The Finite Element Method on a
Data Parallel Architecture

Kapil Mathur and S. Lennart Johnsson

YALEU/DCS/TR-740
September 1989

To appear in the “Fifth International Symposium on
Numerical Method in Engineering”,
Luzanne, Sept. 11 -15, 1989.




The Finite Element Method on a
Data Parallel Architecture

Kapil K. Mathur and S. Lennart Johnsson®,
Thinking Machines Corporation,
245 First Street,
Cambridge, MA 02142

mathur@think.com, johnsson@think.com

Abstract

Two data parallel implementations of the finite element method are discussed us-
ing the Connection Machine® system, CM-2, as the model architecture. The first
implementation focuses attention on discretizations composed of brick elements which
allows for the exploitation of the lattice emulation capability of the model architec-
ture. The second implementation describes a data parallel algorithm for more general
discretizations comprising of different types of elements and arbitrary geometries. The
data parallel implementation for the generation of the local data structures (elemental
stiffness matrices) and for the solution of the resulting linear system using an iterative
solver is described in detail for the two representations. The two algorithms are com-
pared in terms of performance, storage requirements, and communication complexity.
Peak performances well in excess of 1.5 GFlops s~! have been measured for the evalu-
ation of the elemental stiffness matrices. The peak performance of the iterative solver
is 850 Mflops s 1.

1 Introduction

The finite element method is frequently used for solving boundary and initial value prob-
lems that arise in many scientific simulations. Data sets associated with such scientific and
engineering simulations are often very large. Consequently, there is a need for supercom-
puting. All current supercomputers are parallel architectures, and future supercomputers
are expected to have a large number of memory modules and processing units. Orders of
magnitude increase in performance can no longer be achieved by improvements to conven-
tional architectures. Massively parallel architectures, often referred to as data parallel offer
supercomputing performance. The peak performance is orders of magnitude greater than
what is expected from conventional control parallel supercomputer architectures which
usually offer a considerably lower degree of concurrency.

Almost all the existing general-purpose finite element programs have been developed
for sequential machines. Recently, several researchers have investigated the finite ele-
ment method in the context of parallel computations on multiprocessors. Carey et al.

1 Also affiliated with the Department of Computer Science, Yale University




[1986,1988], Farhat [1987], and Law [1986] discuss most of the general methods for paral-
lelizing the finite element method primarily with coarse-grained configurations with shared
or distributed memory. For data parallel architectures, it is necessary to re—evaluate the
choice of data structures and algorithms. Important issues are load balance and data
motion across the processors.

This article summarizes two data parallel implementations of the three dimensional fi-
nite element method on the Connection Machine system CM-2. The first implementation
describes a mapping strategy for meshes composed of brick elements with arbitrary inter-
polation order. This mapping strategy takes advantage of the lattice emulation capability
of the model data parallel architecture which allows for fast nearest neighbor communi-
cation. The second implementation describes a more general data representation which is
valid for meshes comprising of different types of elements and for domains with arbitrary
geometries. A sample application with more than 25,000 degrees of freedom has been sim-
ulated with both the implementations. Detailed performance measurements are reported
along with the convergence behavior of the iterative method.

2 The Data Parallel Programming Model

Algorithms for a data parallel programming environment should be designed based on the
structure and representation of the physical and computational domains. An essential
characteristic of data parallel algorithms is the choice of the elementary objects. These
units of data are subject to the same transformations concurrently. Different classes of
elementary objects are subject to different transformations, but may be operated upon
concurrently. An algorithm is expressed as a sequence of transformations of the state of
an elementary object, and interactions between elementary objects.

2.1 The Connection Machine Model CM-2
2.1.1 Architecture

This study uses the Connection Machine system as the model architecture. The Connec-
tion Machine system model CM-2 [Hillis, 1985, Technical summary, 1989], has a primary
storage expandable up to 2 Gbytes distributed evenly among 64K bit-serial processors.
There are 16 such processors to a processor chip. Two processor chips share an industry
standard floating-point unit. The processor chips are interconnected as a 12-dimensional
boolean cube. The topology of this network can efficiently emulate arbitrary lattices. For
arbitrary communication patterns, the Connection Machine system is equipped with a
general purpose communication hardware called the “router”, which selects the shortest
paths between the source and the destination of a message.




2.1.2 Programming languages

High-level programming languages currently available on the Connection Machine system
are *Lisp, C*, and CM-Fortran. They are parallel additions of Common Lisp, C++, and
Fortran—77, respectively. The most important extensions are the existence of a parallel
data type and operations that can be performed concurrently on the parallel variable.
An instance of the parallel variable is allocated across the entire configuration of the
Connection Machine. The elements of a parallel variable are operated upon concurrently
by a single instruction. It is also possible to operate concurrently on distinct subsets of
a parallel variable. Since no enumeration of the elements is required, one or several loop
levels disappear from the corresponding sequential code.

