Program Builders as Alternatives
to High-Level Languages

Shakil Ahmed and David Gelernter

YALEU/DCS/RR-887
November 1991




Program Builders as Alternatives to High-Level Languages®

Shakil Ahmed and David Gelernter
Department of Computer Science
Yale University
P.O. Box 2158, Yale Station
New Haven, CT 06520-2158
U.S.A.

Phone: (203) 432-1278
Internet: ahmed@cs.yale.edu, gelernter@cs.yale.edu
Bitnet: ahmed@yalecs.bitnet, gelernter@yalecs.bitnet

November 19, 1991

Abstract

“Program builders” are text editors augumented with language and programming-methodology spe-
cific functionality; they build programs in a conventional source language incrementally, under the user’s
control. Programs built in this fashion are eventually compiled by the source language compiler in the
ordinary way. Generally speaking, program builders allow a “transparent” rather than (as convention-
ally) an “opaque” higher-level language to be superimposed on a lower-level language— “transparent”
in the sense that the lower-language program remains visible to the user. We discuss the relative merits
of program builders versus conventional higher-level languages in the context of an implemented case
study: The Linda Program Builder. The LPB offers many of the advantages of very-high-level languages
and others as well: (1) It can provide a more flexible and graphical user environment. (2) It can be
customized more easily — each site gets high-level operations that it needs, and is not burdened with
ones it does not need. (3) It is a good environment in which to try out new constructs. (4) In the LPB,
high-level constructs augment rather than supercede highly flexible and general low-level constructs.

*This research is supported by National Science Foundation grant CCR-8657615, by the Air Force Office of Sc:entnﬁc Research
under grant number AFOSR-91-0098, and by Scientific Computing Associates, New Haven.




1 Introduction

“Program builders” are text editors augumented with language and programming-methodology specific func-
tionality; they build programs in a conventional source language incrementally, under the user’s control.
Programs built in this fashion are eventually compiled by the source language compiler in the ordinary way.
The Cornell Program Synthesizer [RT89a] is a classic example, although the systems that are the main focus
here have broader and somewhat different goals. Generally speaking, program builders allow a “transpar-
ent” rather than (as conventionally) an “opaque” higher-level language to be superimposed on a lower-level
language— “transparent” in the sense that the lower-language program remains visible to the user. We
discuss the relative merits of program builders versus conventional higher-level language in the context of an
implemented case study: The Linda Program Builder.

Linda is a coordination language that has been described at length. It provides a logically-shared asso-
ciative object memory inhabited by passive and active “tuples.” [CG89] is a representative paper.

2 Program Builders

High or very high level languages are the research community’s traditional response to the growth in knowl-
edge about programming methodology. A programming method has been developed, for example, in which
programs maintain no mutable state objects and rely heavily on functions, including higher-order ones; this
style can be sustained in conventional languages, but functional languages are designed to provide maximum
support for the method, to (in a sense) enshrine it. Logic programming languages represent a related response
to programming methods that center on theorem proving. The failed type-safe “verifiable” neo-Pascals of
the 70’s (for example Euclid [PHL*83]) represented an attempt to capture a method based on rigorous
application of Hoare-type verification, strong typing and so on. There are a number of other examples.

An alternative approach to capturing a programming method is to design a program builder rather
than a new programming language. The program builder is a kind of text editor, extended with certain
language-recognition features; it generates program text following the user’s instructions; the program text
is eventually passed to an ordinary compiler.

A program builder can enforce a methodology in more or less the same way as a programming language,
provided the underlying language is powerful enough to support the methodology. For example, if we need a
version of Pascal in which goto’s and free type unions are not allowed, predicates describing loop invariants
are required and so on, we can write a program builder that generates Pascal programs following these
constraints. C++ was implemented originally as a source-to-source translator, but might also have been
implemented as a program builder, creating C source code incrementally as the programmer developed his
object-oriented application.

A program builder may be disadvantageous in terms of efficiency; a full-blown high-level language can
in principle lead to more efficient code generation. Further, program builders require that the programmer




remain fully conversant in the base language; they superimpose a transparent (not an opaque) overlay on
the base language.

But the program-builder approach has advantages as well, in terms of the way in which high-level lan-
guages are supported and the kinds of constructs that are provided.

