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Abstract

“Attention” — the sequential selection of portions of a large computation to be performed
now, later, or not at all — is important in the study of neural networks and in other areas
of computing as well. A mechanism for controlling attention which may be applied to any
network governed by a minimization principle is proposed here. Experiments with Hopfield
and Tank’s network for the Traveling Salesman Problem show that one may partially serialize
the computation and suffer only a minor degradation of solution quality. As a result, a new
kind of interaction between neural networks is obtained in which one network controls the
second network’s sequencing. The new, controlling network is also governed by a minimization
principle. One might expect considerable savings in the cost of computation to be achieved by
such an attention control mechanism, but no savings is demonstrated in the Traveling Salesman
network. Finally, the method is related to standard optimization methods such as Newton’s
method and the conjugate gradient method, and some advantages of “windowed” attention are
discussed.

1 Introduction

Neural networks are generally thought of as a purely and radically parallel approach to computation,
but on occasion moderation may be called for in parallel computation. For example it may be
necessary to spend a long time serially scanning input to and output from a network on a silicon
chip. To balance costs between input, output and computation the optimal network would take a
similarly long time to compute its output while using the chip in a parallel manner. In other words,
the optimal network would have an intermediate degree of parallelism. '

We are led to consider the partial serialization of neural networks. An advantage of serialization
is that one can often use previous results to eliminate the need for computations which would be
unavoidable in a maximally parallel scheme; the combination of partial serialization and opportunism
in a neural network may be referred to as “attention”. For other discussions of attention in neural
networks see ([1],[2]). We will propose a mechanism for attention applicable to a large class of neural
networks: the class of networks governed by an objective function or energy function which steadily
decreases as the network operates. An example is the Traveling Salesman network of Hopfield and
Tank [3].

In the course of minimizing an objective function which depends on all the neuron values, many
neurons may not significantly participate in the network dynamics for long periods of time. For
example, in the traveling salesman network each neuron corresponds to a hypothesized assignment
of a city to a tour position, and many such assignments would introduce such large distances into the
total tour length that they are completely incompatible with the rest of the current configuration.
These neurons will turn off and stay off until the network configuration changes a great deal. Such
a slowly varying neuron could be left out of a network simulation for a while, saving on computing
costs. Simulating the slow neuron would simply require that its value be stored for future use. Even



this storage requirement can be eliminated if slow neurons have predictable values such as “all off”;
then we have a “virtual neuron” which is created when needed and destroyed when no longer needed.

We shall be concerned with controlling the attentional transition between slow and fast neurons,
rather than with the equally important circuits or software needed to perform the transition in a
simulator. The result is a pair of dynamical systems similar to neural networks, one controlling the
sequencing of the other. The mechanism we will propose could equally be applied to neuron-like
learning dynamics for synapses such as Lapedes’s master/slave network [4] .

The particular form of the TSP network we use is (3]

Vab = g(tas) Uap = —TabdE/dVap (1)

where Vy; is the output of the neuron indexed by a city a and a day (tour position) b; each Vg
represents a hypothesised assignment of a city to a day. ugp is a time-integrated input to the same
neuron. Also
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Here D,, is the distance between cities a and ¢ which are placed randomly on the unit square, so
that the first term of E measures the tour length to be minimized. The last term insures that each
neuron output lies between 0 and 1, and it uses a sigmoidal gain function g(u) whose slope at the
origin is the gain go. The terms with coefficient B insure a one-to-one match between cities and
days in the tour and the term with coefficient C discourages intermediate values of Vip.

This network has n cities, n? neurons and n® interconnections in an efficient implementation.
Ordinarily the rate parameters rqp are all equal and constant in time and may be set to 1; we will
selectively disable a neuron by diminishing or zeroing its ras (thus the neuron moves even more
slowly than it would for rqp = 1) so the rqp become unequal and dynamic.

2 Theory

If

F
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describes the neural network dynamics of N neurons, the energy function E decreases even if r; is
a function ¢ and of time:
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assuming that the gain function g is monotonically increasing and that r; > 0. We would like to
control r; by a similar dynamical system
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where the new objective function Ejocus(r, V) controls the “focus of attention” and is yet to be
determined. r; will be restricted to (0,1) by g as is V;, and p serves as a relative rate parameter for
4; and g;. One problem with (3) is evident already: r; can become zero, and the closer to zero it




gets the longer it will take to increase again if needed. Truly modeling a disabled neuron v; would
require r; = 0. One cannot have

. 9E
g =—p ar; (5)

for cost reasons: a disabled neuron V; would be about as expensive to simulate as any neuron in the
usual TSP network because r; and g; would need to be simulated at full speed. A resolution to this
problem using “windowed” attention is suggested later.

In the meantime we will use equation 4 and interpret r; as something like a time-averaged
update rate in a discrete ordinary differential equation (ODE) solver. If the solver has independent
adaptive time step sizes for the different neurons, it can control the rate at which different neurons
are updated. Under this interpretation, small r; implies less computational cost. But contrary to
this interpretation, r; also influences the direction of movement in the energy landscape.

