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We introduce a new class of numerical schemes for the solution of the Cauchy prob-
lem for non-stiff ordinary differential equations (ODEs). Our algorithms are of the
predictor-corrector type; they are obtained via the decomposition of the solutions
of the ODEs into combinations of appropriately chosen exponentials, whereas the
classical schemes are based on the approximation of solutions by polynomials. The
resulting schemes have the advantage of significantly faster convergence, given fixed
lengths of predictor and corrector vectors. The performance of the approach is illus-
trated via a number of numerical examples.
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1 Introduction

Numerical algorithms for the solution of ordinary differential equations (ODEs) are
an essential part of many scientific computations. As a consequence, a broad variety
of such algorithms exists and their construction and analysis are a well-established
fields (see, for example, [10, 11, 14, 2, 15]).

The existing algorithms can be grouped into direct solvers such as Runge-Kutta
and multi-step methods [10] and schemes which improve the solution iteratively as, for
example, Richardson extrapolation [15] and deferred correction [6, 13, 12]. Typically,
the construction of direct solvers is based on the assumption that the solution of the
ODE can be locally approximated by a polynomial, with the degree of the polynomial
determining the order of accuracy of the scheme (see, for example, [15]). Explicit
variants of such schemes are applicable to non-stiff problems; the ones in wide use
appear to be of orders 2 to 12. Iterative methods (such as deferred corrections) have
been published that are of essentially arbitrary order.

While the existing direct and iterative techniques provide a reliable tool for many
applications, they tend to be very expensive for solving ODEs with high accuracy.
Direct methods require very small step-sizes to achieve high accuracy, while iterative
methods involve repeated solution of the ODE (or its slight modification).

In the early stages of numerical computing there have been attempts to construct
direct schemes based on the assumption that the solution which is to be computed can
be represented as linear combination of exponentials or trigonometric functions [7, 3],
an approach similar to the one taken in this paper. However, these endeavors never
resulted in algorithms competitive in practical applications.

In this paper we introduce a new class of algorithms for solving the Cauchy
problem for non-stiff ordinary differential equations (ODEs) which have a signifi-
cantly faster rate of convergence than the classical schemes. The schemes are of the
predictor-corrector type and are based on the approximation of the solution by a
linear combination of a finite collection of exponentials, chosen via an appropriate
“skeletonization” procedure (see [9, 4]). The latter representation is combined with
standard numerical tools (such as least squares approximation) to construct efficient
extrapolation and integration formulae. The starting values required to initialize the
predictor-corrector scheme are computed via a spectral deferred correction method
(see [6]).

It should be observed that the algorithms presented in this paper are not con-
vergent in the classical sense; each particular scheme quickly converges to a certain
predetermined precision, after which its accuracy stops improving as a function of the
number of nodes in the discretization. While this can be viewed as a drawback from
the theoretical point of view, in practical calculations the precision is always fixed
(in double precision arithmetic, it is about 16 digits). Thus, the performance of a
scheme designed with 16 digits is indistinguishable from that of a classically conver-
gent scheme, as long as the calculations are performed in double precision arithmetic.

Throughout this paper, it is assumed that the Cauchy problem to be solved is in
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the form

dϕ

dt
(t) = F (t, ϕ(t)), (1)

ϕ(a) = ϕ0, (2)

where t ∈ [a, b], ϕ0 ∈ Cm, ϕ : R → Cm and F : R × Cm → Cm is assumed to
be sufficiently smooth. As is well known, any initial value problem involving ODEs
with higher derivatives can be reduced to this standard form. For the convenience of
presentation we assume that m = 1, as the generalization of the construction for the
case of arbitrary m is straightforward.

The structure of this paper is as follows. In Section 2, we summarize several well-
known mathematical and numerical tools to be used in this paper, while in Section 3,
we discuss the specific analytical and mathematical apparatus required for the con-
struction of the numerical solvers. Section 4 describes the numerical solvers, and in
Section 5 we report a number of numerical experiments, including the establishment
of stability and accuracy properties.

2 Mathematical and numerical preliminaries

In this section we summarize several well-known facts to be used in the remainder of
this paper. All of these can be found, for example, in [1, 10, 11, 5, 4]. Throughout
this paper, the set {t1, . . . , tn} with t1 = a, t2 = b and ti = a + (i− 1)h will be called
a equidistant discretization of the interval [a,b] with step-size h. Furthermore, the
derivative of a function f : R → R will be denoted by f ′, the conjugate transpose is
denoted by ∗, the complex modulus or absolute value is denoted by | · |, and || · ||2
denotes the Euclidian norm of a vector or the corresponding operator norm of a
matrix.

2.1 Linear predictor-corrector methods

A predictor-corrector method solves the initial value problem (1) by advancing the
solution step by step via extrapolation (predictor step) and integration (corrector
step), based on the k previous time steps. Given the values of ϕ and ϕ′ at the k
equidistant nodes t1, t2, . . . , tk the predictor step approximates the value of ϕ at the
next time step tk+1 by the linear extrapolation formula

ϕ(tk+1) =

k∑

i=1

[piϕ(ti) + pk+iF (ti, ϕ(ti))] , (3)

where p1, . . . , p2k ∈ R. The result is used to compute the value of ϕ′(tk+1) via equa-
tion (1). The corrector step then recomputes ϕ(tk+1) by the integration formula

ϕ(tk+1) =

k∑

i=1

[ciϕ(ti) + ck+iF (ti, ϕ(ti))] + c2k+1F (tk+1, ϕ(tk+1)), (4)
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where c1, . . . , c2k+1 ∈ R, and the value of ϕ′(tk+1) is updated via equation (1). One
predictor step can be followed by several corrector steps.

In accordance with conventions in the literature, we refer to a numerical scheme
which solves equation (1) by computing ϕ(tk + 1) from ϕ(t1), . . . , ϕ(tk) via one pre-
dictor step (3) and m corrector steps (4) as k-step PE(CE)m method (see [15]). For
their initialization k-step PE(CE)m methods require k starting values.

Remark 1 Most predictor-corrector methods in use ignore the values of ϕ in formu-
lae (3), (4) and use only the information about the derivative F (t, ϕ). In this paper,
however, we will use formulae (3), (4) in their full generality.

Remark 2 The most popular predictor-corrector methods appear to be Adams-
Bashforth-Moulton schemes (see, for example, [10, 15]). The predictor and corrector
formulae in these schemes are based on approximating ϕ′ by a polynomial.

2.2 Accuracy and stability of numerical ODE solvers

The two characteristics which are generally used to describe the performance of a
numerical ODE solver are its order of accuracy and its stability region (see, for ex-
ample, [10, 11, 14]). Let ϕ̃ denote the solution to the initial value problem (1), (2),
obtained via a numerical solver at the equidistant discretization t1, . . . , tn of [a, b] with
step-size h. The underlying method is said to be of order of accuracy p, if for any
sufficiently smooth F in equation (1) there exists a constant M > 0 such that

|ϕ(b) − ϕ̃(b)| < M hp, (5)

for any choice of h, that is sufficiently small.
The stability of a numerical ODE solver is generally determined by analyzing its

behavior on test problems of the form

ϕ
′

(t) = λϕ(t), (6)

ϕ(0) = 1 (7)

where λ ∈ C. A numerical scheme, which computes the solution ϕ̃ to this problem at
the equidistant discretization t1, . . . , tn with step-size one, is said to be stable for λ,
if

ϕ̃(ti) ≤ 1, (8)

for i = 1, . . . , n. The set of values of λ for which a numerical method is stable is
called its stability domain.

The stability of a k-step PE(CE)m method, in particular, can be determined
by computing the eigenvalues of the matrix B which corresponds to the the linear
mapping B : Ck → Ck, defined by




ϕ̃(t1)
ϕ̃(t2)

...
ϕ̃(tk)


 7→




ϕ̃(t2)
ϕ̃(t3)

...
ϕ̃(tk+1)


 , (9)
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where ϕ̃(t1), . . . , ϕ̃(tk) are arbitrary starting values and ϕ̃(tk+1) is the result of using
the predictor-corrector method to take a step of length one for the solution of equa-
tion (6). If the biggest eigenvalue of B is less than one then the method is stable
for λ. The matrix B is of the form

B =




0 1
. . .

. . .

