Yale University
Department of Computer Science

Possibility and Impossibility Results
in a Shared Memory Environment

Gadi Taubenfeld” Shlomo ‘Morant

YALEU/DCS/TR-708
May 1989

"Supported in part by the National Science Foundation under grant CCR-
8405478, by the Hebrew Technical Institute scholarship, and by the Guttwirth
Fellowship.

"'Supported in part by Technion V.P.R. Funds - Wellner Research Fund, and |
by the Foundation for Research in Electronics, Computers and Communications,
adm.nistrated by the Israel Academy of Sciences and Humanities.

Possibility and Impossibility Results
in a Shared Memory Environment

Gadi Taubenfeld* Shlomo Morant

Computer Science Department Computer Science Department
Yale University Technion, Haifa 32000
New Haven, CT 06520 Israel
Abstract

We focus on unreliable asynchronous shared memory model which support only
atomic read and write operations. For such a model we provide a necessary condition
for the solvability of problems in the precence of multiple undetectable crash failures.
Also, by using game-theoretical notions, a necessary and sufficient condition is provided,
for the solvability of problems in the precence of multiple undetectable initial failures

(i.e., processes may fail only prior to the execution).

Our results imply that many problems such as consensus, choosing é,lea.der, ranking,
matching and sorting are unsolvable in the presence of a single crash failure, and that
variants of these problems are solvable in the presence of ¢t — 1 crash failures but not in

the presence of t crash failures.

We show that a shared memory model simulate various message passing models, and
hence our impossibility results hold also for those message passing models. Our results
extend and generalize previously known impossibility results for various asynchronous

models.

*Supported in part by the National Science Foundation under grant CCR-8405478, by the Hebrew Tech-

nical Institute scholarship, and by the Guttwirth Fellowship.

'Supported in part by Technion V.P.R. Funds - Wellner Research Fund, and by the Foundation for
Research in Electronics, Computers and Communications, administrated by the Israel Academy of Sciences

and Humanities.

1 Introduction

This paper investigates the possibility and impossibility of solving certain problems in an
unreliable asynchronous shared memory system which supports only atomic read and write
operations. The faulty behaviours we consider are undetectable initial failures and unde-
tectable crash failures. Initial failures are a very weak type of failures where it is assumed
that processes may fail only prior to the execution and that no event can happen on a pro-
cess after it fails. That is, once a process starts operating it is guaranteed that it will never
fail. Initial failures are a special case of crash (fail stop) failures in which a process may
become faulty at any time during an execution. Obviously, if a protocol cannot tolerate
initial failures then it cannot tolerate crash failures but not necessarily vice versa.

There has been extensive investigation about the nature of asynchronous message pass-
ing systems where undetectable crash failures may occur. The work in [FLP] proves the
nonexistence of a (nontrivial) consensus protocols that can tolerate a single crash failure, for
a completely asynchronous message passing system. Various extensions of this fundamental
result, also for a single crash failure, prove the impossibility of other problems in the same
model [MW, Tal, BMZ]. Other works study the possibility of solving variety of problems in
asynchronous systems with numerous crash failures, and in several message passing models
[ABDKPR,BW,DDS,DLS,TKM].

In [DDS], Dolev, Dwork and Stockmeyer studied the consensus problem in partially syn-
chronous message passing models. They showed that by changing the broadcast primitives
it is possible to solve the consensus problem in the presence of t — 1 crash failures but not in
the presence of ¢ crash failures. They also identify five critical parameters that may effect
the possibility of achieving consensus. By varying these parameters they defined 32 models
and found the maximum resiliency for each one of them.

In [LA] an impossibility result for the binary consensus problem is shown for an asyn-
chronous shared memory system, such as we consider here, where a single processes may
(crash) fail. In [Abr,CIL,Her] a weaker result than that of [LA] proves the impossibility of
the consensus problem in the presence of n — 1 crash failures. This last impossibility result
is used in [Her] to derive a hierarchy of atomic operations (objects) such that no operation
at one level has a wait-free (i.e., (n-1)-tesilient) implementation using only operation from
lower levels. Systems that support only atomic read and write operations are shown to be
at the bottom of that hierarchy. In particular, it is impossible to implement using atomic
read and write operations a common data types such as sets, queues, stacks, priority queues,
lists and most synchronization primitives.

