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In this paper we discuss the theoty, performancé and implications of
a class oquyntactic Pattern Recognition algorithms which are optiﬁal in a
well defined sense.

Aséumg that it is desired to transmit a message consisting bf a
coguonte ©f SymUils Jlilows fivwm @ fiuice alpuavel.  ouppuse Lurtner that
any such message will be a well formed sentence in a language generated by
a known formal grammar. The message is to be‘encoded ahd tranémittéd‘by
sending a sequence of complex signals, one signal for each symbol in the
message, through a noisy channel. | |

The corrupged message i; éecoded in two stages. First; the individual
symbols are identified byva maximﬁm a posteriori probability decisioh rule.
The resulting string of symbols will not, in general, be a grammatically
cofrect sentence. . Thus, in stage two, a parser which finds that éentence
in the language which maximizes the product of the individual symb§1
probabilities conditioned on the signals received at the output. of the

channel is used. The decéding’thus-obtained is the maximum likelihood

estimator of the transmitted message.




Vitefbi [1] treats the above described problem és one of estimating
the state sequence of a finite Markov process. The deéired estimator is
obtained by a &ynamic programming technique. Recently, Fungvand Fﬁ [2,3]
have described an algorithm for the case of messages whiéh are sentences
iﬁ aAconteXt free 1anguage. Their procedure is based on an algorithm
given by Younger [4]. We have derived efficient recursive procedures
which solve the prqblem'fér fegular, one-counter and context free languages.
The space and time complexiﬁy of these algorithms in terms of n, the length

of the input, is summarized in the table below.

S,P) ' Space Time

. i G(VN’VT’
Regular IVNIn |Pln
One—-countor !VN n2 !P!:z
Context free 0 (n2) lPln3

,In,addition to the analysis, we have tested these algorithms for
éeveral f&rmal grammars using both real and simulated channels. Because
.of the effieciency of these aigorithms the tests were conducted on several
. thousands of séntences. Some of the test grammars had ovér'300 production
rules. .The tests were accomplished withoﬁt special programming considerations.
In the course of ourtexperiments with the algorithms, we discovered
an empirical measure of the information content of formal languages. By
making the signal to noise ratio of the channel very low, we can reduce the
performance of the single symbol decoder to the extent that it makes a

random choice for each symbol independent of the input to the channel.




Although the symbol accuracy of the MAP parser also degrades with decreasing

SNR, its limiting value is greater than that of the single symbol decoder

alone. The difference between the two limiting values is a measure of the

information encoded in the grammar.
For a given grammar G (VN,VT,S,P) and the language, L(Gf, it generates

we define

ll
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Then we define the entropy H(L(G)) of the language L(G) by:

BL©) = - 522l e, (Lo
n

HaJhavé observed that for two grammars Gl and 62, h(L(Gl)) and H(L(Gz))
are in the same order as the differences between the limiting values for
théir single symbol decoding and MAP parsing accuracies;

| Forney [5] has listed several important problems‘qf the type described
here and has suggested that they be solved by the Viterbi Algorithm.
Because this algorithm h;s an exponential runniﬁg time‘it is intractible
for long inputs. Forney further suggests that secondary infofmation be

used to guide a heuristic search. Such backtracking procedures have been

used by Neely and White [6], Walker [7] and Levinson [8] in speech recognition‘

algorithms. -

We have observed that by gpplying the appropriate‘one of our algorithms
to a variety of pattern recognition problems both the high cost of the
Viterbi algorithm énd the obvious diéadvantages of sub-optimal bactracking

procedures can be avoided and the optimal solution still obtained.
\
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In algebraic simplification of expressions, code generation and
other areas one is often given a finite set of rewriting rules which
are to be applied to an expression until no further rules apply. For

example,

Given well-formed arithmetic expressions composed of parentheses

and variables with operators of addition (+) and multiplication

(x), apply
(@ +B)xy » (@ X y) + (B8 x v) | )
* “7luntil no further applications are possible.

We assume that the Greek letters can match any well formed subexpreésion
or variable, and that "apply" has its usual meaning in symbolic
manipulation: when ever the left side of the rule matcheé a sub-
expression, the subexpression is to be replaced by the right side of

the rule with the Greek letters consistently instantiated.

The key phrase in the forgoing problem statement is "until no further

‘applications are possible." This raises a difficult question:

How do we prove that a particular set of rules halts (i.e. no further
applications are possible) for all expressions and all possible

sequences of rule applications?

For rule (1) the problem was first answered by Iturriaga [1] and
later a simpler proof was presented by Manna and Ness [2]. 1In this

latter paper the standard proof method was used which we call the

well ordering method. 1In particular, given a set of rules, one seeks a

measure M on the expressions such that



M(... (@ + B) v ...) > M(... (a x y) + (B‘X Y)eeo)e

The task of finding a measure M is not always as simple as if might
appear -- especially when there are many rules that interact in non-
trivial ways. 'In the present case, if-the "local measure' of y has a
large value, then the measure of the entire expression after the rule has
béeﬁ applied may increase rather than decrease, since there are now two

copies of y.'