A language must be fairly static: neither implementors nor programmers can tolerate frequent or radical
changes. A program builder can be far more flerible. It can be updated almost at whim, without any change
to the base language specification or compiler. A language must be fairly broad-based: highly specialized
languages rarely attract adequate applications and support communities. A program builder can be highly
specialized or customized; any site can support the features that are important to its particular application
mix without foisting a similar burden (in terms of more complicated language manuals, source programs and
implementations) on other sites.

Further, a program builder can support templates more effectively than a conventional language. A
template is a program stucture, an organizing framework for a particular kind of program. A conceptual
point involving language design and a pragmatic one having to do with language support are both at issue
here.

Conceptually, higher-level languages have generally offered high-level operations, not high-level program
structures. They have offered unification, higher-order functions, complex relational queries—not high-level
structures or frameworks for entire applications; we might say that most high-level languages are high-level
in a “micro” versus a “macro” sense. Program templates do exist in some languages, but they tend to be
generic and strictly syntactic: for example the program structures in Cobol or Pascal, or the class definition
structure in Smalltalk. Pragmatically, this tendency may be related to the idea of a language as opposed to
a program builder. A language is a class of character strings, and it’s often unnatural to specify elaborate
multi-part frameworks in such a setting. A program builder can lay down the framework itself, automatically,
and guide the user through the filling-in process; hence templates become pragmatically more attractive.

In our domain, templates are particularly important. A great deal has been learned about building
parallel applications using C-Linda, and a well-defined programming methodology exists [CG90]. Much
of the methodology takes the form of templates. For example, many Linda programs are master-worker
programs; a master process generates tasks and collects results, and a pool of worker processes performs
tasks. Master and worker each have certain functions to perform, and in most cases they use one of a
small range of possible strategies in carrying them out. Hence, the Linda Program Builder (LPB) [ACG91]
supports a master-worker template that would have been (as we discuss) both conceptually and pragmatically
inappropriate within Linda itself. Piranha programs are another example [BCG191]: they are similar to
master-worker programs, but the workers (called Piranhas) must be free to join and leave the computation
dynamically, the master performs several specialized functions, and a “retreat” function must be supplied
to clean things up when a Piranha leaves the computation. Again, a Piranha template is a natural part of
the “language” supported by the LPB.

Program builders naturally support transparent overlays, which may be used hierarchically. We present
two examples in the section below. '




3 The LPB

The LPB is a menu-driven system built on top of Epoch! running under X-windows. It has many features
that are relevant from a CASE perspective, but we concentrate on a few of the higher-level operations that
illustrate the LPB as an alternative to conventional higher-level languages.

3.1 Templates

The user identifies a particular programming paradigm, and the LPB offers the appropriate template. An
incremental approach is followed; buttons may be expanded into code segments. The programmer may
choose to leave the framework whenever desired and return later if necessary — he has the full flexibility of
the text editor available. Various stages in the expansion of the template will require further input, which is
solicited through menus or input windows. Certain buttons may be dependent on others, requiring a specific
order of expansion.

Users remain free to enter code or comments anywhere within the partially constructed program.
Figure 1 shows a segment out of a partially expanded master-worker template.

Templates may in principle be hierarchical. Consider a very simple, very-high-level template:
return maximum/apply £(...) to all [...]

This means “return the maximum/minimum of the results yielded by applying fto ...”. It may generate a
master-worker template in turn. Let’s say this template is being used to generate a database search program
of the sort described in [CG90]: return the best match between a target gene sequence and any sequence in
a genetic database. This very-high-level template creates a master-worker template — guides the user, in
other words, to the selection of this particular program structure. This master-worker template generates a
C-Linda program in turn. When the user needs to tune and optimize his program, he returns to the master-
worker template level (perhaps to substitute a watermarked for an “ordinary” task bag). The very-high-level
template in turn can keep track of the class of master-worker templates to which it is relevant, and offer the
user appropriate choices in future. Multi-level interactions may occur within the hierarchy.

The process trellis [Fac90][CG90] is another very-high-level template, for realtime data fusion; it too
generates a master-worker template. This is the sort of structure that’s far too specialized and hard-to-
implement for a programming language; but it can be a “language feature” of sorts within a program
builder.