The benefit of a large r; (r; = 1) is that the system loses energy quickly. This suggests minimizing
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The cost of a large r; depends on the implementation of the attention mechanism, of which there
may be many. If a out of n2 neurons are allowed to be fully attended to (r; = 1) at one time, a
simplified model cost is

A
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More accurate cost expressions will also be considered, but this one was selected for the experiments.
To confine r; to (0,1) and discourage intermediate values of r;, we also use

Ef potential = — Z/ 5" (z)dz + ¢ Z rZ. (8)

Finally we propose
Ef (r; V) = Ef.beneﬁt (7'; V) + Ef,cost (7') + Ef,potential(r) (9)

which has the form of a neural network energy function. If V = 0, which is not usually the case,
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Costs

A conservative way to measure the cost of simulating equations 1 and 2 is to estimate the number
of updates required by a first-order ODE solver (the forward Euler method) with different adaptive
time steps for different neurons. In fact, direct implementation as an analog op-amp circuit (as in
[3]) appears to be similar to a first-order ODE solver with fixed time step. For adaptive time step
At;(t),

Cost = total number of updates, summed over time and space
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Let r; control the relative update frequencies
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and let the absolute update frequency or time step At be determined by the accuracy criterion that
each neuron’s error per update step (which is second order for a first-order method) be small with
respect to the distance from V; to 0 and to 1:
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Two special cases of interest are r; = 1 (no attention control) and r; « ]V,I /Vi(1 —V;) (minimal
cost).

Rather than use (11) directly, simulations were performed using the simpler dynamical system
(9) and the cost (11) was monitored during the run. Other cost metrics modeling different imple-
mentations could be monitored instead. For example, the accuracy criterion could be relaxed so
that ODE solution errors can be large as long as they don’t affect dE/dt much; after all, we care
about the final low-energy configuration and not the trajectory to it. One kind of cost that should
be modeled is communication cost. Just counting updates as in equation 10 assumes the equivalent
of a shared memory for neuron values.

Comparison with Newton’s Method and the Conjugate Gradient Method

There are similarities between the attention control dynamics and well-established optimization
methods such as Newton’s method and the conjugate gradient method which suggest that large
improvements in the effectiveness of the attention scheme are possible. One may express the attention
control dynamics (slightly modified) as
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Newton’s method makes a specific recommendation for the metric r;;:
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In this method, the step size and direction AV; depends on the first and second derivatives of the
objective function E. Done incautiously, this procedure could be very expensive since there are
O(N?) matrix elements instead of O(N) rate parameters. The conjugate gradient method uses only
O(N) storage to find successive directions c;(t), ci(¢ + At), ... which are orthogonal in the metric
D;;:

oE

AV; = —(At)c; Ac; = ac; + bg{,: (14)



where a and b must be chosen carefully [5] in order for this simple update scheme to successfully ex-
tract and use second derivative (D;;) information. The slow neuron attention mechanism apparently
fails to use this information, but it attempts to do more than optimize E: it also tries to disable
many neurons to save the cost of simulating them. To extend the conjugate gradient method to an
attention mechanism, then, it would be necessary to modify the coordinate-independent dynamics
of equation 14 by introducing a special coordinate system (one coordinate per neuron, which we
have been using anyway) and to alter the successive directions so that each direction vector ¢ has
as few nonzero components c; as possible.

The unalloyed conjugate gradient method is optimial in some respects [6] among methods which
do not take into account the structure of the second derivative matrix D;;, which is closely related to
the neural connection matrix. These matrices have a good deal of useful structure in the TSP net-
work, however, and the structure can be used in selecting the next direction ¢; or the corresponding
parameters r; in the attention control scheme. This leads us to the topic of windowed attention.

Windowed Attention

As explained earlier, N rate parameters r; would be too expensive to compute dynamically if they
did not “slow down” when the corresponding neurons slow down; i.e. r; = r;0 Ey /8r;. This precludes
r; = 0 and therefore precludes modeling the switching among simulated neurons at the finest time
scales. But if r; were determined by many fewer parameters wo describing a “window” of attention,

so that r; = r;(wi,. .. Wa,...), the w,’s could be simulated at full speed:
FE! AE', ar;
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Here EY, differs from E; by replacing >, [T g (2)dz with 35, [“* §7*(z)dz. This insures that
the gain functions § are only required for the relatively few quantities w, so that the neural network
for r; is greatly reduced in size and cost. For matching problems such as TSP or inexact graph
matching [7], a natural kind of window parameterization is

rap = rit) rl(,z) so that we = rl‘ or 2 (16)

which uses the structure of the connection matrix. Other, even more succinct parameterizations of
rq» may be worth considering as well. Equation 16 has the advantage that the cost constraint (7) is
factored:
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and one may distinguish three kinds of attention:

R(M « R(2) . afew days are the focus of attention;
they are being matched to many cities.
R(1) > R(@) . 4 few cities are the focus of attention.
R(1) ~ R() . attention is restricted in both days and cities.

The choice among these alternatives is made automatically, by the dynamical system of equations
(9, 15, 186).