The main result of this papef is to present a new method, the

value preserving method, for proving that a set of rules halts. The

method is broadly applicable and as the name implies it takes advantage
of the fact that rules for symbolic expression manipulation are often
intended to be value preserving. Specifically, we prove a theorem

stating that two properties of rule sets, value preserving and monotonicity

are sufficient to imply that the rule set halts for all expressions and
all sequences of rule applications. The exact statement of the general
form of the theorem, as well as the proof itself require considerable
technical development. For ghe pu£poses of this abstract we.by—pass_the
itedious details and concentrate on examples, the generalization of which,

we believe, will be clear.

Before proceeding, we note that we are presenting general sufficient
conditions for a rule set to halt. The impossibility of finding necessary

and sufficient conditions is implied by

Theorem: The problem of determining if a finite set of rules halts is

undecidable, even if the set contains as few as 3 rules.

Thus, sufficient conditions are all that can be hoped for.



Turning now to a proof using the value preserving method for the

distributive law (1), we assume that the expressions are given as trees
(variables at the leaves, operators at non-leaf vertices). The distri-

butive law is then written

-

where a, B and Y match any subtree.

Let £ be any expression in this tree form. Replace each leaf in E
by the integer constant 2 and let the resulting tree be E'. Evaluate E'
in the obvious way and let thé resulting number be V. We note that the
distributive law preserves this value, i.e. if E;+liis the rgsult\oi

applying (2) to E; then the values of each expression are equal to V.

Assume, for the purpose of contradiction, that (2) does not halt

for E'. That is, there exists a sequence

t o Ft t '
E EO, El, Ez’ ¢ e

L]
~

such that E£+1 follows from.Ei By application of>(2). If we denote by

.-

“ E;“ the number of vertices of E!, then as 1 m’,,Eiu > %, i.e. the

size of each expression increases without bound. This implies that for

some Eﬂ there is a root-to-leaf path of length V, i.e.




where Gj is either + or x. But by the monotonic properties of + and'x,
the subtree rooted at 6i+1 has value greater than the subtree rooted
at @i (L < i < V) and thus the value of Eé.must be greater thaﬁ V.

Contradiction! The rules must halt. . O
The rules rely on the facts

I. Both + and x are monotone in the sense that
a + b > max(a,b) -
a x b > max(a,b)

for all integers a,b = 2,

II. - 1If Ei+l follows from E; by application of the distributive

iaw} then
] 2l E

and their values are equal.



Our thedrem proves the substance of the forgoing argument for
generalized statements of I and II. All that would be required to prove
halting for the distributive law given the theorem would be to find an
interpretation in which I and IT were satigfied. Informally, the general

monotone property can be stated:

An operator is monotone if its value when applied to operends
whose values are members of a subset (not necessarily proper) of
its legal arguments yields a result which is (1) in the subset and

(2) gfeater than the value of any of the operands.

Thus, for the present case the subset is the subset of integers {2,3,4,...}

Notice also that the ordering "Ei]’ < } ‘ is opposite of the

\]
Ll
that required by the well ordering method of proof. Thus, the value
preserving method in one sense complements the well ordering method in
- that if the size increases as rules are applied, the value preserving

method can be used, but if the size decreases then a well ordering proof

is immediate.

As a second example of the value preserving method, consider the

problem of showing that for

arithmetic expressions formed from variables, the binary operators

+ and x, and the monodic differential operator D, the rules

D(@+B8) > Da+ DB . (3a)

D(@x 8) ~  (8xDa) + (a xDB) (3b)

halt.




Following our earlier strategy we express these rules in tree form

as

For the interpretation of expression L we select the usual
interpretation for +, x and D and we replace the leaves by the functional

. 2 . . -
quantity 2e X, The value of the expression E' so interpreted is ‘its

value when x=0.

For monotonicity it is easy to see that
I. (&) Df > £
() f+g>f and g

(c) £fxg>fand g
‘ n

: ) 2 bix .
for all f, g of the form i=1 a; e where

a,>2 and b.>2,
1 . 1




Property 1II is as before. Indeed, since the interpretation just given

holds for the distributive law, it follows that rules (1), (3a) and (3b)

taken together must always halt!

In summary we present necessary conditions for a set of rewriting
rules to halt for all expressions and all possible sequences.of rule
applications. The method depends én finding a interpretation in which
fhe value of the e#pression is preserved under rule application, and in

which the operators are monotonic (i.e. the value of an expression is

greater than the value of its operands).

- D
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