1Epoch is a multi-window version of emacs developed by S. Kaplan of the University of Illinois, Urbana




. X Encch 3.2
sdefine POISON_VAL -999 /= Value of poison pill for workers «/

% "0 Clcbal Meny 3 = ‘u'"psgiﬁ

/» wue Insert any constant definitions above here wews «/

/
FUNCTION: int real_main
This is the master process - it generates tasks and collects the/results

int real_main(argc, argv)
int argc:
char ssargv:

/=ne Local variable declarations begin here www/
long lRes:
int iStart:
int iEnd:
int ilowerlLimit:
int iUpperLimit:

int iTasks:

int §;
int iNumWorkers:

iNumTasks:

worker():
» Local varimble declarations end here wmx/

» Body of code for function begins here sss/

(arge ¢ 2) €

/= % processors to be used is an argument to the program s/
printfi(“usage: Xs <# processors>\n"):

exit )2

3
iNumllorkers = atoi(argv(1l):
for (1 = 0: 1 < {Numllorkers: i++) {

/» Start the worker processes «/
eval ("worker", worker()):

/w—-—— Initialize number of

for (i=0; i < iNumTasks: 1++){

LPB: Information on tu sk /% wnn Build task tuple in this iteration wwe »/
out ("task”, iStart, iEnd):
/wm—— INnitiglize Limits ———w=y
iTasks = O:
lfd(+;1Tasks > iUpperlLimit) /= Too many tasks - get some results =/
o

in ("result”, ?1Res):

} while (--1Tasks > ilowerlLimit):

g results =/
Minibuffer & curie Epoch: +.cl T =) et eedeetettatuinied St

Select field to be changed

Figure 1: Partially expanded master-worker template
5




3.2 Distributed data structures

Linda programs generally make use of distributed data structures such as distributed arrays, task bags,
shared variables and so on. Many of these can be anticipated by the coordination-framework templates
discussed above. Structures such as task bags, watermarked bags or distributed queues, to name a few, are
often incorporated into the choices presented during the construction of a program through a template. But
when the case arises where a programmer needs to specify a particular data structure outside of a specific
template, the LPB will provide the necessary support.

For example, the LPB has menu options to support creating and manipulating shared variables and coun-
ters in tuple space. This includes special cases such as incrementing or decrementing a counter. Counting
semaphores are supported in a similar manner. The labels of these variables appear in the tuple menu. Pick-
ing a tuple of one of these types will cause the commands menu to change accordingly, and the information
window to display known information on the tuple.

Distributed queues of various kinds are required for many parallel programs. They may have multiple
sources, sinks, or both. The synchronization and handshaking necessary for coordination among the various
sources and sinks can be achieved through distributed head and tail pointers in tuple space. The LPB
provides a complete set of menu functions to create and manipulate queues. Upon selection of a create-
queue command, a popup menu will offer choices on the various models available. Once a model has been
selected, all the tuples necessary for maintenance of the queue are automatically generated and initialized.
A user is now free to select menu commands to add to or remove from the queue as desired. All tuple
operations, declarations, and additional code will be automatically inserted at the appropriate places.

3.3 Other high-level operations

Certain operations ought to be supported, but not at the level of a full program template. The LPB supports
high-level operations which can be expanded and then abstracted back again (buttons, on the other hand,
can only be expanded).

The abstraction feature is a powerful tool that furnishes the user with a novel approach to viewing and
constructing programs. For top-down program construction and stepwise refinement, it presents a high-
level view of program structure that can not only be expanded downwards, but can then be abstracted
back up again to a conceptually more appealing higher-level format for viewing purposes. This allows the
programmer to concentrate on hierarchical program construction at a high level, and deal with “blocks” of
code represented by abstractions which together form a larger program. (This is somewhat similar to the
Cedar [SZBH86) approach in its Tioga structured text-editor. Tioga treats documents in a tree-structured
manner where each node is a paragraph or a statement. This hierarchical node structure allows the concealing
of detail to present a conceptually higher-level view, much as in the LPB.)

We give an example in Section 4.




3.4 The program database

Every tuple, function, abstraction, higher level function, and all other crucial components of the program
are entered into a database as they are used. The database keeps information on a tuple’s label, on the
variables used in its fields, the status of each of the fields, information on the nature of the tuple and its use,
and a record of all the places where references to the tuple exist. '

The archive is global across a user’s LPB sessions. It is saved together with the program files, and
automatically loaded when a file is read in.