0 1
b1 b2 · · · bk


 , (10)

where the coefficients b1, . . . , bk ∈ C depend on the given predictor-corrector method
and on λ. Specifically, bi = ϕ̃i(tk+1), where ϕ̃i(tk+1) is the result of applying the given
predictor-corrector method to the starting values ϕ̃i(t1), . . . , ϕ̃i(tk), chosen as

ϕ̃i(tj) =

{
1, if j = i
0, if j 6= i

. (11)

Remark 3 The matrix B is the transpose of a companion matrix and has the char-
acteristic polynomial (see, for example, [8])

−b1 + −b2z + −b3z
2 + · · · − bkz

k−1 + zk = 0. (12)

In the literature (see, for example, [11, 14]) the stability of a multi-step method is
often determined by checking if the largest root of equation (12) is less or equal to
one. Obviously, this is equivalent to the stability criterion given above.

Finally, suppose as before, that ϕ̃ denotes the solution to (6), (7), obtained via
a numerical method at the equidistant discretization t1, . . . , tn of [a, b] with step-size
one. For a specified precision ε we define the method’s accuracy domain to be the set
of all λ, for which √∑n

i=1 |ϕ(ti) − ϕ̃(ti)|2∑n
i=1 |ϕ(ti)|2

< ε, (13)

where ϕ : C 7→ C, z 7→ eλz denotes the analytical solution to equations (6), (7).

Remark 4 Obviously, increasing the number of discretization steps of a given in-
terval will increase the frequency domain to which a numerical method applies. In
general, changing the step-size of a numerical scheme for the solution of the prob-
lem (6), (7) from one to h is equivalent to changing the exponent λ in equation (6)
to λh, as the dilation τ = t/h transforms equation (6) into

∂

∂τ
ϕ(τ) = λh ϕ(τ). (14)

In the case of the variable step-size h, stability and accuracy regions therefore apply
to the product λh.
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Remark 5 A standard way of describing the performance of a numerical scheme for
a given accuracy is in terms of the number of steps per wavelength. If the accuracy
domain of the scheme for the precision ε contains the semi-disk

S =
{

λ ∈ C | Re(λ) ≤ 0, |λ| ≤ |λ̃|
}

, (15)

then the scheme is said to require
2π

|λ̃|
(16)

steps per wavelength to achieve the accuracy ε.

2.3 SVD and least squares

Given the linear system
Ax = b, (17)

where A ∈ Cm×n and b ∈ Cm, any vector x ∈ Cn which minimizes

||Ax − b||2 (18)

is called a least squares solution of system (17). If X is the set of least squares
solutions of (17) then X contains one unique element of minimum L2-norm

xLM = argmin{||x||2 | x ∈ X}, (19)

which is called the minimum norm least squares solution. The singular value decom-
position (SVD) provides an explicit expression for xLM . If A = UΣV ∗ is the SVD of
A, i.e. U ∈ Cm×m and V ∈ Cn×n are orthonormal and Σ ∈ Rm×n is diagonal, then

xLM =
r∑

i=1

u∗

i b

σi

vi, (20)

where (u1, . . . , um) are the columns of U , (v1, . . . , vn) are the columns of V , (σ1, . . . , σr)
are the positive diagonal elements of Σ, and r is the rank of A.

In numerical applications it is reasonable to define the rank of matrix A to pre-
cision ε. Given ε > 0 and the singular values (σ1, . . . , σmin(m,n)) of A, sorted in
decreasing order, the numerical rank of precision ε of A is defined as r ∈ N, such
that σr ≥ ε and σr+1 < ε. Accordingly, we define the minimum norm least squares
solution of precision ε of system (17) as

xLM(ε) =

r(ε)∑

i=1

u∗

i b

σi

vi, (21)

where r(ε) is the numerical rank of precision ε of A and all other quantities are as in
equation (20).

Given an algorithm for the computation of the SVD, the minimum norm least
squares solution xLM(ε) can be computed via (21). However, besides this obvi-
ous SVD-based algorithm, there exist various other schemes for the computation of
xLM(ε), which are usually faster; an example is the complete orthogonal factorization
described in Chapter 5 of [8].
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2.4 Matrix interpolation (Skeletonization)

The following lemma will be used for the approximation of exponentials of bounded
frequency. It is often referred to as skeletonization and is given by [9, 4] in slightly
more general form.

Lemma 6 (Skeletonization) Given a matrix A ∈ Cm×n with columns (a1, . . . , an),
and k ∈ N such that 1 ≤ k < min(m, n), there exists a selection of k columns of A
such that

A = (an1
, . . . , ank

)T + X, (22)

where all elements of T ∈ Ck×m have magnitude less than one and the operator norm
of X ∈ Cm×n is bounded by the (k + 1)th singular value σk+1(A) of A as follows

||X||2 ≤ σk+1(A)
√

1 + k(min(m, n) − k). (23)

In other words, the lemma states that A can be approximated by interpolating be-
tween k of A’s columns, if the (k + 1)th singular value of A is small, i. e. if k is close
to the numerical rank of A. The fact that all elements in the interpolation matrix T
have magnitude less than one guarantees that this interpolation is stable.

Remark 7 The factorization (22) can typically be computed in O(nmk) operations
(the worst case is O(mnl) operations, where l = min(m, n)) by the algorithms de-
scribed in [9, 4].

2.5 Spectral deferred correction methods

Spectral deferred correction methods solve the initial value problem (1), (2) by start-
ing with a low accuracy approximation to the solution and improving it iteratively
(see [6, 13, 12]). During each iteration the error ε of the current approximation ϕj is
computed via the formula

ε(t) = ϕ(a) +

∫ t

a

F (τ, ϕj(τ))dτ − ϕj(t), (24)

which is based on the integral form (Picard equation) of equations (1), (2),

ϕ(t) = ϕ(a) +

∫ t

a

F (τ, ϕ(τ))dτ. (25)

The approximation ϕj(t) is then updated via the formula

ϕj+1(t) = ϕj(t) + γ(t), (26)

where γ(t) has to satisfy the integral equation

γ(t) =

∫ t

a

[F (τ, ϕj(τ) + γ(τ)) − F (τ, ϕj(τ))]dτ + ε(t), (27)
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which results from combining (25) with (24) and assuming that ϕj+1 satisfies (25).
Spectral deferred correction algorithms solve equation (27) by standard ODE

solvers such as Euler’s method, and evaluate the integral in (24) by spectral inte-
gration (see [6]). A typical choice for the discretization of the integration interval
are Gaussian or Tchebycheff nodes (see [6, 13]). A discussion of the stability and
convergence properties of these schemes can be found in [6, 12]. In Section 3.4 we
construct a spectral deferred correction scheme for equidistant nodes.

2.6 A second-order Runge-Kutta method

The second-order Runge-Kutta method solves the initial-value problem (1), (2) on
the interval [t0, t0 + L] by taking a sequence of n steps:

ti+1 = ti + h,

ki+1 = h F (ti + h, ϕ(ti) + ki),

ϕ(ti+1) = ϕ(ti) +
1

2
(ki + ki+1). (28)

where h = L/n and k0 = hF (t0, ϕ0). This algorithm requires exactly n+1 evaluations
of the function F and its order of accuracy is two.

2.7 Bisection and the secant method

The bisection method and the secant method are classical root finding schemes (see,
for example, [5]), which we employ for the computation of the stability and accuracy
domains. Specifically, the bisection method finds the root of a function f within the
interval [x1, x2] iteratively, by testing whether f changes its sign to the left or to the
right of

x3 =
x1 + x2

2
. (29)

If f(x3) has the same sign as f(x2) the method sets x2 = x3 and repeats, else it
sets x1 = x3 and repeats. The bisection stops when x1 and x2 are sufficiently close.
Evidently, if [x1, x2] contains one single root, bisection requires O(log(ε)) steps to
obtain the root with precision ε.

The secant method is an iterative scheme as well, which requires two starting
values. It computes the root of the function f by approximating f by its secant
through the points x1 and x2 which have been obtained during the previous two
iterations. The secant through x1 and x2 intersects the x-axis at

x3 =
f(x2)x1 − f(x1)x2

f(x2) − f(x1)
. (30)

If f(x2) > f(x1) the secant methods sets x1 = x3 and repeats, else it sets x2 = x3

and repeats. The order of convergence of the secant method is approximately 1.6,
however, the secant method is not guaranteed to converge.
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2.8 The maximum modulus principle

The following result can be found in any standard textbook on complex analysis.