Initial failures may occur in situations such as recovery from a breakdown of a network.
Necessary and sufficient conditions are provided in [TKM2], for solving problems in asyn-
chronous message passing systems where up to half of the processes may fail prior to the
execution, with and without a termination requirement. Several protocols were designed to
properly operate in a message passing model where initial failures may occur. A protocol
that solves the consensus problem which can tolerate initial failures of up to (not including)
half of the processes was presented in [FLP]. Protocols for leader election and spanning tree
construction which can also tolerate initial failures of up to half of the processes were de-
signed in [BKWZ]. As for shared memory model, a leader election protocol that can tolerate
up to m — 1 initial failure is presented in [Ta2]. Recently, a complete combinatorial char-
acterizations, for the solvability of problems in asynchronous shared memory and message

passing models where crash failures may occur using random protocols was given in [ChM].

A crucial assumption in most of the impossibility results for a single crash failure,
is that the set of input vectors is “large enough”. (Define an input vector to be a vector
@ = (ay,...,a,), where a; is the input value of process p;.) To demonstrate this fact, consider
the consensus problem where only two input vectors are possible: either all processes read
as input the value "zero” or all processes read as input the value "one”. It is easy to see that
under this restriction, the problem can be solved assuming any number of process failures.
(Each process outputs its input value.)

We concentrate, in this paper, on an asynchronous shared memory model and proved
possibility and impossibility results within that model. For every t < n, where n is the
number of processes, we define a class of problems that are unsolvable in such a system in
the presence of ¢ crash failures. This implies a (necessary) condition for solving a problem
in such an unreliable system. Also, we provide a necessary and sufficient conditions for
solving problems in an asynchronous shared memory model where only undetectable initial
failures may occur. Similar condition for initial failures in a message passing model appears
in [TKM2]. However, unlike in [TKM2] we do not need to assume that only up to half of
the processes may fail. Our results extend and generalize previously known impossibility
results for asynchronous systems.

It appears that the necessary and sufficient condition which we give here for initial
failures assuming only deterministic protocols, is the same as the complete characterization
which is given in [ChM] for crash failures assuming randomize protocols. An interesting
result that follows from the similarities between these characterizations is that in a shared
memory model which support only atomic read and write operations, a problem can be
solved by a deterministic protocol that can tolerate up to t initial failures if and only if the
problem can be solved by a randomize protocol that can tolerate up to t crash failures.

We show that many problems such as consensus, choosing a leader, ranking, matching
and sorting are unsolvable (in a nontrivial way) in the presence of a single crash failure,
- and that, for any t, there are variants of these problems that are solvable in the presence of
t — 1 crash failures but not in the presence of ¢ crash failures. An example is the consensus
problem with the assumption that for each input vector, | #1 — #0 |> ¢. (i.e., the absolute
difference between the number of ones and the number of zeros is at least t.) Following is a
simple protocol that solves this problem assuming up to t — 1 crash failures. Each process
sends its input value to everybody, waits until it gets n — ¢ + 1 inputs, and decide 1 (0) iff
their sum is more (less) then (n — t + 1)/2. The fact that | #1 — #0 |> t guarantees that
all the processes will decide the same.

We show that a shared memory model can simulate several of the message passing
models which are considered in [DDS], and hence all our impossibility results hold also
for those message passing models. In particular, the impossibility results for crash failures
presented in this paper implies similar results, for an asynchronous message passing model,
which appear in [TKM1].

The proof of our result, for the crash failures case, is constructed as follows. We first
identify a class of protocols that cannot tolerate the (crash) failure of ¢ processes, when
operating in an asynchronous shared memory system. Then, we identify those problems
which force every protocol which solves them to belong to the above class of protocols.
Hence, these problems can not be solved in an asynchronous system where t processes may

fail.

