DYNAMIC MONOTONE PRIORITIES ON PLANAR SETS
(EXTENDED ABSTRACT)

Michael J. Fischer and Michael S. Paterson

YALEU/DCS/TR-415
July, 1985

SECURITY GLASSIFICATION OF THIS PAGE (When Dau‘Entend)‘

. READ INSTRUCTIONS
REPORT DOCUMENTAT'ON PAGE BEFORE COMPLETING FORM

7. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

415
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED

DYNAMIC MONOTONE PRIORITIES ON PLANAR SETS Technical Report {

(Extended Abstract) 6. PERFORMING O3G. REFORT NUMBER :
T AUTHOR(S) 8 CONTRACT OR GRANT NUWBER(s)

M8 eni 82ORE118%5KT D 2 on Me
Science and Engineering

Research Council
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Department of Computer Science/ Yale University
Dunham Lab./ 10 Hillhouse Avenue
New Haven, Connecticut 06520

Michael J. Fischer and Michael S. Paterson

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research July, 1985

800 N. Quincy 13. NUMBER OF PAGES
Arlington, VA 22217 ATTN: R.B. Grafton 7

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distributed unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
data structure

priority queue

maximum-finding

jump assembly

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

A monotonic priority set is a new data structure which supports maximum-finding
and deletions over a set of weighted points in the plane. Global updates to the
weights can also be made, incrementing the weights of all points above a given
threshold in one of the coordinates. The weights are assumed to be always mono-
tonic in both coordinates. An efficient implementation of this structure is pre-
sented and two main applications are described. The first is to the problem of
optimal assembly of code for computers with two kinds of jump instruction: long
and short. The task in the second application is the impiementation of a queuing
discipline based on the ranks with respect to two different criteria.

DD ‘ﬁgsﬁn 1473 EDITION OF 1 NOV 65 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

Dynamic Monotone Priorities on Planar Sets'
(EXTENDED ABSTRACT)

Michael J. Fischer

Yale University
New Haven, Connecticut

Abstract

A monotonic priority set is a new data structure
which supports maximum-finding and deletions
over a set of weighted points in the plane. Global
updates to the weights can also be made, incre-
menting the weights of all points above a given
threshold in one of the coordinates. The weights
are assumed to be always monotonic in both co-
ordinates.

An efficient implementation of this structure
is presented and two main applications are de-
scribed. The first is to the problem of optimal
assembly of code for computers with two kinds of
jump instruction: long and short. The task in
the second application is the implementation of a
queuing discipline based on the ranks with respect
to two different criteria.

1 Monotonic Priority Sets

Let P be a multiset of points p = (z,y) in the
plane. P is partially ordered by the product or-
dering defined by (7o,30) < (z1,31) iff 20 < 21
and yo < y;. Each point p has an associated
weight, w(p). This real-valued weight function w
is monotonic in the sense that if p; < py then
w(p1) < w(ps). We define the following opera-

YThis work was supported in part by the Office of Naval
Research under Contract Number N00014-82-K-0154
and by a Senior Fellowship from the Science and En-
gineering Research Council.

Michael S. Paterson

University of Warwick
Coventry, England

tions on P.

e FIND_MAX returns a point in P of maximum
weight.

e DELETE(p) removes p from P.

® V_UPDATE(yo,a) adds a to the weight of each
point (z,y) with y > yo.

e H_UPDATE(zo, a) adds a to the weight of each
point (z,y) with z > zo.

We assume that the updates preserve the mono-
tonicity of w. (This is assured if every a is
non-negative.) A data structure that supports
these operations is called a monotonic priority
set. In the next section, we describe an im-
plementation of a monotonic priority set on n
points in which the total cost for m operations
is O((n+ m)log(n+ m)). The remaining sections
discuss applications of this data structure and a
complementary NP-completeness result.

2 Efficient Implementation of
Monotonic Priority Sets

A naive implementation of monotonic priority sets
simply keeps a list of all points not yet deleted
along with their current weights. Each operation
is performed with an entire scan of the list.

A first idea for gaining efficiency is to associate
the points with the leaves of a balanced binary
tree and to store at each leaf the weight of the

corresponding point and at each internal node the
maximum weight from its subtree. This permits
FIND_MAX and DELETE to be performed in time
O(logn). Each H_UPDATE and V_UPDATE how-
ever might affect the weights of O(n) leaves and
hence require that much time when done in a
straightforward way.

One way to update groups of leaves at once is
to place an offset value 1); at internal node 7 to be
regarded as an increment to all weights in subtree
1. Thus, the current weight at any node is its
initial weight plus the sum of the offsets on the
path to the root. If the leaves were sorted by
their z-coordinates, then an H_UPDATE could be
effected by altering offsets on at most log n nodes.
Similarly, V_UPDATEs would be easy if the leaves
were sorted by their y-coordinates.