Lemma 8 (Maximum modulus principle) If D ⊂ C is a bounded connected set
with boundary ∂D, U ⊂ C is an open set such that (D ∪ ∂D) ⊂ U and the function
f : U → C is analytic on U then the maximum value of |f | on (D ∪ ∂D) occurs on
the boundary, i. e.

max
∂D

|f | = max
D

|f |. (31)

3 Analytical Apparatus

In this section, we discuss the construction of the extrapolation and integration for-
mulae used by the predictor-corrector methods of this paper (Sections 3.1, 3.1), an
efficient representation of functions of bounded frequency (Section 3.3), and spectral
methods for functions of bounded frequency on equidistant nodes (Section 3.4).

3.1 The predictor step: Extrapolation of exponentials

The predictor step of a predictor-corrector scheme approximates the solution of the
ODE at the next time step by extrapolating the solution based on its values and
derivatives at previous time steps. In this section we construct an extrapolation
formula, which is based on the assumption that the ODE solution, which is to be
extrapolated, is a linear combination of the finite set of exponentials eλ1t, eλ2t, . . . , eλnt,
where λi ∈ C (The selection of the λi is described in Section 3.3 below).

Suppose that the values and derivatives of the functions which are to be extrapo-
lated are given at an equidistant discretization t1, t2, . . . , tk of the interval [-1,1] with
step-size h, and they are to be evaluated at tk+1 = 1 + h via the formula

ϕ(tk+1) =
k∑

i=1

[piϕ(ti) + pk+iϕ
′(ti)] , (32)

where p1, . . . p2k ∈ R. Formula (32) is valid for all functions ϕ of the form ϕ(t) =∑n
i=1 αie

λit with αi ∈ C, if p = (p1, . . . , p2k)
T satisfies the linear system

Ap = b, (33)

where the elements of A ∈ Cn×2k are

Aij =

{
eλitj , i = 1, . . . , n; j = 1, . . . , k

λie
λitj−k , i = 1, . . . , n; j = k + 1, . . . , 2k

, (34)

and the components of b ∈ C
n are

bi = eλitk+1 . (35)
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In general, the vector p can be approximated by the minimum norm least squares
solution (21) of system (33):

p(ε) =

r(ε)∑

i=1

u∗

i b

σi
vi, (36)

where ε > 0 is a fixed precision value, and r(ε), σi, ui, and vi are as in equation (21).

Remark 9 The choice of the parameters n, k, and ε, for the construction of the
extrapolation formula will affect the stability and accuracy properties of the resulting
predictor-corrector scheme. If 2k ≥ n then the accuracy of the extrapolation for-
mula (32) is of order ε. Furthermore, if n and k are fixed, ||p(ε)||2 tends to grow
as ε is decreased, which indicates that increasing ε will improve the stability of the
resulting schemes. Similar, increasing the number of steps k will also decrease ||p(ε)||2
and will tend to improve the stability.

We have investigated the stability properties of the predictor-corrector schemes of
this paper numerically and will discuss the results in Section 5.

3.2 The corrector step: Integration of exponentials

After using the result for ϕ(tk+1) from the predictor step to obtain ϕ′(tk+1) via equa-
tion (1), the corrector step recomputes the value of ϕ(tk+1) via the formula

ϕ(tk+1) =
k∑

i=1

[ciϕ(ti) + ck+iϕ
′(ti)] + c2k+1ϕ

′(tk+1), (37)

where c1, . . . , c2k+1 ∈ R. As before, we assume that ϕ(t) =
∑n

i=1 αie
λit with αi ∈ C.

Hence, c = (c1, . . . , c2k+1)
T has to satisfy

Ãc = b, (38)

where b is as in equation (35), and the elements of Ã ∈ Cn×2k+1 are

Ãij =

{
Aij, i = 1, . . . , n; j = 1, . . . , 2k

λie
λitk+1 , i = 1, . . . , n; j = 2k + 1

. (39)

The vector c can be approximated by the minimum norm least squares solution (21)
of system (38).

Remark 10 As in the predictor case, the choice of the parameters n, k and ε will
affect the stability and accuracy properties of the resulting predictor-corrector scheme
(See Remark 9). In general, the integration during the corrector step is a significantly
more stable procedure than the extrapolation during the predictor step; additional
corrector steps will therefore typically improve the stability of the resulting predictor-
corrector schemes. Section 5 contains a discussion of these stability issues, which is
based on numerical experiments.
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Remark 11 Both the predictor formula (32) and the corrector formula (37) make use
of the values and the derivatives of the function ϕ. While it would be feasible to base
the predictor step and the corrector step only on the derivatives ϕ′(t1), . . . , ϕ

′(tk),
which is the approach of most classical predictor-corrector schemes, our approach of
always using the information about the values and the derivatives leads to significantly
more stable formulae.

3.3 Skeletonization of a semi-disk in C

In this section we describe how λ1, . . . , λn in equations (34), (39) can be selected such
that (32), (37) will be satisfied for all functions fλ(x) = e−λx, for which λ lies within
the complex semi-disk

Sr = {λ ∈ C | Re(λ) ≤ 0, |λ| ≤ r} . (40)

The discussion proceeds in two steps. First, Lemma 12 establishes that it is suf-
ficient to discretize the boundary of Sr (denoted by ∂Sr). Then, we construct the
discretization of ∂Sr by employing Lemma 6.

Lemma 12 Given the initial value problem

ϕ
′

(t) = λϕ, (41)

ϕ(0) = ϕ0, (42)

let ϕλ denote its solution and ϕ̃λ its approximate solution computed via a k-step
PE(CE)m method as described in Section 2.1 (assuming that the k required start-
ing values are given). Furthermore, let D denote a connected bounded region in the
complex plane and ∂D its boundary.

If for any fixed t ∈ R and ε > 0 the inequality

|ϕλ(t) − ϕ̃λ(t)| < ε (43)

holds for all λ ∈ ∂D, then (43) also holds for all λ ∈ D.

Proof. For any fixed value of t a PE(CE)m method computes ϕ̃λ(t) by a finite
number of additions and multiplications of linear functions of λ. The function gt :
C → C defined by λ 7→ ϕ̃λ(t) is therefore a polynomial in λ and hence an analytic
function of λ. Since the function ft : C → C defined by λ 7→ eλt is also an analytic
function of λ, the error term (ϕλ(t)− ϕ̃λ(t)) is an analytic function of λ as well. The
lemma follows therefore from the maximum modulus principle 8. 2

Lemma 12 implies that it is sufficient to construct a discretization the boundary
of Sr, which we accomplish as follows. Since the result of one step of a PE(CE)m

method depends linearly on the solution at the previous nodes, any method valid
for the functions eλ1t, . . . , eλnt will also be valid for any linear combination of these
functions. In particular, let eλ1t, . . . , eλnt be a collection of functions such that for a

10



δ 10−5 10−7 10−10 1012 10−16 10−20 10−30

n 4 12 18 24 30 38 54

Table 1: Number n of nodes for different accuracies δ (Skeletonization of S3.15)

specified precision δ and for any λ ∈ ∂Sr there exist coefficients c1, . . . , cn ∈ C such
that ∣∣∣∣∣e

λt −
n∑

i=1

cie
λit

∣∣∣∣∣ < δ, (44)

for all t ∈ [−1, 1]. If (43) is satisfied for λ = λ1, λ2, . . . , λn, then

|ϕλ(t) − ϕ̃λ(t)| < ε + δ, (45)

for all λ ∈ ∂Sr (triangle inequality). Therefore, it is sufficient to select a set of expo-
nentials which can generate all exponentials

{
eλt

∣∣ λ ∈ ∂Sr

}
up to a finite precision δ

via linear interpolation. Since exponentials of the form eλt are smooth functions
of λ, it is clear that such a selection of exponentials exists; a specific example is a
sufficiently dense equidistant discretization of ∂Sr, where the arclength between two
neighboring nodes in the discretization is the same for all neighboring pairs.

Lemma 6 provides a tool to choose an efficient discretization of the type dis-
cussed above. Starting with an equidistant discretization, we employ the factoriza-
tion in Lemma 6 to significantly reduce the number of required nodes. Suppose
that λ1, . . . , λN and t1, . . . , tM are sufficiently dense equidistant discretizations of ∂Sr

and [-1,1], respectively, and the factorization (22) of

A =




eλ1t1 eλ2t1 · · · eλN t1

eλ1t2 eλ2t2 · · · eλN t2

...
...