The class of protocols for which we prove the impossibility result (for crash failures)
is characterized by two requirements on the possible input and decision (output) values of
each member in the class. For the input, it is required that (for each protocol) there exists
a group of at least n — t processes and there exist input values such that after all the n — ¢
processes in the group read these input values, the eventual decision value of at least one of
them is still not uniquely determined. The requirement for the decision values is that the
decision value of any (single) process, say p;, is uniquely determined by the input values of
all the processes together with the decision values of all the processes except p;.

In order to prove the above result for protocols, we use an axiomatic approach for proving
properties of protocols (and problems) which is due to Chandy and Misra [CM1,CM2]. The
idea is to capture the main features of the model and the features of the class of protocols
for which one wants to prove the result by a set of axioms, and to show that the result
follows from the axioms. We will present five axioms capturing the nature of asynchronous
shared memory systems which support only atomic read and write operations, a single
axiom expressing the fact that at most ¢ processes may crash fail, and two axioms defining
the class of protocols for which we want to prove the impossibility result (for crash failures).
We then show that no protocol in the class can tolerate t faulty processes, by showing that
the set of the eight axioms is inconsistent.

The rest of the paper is organized as follows. In Section 2 the notions of a problem
and a protocol are defined. In Section 3 the properties of asynchronous shared memory
systems are stated. In Section 4 the notions of dependency and robustness are introduced.
In Section 5, a special class of protocols is identified and it is proved that all its members
cannot tolerate ¢ crash failures. We also show that any non-trivial fault-tolerant protocol
has to have some special property. In Section 6, we identify the class of problems that
can not be solved in the presence of t crash failures. In Section 7, we give a complete
characterization for the solvability of problems in the presence of initial failures. In section
8, we show that a shared memory model can simulate various message passing models.
Some concluding remarks are given in Section 9.

2 Definitions and Basic Notations

Let I and D be sets of input values and decision (output) values, respectively. Let n be the
number of processes, and let I and D be subsets of I™ and D", respectively. A problem
T is a mapping T : T—2P—{0} which maps each n-tuple in T to subsets of n-tuples in D.
We call the vectors @ = (ay,...,an) where @ € I, and d = (dy,...,d,) where d € D, the
input vector and decision vector respectively, and say that a; (resp. d;) is the input (resp.
decision) value of process p;.

Following are some examples of problems, which we will also refer to later in the paper
(the input vectors for all problems are from I™ for an arbitrary set I): (1) The permutation
problem, where each process p;(i = 1..n) decides on a value v; from D, D = 1,...,n, and
i # j implies v; # vj; (2) The transaction commitment problem, where I = D = {0,1}, and
all processes are to decide on “1” if the input of each process is “1”, otherwise all processes
are to decide on “0”; (3) The consensus problem, where all processes are to decide on
the same value from an arbitrary set D; (4) The (leader) election problem, where exactly

one process is to decide on a distinguished value from an arbitrary set D; and (5) The
sorting problem, where all processes have input values and each process p; decides on a
value identical to the i*» smallest input value.

A protocol P = (C, N, R) consists of a nonempty set C of computations, a set of process
id’s (abbv. processes) N = {pi1,...,pn}, and a (possibly infinite) set R of registers. A
computation is a finite sequence of events. There are four types of events. A read event,
denoted ([read, r,v),p;), represents reading a value v from register r by process p;. A write
event, denoted ([write, r,v],p;), represents writing a value v into register r by process p;.
An input event, denoted ([input, a), p;), represents reading an input value a by process p;.
A decide event, denoted ([decide, d], p;), represents deciding on a value d by process p;.

One may also consider an internal event in which a process executes some other local
computation; however nowhere in this paper do we need to refer to such an event. We
use the notation (e, p;) to denote an arbitrary event, which may be an instance of any of
the above types of events. For an event (e,p;) we say that it occurred on process p;. An
event is in a computation iff it is one of the events in the sequence which comprises the
computation.