This database is the backbone of the LPB, maintaining all the information necessary to perform higher
level operations and provide user support, eliminating the need for much memory-work and reducing
keystrokes. The stored data supports automation that can prevent errors. It also allows information to
be passed on to the compiler and visualizer. The compiler can make use of the information to further opti-
mize code, and the visualizer can enhance its display by organizing its information better. These topics are
beyond the scope of this paper.

4 The LPB as an alternative to higher-level languages

In assessing the LPB and comparing it to alternatives, the main question is: How do we satisfy the demands
of programmers who want high level constructs for ease of programming, for maintainability, and for quick
software development?

The conventional approaches are to add very-high-level features to existing languages, or to implement
completely new languages. The LPB presents a clear alternative. In the LPB alternative, the user sees
similar advantages in terms of strong support for high-level models and constructs. But he doesn’t pay
the traditional price in terms of a language that is highly complex (e.g. Ada [Bar80] or Common Lisp
[Jr84]) or restrictive, inflexible or narrow in its range of applicability (terms in which logic and functional
languages, for example, are often described). The program builder may be very high-level, special-purpose,
idiosyncratic — but it may also be changed easily, customized or evolved readily — and simply bypassed
when the very-high-level constructs it supports aren’t the right ones.

An examination of two different examples in the context of the LPB will illustrate these points. Consider
distributed queues. When the user wants to create a queue of tuples, he picks the appropriate menu option.
This causes a new popup menu to appear which offers a choice of different queue models. Once a model has
been identified, the user is prompted for some initialization data and the appropriate code is automatically
created and inserted. Once the queue is initialized, further high-level operations for queue manipulation
become available: adding to the tail or removing from the head of a queue. The LPB’s support has two
significant consequences. First, the task of removing the element from the queue is simplified, and the
programmer specifies it at a “high” conceptual level. Second, the compiler can make use of this information
about the programmer’s intent to optimize the code generated ultimately from the C-Linda version of the
program.




But — if the programmer knows that he is removing an element from the queue, and the compiler makes
use of this information, would it not be easier simply to add these higher level features directly to the base
language? Why not extend C-Linda to offer high-level queue operations, or throw Linda out and replace it
with something “higher level”?

There are several reasons why not. Linda operations were meant to be simple and powerful. The
simplicity of Linda as it stands gives users a flexible base from which to construct any desired operations.
(Experienced programmers are well aware of the fact that a high-level language can never second-guess their
requirements entirely. Adding new operations in addition to the old yields an over-complicated language;
allowing new operations to supercede the old yields an insufficiently powerful one. The LPB consigns high
level operations to the LPB level, general purpose operations to the language level. Note that complexity
is nowhere near as damaging in software like the LPB as it is in the language itself. If some aspect of the
LPB is of no use in some context, programmers don’t have to learn it and their implementations don’t need
to support it. And Linda itself remains a simple lingua franca for the exchange of source code.

There is a second problem associated with higher-level languages of the kind described above. Languages
should be fairly static. Neither programmers nor implementors can tolerate rapid or radical change. But
programming methodology must evolve. In a young field like parallel programming, change can be rapid.
Program builders such as the LPB provide a convenient alternative solution. In principle we would like
to revise our language as methodologies become clear to us, without losing compatibility with the rest of
the user community. At the same time, we don’t want a galaxy of constructs that we do not need. If we
produce mainly numerical scientific applications, the very-high-level constructs that are valuable to (say)
graphics or database people may be of no use to us, and we don’t want to bother with them: don’t want
them complicating our language manuals; don’t want them complicating our compilers. Still, we want to
understand, interface to, and execute graphics and database applications if need be. All this would appear to
be impossible within the programming language framework, but easily achieved under the program builder
approach.

The second LPB example will address another aspect of this argument. Evidence suggests that there are
cases where a Linda programmer needs to in one of a selection of tuples. Any one of the selection would
do. We refer to this as an or-in, i.e. the program will in one tuple or another tuple or another one, and so
on. This is an operation which Linda itself does not provide, and yet it is used often enough to be worth a
debate over whether it should be incorporated into the language. Adding it to the language would involve a
significant programming effort, and modification to the various kernels. The LPB is a convenient forum in
which to test this construct.