For a pair of points (z9,y0) and (z;,y1) incom-
parable in the product ordering, z¢ < z; iff yo >
y1. Any independent (i.e. pairwise incomparable)
set of points can therefore be ordered (from left to
right) so that the z-coordinates are non-decreasing
and the y-coordinates are non-increasing, permit-
ting both H_UPDATE and V_UPDATE operations
to be performed efficiently as described above.

We choose for our independent set I a max-
imal independent set of (undeleted) points that
are maximal in the product ordering. Since P is a
multiset, I may not be unique, so we specify fur-
ther that among the possibly several copies of the
point (z,y), we choose one of largest weight for
inclusion in I. By the monotonicity condition, I
contains some point with maximum weight among
all of the undeleted points in P. Thus, FIND_MAX
and the two updates can all be performed on this
structure in time O (logn).

However following a DELETE of some element
from the set I, new elements may need to be
brought into I to restore the maximality condi-
tion. This leaves us with two problems: (1) find-
ing which elements to insert into I; (2) inserting
them with their current weights.

Suppose a maximal point is deleted, and let
(zr,yr) and (zg,yr) be its left and right neigh-
bors in I, respectively. We introduce for con-
venience virtual end elements for I, p_o =
(—o0,+00) and pye = (+00,—00), so that these

neighbors are always defined. Any new point
(z,y) to be added to I satisfies 21, < z < zp and
yrL > y > yg. To assist in finding all such points,
we will have initially ordered the whole of P in
lexicographically increasing order, first on z, then
on y, and finally on the initial weights. Starting at
(zr,yR), we search to the left in the lexicographic
ordering for the first undeleted point (z;,¥;) with
y1 > yg. Starting at (zj,y;), we search again to
the left for the first point (z2,y2) with y2 > u;.
We continue in this way until we reach the point
(zL,yL). The points (z1,¥1), (z2,¥2), - .. obtained
are the new maximal points to insert into I. A
data structure consisting of a balanced binary tree
with the leaves so ordered and with the maximum
y coordinate for each subtree stored at the cor-
responding internal node supports this search for
each successive point efficiently.! Each new point
is found in time O (logn), and deletion of any ele-
ment from this set can be done in this time also.
The set I is initialized by performing the search
with (21,YL) = P-eo and (ZR,YR) = Ptco-

To calculate the current weight for each new
maximal element, we use two additional trees Tx
and Ty to record the H_UPDATEs and V_UPDATEs
respectively. The leaves of Ty are the pairs
(zi, a;) corresponding to each H_UPDATE, ordered
by the z;’s. Internal nodes store the sum of the
a-values of the leaves in their subtrees. Simi-
larly, Ty records the pairs (y;,b;) corresponding
to V_UPDATEs. The current weight w of a point
p = (u,v) with initial weight wp is given by

w = wo + Z a; + Z b;.

i:z;<u Jiy;<v

Each sum can be computed in time proportional
to the height of the tree. Using balanced tree tech-
niques, the height is O (logm) after m updates,
and the time to maintain the trees after each up-
date is also O (logm).

'Knuth attributes the idea for such a data structure to
McCreight {1].

3 Optimal Assembly of Jumps

3.1 Short Jump to Long Jump Con-
version

Monotonic priority sets have application to a
problem of assembling code for computers with
two sizes of jump instructions. Short jumps ex-
ecute quickly, but the distance they can jump,
their span, is limited, for example, to about 128
bytes in either direction. Long jumps on the other
hand are to an arbitrary destination, but are more
costly, both in execution time and program size,
since a long jump instruction needs more address
bytes. Choosing which kind of jump instruction
to use will normally be done by the assembler.
The problem is a nontrivial one since making a
given jump long increases the span of any jump
traversing it. It is possible to construct chains
of overlapping jump instructions such that each
jump that is made long causes exactly one other
to exceed the maximum span for a short jump, so
the latter too must be made long.

It is easy to see that a minimal size program
can be obtained by starting with all jumps short
and traversing the program repeatedly, convert-
ing short jumps to long on each pass as necessary.
A straightforward implementation of this strat-
egy however is quite inefficient since up to O (n)
passes may be required for a program containing
n jumps.

A more conservative approach is to check just
those short jumps within a distance S of each new
conversion, where S is the maximum span of a
short jump, for these are the only new candidates
for conversion. This approach leads to an 0 (nS)
time algorithm.

Using a monotonic priority set, we obtain an
algorithm for optimal assembly of jumps that
runs in time O(nlogn), independent of S. A
jump from z to y is represented by the point
(= min(z, y), max(z, y)) with initial weight |z —y]|.
FIND_MAX returns the remaining short jump of
largest span. It will need conversion to a long
jump if any jump does. Assuming it does, we
then delete it from the priority set and update
the priorities of the remaining elements by execut-

ing V_UPDATE(z,b) and H_UPDATE(—z,b). Here
we assume that the conversion requires the inser-
tion of b extra bytes at position z. (Typically,
z = z.) The two given UPDATE’s actually in-
crement those jumps which span z by 2b and all
other jumps by b, preserving the priorities as re-
quired. If we wish the weights to equal the cur-
rent jump spans, then a further operation of say
V_UPDATE(—o0, —b) could be used to restore the
proper weights. The time bounds follow since in
this case m = O (n).