The value of a register r at a computation z is the last value that was written into
that register. We use L to denote the undefined value. A value of a register is undefined
as long as no value was written into that register. Formally, we define, using pascal-like
notations, the function value which receives as parameters a computation and a register and
returns the value of that register in the computation. Let (z;y) be the sequence obtained
by concatenating the sequences z and y, and let null denotes the empty computation.

function value (r:register, z: computation): value;
begin
if z = null then value :=1
else if z = (z';(e,p;)) /* for some computation z’ and event (e, p;)
then if (e, p;) = ([write,r,v],p;) then value:=v [* for some write event into 7
else value := value(r,z’)
end.

It is convenient to think of R as the set of shared memory registers, and to assume that
each process may have in addition local variables that only it can read from and write to.
In this work we do not need the notion of local variables.

In the rest of this paper Q denotes a set of processes where Q C N. The symbols z,y, 2
denote computations. An ertension of a computation z is a computation of which z is a
prefix. For an extension y of z, (y — z) denotes the suffix of y obtained by removing z from
y. For any z and p;, let z; be the subsequence of z containing all events in z which are on
process p;. Computation y includes computation z iff z; is a prefix of y; for all p;.

Definition: Computations z and y are equivalent w.r.t. p;, denoted by z L y, iff
i = ¥i.
Note that the relation ~ is an equivalence relation. Also, for z a prefix of y, there is an

event on p; in (y — z) iff ~(z & y). For a computation z and process p;, we define the
extensions of z which only have events on p;.

Definition: Eztensions(z,i) = {y | y is an extension of z and z) y for all j # i}.

4

Process p; reads input a in a computation z iff the input event ([input,a],p;) is in z.
Process p; decides on d in a computation z iff the decision event ([decide,d),p;) is in z.
A computation z is i-input iff for some value a, p; reads input a in z. We assume that a
process may read and decide only once.

A protocol P = (C, N, R) solves a problem T : I-»2D—{@} iff (1) For every input vector
@ € I, and for every decision vector de T(J), there exists a computation z € C such
that in z processes py,...,p, read input values ay,...,a, and decide on d,...,d,; (2) For every
computation z € C and @ € I if in z processes py,...,p, read input values ay,...,a, and decide
on dy,...,d,, then d € T(&); and (3) In any “sufficiently long” computation on input in I all
processes decide (this last requirement is to be defined precisely later). It is also possible
to define solvability so that (1) is replaced by the requirement that for each input vector
@ € I, there exists a computation with @ as input. In such a case we will say that a protocol
P minimally solves a problem T. The difference between the two is that in the former case
every possible decision vector is the result of some computation, while in the later this is
not so. It will be shown in section 6 that it is possible to prove the impossibility result for
the former definition of solvability, and then to derive from it a result for the latter one.

We define when a set of input eventsis consistent. Intuitively, this is the case when all the
input events in the set can occur in the same computation. Let P be a protocol that solves
T : I-2P—{9}. For any input vector @ € I, the set {([input, a;], 1) ,..., ([input, as],ps)} is
a consistent set of input events (w.r.t T); and any subset of a consistent set of input events
is also consistent. For simplicity we consider here only computations whose set of input
events is consistent. Fix a protocol, P = (C, N, R), that solves a problem T : [-2°—{0}.

3 Shared Memory Model

In this section we characterize an asynchronous shared memory model which supports
atomic read and write operations.

Definition: An asynchronous read-write protocol (abbv. asynchronous protocol) is a
protocol that satisfies the following properties,

P1: Every prefix of a computation is a computation.

P2: Let (z;(e,p;)) be a computation where (e, p;) is either a write event or a decision event,
and let y be a computation such that z ~ y, then (y; (e, p;)) is a computation.

P3: For any computation z, process p; and input value a, if the set of all input events in z
together with ([input, a],p;) is consistent then exists y in Extensions(z,1), such that

([¢nput, a],p;) appears in y.

P4: For computations z and y and process p;, if (z; ([read, 7, v], p;)) is a computation, and
i . .
z ~ y then (y;([read,r,value(r,y)],p;)) is a computation.