...
eλ1tM eλ2tM · · · eλN tM


 , (46)

with error term ||X||2 < δ yields the k columns with indices {i1, . . . , ik}. Then the
exponentials eλi1

t, . . . , eλik
t span

{
eλt

∣∣λ ∈ ∂Sr

}
up to precision δ and are therefore

an appropriate representation of
{

eλt
∣∣λ ∈ ∂Sr

}
(and hence of

{
eλt

∣∣ λ ∈ Sr

}
), when

the precision δ is required.
For the values of δ and r which are of interest in this paper, the above procedure,

often referred to as skeletonization, results in a number of nodes between 12 and 54,
as illustrated in Table 1, which shows the number of nodes n that are required for
the skeletonization of Sr with r = 3.15 for different accuracies δ. Figure 1 shows the
skeletonization of S3.15 for the precisions δ = 10−10 and δ = 10−16.

Remark 13 Since ∂Sr is symmetric with respect to the real axis, it is sufficient to
discretize the upper half of ∂Sr (Im(λ) ≥ 0) and choose the discretization of the lower
half of ∂Sr, such that it is symmetric to the upper half. In order to ensure that this
leads to an efficient discretization close to the real axis, the discretization of the upper
half of ∂Sr can be constrained to include λ1 = 0 and λ2 = −r

√
−1.
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(b) δ = 10−16

Figure 1: Skeletonization of Sr with r = 3.15

Remark 14 The construction of predictor and corrector formulae (32), (37) makes
use of the assumption that the numerical solution to equation (6) is sampled at an
equidistant discretization t1, . . . , tk of [-1,1] with step-size h = 2/(k − 1) and is of
the form fλ = eλt, where λ ∈ Sr. If the resulting formulae are applied to a different
equidistant sequence of nodes t̃1, . . . , t̃k with the new step-size h̃ = αh, they will be
valid for all solutions of the form fλ = eλt, where λ ∈ Sr/α. In other words, halving the
step-size will double the maximal frequency of the functions to which the predictor-
corrector scheme is applicable. This follows from the fact that (1) is invariant under
translations and, furthermore, the dilation τ = α t transforms equation (6) into

∂

∂τ
ϕ(τ) =

λ

α
ϕ(τ). (47)

Remark 15 The choice of the parameter r in (40) determines the maximal frequency
of the functions to which the predictor and corrector formulae (32), (37) apply for
the fixed step-size h = 2/k. By construction, the number of steps per wavelength
to achieve the optimal accuracy of the resulting scheme will therefore be approxi-
mately kπ

r
.

3.4 Spectral deferred correction on equidistant nodes

In this section we describe a spectral deferred correction method to be used to com-
pute the starting values for the predictor-corrector scheme. The deferred correction

12



method will be constructed on the equidistant discretization t1, t2, . . . , tk of [−1, 1]
with step-size h. Furthermore, we will assume that the desired solution to (1), (2) is
a linear combination of eλ1t, eλ2t, . . . , eλnt, where λ1, . . . , λn is a discretization of ∂Sr

as discussed in the previous section.
Given these assumptions, the value for ε(ti) as defined in (24) can be evaluated

by the quadrature rule
∫ tj

−1

ϕ(τ)τdτ ≈
k∑

i=1

ϕ(ti)rij , (48)

where rij ∈ R. The corresponding weight matrix r = (rij) has to satisfy the linear
system

Ar = b, (49)

where A ∈ Cn×k,

A =




eλ1t1 eλ1t2 · · · eλ1tk

eλ2t1 eλ2t2 · · · eλ2tk

...
...

...
eλnt1 eλnt2 · · · eλntk


 , (50)

and b ∈ Cn×k,

b =




∫ t1
−1

eλ1τdτ · · ·
∫ tk
−1

eλ1τdτ∫ t1
−1

eλ2τdτ · · ·
∫ tk
−1

eλ2τdτ
...

...∫ t1
−1

eλnτdτ · · ·
∫ tk
−1

eλnτdτ


 . (51)

Approximating each column of the matrix r by the minimum norm least squares
solution (21) of precision ε of (49) results in a quadrature formula whose accuracy
is of order ε. Since the integral and its approximation are analytical functions of λ,
it follows from the maximum principle (Lemma 8) that (48) also holds for all linear
combinations of {eλt | λ ∈ Sr} (see Lemma 12).

Equations (25) and (27) can be solved by applying a second order Runge-Kutta
scheme (28). In particular, the second order Runge-Kutta scheme for the solution of
equation (27) with step-size h is given by

γ̃i+1 = γi + hG(ti, γ̃i) + ε(ti+1) − ε(ti),

γi+1 = γi +
h

2
[G(ti, γ̃i) + G(ti, γ̃i+1)] + ε(ti+1) − ε(ti), (52)

where G(t, γ) = F (t, ϕj(t) + γ) − F (t, ϕj(t)) and γi denotes γ(ti).

Remark 16 The resulting deferred correction scheme makes use of the assumption
that the numerical solution to equation (1) is obtained at an equidistant discretization
t1, . . . , tk of [-1,1] with step-size h = 2/(k−1) and is of the form fλ = eλt, where λ ∈ Sr.

If the scheme is applied to on the nodes t̃1, . . . , t̃k with the new step-size h̃ = αh, it
will be valid for all solutions of the form fλ = eλt, where λ ∈ Sr/α (see Remark 14).

Remark 17 The stability and accuracy properties of the deferred correction schemes
discussed in this section have been established numerically and are described in Sec-
tion 5.
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4 Description of the Algorithm

This section contains a description of the algorithms that are the principal goal of this
paper. The informal description in the section below is followed by a more detailed
description in Section 4.2.

4.1 Informal description

Several precomputation steps of the algorithm require a discretization of Sr as defined
in (40), which can be precomputed via factorization (22) of matrix (46). As a first step
the algorithm uses a spectral deferred correction scheme to compute the solution to the
initial value problem (1), (2) at k equidistant nodes with step-size h, which are used
as the starting values for the predictor-corrector scheme. The initial solution for the
deferred correction iterations is obtained via a second order Runge-Kutta scheme (28),
after which the solution is improved iteratively via (24), (26), (27), where γ(t) is
computed via the Runge-Kutta scheme (52) and the integral in (24) is evaluated via
the approximation (48). The integration vectors r1, . . . , rk are the minimum norm
least squares solution (21) of (49), and can be precomputed. The iterations stop
when at all k nodes, γ(t) in equation (27) is less than a pre-set accuracy ε.

After the initial k values of the solution ϕ(t) have been computed, the algorithm
advances the solution, taking steps of size h, via a k-step PE(CE)m method (see
Section 2.1). During each time step one predictor step is followed by m corrector
steps. The predictor and corrector steps are based on the assumption that the solution
to (1) can be represented by a linear combination of exponentials eλt, where λ lies in
the complex semi-disk Sr (40). In particular, the predictor step approximates ϕ(tk+1)
via (32), where the vector p in (32) is the minimum norm least squares solution of (33)
and can is precomputed once and for all.

After the predictor step, the approximate value of ϕ(tk+1) is used to compute
ϕ′(tk+1) via (1). The corrector step then re-computes ϕ(tk+1) via formula (37), where
the vector c in (37) is the minimum norm least squares solution of (38) and is pre-
computed once and for all. The corrector step is repeated m times.

If the interval [a, b] is discretized into N points then the predictor corrector scheme
requires (m + 1) ·N evaluations of the function F in (1), where m is number of times
the corrector step is applied after each predictor step.

Remark 18 If (1), (2) is a system of ODEs, i. e. the dimension of ϕ(t) is bigger
than one, the same algorithm can be applied by performing all steps componentwise.

4.2 Detailed description

In this section, we describe the algorithm of this paper in some detail. The presenta-
tion proceeds in two parts: Algorithm 1.1 is the procedure for computing the starting
values for the predictor-corrector method via a spectral deferred correction scheme
based on equidistant nodes; Algorithm 1.2 is the main algorithm, which is a k-step
PE(CE)m method.
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Algorithm 1.1 (Spectral Deferred Correction)
Comment [ Algorithm 1.1 computes the solution to initial value problem (1), (2) at a
given equidistant discretization t1, . . . , tk via a spectral deferred correction scheme. It
has two parts: the precomputation which is performed offline and the main algorithm.
Its implementation requires the choice of the following parameters: k is the number
of nodes in the discretization, εD

LS,δ,M ,N are parameters during the precomputation,
which will determine the accuracy properties of the algorithm, and finally εI is the
stopping criterion for the correction iterations.]

Precomputation

1. Compute a discretization λ1, . . . , λn of Sr by computing the factorization (22)
of the M × N matrix (46), such that ||X||2 < δ.

2. Compute r as the minimum norm least squares solution of precision εD
LS of the

system Ar = b, where A and bi are defined in (50), (51).