The LPB implements the or-in function as a higher-level operation. If the user selects the menu option
for an or-in, a menu pops up with a list of the tuples that are known to the database. The user is free to
select which of these tuples will constitute the or-in. What gets inserted into the code is the higher-level
operation. It appears to be a regular program construct, but the relevant lines in the code are underlined
(Figure 2). The underlining indicates that it is a higher-level operation. Expanding this abstraction will
indicate to the user how this is implemented in Linda code. The or-in becomes an in of a bit vector to
check which tuples may be available. This is followed by a conditional which checks which bit is on, and
based on that, reads in the appropriate tuple. The bit vector has to be generated whenever one of the tuples
of the or-in is used in an out or eval. Thus, the expansion causes all relevant references to those tuples in




all open modules to be followed by a new out which puts out a bit vector with the bit corresponding to the
out’ed tuple turned on (Figure 3). If the cursor is placed on the main section of the or-in expansion, and
the abstraction menu item is selected, all the expansion details disappear, and the abstraction reappears,
making the or-in look very much as if it is a part of the language.

We have thus implemented a proposed language addition in the LPB, and enabled programmers to use
and test it before it has actually been added to the language. This allows the operation to run through
a trial period before the major task of adding it to the language is undertaken. Its usage patterns and
usefulness need to be investigated before we commit ourselves to a language change, and the LPB is the
testing medium.

There is one further advantage that the LPB offers over conventional languages with added features.
The graphical user interface provides a level of user-friendliness that the base language cannot match. In
combination with the abstraction facility, this becomes a powerful tool.

The disadvantage of the LPB in this context is efficiency. Wiring an operation into the base language
allows the compiler to optimize its support. While the LPB does not provide that level of optimization, it
does provide the compiler with semantic information that can lead to a different kind of optimization, but
that is beyond the scope of this paper. In combination with the above-mentioned advantages, this amounts
to a strong offsetting argument against the efficiency disadvantage.

5 Related work

The LPB’s most important template-based structure editor predecessor is the Cornell Program Synthesizer
[RT89b]. Unlike the synthesizer, however, the LPB does not enforce a rigid framework. Instead, the LPB
captures methodologies and supports them, without imposing a strategy. What the LPB produces is source
code, and the programmer is free to ignore or modify this as desired, a flexibility that is vitally necessary to
any expert programmer.

Extensible parallel programming environments such as SIGMACS [SG91] generate a program database
during compile time that can be used in later modifications to the program. The LPB, on the other hand,
maintains a dynamic program-describing database that grows as the program is constructed. This allows the
system to maintain semantic as well as syntactic information on the programs being developed. This infor-
mation is used in guiding program development, for checking consistency, for documentation purposes, for
providing optimizing information to the compiler [CG91], for benchmarking utilities to visualize performance
in the spirit of [HE91], and for enhancing graphical monitoring.

There is currently much research effort in visualizing the dynamic behavior of parallel programs. [KC91]
is a good example. Since the LPB can convey semantic information to a graphical monitoring tool [BC90],
programmers can visualize dynamic information at a higher abstraction level than would otherwise be pos-
sible.

10




Cicbal \enu

5 Eprcch 3.2 -

5]

long fnl(pl, p2)

int pi:
long p2:

/wnw Local variable declarations begin here www/
char cStr{100]:
short slLen:

/www Local variable declarations end here sws/
/wnw Body of code for function begins here wuw/

out (“tupl”, cStr:, sLen):

init-counter

init-shared-var 3

init-queue

new-1in-sem

new-out-sem

new-tuple-in char fn2(c1)

new-tuple-out

new-tuple-rd char ci:

new-tuple-eval £

clear-highlights /wwn Local variable declarations begin here wsx=/
| delete-tuple-ref char ¢Str(100]1:
- change-field-specs short sLen: N

int len_cStr:
expand-abstraction int tNums:

abstract-operation /www Local variable declarations end here www/
/wnw Body of code for function begins here sws/
in ("tup2", ?iNums):

orin (in ("tup2”, 7?iNums):

n ("tupl”, ?cStr:ﬂgn_cStr, ?slLen):

Z

(C)~—--A1l

Figure 2: The or-in abstraction
9




o Toples £
or-in

™ Tople CcmmandsS;

init-counter
inft-shared-var
init-queue
new-1in-sem
new-out-sem
new-tuple-in
new-tuple-out
new-tuple-rd
new-tuple-eval
clear-highlights
delete-tuple-ref
change-field-specs
or-in
expand-abstractior

N} Encch 3.2

long fni(pl, p2)

int pi:
long p2:

/www Local variable declarations begin here wus/
char cStrl[100]:
short slen:

/unw Local variable declarations end here wxw«/

/=w» Body of code for function begins here wwxs/
out (“tupl”, cStr:,. slen):
out ("or-in", 0, 1):

char fn2(ci1)
char ci:

/www Local variable declarations begin here wws/
short tup2_flag:

short tupi_flag:

char cStr{100];:

short slen:

int len_cStr:

int iNums:

/#ww Local variable declarations end here ==/

/=we Body of code for function begins here wwe/
in ("tup2". ?i{Nums):
in ("or-in", 7tup2_flag. ?tupi_flag):
1f (tup2_flag)
in ("tup2”, ?iNums):
else 1f (tupi_flag)i}
in ("tupl®”, ?cStr:len_cStr., 7?slen):

Figure 3: Expanded or-in
11

2




6 Conclusions

The LPB is characteristic of a potentially significant trend in programming language design. It addresses the
traditional conflict between keeping a language simple and demanding that it be higher-level. The proposed
solution is to combine a simple, general language with a higher-level, domain-specific system that provides
power and higher-level abstractions that a programmer can selectively choose to employ. In sum, we can
have our cake and eat it too. If we can capture the methods and idioms that skilled programmers rely on
without complicating the language itself with a galaxy of high-level, special-purpose constructs, we have a
solution to an important problem.

References

[ACG91]

[Bar80]
[BC90]
[BCG*91]
[CG89]

[CG90]
[CG91]

[Fac90]

[HE91]

[Ir84]
[KC91]

Shakil Ahmed, Nicholas Carriero, and David Gelernter. The Linda Program Builder. In Proc.
Third Workshop Languages and Compilers for Parallelism (Irvine, 1990) (invited paper). Lan-
guages and Compilers for Parallel Computing II, MIT Press, 1991.

J.G.P. Barnes. An Overview of Ada. Software Practice and Ezperience, pages 851-887, 10 1980.

Paul A. Bercovitz and Nicholas J. Carriero. TupleScope: A Graphical Monitor and Debugger for
Linda-Based Parallel Programs. Research Report 782, Yale University Department of Computer
Science, April 1990.

R. Bjornson, N. Carriero, D. Gelernter, D. Kaminsky, T. Mattson, and A. Sherman. Experience
With Linda. Research Report 866, Yale University Department of Computer Science, 1991.

Nicholas J. Carriero and David H. Gelernter. Linda in Context. Communications of the ACM,
April 1989.

Nicholas Carriero and David Gelernter. How to Write Parallel Programs. The MIT Press, 1990.

Nicholas Carriero and David Gelernter. A Foundation for Advanced Compile-time Analysis of
Linda Programs. Technical report, Yale University Department of Computer Science, 1991.

Michael Factor. The Process Trellis Software Architecture for Parallel, Real-time Monitors. PhD
thesis, Yale University, New Haven, Connecticut, 1990. Department of Computer Science. In
progress.

Michael T. Heath and Jennifer A. Etheridge. Visualizing the Performance of Parallel Programs.
IEEE Software, September 1991.

Guy Steele Jr. Common Lisp: The Language. Digital Press, 1984.

James A. Kohl and Thomas L. Casavant. Use of PARADISE: A Meta-Tool for Visualizing
Parallel Systems. In Proceedings of the Fifth International Parallel Processing Symposium. IEEE
Computer Society Press, April 30 - May 2 1991.

12




[PHL+83] G.J. Popek, J.J. Horning, B.W. Lampson, J.G. Mitchell, and R.L. London. Notes on the Design
of Euclid. In Programming Languages: A Grand Tour. Computer Science Press, 1983.

[RT89a] Thomas Reps and Tim Teitelbaum. The Synthesizer Generator : a System for Constructing
Language-based Editors. Springer-Verlag, 1989.

[RT89b] Thomas Reps and Tim Teitelbaum. The Synthesizer Generator Reference Manual. Springer-
Verlag, 1989.

[SG91) Bruce Shei and Dennis Gannon. SIGMACS A Programmable Programming Environment. In
Proc. Third Workshop Languages and Compilers for Parallelism (Irvine, 1990). Languages and
Compilers for Parallel Computing II, MIT Press, 1991.

[SZBH86] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B. Hagmann. A Structural
View of the Cedar Programming Environment. ACM Transactions on Programming Languages
and Systems, pages 419-490, October 1986.

13