P5: For a computation z and an event ([read, r,v], p;), the sequence (z; ([read,r,v],p;)) is
a computation only if v = value(r,z).

Property P2 means that if some write event or decision event can happen at a process p;
at some point in a computation, then this event can happen at a later point, provided that

p; has taken no steps between the two points. Property P3 means that a process which
has not yet read an input value may read any of the input values not conflicting with those
already read by other processes. For example, if we assume that the input values different
processes may read in the same computation are distinct, then a process may read any
value which has not already been read by other processes. Property P4 means that if a
process is “ready to read” a value from some register then an event on some other process
cannot prevent this process from reading some value from that register (although it may
prevent this process from reading a specific value which it could read previously). Property
P5 means that it is possible to read only the last value that is written into a register.

We will consider in this paper only deterministic protocols which mean that at any point
in a computation a process may perform at most one non-input action; in case the current
action of a process is reading an input then the process may read one of several possible
input values. Le., if (z; (e, p;)) and (z; (¢/, p;)) are computations and both (e, p;) and (¢, p;)
are not input events then (e, p;) = (¢, p;). This assumption does not restrict the generality
of the results which will hold also for non-deterministic protocols.

We say that process p; is enable at computation z iff there exists an event (e, p;) such
that (z;(e,p;)) is a computation. It follows from the above five properties that an enable
process (in some computation) cannot become not enable as a result of an event on some
other process.

4 Classes of Protocols

In this section we identify two classes of protocols, called dependent(t) protocols, and
robust(t) protocols. In a dependent(t) protocol every process tries to decide on a certain
value, and additional conditions hold, to be defined below. A decision is irreversible, that
is, once a process decides on a value, the decision value cannot be changed. The important
features of dependent(t) protocols are the requirements on the possible input and decision
(output) values. For the input, it is required that there exists a group of at least n —¢ pro-
cesses and there exist input values such that after all the n — t processes read these input
values, the eventual decision value of at least one of them is still not uniquely determined.
Compared with the usual requirement in other works where the above group should include
all the processes (i.e., be of size n), this requirement is very weak. The requirement for the
decision values is that the decision value of any (single) process p; is uniquely determined
by the input values of all the processes together with the decision values of all the processes
except p;.

Typical examples of dependent(t) protocols are the protocols that solve any of the prob-
lems described in the Introduction, and Section 2, where various assumptions, depending
on the value of ¢, are made about the set of input vectors for each of these problems. Hav-
ing that class formally defined, we prove in the next section that for every 1 <t < 7, no
protocol in the class of dependent(t) protocols can tolerate t process failures.

The following definition generalizes the notion of valency of a computation from [FLP]. Let
d be a possible decision value and let U, W be sets of values.

Definition: A computation z is (i, W)-valent iff (1) for every d € W, there is an
extension of z in which p; decides on d, and (2) for every d ¢ W, there is no extension of z
in which p; decides on d.

A computation is i-univalent iff it is (i,{d})-valent for some (single) value d. It is
i-multivalent otherwise. Note that an (i,0)-valent computation is i-multivalent, however
it will follow from the sequel that no computation in a protocol studied here is (z,0)-
valent. A process may become i-univalent (i.e., its ultimate decision value can be uniquely
determined) as a consequence of some other process’ action. That is, it is possible to have

two computations z and y such that z ~ y, yet z is i-univalent while y is i-multivalent.
Also, for any computation r and any process p;, if p; has decided on some value then z is
i-univalent but not vice versa. Note that for any computation z and process p; there exists
a single set W such that z is (i, W)-valent.

Definition: Let y and y’ be (i, W)-valent and (i, W’)-valent, respectively. Then y and
y' are i-compatible iff W n W’ # 0. They are compatible iff they are i-compatible for all
t=1.n.
Using the above notions we can now characterize dependent(t) protocols formally. Two
requirements are given, and a protocol is defined to be a dependent(t) protocol if it satisfies
these requirements.