In a data parallel model each instance of an elementary object is assigned to a unique
processor. However, in simulations involving very large data sets, the number of elementary
objects may far exceed the number of physical processors, but the application may still
fit in the primary storage of the computer. The data parallel programming model on the
Connection Machine system supports the notion of virtual processors. Virtual processors
are distributed evenly among the physical processors. Virtual processors assigned to the
same physical processor time share it for execution, and are assigned distinct portions of
its memory. The number of virtual processors per physical processor is called the virtual
processor ratio for the configuration and is under the control of the application program.

In general, concurrent operations available on data parallel architectures are performed
by all active processors. The state of the processors may be changed by the use of con-
ditional or sub-selection mechanisms. Several sub—selection mechanisms are available in
the parallel extensions of the high level programming languages. Conditional statements
can be used to make the sub—selection based on variable values or on the addresses of the
processors.

38 Data parallel implementation of the Finite Element
Method

Important design issues for the data parallel implementation of the finite element method
are: parallel grid generation for transforming the physical domain to a discretized compu-
tational domain, data structures for representing this computational domain, generation
of the elemental stiffness matrices concurrently, and concurrent solution of the resulting
sparse linear system. For each of these issues, several factors need to be considered. Some
of the more important issues are storage requirements, communication complexity, par-
allel arithmetic complexity, uniformity of computations (load balance), and programming
complexity.




3.1 Data structure

On a data parallel architecture computations for all elementary objects are performed
concurrently. In the context of the finite element method, there are two possible choices
for the elementary objects:

e one processor representing a finite element, or

e one processor representing one nodal point per finite element, that is, nodal points
which are shared between elements are replicated on separate processors.

When a processor is assigned to a nodal point, the processor performs all computations
associated with that nodal point, both in the evaluation of the elemental stiffness matrices
and during the solution phase. In assembled form, some nodal points are shared by more
elements than others. Consequently, the computational load among the nodal points is
not uniform. By having a processor represent one nodal point per finite element (or an
unassembled nodal point), the computational effort required for all nodal points is identical.
The location of the nodal point in the computational domain (interior or on the boundary
of the mesh) and the finite element does not influence the computational effort. In this data
representation, the elemental stiffness matrix is distributed over the processors representing
the nodes of a finite element. The computation of the elemental stiffness matrix can be
organized such that no communication is required. For this representation, a suitable data
structure is a split lattice, that is, each surface representing a boundary between two brick
elements is duplicated. When the elementary object is chosen to be one finite element,
and the region consists of a mesh of elements. The mapping between the elements and a
lattice of processors is straightforward.

The Unassembled Nodal Point Mapping: An unassembled nodal point of the mesh
is mapped on to a processor of the data parallel architecture. Nodal points that are shared
between elements are replicated on separate processors. Only the information about the
geometry (the global coordinates) needs to be replicated on the processors representing
the same nodal point. Figure (1) shows this mapping for a two dimensional finite element
mesh with four bilinear elements labeled A, B, C, and D. The mesh has nine nodes labeled
one through nine. The 3 x 3 layout of nodes is mapped on to a 4 x 4 lattice of processors.
Nodal point labeled five is shared by all four elements and is consequently placed on four
separate processors. In this mapping scheme, each element has a subset of processors
working towards the generation of the elemental stiffness matrices and in the evaluation
of the sparse matrix—vector product during the solution phase. Moreover, if the elemental
stiffness matrices are not explicitly assembled into a global stiffness matrix, the storage
required to store these matrices is shared evenly by the subset of processors. Each processor
stores the rows of the elemental stiffness matrix corresponding to the unassembled nodal
point represented by the processor. This corresponds to a u X nu matrix per processor,
where u is the number of degrees of freedom per node and n is the number of nodes per

4




hlg Un sembled Nodal

Finite Element Mesh oint epresentat:on

Figure 1: Mapping the physical domain composed of brick/rectangular elements on to the
data parallel architecture. In the example shown above, the finite element mesh comprises
of four bilinear elements labeled A-D. The nodes are labeled one to nine. The processors
of the data parallel architecture are represented by dots.

element. This is especially advantageous for three dimensional discretizations because of
limited local storage per processor of the model data parallel architecture. When the
elemental stiffness matrices are distributed evenly over a subset of processors, higher order
elements can be used in the construction of the mesh.