Main algorithm

Compute ϕ0(t1), . . . , ϕ
0(tk) by solving equation (1) with initial condition ϕ(t1) = ϕ0

via the second-order Runge-Kutta method (28).

Repeat

1. For j = 1, . . . , n, compute

ε(tj) = ϕj(t1) +

k∑

i=1

F (ti, ϕ
j(ti))rij − ϕj(tj), (53)

where the matrix r = (rij) has been precomputed.

2. Compute γ(t) at t1, . . . , tk by solving equation (27) with the initial condition
γ(t1) = 0 via the Runge-Kutta scheme (52).

3. Set ϕj+1(ti) = ϕj(ti) + γ(ti) for t1, . . . , tk.

until γ(ti) < εI for i = 1, . . . , k

Return ϕj+1(t1), . . . , ϕ
j+1(tk).

15



Algorithm 1.2 (Predictor-Corrector)
Comment [ Algorithm 1.2 computes the solution to initial value problem (1), (2) at a
given equidistant discretization t1, . . . , tN via a k-step PE(CE)m method. It requires
the starting values ϕ(t1), . . . , ϕ(tk) as input and has two parts: the precomputation
and the main algorithm. The precomputation requires the choice of the parameters
δ, M , N ,εP

LS, εC
LS, which will be introduced below.]

Precomputation

1. Compute a discretization λ1, . . . , λn of Sr by computing the factorization (22)
of the M × N matrix (46), such that ||X||2 < δ.

2. Compute the minimum norm least squares solution (21) of precision εP
LS of the

system Ap = b, where A and b are defined in (34) and (35), respectively.

3. Compute the minimum norm least squares solution (21) of precision εC
LS of the

system Ãc = b, where A and b are defined in (39) and (35), respectively.

Main Algorithm

do j = k, N − 1

1. Compute ϕ(tj+1) via

ϕ(tj+1) =
k∑

i=1

[
piϕ(t(j−k)+i) + pk+iϕ

′(t(j−k)+i)
]
, (54)

where the vector p = (p1, . . . , p2k) has been precomputed.

2. Compute ϕ′(tj+1) = F (tj+1, ϕ(tj+1)).

3. Recompute ϕ(tj+1) via

ϕ(tj+1) =
k∑

i=1

[
ciϕ(t(j−k)+i) + ck+iϕ

′(t(j−k)+i)
]
+ c2k+1ϕ

′(tj+1), (55)

where the vector c = (c1, . . . , c2k+1) has been precomputed. Then recompute
ϕ′(tj+1) as in the previous step. Perform this step m times.

end do

Return ϕ(t1), . . . , ϕ(tN).
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Name r M N δ n k εD εI

DC1 3.15 800 800 10−10 18 22 10−9 10−10

DC2 6.3 800 800 10−19 46 60 10−18 10−15

DC3 3.15 800 800 10−19 38 42 10−19 10−15

DC4 6.3 800 800 10−36 76 80 10−32 10−31

Table 2: Implementations of the deferred correction scheme (Algorithm 1.1)

Name r M N δ n k εP εC

PC1 3.15 800 800 10−10 18 22 10−9 10−9

PC2 6.3 800 800 10−17 46 60 10−16 10−16

PC3 3.15 800 800 10−20 38 42 10−19 10−18

PC4 3.15 800 800 10−34 76 80 10−30 10−32

Table 3: Implementations of the predictor-corrector scheme (Algorithm 1.2)

5 Numerical Experiments

We have implemented the spectral deferred correction scheme (Algorithm 1.1) and
the predictor-corrector method (Algorithm 1.2) for different sets of parameters and
tested their performance. This section discusses the results in three steps. First, it
gives a detailed description of the implemented schemes. Second, it describes the
numerical experiments establishing the schemes’ stability and accuracy properties.
And, finally, the performance of the implemented schemes is demonstrated on two
examples.

The implementation of Algorithm 1.1 and Algorithm 1.2 requires several param-
eter choices. Both, Algorithm 1.1 and Algorithm 1.2, require a discretization of the
complex semi-disk Sr (40). The discretization depends on the radius of Sr, denoted
by r, and on the number of rows and columns of matrix A in (46), denoted by M and
N , respectively. Furthermore, it depends on the accuracy of the factorization (22),
i.e. the operator norm of X in (22), of matrix A (46), which will be denoted by δ.
Finally, the number of points in the resulting discretization will be denoted by n.
The parameters for the computation of the discretization of Sr employed in the im-
plementations discussed in this section are listed in columns 3 − 7 of Table 2 and
Table 3.

Remark 19 In all cases, the parameters M and N (the number of columns and rows
in the matrix A in (46)) have been set to 800, and the calculations were performed
in extended precision (32 digits). This number was determined empirically for the
31-digit case; since it is guaranteed to be sufficient for all lower accuracies and results
in acceptable precomputation times, no further analysis has been performed.

The deferred correction scheme (Algorithm 1.1) computes the integration matrix r
in equation (49) by a minimum norm least squares fit (21). The accuracy of this fit,
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i.e. ε in (21), will be denoted by εD and the number of time steps (the number of
columns of r) will be denoted by k. The computation of r is a precomputation and
has been performed in extended precision (32-digits). The ε in the stopping condition
(Step 4) of Algorithm 1.1 is denoted by εI . In our implementation we perform one
more iteration once this accuracy has been achieved. This section discusses four
different implementations of the deferred correction scheme. The parameters of each
implementation are listed in Table 2.

The predictor-corrector scheme precomputes the predictor and corrector formu-
lae by calculating the minimum norm least squares solution (21) of equations (33)
and (38). The number of time steps in these formulae is denoted by k. The accuracies
of minimum norm least squares solutions, i.e. ε in (21), in the predictor and corrector
case are denoted by εP and εC, respectively. Again, the precomputations have been
performed in extended precision (32 digits). The parameters of the implementations
of the predictor corrector scheme discussed in this section are listed in Table 3. Fur-
thermore, as an example, Table 4 lists the integration and extrapolation vectors p
and c of the scheme PC1, which are obtained during Step 5 of the precomputations
of Algorithm 1.2.

All schemes have been implemented in FORTRAN using the Lahey-Fujitsu FOR-
TRAN 95 compiler with the optimization flag set to -o2. Furthermore, the timings
in Section 5.2 have been measured on an Intel Pentium 4, 3.2 GHz with 2 GB RAM.

5.1 Stability and accuracy properties

This section discusses the stability and accuracy properties of the deferred correction
implementations listed in Table 2 and of the predictor-corrector implementations
listed in Table 3. Specifically, we numerically construct the stability and accuracy
domains of the implemented schemes, which are defined as follows (see also, Sec-
tion 2.2).

Let ϕ̃ denote the numerical solution to equations (6), (7) obtained at an equidis-
tant discretization of [0, 1] with step-size h via one of the deferred correction schemes
listed in Table 2. The stability domain of the scheme is the set of all values λh for
which |ϕ̃(1)| ≤ 1. Furthermore, for a given ε the accuracy domain is defined to be
the set of all λh, for which

√∑k
i=1 |ϕ(ti) − ϕ̃(ti)|2∑k

i=1 |ϕ(ti)|2
< ε, (56)

where ϕ : C 7→ C, z 7→ eλz denotes the analytical solution to (6), (7).
Similar, let ϕ̃ denote the numerical solution to (6), (7) obtained at an equidistant

discretization t1, t2, . . . , tn of [0, 1] of step-size h via one of the predictor corrector
schemes listed in Table 3 with the given starting values ϕ̃(t1), . . . , ϕ̃(tk). The stability
domain of the scheme is the set of all values λh for which |ϕ̃(ti)| ≤ 1 holds for all
i = 1, . . . , n. The latter condition is satisfied if the largest singular value of the
matrix B defined in equation (10) is less than one.
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p c