Definition: A dependent(t) protocol is a protocol that satisfies the requirements:

D1(t): There exists a computation z, set of processes Q and process p; € @, such that
|Q| > n —t, for every p; € Q z is j-input, and z is i-multivalent. (non-triviality.)

D2: For any two computations z and y which are both i-univalent, if each process read the
same input value in both z and y, and if each processes p; # p; decide on the same
value in both z and y then z and y are i-compatible. (dependency.)

Requirement D1(t) generalizes a requirement which appears in [FLP, Lemma 2], which
says that a non trivial consensus protocol must has a bivalent initial configuration. As we
explain latter in section 7, any problem that can be solved by a protocol that does not
satisfies D1(t), has also the following trivial solution. Each process sends its input value to
all other processes, then it waits until it receives n — ¢ values; assuming it does not satisfies
D1(t), it has now enough information to decide. Notice that D1(t) implies D1(¢ +1). It is
not difficult to see why any protocol that solves the variant of the consensus problem, with
the assumption that for each input vector |#1 — #0| > ¢, must satisfy D1(t). The proof of
that fact is similar to the proof of Lemma 2 in [FLP].

Requirement D2 means that an external observer who knows all the input values and all
decision values except one can always determine the missing decision value. All protocols
which solve the problems mentioned in the Introduction and in Section 2 satisfy D2.

Next we identify the class of protocols which can tolerate ¢ crash failures (0 < t < n).
A crash failure of a process means that no subsequent event can happen on this process.
Since we want to prove an impossibility result, it follows that if the result holds for crash
failures it also holds for any stronger type of failure. Informally, a protocol is robust(t) if,
in spite of a failure of any group of t processes at any point in the computation, each of the
remaining processes eventually decides on some value.

In order to define robust(t) protocols formally, we need the concept of a Q-fair sequence.
Let Q be a set of processes, a Q-fair sequence w.r.t. a given protocol is a (possibly infinite)
sequence of events, where: (1) Each finite prefix of the sequence is a computation; (2) For
an enable process p; € Q at some prefix z, there exists another prefix y that extends z such

that there is an event (e,p;) in (y — z); It follows from P5 and requirement (1) that the
sequence (z; ([read, r,v),px)) is a prefix of a Q—fair sequence only if v = value(r,z).

A Q-fair sequence captures the intuition of an execution where all enable processes which
belong to @ can proceed. Notice that a Q-fair sequence may be infinite and in such a case
it is not a computation. It follows from P1 — P5 that, in asynchronous protocols, for every
set of processes Q, any computation is a prefix of a Q-fair sequence.

Definition: A robust(t) protocol (0 < t < n) is a protocol that satisfies the requirement:

R(t): For every set Q of processes where |Q| > n — t, every Q-fair sequence has a finite
prefix in which any p; € Q decides on some value.

Note that the class of robust(t + 1) protocols is included in the class of robust(t) protocols.
Furthermore, the inclusion is strict since there are protocols which are robust(t) but not
robust(¢ + 1). Requirement R(0) means that in any “long enough” execution of a protocol,
if no process fails then each process (eventually) decides on a value. In fact, R(0) formally
expresses requirement (3) from the definition of solves given in Section 2. Thus, any protocol
that solves a problem should (by definition) satisfy R(0). From R(0) and from the fact that
every computation is a prefix of some N-fair sequence it follows that (in asynchronous
robust(0) protocols) no computation is (i,®)-valent.

In order to define robust(t) protocols we did not have to define the notion of a faulty
process. We concentrated on the role of the correct processes in order to capture the nature
of robustness. By using the notion of a Q-fair sequence we have described an execution
in which all processes in Q are correct, and only for those processes we required that they
eventually decide. We may say that process p; ¢ Q is faulty in some Q-fair sequence if
that sequence is not a (QU{p;})-fair sequence. There is a way to define a fault tolerant
protocol by first defining the notion of a faulty process as done in [Had]. This involves
the introduction of an additional type of event which signals the fact that a process is
faulty. Our approach seems to be more suitable for the model under consideration, since
it captures the fact that in systems where a failure of a process is not detectable, a faulty
process cannot be distinguished from a process that operates very slowly. It also simplifies
the presentation and the proofs.