The data parallel implementation of the finite element method for this mapping can be
divided into two distinct sections — the evaluation of the elemental stiffness matrices and
the solution of the resulting sparse linear system. For the mapping described here, the
evaluation of the elemental stiffness matrices requires no communication. The numerical
quadrature for each matrix element is performed sequentially. However, several matrix
elements can be computed in parallel. This is in addition to the concurrency already
present between different finite elements. Further details are available in Johnsson and
Mathur [1989]. The resulting sparse linear system has been solved by a conjugate gradi-
ent method with diagonal scaling. In the data parallel implementation of the conjugate
gradient method, the main computational and data communication effort is in the sparse
matrix—vector product of the form

{r} = {8} - [4]{=}, (1)
where the coefficient matrix [A] is not explicitly assembled but is stored as

(4] = 3 [49]. (2)

For the mapping scheme used in the implementation, this sparse matrix-vector product
involves:




1. Accumulation of the unknowns from the processors representing the unassembled
nodes. All processors in the subset of processors forming the element require the
unknowns from every other processor in this subset. This type of communication is
often termed as a segmented “all to all” broadcast [Johnsson and Ho, 1989] and can
be implemented very efficiently by the use of nearest neighbor communication when
the processors of the data parallel architecture are configured as a lattice. In addition
to the matrix containing the unassembled rows of the nodal point represented by the
processor, after a segmented all to all broadcast every processor also stores a vector
of length nu containing the accumulated unknown vector.

2. A local matrix-vector product [(u x nu) X (nux1)] is then performed by every proces-
sor. After this multiplication, every processor contains the unassembled contribution
of the nodal point to the product vector (u x 1).

3. Finally, the product vector is assembled by performing nearest neighbor communi-
cation among processors representing the same nodal point.

For the example two dimensional mesh shown in Figure (1) and in simulations involving
stress analysis, the three sections described above are:

1. For all elements (A-D) accumulation of the eight displacement components associ-
ated with each element.

2. Multiplication of the two rows of the unassembled stiffness with the accumulated
displacement vector.

3. Assembly over all processors representing replicated nodal points (nodes labeled 2,
4, 5, 6, and 8). '

One Element Per Processor Representation: The second implementation describes
a data parallel algorithm for more general discretizations comprising of different types
of elements and arbitrary geometries. The processors of the data parallel architecture
are configured with two views (or processor sets). The first set views the processors
of the data parallel architecture to represent a collection of finite elements. The local
data structures (elemental stiffness matrices) are evaluated in this processor set. For
discretizations composed of different types of elements, the SIMD nature of the model
architecture requires that the local storage requirements, parallel floating point arithmetic,
and communication complexity be based on the element in the set with the largest data
structure. For example, for a mesh composed of trilinear bricks and triquadratic bricks,
the allocated storage per processor and the time required to evaluate the elemental stiffness
matrices are all based on the requirements of the triquadratic elements. In this example,
processors which represent trilinear bricks will perform some redundant operations. The
second view of the data parallel architecture is that of a set of nodal points. The sparse

6




Set of Finite Elements

!

Router

!

Set of Nodal Points

Figure 2: The two views of the processors of the data parallel architecture used to map dis-
cretizations composed of different types of elements and having arbitrary geometries. The
box labeled “router” is the general purpose communication hardware on the model archi-
tecture. The arrows represent the direction of communication between the two processor
sets.

matrix—vector multiplication performed by the iterative solver requires communication
between the two processor sets. This communication is in general long range, in contrast to
the nearest neighbor communication in the first implementation. The interaction between
the two processor sets is shown in Figure (2).

As before, the implementation of the finite element method can be segmented into two
parts. The generation of the elemental stiffness matrices uses a data parallel algorithm
which is similar to the one used by the first implementation. The sparse matrix-vector
product required by the iterative method for the evaluation of the global residual is more
complex. First, the nodal values are accumulated from the processor set representing the
nodal points as local vectors in the processor set representing elements. A local matrix—
vector multiplication is then performed by each processor in this processor set. Finally, the
local vectors are then assembled into global nodal values which are stored in the processor
set representing nodal points. Clearly, communication between the two processor sets is
required. The communication pattern that is generated depends on the connectivity of the
elements in the mesh. In general, this communication pattern is long range and requires
the use of the “router”.

4 Application

To evaluate the performance of the data parallel implementations, several simulations
involving three dimensional stress fields were performed. Single precision floating point
arithmetic was used in this timing analysis. The finite element meshes were constructed




Time (milli-second)

4
1204 - CM-Time
o — Front End Time °
100 *
80
60— °
o o b
40 .
Virtual
204 S . .. Processor
b 4 8§ Ratio

Figure 3: The front—end and the CM time for the evaluation of the elemental stiffness
matrices as a function of the virtual processor ratio. All reported times are in milli-seconds
for single precision floating point operations.

using three dimensional Lagrange elements. For these simulations, u =3 and n = (p+1)3
where p is the interpolation order of the Lagrange elements. Figure (3) shows the CM time
and the front—end time for the generation of the elemental stiffness matrices for trilinear
brick elements as a function of the virtual processor ratio when the unassembled nodal
point data representation is used. A peak performance corresponding to 2.4 Gflops s™! is
obtained at a virtual processor ratio of eight with a CM utilization of over 96%. After a
virtual processor ratio of four, the difference between the front—end time and the CM time
is approximately a constant. Most of this difference is the time used to evaluate the shape
functions at the quadrature points in the local coordinate system. These functions are the
same for all processors and are therefore evaluated on the front end.

