can be defined by a
sequence of “expansion” as follows: first map the points 1/3 and 2/3 to 1/2 and expand
the two intervals [0,1/3] and [2/3, 1] linearly onto [0,1/2] and [1/2, 1] respectively. Then
recursively expand the remaining two intervals exactly the same way, ad infinitum. It can
be shown rigorously that all claims of the map e are satisfied. Now every z € C certainly
has complexity no more than ¢ = log2/log3: in order to obtain |log, 3 n| bits in a binary
expansion we need no more than n bits asymptotically. On the other hand, just as in
Lemma 3.3, a “random” point of the Cantor set (i.e. “almost all” under the c-dimensional
Hausdorff measure) has complexity exactly c.

The above discussion is capable of generalization to an arbitrary a.

Lemma 3.6 For anya, 0 < a < 1, the fibre set F, has dimension at least a.

We observe that there is nothing special about 1/3 and 2/3 in the Cantor set construc-
tion. One can easily construct generalized Cantor sets. Let {p,/gn} be a recursive sequence
of rational numbers so that 0 < pp, < gn and logps/loggn — a, for the given real number
a. Such sequence certainly exists. One constructs a generalized Cantor set where in the
nth step, we delete the middle ¢, — p, subintervals each of length 1/g, of the length of
intervals obtained in the (n — 1)th step. It can be shown that almost all points (under the
a-dimensional Hausdorff measure) of the generalized Cantor set are contained in Fy, and
thus the latter has dimension at least a. The lemma follows.

On the other hand we claim that for 0 < @ < 1, and any € > 0, dimg (F,) < a+¢. And
hence, taking limit, we have

Lemma 3.7 For any a, 0 < a < 1, the fibre set F, has dimension at most a.

Proof Let z € F, and 1/k < e. Consider the following family of closed intervals
{[m/2",(m+ 1)/2"||K(m) < (a+ 1/k)n}, n = 1,2,..., where K(m) is the Kolmogorov
complexity of the binary number m. Observe that for £ with lim inf,,— o 5—(%(2» <a+1/k,




where z(n) is the n-place binary expansion of z, z is covered by infinitely many intervals
in the above family. However the number of intervals of length 1/2" in the above family is
bounded by 2(6+1/E)n+1 a4 thus the series

> 1
E 2. 2(a+1/k)n(_)a+e
2n
n=1
converges. Therefore its tail (corresponding to a countable covering of the set F) can be
made arbitraily small. QED
We note that the preceding proof actually proved more, namely dimy (Uogy<a Fy) < a,
for all a.
Combining the above two lemmas, we have

Theorem 3.8 For any a, 0 < a < 1, the fibre set F, has dimension ezactly a.

We turn our attention to Theorem 3.1. We prove a general theorem about Hausdorff
dimension.

Theorem 3.9 If for any y, 0 < y < 1, a “fibre set” F, C I 13 defined and has Hausdorff
dimension at least h, then dimpg (Up<y<i (Fy X {y})) > 1+ h.

Proof Without loss of generality, we consider any countable covering of the set
Uosy<i (Fy X {y}) by squares, § = {[a;,a;+6]x [b;,bi+6]|i > 1}. We note that the covering
$ naturally induces a covering for each fibre set Fy, {[a;,a;+&]|¢ > 1 and b; < y < b; + 5}
Fix any € > 0, define a modified “characteristic” function for each square,

§hC ifbi<y<bi+6
0 otherwise

xi(y) = {

Since each x; is non-negative, it follows from the monotone convergence theorem that

fo l i xi(y)dy = i /o 1 xi(y)dy = i glh-e,

=1 =1 =1
We only need to show that the integral on the left approaches to infinity (uniform over
all coverings) as § = sup;>; 6 — 0. This follows from Ergorov’s theorem. We can show
directly as follows: For any M large and integer n, define S, = {y|inf ¥, 6,-""5 > 2M,
where the infimum takes over all countable coverings of Fy by intervals of lengths §;, and
sup §; < 1/n.}. Since each F, has Hausdorff dimension at least h, S, forms a monotone non-
decreasing sequence of sets with limit U, S, = [0,1]. Then by the continuity of Lebesgue

measure, limp—oo 4(Sn) = 1. We choose n sufficiently large such that p(S,) > 1/2, and