Lemma 1: In any asynchronous robust(1) protocol, for any two computations z and y
and for any process p;, if ziy for any j # i, and value(r,z) = value(r,y) for any r € R,
then z and y are j-compatible for any j # .

Proof: It follows from P1— P5 that the computation z is a prefix of some (N —{p;})-fair
sequence, and there are no events on p; in that sequence after z. Apply requirement R(1)
to the above sequence to conclude that there exists an extension z of z such that z~z and
any p; # p; has decided in z. From P1 — P4, it follows that w = (y;(2 — z)) is also a
computation. Clearly, for any i # j, z and w are j-compatible. Hence also, for any i # j, z
and y are j-compatible. o

We postpone the formal definition of initial failures to Section 7. In the next two sections
we consider only crash failures.

5 Impossibility Results for Protocols

In the previous sections we have defined several classes of protocols in the shared memory
model which supports only atomic read and write operations. In this section we investigatea
class which is the intersection of all the previous classes. This class is defined by the entire
eight axioms and is called the class of RObust(t) Asynchronous Dependent(t) Protocols
(abbv. ROAD(t) P’s), where 1 < t < n. We prove in this section that the class of ROAD(%)
P’s is empty. Put another way, we show that there does not exist any ROAD(t) P.

The following lemma shows that for any ROAD(t) P, every two computations which
differ only by the events on a single process p; and in which the values of all registers are
the same are compatible.

Lemma 2: In any ROAD(t) P, for any two computations z and y and any process p;,

if, (1) p; did not read different input values in z and y, (2) zdy for any j # i, and (3)
value(r, z) = value(r,y) for any r € R, then z and y are compatible.

Proof: Tt follows from P1— P5 that the computation z is a prefix of some (N —{p;})-fair
sequence, and there are no events on p; in that sequence after z. Apply requirement R(1)

to the above sequence to conclude that there exists an extension 2’ of z such that T2
and for any p; # p;, p; has decided in z/. By P3 there is an extension z of 2’ in which

all processes except maybe p; read their input and z ~ 2’. From P1 — P4, it follows that
w =< y;(z —) > is also a computation. By P1 — P5 and R(0), there are two i-univalent
extensions 7 and W of z and w respectively, in which p; read the same input value. From
D2, 3 and b are compatible and hence also z and y are compatible. O

THEOREM 1: In any ROAD(t) P, for any process p; and any j-multivalent computa-
tion z, if = is i-input and p; is enable at z then there exists a j-multivalent extension £ of =

such that =(z ~ £).

Proof: To prove the theorem we first assume to the contrary: for some process p; and
some j-multivalent computation z where z is i-input and p; is enable at z, there is no
j-multivalent extension # of z such that ~(z ~). Then we show that this leads to a
contradiction. It follows from the assumption that for any extension m of z such that p; is
enable at m, the unique extension of m by a single event on p; is j-univalent. Let us denote
that j-univalent extension of m by ®(m).

Since z is j-multivalent, there exists an extension z of z (2 # z) such that z and ®(z) are

not j-compatible. Let z' be the longest prefix of z such that z ~ 2’. From the assumption
it follows that ®(z) and ®(z') are not j-compatible. Consider the extensions of z which are
also prefixes of 2’. Since ®(z) and ®(2’) are not j-compatible, there must exist extensions y
and ¢’ (of z) such that ®(y’) and ®(y) are not j-compatible, and y is a one event extension
of y'. Therefore, y =< y'; (e, pr) > for some event (e, py) where p; # pi. For later reference
we denote w =< ®(y’); (e,pr) >. We do not claim at this point that w is a computation.
(See Figure 1.) There are four possible cases.

Case 1: (e,py) is not a write event. By P2 and P4, (®(y') — ¥') = (®(y) — y) and
hence for any px # pn, ®(¥') L ®(y). Also, the values of all registers are the same in both
&(y) and ®(y’), and obviously p, does not read different input values in ®(y’) and ®(y).