1 5.6950867745996450× 10−2 2.2410253811826690× 10−2

2 1.2471828303461370× 10−2 2.4633154278189170× 10−2

3 2.8894215936093530× 10−2 2.4336066393818950× 10−2

4 2.4083554081417720× 10−2 2.5149950648957660× 10−2

5 1.7345252832690130× 10−2 2.6486814374770810× 10−2

6 2.8519730870305910× 10−2 2.7234737421409750× 10−2

7 3.6071920983279110× 10−2 2.8198076103084640× 10−2

8 2.8966177271448650× 10−2 3.0096942089726130× 10−2

9 2.2315178842523700× 10−2 3.2486068591206280× 10−2

10 2.9905186291956070× 10−2 3.4641908350425040× 10−2

11 4.4440048810368700× 10−2 3.6616005690985700× 10−2

12 4.9069767898691480× 10−2 3.9130905383232570× 10−2

13 4.0650298910123330× 10−2 4.2655375218158010× 10−2

14 3.4669719074163200× 10−2 4.6832060662658940× 10−2

15 4.5611440916694790× 10−2 5.0917965571713190× 10−2

16 6.6034586913433500× 10−2 5.4758986719566050× 10−2

17 7.2628793760997530× 10−2 5.9165803238876420× 10−2

18 5.9216748674729610× 10−2 6.5051564452405580× 10−2

19 5.6406142035183890× 10−2 7.2079207171644550× 10−2

20 8.9720539463978590× 10−2 7.8700198716440890× 10−2

21 1.0201521115897360× 10−1 8.4738392656218300× 10−2

22 5.4012787919006680× 10−2 9.3679562525744830× 10−2

23 6.0560922579890260× 10−3 3.7583455331903450× 10−4

24 −2.7807762994373060× 10−2 5.8682877788308760× 10−3

25 1.1956698573336000× 10−1 −7.0838293847688030× 10−4

26 −1.4368259417051200× 10−1 1.5022356394256900× 10−2

27 4.0276974389784590× 10−2 1.0788479881224430× 10−2

28 1.4372084163410750× 10−1 6.8440197117482410× 10−3

29 −6.8513418990535620× 10−3 1.4847045428708830× 10−2

30 −1.0944090055846840× 10−1 2.4033339162535270× 10−2

31 −2.0192137915885270× 10−3 2.4650259312919750× 10−2

32 1.4595770836923140× 10−1 2.0743990881309220× 10−2

33 1.2479716863929200× 10−1 2.2174318623909730× 10−2

34 −3.4116614768704690× 10−2 3.1578482298307720× 10−2

35 −1.1144883327854800× 10−1 4.1718536023450730× 10−2

36 1.5733708304525340× 10−2 4.4487205746717590× 10−2

37 2.0002981731434640× 10−1 4.0960879667910390× 10−2

38 1.8114967731355230× 10−1 4.1289524931745020× 10−2

39 −5.8479574699884930× 10−2 5.3143311356800410× 10−2

40 −1.6214192347450070× 10−1 6.9904178604996720× 10−2

41 1.6621388638955530× 10−1 7.4460084585029470× 10−2

42 4.2830160005071360× 10−1 6.3619818896987330× 10−2

43 −3.5531444249916690× 10−1 7.0261382310043240× 10−2

44 3.1221966556634160× 10−1 1.2124592734310950× 10−1

45 - 3.1145960381730385× 10−2

Table 4: The vectors p and c for the scheme PC1
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Figure 2: Stepping scheme for the stability and accuracy domain search

For a given ε, the accuracy domain of the predictor corrector schemes listed in
Table 3 is defined to be the set of all λh, for which

√∑n
i=k+1 |ϕ(ti) − ϕ̃(ti)|2∑n

i=k+1 |ϕ(ti)|2
< ε, (57)

where ϕ : C 7→ C, z 7→ eλz denotes the analytical solution to equations (6), (7).
Since the numerical solution ϕ̃ to (6), (7) is an analytical function of λ for both,

the deferred correction and the predictor corrector schemes, and furthermore, the
analytical solution ϕ to (6), (7) is an analytical function of λ as well, it follows from
the maximum principle (Lemma 8) that the stability and accuracy domains have well-
defined boundaries. In the case of the stability domain the boundary is the set of
points for which |ϕ(1)| equals one. In the case of the accuracy domain the boundary
is the set of points for which the lefthand sides of (56), (57) equals ε.

The numerical construction of the boundaries is illustrated in Figure 2. First,
the secant method (30) is used to search for the boundary point z1 ∈ C along the
imaginary axis in the upper half plane. If the secant method fails to converge, z1 is
computed by bisection (29). Second, a small step is taken from z1 into the negative
half plane along a line orthogonal to the imaginary axis ending at the point z′2.
The secant method is used to search for the next boundary point z2 within a small
interval around z′2 along the line which passes through z′2 and is orthogonal to the line
through z1 and z′2 . As before, if the secant method fails, z2 is computed by bisection.
Next, a small step is taken starting from z2 along the vector from z1 to z2 and ending
at z′3. The whole procedure is repeated until a step crosses the imaginary axis in the
upper half plane.

All stability domains were computed in double precision (16 digits). The accuracy
domains were computed in double precision (16 digits), if ε > 10−12, and in extended
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precision (32 digits) for the cases of smaller ε.
Figure 3 shows the stability domains and the accuracy domains for various ε

for the deferred correction schemes listed in Table 2, while Figures 4 and 5 show
the domains of the predictor-corrector schemes listed in Table 3. In each figure the
accuracy domains are marked by the label “ε = x”, where x stands for the specific
choice of ε for the domain in question. The stability domains are indicated by the
label “S”. For each predictor-corrector scheme the stability domains are shown for
the cases of one, two and three correction steps, labeled by “m = 1”, “m = 2” and
“m = 3”, respectively.

The presented figures and our more detailed numerical experiments motivate the
following observations.

1. The specific choice of the discretization parameters has only a minor effect on the
properties of the resulting deferred correction or predictor-corrector scheme, as
long as M and N are sufficiently large (in our experiments 800) and δ is smaller
than the desired accuracy of the scheme.

2. The stability domains of the deferred correction schemes are quite insensitive
to changes in the parameters k, εD and εI and, hence, the stability domains of
the schemes DC1-DC4 are quite similar.

3. The accuracy domain for a deferred correction scheme tends to be close to
(but slightly smaller than) the one prescribed. For example, in the case of
DC1 with r = 3.15, k = 22 the scheme is constructed to obtain the precision
εD = 10−9 within a semi-circle in the λh-plane with radius 0.287 (since during
the construction h = 2/k ≈ 0.091). Figure 3(a) shows, that as, a matter of fact,
DC1 obtains the precision 10−8 within an approximate semi-circle of radius 0.28,
which corresponds to 22 steps per wavelength.

Consequently, it is straightforward to construct spectral deferred correction
schemes, which obtain a desired precision. The schemes we implemented pro-
duce 8 digits at 22 steps per wavelength (DC1), 16 digits at 30 steps per wave-
length (DC2), 15 digits at 30 steps per wavelength (DC3) and 28 digits at 42
steps per wavelength (DC4).

4. As expected, in the case of the predictor-corrector schemes the corrector step is
significantly more stable than the predictor step. Hence, the stability domains of
the predictor-corrector schemes increase with the number of correction steps m.
Overall, the stability domains of the predictor-corrector schemes are very sen-
sitive to the choice of k, εP and εC . Increasing k, while fixing εP and εC will
increase the stability domain. Consequently, a straightforward procedure for
choosing k is to fix εP and εC at the desired precision and to increase k un-
til the stability domain with m = 1 encompasses the accuracy domain of the
desired ε.

5. Similar to the spectral deferred correction schemes, the accuracy domains of
the predictor-corrector schemes is close to the one prescribed, making it rather
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Figure 3: Stability and accuracy domains of the deferred correction schemes
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straightforward to construct schemes with a specific precision. The schemes we
implemented produce 7 digits at 22 steps per wavelength (PC1), 15 digits at 38
steps per wavelength (PC2), 15 digits at 36 steps per wavelength (PC3) and 28
digits at 66 steps per wavelength.

6. Outside the region where a deferred correction scheme or a predictor-corrector
scheme achieves its maximal accuracy, the obtained precision decays slowly. For
example, at 21 steps per wavelength the scheme DC4 still obtains 15 digits.

5.2 Numerical examples

In this section we illustrate the performance of the presented schemes on two standard
examples for non-stiff problems: the Bessel differential equation and the Jacobi elliptic
functions.

For both examples of this section we have used each of the four predictor-corrector
schemes listed in Table 3 with one corrector step per time step to obtain a numerical
solution at various equidistant discretizations. Each of these schemes requires k (see
Column 7 of Table 3) starting values, which are computed via the corresponding
deferred correction schemes listed in Table 2. Computations have been performed in
double (16-digit) precision (schemes DC1+PC1, DC2+PC2 and DC3+PC3), as well
as in extended (32-digit) precision (schemes DC2+PC2 and DC4+PC4). For each
example we have computed several measures of performance (see Tables 5-12) and
compared them to other numerical ODE solvers (see Figures 8-10 and 13-15).