3.2 Multilevel Jumps

In a logical extension to the above problem we may
have further levels of jumps, for example short,
long, and huge. This problem is handled using
two monotonic priority sets, one to deal with con-
versions from short to long and the other for con-
versions from long to huge. All jumps start as
members of both sets. A jump is deleted from the
first set when it is promoted from short to long,
and it is deleted from the second set when it is
made huge, but no jump is deleted from the sec-
ond set until after it has been deleted from the
first. In slightly more detail, at each stage an at-
tempt is made to convert a short jump to long,
and only if that fails is an attempt made to con-
vert a long jump to huge. All updates are applied
to both sets. Any finite number of jump levels
can be handled in the same way, as can the case of

short and long jumps in which the maximum span

of a short jump depends on its direction, whether
forward or backward in memory. A continuous
analogue, in which a jump of distance d has size
logd, appears to be much more difficult, and we
leave that problem open.

3.3 NP-Completeness for Shared Jumps

A reduction of program length may be possible if
we allow a jump to a distant destination to be as-
sembled as a chain of two jumps, a short followed
by a long, for then several nearby short jumps
could share the same long jump.

Though related to the problem of Section 3.1,
optimization with shared jumps appears to be
very hard. Some microprocessor codes have only

short conditional jumps, so that any long condi-
tional jump always requires two instructions. We
can show in this case that given a program and
an integer k, the problem of testing whether the
jumps can be assembled to yield a program of
length at most k is NP-complete. A proof of this
result will appear in the final version of this paper.

4 Double Priority Queues

Suppose we are processing a set of elements ranked
by two criteria, for example, expected run time
and memory size of computer jobs. The next ele-
ment to be processed and deleted is one for which
the sum of its two ranks among the remaining el-
ements is minimal. This queueing procedure can
be implemented efficiently using priority sets. An
element e is identified with the point (—z,-y) in
a priority set, where z and y are its initial ranks,
and its initial weight is —z — y. When e is deleted,
H_UPDATE(—z,—1) and V_UPDATE(—y,—1) are
performed to make the weights reflect the sum of
the current ranks. Even though the increments
are negative, we can prove that the updates pre-
serve monotonicity, so the priority set implemen-
tation of Section 2 can be applied.

5 Conclusion and Open Prob-
lems

Both the monotonicity requirement and the re-
striction to the plane appear essential to our ap-
proach. Relaxation of either constraint would
seem to require new ideas.

The “log” factor in the time bound seems dif-
ficult to eliminate. For example, even when
the points are given in order of decreasing ini-
tial weights, at least 2(nlogn) comparisons may
be needed in the case that the weights can
be arbitrary real numbers. To see this, take
n points, py = (1,b — 2),...,pn = (n,bp —
2n), in this order, where 0 < b; < 1 and
w(pi) = b —1, 1 £ ¢ < n. Then perform
H_UPDATE(z, 1) for each ¢ € {1,...,n}. Now the
resulting weights are b1,...,bn, and a sequence
of n DELETE(FIND_MAX) operations removes the

points from the priority set in order of decreasing
value of b;, thereby effecting a sort of {b,...,bp}.

Acknowledgement

We are grateful to Arnold Schénhage for stimu-
lating our interest in the jump assembly problem
and for contributing to its solution.

References

[1] Knuth, Donald, The Art of Computer Pro-
gramming, Volume 8: Sorting and Search-
ing, Addison-Wesley, Reading, Massachusetts,
1973, Section 6.2.3, Exercise 30, p. 471, and
solution, p. 678.

DISTRIBUTION LIST

Office of Naval Research. Contract N00014~82~K-0154

Michael J. Fischer, Principal Investigator

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

(12 copies)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Dr. R.B. Grafton, Scientific
Officer (1 copy)

Information Systems Program (437)
(2 copies)

Code 200 (1 copy)
Code 455 (1 copy)
Code 458 (1 copy)

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

(1 copy)

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D.C. 20375

(1 copy)

Dr. A.L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps
Code RD-1

Washington, D.C. 20380

(1 copy)

Naval Ocean Systems Center

Advanced Software Technology Division
Code 5200

San Diego, CA 92152

(1 copy)

Mr. E.R. Gleissner

Naval Ship Research and Development Center
Computation and Mathematics Department
Bethesda, MD 20084

(1 copy)

Captain Grace M. Hopper

Naval Data Automation Command
Washington Navy Yard

Building 166

Washington, D.C. 20374

(1 copy)

Defense Advance Research Projects Agency
ATTN: Program Management/MIS

1400 Wilson Boulevard '

Arlington, VA 22209

(3 copies)