The performance of the conjugate gradient solver with a diagonal preconditioner is
shown in Figure (4) as a function of the virtual processor ratio when one processor rep-
resents an unassembled nodal point. The peak performance measured is approximately
850 Mflops s™! at a virtual processor ratio of eight where the CM utilization is approxi-
mately 95%. As before, as the virtual processor ratio increases, the front—-end overhead
reduces and consequently the CM utilization improves. significantly.

Finally, the convergence behavior of the conjugate gradient method with diagonal scal-
ing is presented. The geometry of the physical domain corresponds to a square plate ten
units long, one unit thick and ten units wide. One face in the length-width plane was fixed
and the other face has applied traction boundary conditions which corresponded to a uni-
form unit load. This domain was discretized by a mesh comprising of trilinear bricks. The
mesh had ten elements in the length dimension, one element in the thickness dimension




Time (milli-second)

4
12004 +_ OM-Time 2
o — Front End Time
1000 -
o o °
800
600 - *
400 .
Virtual
200+ __% . ++ Processor
b5 4 8 Ratio

Figure 4: The time per conjugate gradient iteration (with diagonal scaling) as a function
of the virtual processor ratio. All reported times are in milli-second and correspond to
single precision floating point operations. The finite element meshes used in this analysis
comprised of trilinear brick elements.

and 400 elements in the width dimension. Figure (6) shows the evolution of the magnitude
of the normalized global residual during the iteration process.

5 Conclusions

A data parallel implementation of the finite element method with two different mapping
schemes is described using the Connection Machine system, CM-2 as the model archi-
tecture. The first mapping between the processors of the data parallel architecture and
the logical units of data on which all the processors operate concurrently takes advantage
of nearest neighbor communication when the processors are configured as a lattice. This
mapping ensures uniform processor utilization and an efficient utilization of the storage.
The mapping described here works very well for meshes comprising of brick elements. A
more complex mapping is necessary for more meshes composed of different types of ele-
ments and for domains with arbitrary geometries. This mapping views the processors of
the data parallel architecture as two sets. Again, the processor utilization and the storage
requirements per processor are uniform. Communication between these two sets is required
for for the solution phase of the algorithm. Preliminary timing analysis show that a data
parallel architecture is extremely efficient exploiting the inherent parallelism in scientific
applications, such as the finite element method.




Log(Norma%}zed Residual)

-
- Conjugate Gradient Method
~=Conjugate Residual Method

_________ 3000, 4000. 5000. 6000 ration Number

-2 T,

I

_6..

._8 K

Figure 5: The evolution of the magnitude of the normalized global residual (log, base
10) during the conjugate gradient iteration process. The finite element mesh for this
simulation was composed of trilinear brick elements. The mesh had ten elements in the
length direction, one element in the thickness direction and 400 elements in the width
direction.

6 References

1. Carey, G. F. [1986], “Parallelism in Finite Element Modeling”, Communications in
Applied Numerical Methods, Vol. 2, 281-287.

2. Carey, G. F., Barragy, E., McLay R. and Sharma M. [1988], “Element-by—element
vector and Parallel Computations”, Communications in Applied Numerical Methods,
Vol. 4, 299-307.

3. Farhat C. and Wilson, E. [1987], “A New Finite Element Concurrent Computer
Program Architecture”, International Journal for Numerical Methods in Engineering
Vol. 24, 1771-1792.

4, Hillis, D. W. [1985], The Connection Machine, MIT Press, Cambridge, MA.

5. Johnsson, S. L. and Ho, C. T. [1989], “Spanning Graphs for Optimum Broadcasting
and Personalized Communication in Hypercubes”, IEEE Trans. Computers. Also

Technical Report YALEU/DCS/RR-610.

6. Johnsson, S. L. and Mathur, K. K. [1989], “Data Structures and Algorithms for
the Finite Element Method on a Data Parallel Supercomputer”, To be published

10




in International Journal for Numerical Methods in Engineering. Also, Thinking
Machines Corporation Technical Report CS 89-1.

. Law, K. H. [1986], “A Parallel Finite Element Solution Method”, Computers and
Structures, Vol. 23, No. 6, 845-858.

. Mathur, K. K. and Johnsson, S. L. [1989], “The Finite Element Method on a Data
Parallel Computing System”, To be published in International Journal of High—Speed
Computing. Also, Thinking Machines Corporation Technical Report CS 89-2.

. Connection Machine Model CM-2 Technical Summary, Thinking Machines Corpo-
ration, Version 5.1, May 1989.

11