The benchmark methods we use as a comparison are highly optimized Mathe-
matica implementations of a Runge-Kutta scheme and an Adams-Bashforth-Moulton
predictor-corrector method. The Runge-Kutta scheme corresponds to the Mathemat-
ica function “NDSolve” with the option “Method→ExplicitRungeKutta”. It adap-
tively changes the order of the Runge-Kutta method between 1 and 8. The Adams-
Bashforth-Moulton scheme corresponds to the function “NDSolve” with the option
“Method→Adams”. It changes the order of accuracy adaptively between 1 and 12.
Both methods adaptively control the step-size to achieve a specified accuracy, i.e. the
discretization nodes at which the solution is returned depend on the specific problem.

Remark 20 We have chosen the Mathematica routines because their performance
appears to be representative of state-of-the-art direct ODE solvers. It should be noted,
however, that the additional layers of order and step-size control of the Mathematica
routines, as well as the different compiler environment, make a direct comparison of
the underlying algorithms problematic. The performance comparison should therefore
be seen more as an indication than as an absolute measure of the relative performance.

5.2.1 Bessel differential equation

The Bessel function Jn of order n is analytic in the whole plane and satisfies the
differential equation (see, for example, [1])

x2J ′′

n(x) + x J ′

n(x) + (x2 − n2)Jn(x) = 0. (58)
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The asymptotic behavior of Jn is given by the formula

Jn(x) =

√
2

π x
cos

(
x −

(
n +

1

2

)
π

2

)
+ O

(
1

x1.5

)
, (59)

indicating that for sufficiently large x any Bessel function oscillates with a frequency
of approximately 1.

Reducing equation (58) to the standard form (1) by introducing the auxiliary
variable α = J ′

n yields a system of two coupled equations. We solve this system for
the Bessel function J50 in the interval [50, 15000], where the initial values J50(50) and
J ′

50(50) are given. A graph of J50 on the interval [0, 100] is depicted in Figure 6.
Tables 5, 6, 7 and 8 summarize the results for the schemes DC1+PC1, DC2+PC2,

DC3+PC3 and DC4+PC4, respectively. Each table lists the following measures of
performance. Column 1 shows the number of nodes ns in the equidistant discretization
of [50, 15000], while Column 2 shows the corresponding step-size h. Column 3 lists
the number of evaluations of the right hand side of (58) required by the deferred
correction scheme to compute the k starting values. Furthermore, Column 4 lists
the number of evaluations required by the predictor-corrector scheme to compute the
ns − k remaining values. Column 5 shows the total CPU time in seconds, where
the timings have been measured on an Intel Pentium 4, 3.2 GHz with 2 GB RAM,
as mentioned above. The computations via the schemes DC1+PC1, DC2+PC2 and
DC3+PC3 have been performed in double (16-digit) precision, while the computations
via the scheme DC4+PC4 have been performed in extended (32-digit) precision.

Finally, Column 6 lists the l2-error of the resulting solution, which was computed
as follows. If ϕ denotes the analytical solution of the Bessel differential equation, and
ϕ̃ denotes the numerical solution, obtained at the discretization t1, . . . , tns

, then we
compute the l2-error of the numerical solution in question at the last 200 nodes as

εl2(ϕ̃) =

√∑ns

k=ns−200 |ϕ(tk) − ϕ̃(tk)|2∑ns

k=ns−200 |ϕ(tk)|2
. (60)
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ns h NDC NPC t/sec εl2

38, 000 0.3934 345 75, 956 0.027 1.18 × 10−02

42, 000 0.3560 345 83, 956 0.029 1.67 × 10−03

46, 000 0.3250 280 91, 956 0.031 1.92 × 10−04

50, 000 0.2990 280 99, 956 0.034 2.19 × 10−06

Table 5: Performance of the schemes DC1+PC1 on the Bessel differential equation

ns h nDC nPC t/sec εl2

52, 000 0.2875 1, 490 103, 880 0.078 4.99 × 10−06

56, 000 0.2670 1, 311 111, 880 0.085 5.39 × 10−08

60, 000 0.2492 1, 311 119, 880 0.089 4.27 × 10−09

64, 000 0.2336 1, 311 127, 880 0.096 2.91 × 10−10

68, 000 0.2199 1, 132 135, 880 0.103 5.40 × 10−11

Table 6: Performance of the schemes DC2+PC2 on the Bessel differential equation

ns h nDC nPC t/sec εl2

82, 500 0.1812 665 164, 916 0.092 3.26 × 10−06

82, 550 0.1811 665 165, 016 0.092 5.68 × 10−08

82, 600 0.1810 790 165, 116 0.092 2.33 × 10−10

82, 650 0.1809 665 165, 216 0.092 1.90 × 10−10

82, 700 0.1808 665 165, 316 0.092 9.27 × 10−11

Table 7: Performance of the schemes DC3+PC3 on the Bessel differential equation

ns h nDC nPC t/sec εl2

115, 000 0.1300 2, 707 229, 840 45.9 2.89 × 10−17

120, 000 0.1246 2, 468 239, 840 47.9 6.17 × 10−18

130, 000 0.1150 2, 468 259, 840 51.9 3.27 × 10−19

140, 000 0.1068 2, 468 279, 840 55.9 1.95 × 10−20

150, 000 0.0996 2, 468 299, 840 59.8 1.22 × 10−21

160, 000 0.0934 2, 229 319, 840 63.9 7.48 × 10−23

170, 000 0.0879 2, 229 339, 840 67.7 3.90 × 10−24

180, 000 0.0830 2, 229 359, 840 71.7 1.42 × 10−25

190, 000 0.0786 2, 229 379, 840 75.5 3.63 × 10−27

195, 000 0.0766 2, 229 389, 840 77.5 3.83 × 10−27

Table 8: Performance of the schemes DC4+PC4 on the Bessel differential equation
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Figure 7: Performance comparison for the Bessel equation
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In our numerical calculations the values of ϕ = J50 are computed via a standard
numerical procedure for the evaluation of the Bessel function (see, for example, [1]).

Figures 7(a) and 7(b) illustrate the difference in performance of the schemes
DC1+PC1, DC2+PC2 and DC3+PC3 for solving the Bessel differential equation (58)
of order 50 with double (16-digit) precision. Figure 7(a) shows the total number of
evaluations Neval = nDC + nPC of the right hand side of (1) versus the l2-error εl2

as defined in equation (60), i.e. the obtained accuracy. Figure 7(b) shows the total
CPU time taken by the calculation versus the l2-error εl2 .

Finally, Figures 8-10 show a comparison of the performance of the schemes PC3
and PC4 to the performance of the Mathematica implementations of a Runge-Kutta
scheme and an Adams-Bashforth-Moulton scheme, as described above. Figure 8 shows
the total number of evaluations Neval = nDC +nPC of the right hand side of (1) versus
the achieved accuracy (the l2-error εl2). Figure 9 shows the number of steps ns in the
integration interval versus the achieved accuracy, and Figure 10 shows the total CPU
time t versus the achieved accuracy. All axes in Figures 8-10 use a logarithmic scale
and all the computations for these figures have been performed in extended (32-digit)
precision.

Remark 21 The kinks in the graphs for the Runge-Kutta and Adams schemes are
artifacts due to the adaptive order and step-size control.

Several observations derived from the above results are summarized at the end of
this section.

5.2.2 Jacobi elliptic functions

The Jacobi elliptic functions sn, cn, dn are another commonly used example for a
non-stiff problems (see, for example, [1, 10, 6]). The Jacobi elliptic functions with
parameter m ∈ R satisfy the equations

sn′(t) = cn(t) · dn(t) (61)

cn′(t) = −sn(t) · dn(t) (62)

dn′(t) = −m · sn(t) · cn(t). (63)

We apply our schemes to solving this system on the interval [0, 2000] for the case
m = 0.5 with the initial values sn(0) = 0, cn(0) = 1, dn(0) = 1. The analytical
solution for this case can be expressed as the series’ (see, for example, [1])

sn(t) =
2π√
1/2K

∞∑

n=0

qn+1/2

1 − q2n+1
sin((2n + 1)v), (64)

cn(t) =
2π√
1/2K

∞∑

n=0

qn+1/2

1 + q2n+1
cos((2n + 1)v), (65)

dn(t) =
π

2K
+

2π

K

∞∑

n=1

qn

1 + q2n
cos(2nv), (66)
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where q = e−π, v = πt
2K

and

K =

∫ π/2

0

dθ√
1 − 1

2
sin2 θ

≈ 1.85. (67)

The first 25 terms of the series’ (64), (65), (66) are sufficient to yield the result with
32-digit accuracy. Figure 11 shows a plot of the Jacobi elliptic functions with m = 0.5
in the interval [0, 12]; they are periodic with period 4 K.