3 Experimental Methods and Results

Our principal result is qualitative: for the 20-city TSP network of equations 2, 2, and 4 about 80
of the 400 neurons need to be attended to at a time. Also, the resulting tours are as good as those
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Figure 1: Thrashing can be eliminated by use of p. Plotted: trajectories (Vas(t), ras(t)) for a = 0, all
b and t. However, only fast-moving neurons are plotted: only those whose speed in the (r,v) plane
exceeds a threshold. (a): Thrashing, p = 1; (b): not thrashing, p = .5.

obtained without an attention mechanism. For a 10-city network without the TSP data term (A =0
in equation 2), a toy network which attains minimal energy at any permuatation matrix, the figure
drops to 10 or less out of 100. We do not have scaling results to determine whether 80 is, for example,
4n or n®/2 or n?/5 for n = 20.

The number of neurons which must be in the focus of attention was measured as

N
P= ZT,‘ (17)

i=1

which is correct if each r;(t) = 0 or 1. As discussed earlier, restriction to r;(t) = 0 or 1 would be
preferable and may be possible with windowed attention, using thresholding on the r’s if necessary
to insure that they are O or 1.

In order to measure P, the free coefficients in the dynamical systems for V; and r; were adjusted
manually to avoid various standard problems. For E(V'), the tours had to be syntactically correct (for
most random initial conditions) and as short as possible. These conditions involve the coefficients A
and B in equation 2. The relative rate p was reduced just enough to control thrashing: a condition
where most computational effort is spent updating r’s rather than neural values, as in figure 1. It is
a nontrivial experimental observation that p controls thrashing so well.

One may indefinitely depress the value of P by decreasing the coefficient a, but below a = 80
(experiments were done with a = 400, 200, 120, 80, 40, and 20) various difficulties arise. The r;’s are
considered to be time averages of binary-valued r parameters at a finer time scale; by excessive time
averaging one can lose all information as to which neurons are attended to and when. To prevent
such long time averaging we want several r’s to average out to nearly 1. The coefficient C of ry’s self-
interaction is increased until this condition is met except in the early part of the network evolution;
further work will be needed to satisfy the condition for all times. If the r; ~ 1 condition is not
imposed, demanding smaller P = )" r; eventually just scales each r; down by the same factor and
no new transition information is obtained despite the very small values of P (very large serialization)
achieved.
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Figure 2: Traces of fast-moving neurons. Plotted: (¢,Vas(t)) for all a and b. (a): TSP network
without attention control. (b): TSP network with attention control, for p = .2 which produces
longer tours than those quoted in the text. (c): Permutation network without attention control.
(d): Permutation network with attention control.

One may interpret the limitation on P simply: complete serialization of the TSP network is
possible, but if thrashing is prohibited then equations 4 and 9 are only capable of controlling partial
serialization. The problems with r; scaling and with thrashing are what currently limit the size of
the focus of attention to 80 or more neurons at a time.

The coefficients used were:

TSP Network Permutation Network
A=.07 B=.1 C=.04 ¢gop=200 A=0 B=.1 C=.2 ¢gp=250
A=50 B=3 C=5 d=10 A=20 B=6 C=5 G =10
n=20 p=.5 a=280 n=10 p=.1 a=10

Superposed traces of V(t) are shown in figure 2 for the network with and without attention.
Even in this figure some serialization may be observed, though most of the serialization has to do
with V; a2 0 neurons which are assigned low values of r;, as in figure 1.

Tour length was 4.13 % .199 for four runs of the TSP network without attention (where different
runs used different random positions for the 20 cities in the unit square), and 4.28 £ .178 for the
same four TSP problems with the attention mechanism as described. The four runs were selected
from a set of nine runs of which the other 5 were rejected because the TSP network without attention
produced invalid tours. The attention network’s tour was equally valid but slightly longer in each
of the four cases. Thus there is little degradation of tour quality under the attention mechanism.

More sophisticed measures of cost than P are unaffected or worsened by the attention mechanism -
of equations (2, 3, 4, and 9). For equation 11 and its two specializations, the results are



I Experiment H controlled | no control | minimal costJ

TSP network - attention 481 + 64.5 | 369 £ 22.1 | 89.9 & 5.86

TSP network - no attention 240 + 26.4 | 240 + 26.4 86.9 £ 8.09

Permutation network - attention 51.2 + 6.23 | 146 4 23.6 | 23.6 £ 1.46

Permutation network - no attention || 81.3 + 6.93 | 81.3 + 6.93 | 23.9 &+ 2.06

We conjecture that minimizing such second-derivative cost metrics will require a dynamical
system using 32E/3V;8V; information, such as the conjugate gradient method.

4 Conclusions

A dynamical system was proposed for controlling attention in neural networks governed by energy
function minimization. For the 20-city Traveling Salesman network of Hopfield and Tank, 80 or more
of the 400 neurons must be attended to at once. The quality of solution was not significantly degraded
by adding the attention mechanism. Estimated costs of simulating the network were increased,
despite success in serializing it. Similar dynamical systems based on the conjugate gradient method
were suggested as the solution to this problem. Difficulties in controlling the focus of attention at
the finest time scale also suggest modifying the scheme so that the focus of attention is specified by
relatively few parameters.
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