/01 f:x.-(y)dy 2 / f: xi(y)dy > M. QED

=1 Sn i=1



We note that in Theorem 3.9, one can replace the interval 0 < y < 1 by any other
non-trivial interval. It follows that

dimp (Gx N ([0,1] X [a,8])) > dimg (Gx N ([0,1] x [b—€,8])) > 1+ b —¢,

for alle > 0.
On the other hand, it follows from the remark after Lemma 3.7,

dimpg (G N ([0,1] x [a,b])) < dimg( |J Fy x [a,8]) < 1+0b.
0<y<b

Theorem 3.1 follows.

4 The Topological Dimension of Gk
In this section we prove the following theorem.
Theorem 4.1 The topological dimension of the set Gx 1s 1.

Thus we conclude that the graph G is a fractal as dimg(Gk) > dimr(Gk).

The proof has two parts; we show that dimr(Gk) < 1, and dimr(Gg) # 0.

It is easy to show that dimr(Gg) < 1. Given any point p € Gk, we need to find
arbitrarily small neighborhood of p such that its boundary has topological dimension 0.
This can be accomplished by a square (a,a') x (b,b') S p, where K(a), K(a') & [b,']. Thus
the boundary of the square in the subspace Gk is a part of the fibre sets F, and Fj, which
certainly has dimension 0, for it does not contain any interval.

We show next that the topological dimension of Gk is not 0. In fact, we show for all
p € Gk and any sufficiently small open neighborhood O of p, the boundary 8¢, O # 0.
Recall that 8¢, O = 00 NGk as G is everywhere dense in [0, 1)2.

Suppose p = (pz,py) € O. Either p, < 1 or p, > 0. Without loss of generality we
assume py < 1, and O C [0,1] x [0,1). Take a small square [a,a’] x [b,b'] C O centered at
p. We define a function £:

() = inf{y|ly > py and (z,y) € 80}, fora < r < a'.

Surely p, < b' < £(z) < 1 (see Figure).




Lemma 4.2 Ezcept on a countable subset of [a,a'], the function € satisfies
lim inf £(2) = £(z).

Proof We first observe that for all z € (a,a'], since A0 is closed, lim inf, .- £(2) >
£(z). Similarly, for all z € [a,a'), lim inf,_ ,+ £(2) > {(z).
Let
J,={a<z<d| ligigff(z) > (z) + -,1;},

and J~ =, J,;-
Similarly,
Jf={a<z<d|liminfe(z) > () + l},
z—zt n

and J* = {J,5, J;}. Finally,
J=JuJt={a<z<d| lim inf £(2) > £(z)}.

We claim that J is a countable set. Clearly, since a dual argument applies, it suffices to
show that for each n and 1 < m < n, the set Jam =Jq Ne7((221, 2]) is countable.
Forall z € J,,, since 251 < £(z) and lim inf,_,- £(2) > €(z) + L, 3¢, > 0, such that

inf{(2)|z - e, < z < z} > £(z) + % > %—

Thus (z — €z,z) N J,7p, = 0. It follows that { (z — €2,7)|z € J;} is a pair-wise disjoint
class of open intervals.

Since »

Z ez<ad -a<l,
2€Jam
Jn.m must be countable, and hence so is the set J. QED

We write J = {a;,a2,...}.

Now we can exhibit a point on the intersection of Gx and 0. The idea is to construct
binary sequence in stages as in lemma 3.4, approximating a “moving target” value which
converges. Specifically, at stage ¢, we take the value inf £(z), where the infimum takes over
the small interval [m/2", (m + 1)/2"| defined by the binary number m which, as a binary
string, was constructed up to the previous stage 1 — 1. Then we “push” the normalized
Kolmogorov complexity closer (up or down) to this infimum, by appending hard or easy
strings. Meanwhile, we avoid one more exceptional point a; from J by a positive distance
(staring with 00 or 11). As the nested intervals shrink, it defines a unique number z ¢ J.
Therefore, lim inf,._..; £(z) = £(z). On the other hand, the “moving target” clearly converges
to lim inf;_.; £(2). Thus the construction yields K (z) = lim inf,—, £(z) = ¢(2).
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