Analogous to the previous example, we have used the schemes DC1+PC1, DC2+
PC2, DC3+PC3 and DC4+PC4 listed in Tables 2 and 3 with one corrector step
per time step to obtain a solution to system (61), (62), (63) at various equidistant
discretization of the interval [0, 2000]. The computations for the schemes DC1+PC1,
DC2+PC2, DC3+PC3 have been performed in double (16-digit) precision, while the
computations for the scheme DC4+PC4 have been performed in extended (32-digit)
precision. The results of these tests are summarized in Tables 10-12.

As for the previous example, Column 1 of each table lists the number of nodes ns

in the equidistant discretization of the integration interval, while Column 2 shows the
resulting step-size h; Column 3 lists the number of evaluations of the right hand side
of the system (61), (62), (63) required by the deferred correction scheme to compute
the k required starting values, and Column 4 lists the number of evaluations required
by the predictor-corrector scheme to compute the ns − k remaining values.

Column 5 lists the average l2-error, which was computed as follows. If ϕ denotes
the analytical solution of any of the functions sn, cn or dn, obtained via series (64),
(65) or (66), and ϕ̃ denotes the corresponding numerical solution, obtained at the
discretization t1, . . . , tns

, then the l2-error of this numerical solution is given by equa-
tion (60). The values of ϕ are computed in extended precision (32-digits) using the 25
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first terms of the series’ (64), (65), (66). In all of our computations the errors εl2(sn),
εl2(cn), εl2(dn) were of approximately the same size. In Tables 10-12, Column 5
reports the average

ε̄l2 =
1

3
(εl2(sn) + εl2(cn) + εl2(dn)). (68)

Figure 12 illustrates graphically the difference in the number of required func-
tion evaluations of the schemes DC1+PC1, DC2+PC2, DC3+PC3, DC4+PC4 for
various accuracies on a logarithmic scale. As for the tables, the results in this fig-
ure for the schemes DC1+PC1, DC2+PC2 and DC3+PC3 have been computed in
double (16-digit) precision, while the results for the scheme DC4+PC4 have been
computed in extended (32-digit) precision. Finally, Figures 13-15 show a peformance
comparison between the scheme DC4+PC4 and the Mathematica implementations of
a Runge-Kutta scheme and an Adams-Bashforth-Moulton scheme. Figure 13 shows
the number of evaluations of the right hand side of system (61), (62), (63) versus the
achieved accuracy (the average l2-error ε̄l2). Figure 14 shows the number of taken
steps ns versus the achieved accuracy and Figure 15 shows the total CPU time versus
the achieved accuracy. All computations for Figures 13-15 have been performed in
extended (32-digit) precsion and the axes of Figures 13-15 use logarithmic scales.

5.2.3 Observations

The numerical experiments reported in the preceding two subsections (as well as other
numerical experiments we have performed) motivate the following observations.

1. For any of the predictor-corrector schemes (with a fixed number of correction
steps) there exists a problem-dependend range of step-sizes for which the scheme
behaves similiar to a classically convergent scheme: any decrease in step-size h
will increase the accuracy. However, once the step-size h is sufficiently small,
further decreasing the step-size will not result in further accuracy improvements.
On the other hand, if the step-size becomes too large, the scheme will become
unstable. For example, in the Bessel case the scheme PC2 becomes stable at the
step-sizes h < 0.29 and decreasing the step-size from h = 0.29 to h = 0.22 will
will improve the accuracy from 6 digits to 11 digits. The scheme PC3 becomes
stable at h = 0.18, where it achieves 10 digits and further decreases in the
step-size h will not improve that accuracy. If the scheme PC3 is run with two
correction steps, its stability region will increase and it will achieve reasonable
accuracies for step-sizes bigger than h = 0.18.

2. The performance of the predictor-corrector schemes in the examples above could
have been predicted from the accuracy and stability domains shown in Figures 4
and 5. For example, in the Bessel case where the maximal frequency λ ≈ 1
Figure 4(c) shows that the scheme PC2 with 1 correction becomes stable for
steplengths h < 0.3. Furthermore, Figure 4(d) shows that at h ≈ 0.3 the
scheme will achieve 8 digits and at h ≈ 0.22 it will achieve 15 digits. The fact
that Table 6 shows slightly lower accuracies is due to round-off errors, which
accumulated over the long integration interval.
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ns h nDC nPC t/sec ε̄l2

8, 000 0.2500 670 15, 956 0.0069 1.59 × 10−01

10, 000 0.2000 540 19, 956 0.0080 2.51 × 10−02

12, 000 0.1667 410 23, 956 0.0094 1.60 × 10−02

14, 000 0.1429 345 27, 956 0.0108 1.88 × 10−03

16, 000 0.1250 345 31, 956 0.0126 3.67 × 10−04

18, 000 0.1111 280 35, 956 0.0140 2.31 × 10−04

Table 9: Performance of the schemes DC1+PC1 on the Jacobi differential equations

ns h nDC nPC t/sec ε̄l2

10, 000 0.2000 3, 638 19, 880 0.019 3.90 × 10−01

14, 000 0.1429 2, 564 27, 880 0.025 3.48 × 10−02

18, 000 0.1111 2, 206 35, 880 0.033 4.96 × 10−03

22, 000 0.0909 1, 848 43, 880 0.039 6.51 × 10−04

26, 000 0.0769 1, 490 51, 880 0.047 3.32 × 10−05

30, 000 0.0667 1, 132 59, 880 0.053 7.94 × 10−07

34, 000 0.0588 953 67, 880 0.060 2.17 × 10−08

38, 000 0.0526 953 75, 880 0.068 5.96 × 10−10

42, 000 0.0476 953 83, 880 0.075 4.86 × 10−12

46, 000 0.0435 953 91, 880 0.082 2.13 × 10−12

Table 10: Performance of the schemes DC2+PC2 on the Jacobi differential equations

ns h nDC nPC t/sec ε̄l2

16, 000 0.1250 1, 415 31, 916 0.021 5.04 × 10−03

20, 000 0.1000 1, 040 39, 916 0.026 2.39 × 10−06

24, 000 0.0833 790 47, 916 0.032 7.49 × 10−08

28, 000 0.0714 665 55, 916 0.036 6.31 × 10−09

32, 000 0.0625 665 63, 916 0.042 1.49 × 10−09

36, 000 0.0556 665 71, 916 0.047 3.11 × 10−11

40, 000 0.0500 665 79, 916 0.052 1.73 × 10−11

Table 11: Performance of the schemes DC3+PC3 on the Jacobi differential equations

33



ns h nDC nPC t/sec ε̄l2

20, 000 0.1000 6292 39, 840 12.1 1.44 × 10−02

40, 000 0.0500 3424 79, 840 23.7 7.02 × 10−11

60, 000 0.0333 2229 119, 840 35.4 1.07 × 10−15

80, 000 0.0250 2229 159, 840 47.1 5.37 × 10−19

100, 000 0.0200 1990 199, 840 58.8 6.76 × 10−22

120, 000 0.0167 1990 239, 840 70.5 3.23 × 10−24

140, 000 0.0143 1990 279, 840 82.3 9.05 × 10−26

160, 000 0.0125 1751 319, 840 94.2 5.15 × 10−27

180, 000 0.0111 1751 359, 840 106 5.73 × 10−27

Table 12: Performance of the schemes DC4+PC4 on the Jacobi differential equations
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Figure 15: Computation times for the Jacobi elliptic functions

3. The convergence rate of the predictor-corrector schemes of this paper is signifin-
cantly higher than the convergence rate of a high-order Runge-Kutta method
or a high-order Adams predictor corrector method (See Figures 8-10 and 13-15,
please note that the scales are logarithmic). In terms of the number of steps the
Runge-Kutta scheme does best for low accuracies; for higher accuracies (12 dig-
its or more) the schemes of this paper become superior. In terms of the number
of RHS evaluations and the actual timings our schemes are superior as soon
as 5 digits or more are required.

6 Conclusions and future work

We have presented a new class of predictor-corrector schemes, along with spectral
deferred correction schemes for their initialization. Our experiments indicate that on
a wide range of problems the schemes of this paper outperform serveral state-of-the-
art ODE solvers, particularly when high accuracy is required.

This paper discusses explicit schemes, which are applicable to non-stiff problems.
Extension of this work to stiff environments is in progress, and will be reported at a
later date.
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