By Lemma 2, ®(y’) and ®(y) should be compatible. Hence, we reach a contradiction.
At this point we know that (e, p) is a write event and (from P2) that w is a computation.

®(z)

Figure 1.

Case 2: (®(y’') - ¢’) is not a write event. For every p; # pi, w £ &(y). Also, the values
of all registers are the same in both w and ®(y). Since y is i-input obviously p; reads the
same input values in w and &(y). By Lemma 2, w and ®(y) are compatible. Since, w is
an extension of ®(y’) then ®(y’) and &(y) should be compatible. Hence again we reach a
contradiction.

Now we know that for some registers r; and r;, and values v; and vy, (®(v') — ¥') =
([writev T1, vl]spi)’ and (y - y,) = ([write’ T2y "2], ph)'

Case 3: r; # r3. Since the two write events on p; and p, are independent, the values of
all registers are the same in w and ®(y). Also, for every process pi, w 3 ®(y). This leads
to a contradiction as in the second case.

Case 4: r, = rp. Clearly, value(®(y’),r1) = value(®(y'),r2) = value(®(y),n1) =
value(®(y),r2) = v1. Hence, the values of all registers are the same in ®(y’) and &(y).
Also, for any px # phr, ®(¥') £ ®(y). By Lemma 2, (y’) and ®(y) are compatible. Hence,
again we reach a contradiction.

This completes the proof. D

THEOREM 2: There is no ROAD(¢t) P.

Proof: By D1(t), there exists a computation z, process p; and set of processes @, such
that |Q| > n-t, for every p; € Q z is j-input, p; € Q, and z is i-multivalent. Using Theorem
1, we can construct inductively starting from the computation z a Q-fair sequence such that
all the finite prefixes of that sequence are s-multivalent. computations. This contradicts
requirement R(t). O

Consider the eight requirements mentioned so far. Apart from requirement D2, all
the requirements capture very natural concepts: P1 — P5 and R(t) express the well known
notions of asynchronous and robust protocols respectively, while D1(t) requires that a given
solution is not trivial. This motivates the question of what can be said about protocols that
satisfy all the above requirements expect D2. For later reference we call these protocols
Decision(t) Asynchronous Robust(t) Protocols (abbv. DEAR(t) P’s). A simple example for
a DEAR(n-1) protocol, is a protocol where there is only one shared register, each processes
first writes its input value into the shared register, then it reads the value of the shared
register and decide on that value.

It follows immediately from the impossibility result of Theorem 2 that DEAR(t) P’s
cannot satisfy requirement D2. Also, if we inspect the proof of Theorem 2 we see that
requirement since D2 is only used in the proof of Lemma 2. Hence, we conclude that

10

DEAR(t) P’s have to satisfy the negation of Lemma 2. These observations leads to the
following theorem.

THEOREM 3: In any DEAR(t) P, there exist two computations and y, and there

exists process p;, such that: (1) p; did not read different input values in z and y, (2) zdy for
any j # i, (3) value(r,z) = value(r,y) for any r € R, and yet z and y are not i-compatible.

Proof: Immediate from Lemma 1 and the negation of Lemma 2.]

Theorem 3 gives the intuition for the nonexistence result for ROAD(t) P’s as stated in
Theorem 2. This result follows from a conflict between two requirements. One is require-
ment D2 which means that at any time a process may be forced by the group of all other
processes to a situation where it has only one possible decision left. As opposed to that
requirement there is the necessary condition given in Theorem 3 which means that there
exist two computations such that the sets of values some process may still decide on in each
one of this computations are disjoint and those computation are indistinguishable from the
point of view of the group of all other processes.

6 Impossibility Results for Problems

In this section we identify the problems that cannot be solved in an unreliable asynchronous
shared memory environment which support only atomic read and write operations. We do
this by identifying those problems which are solved only by ROAD(t) protocols. Hence, the
impossibility of solving these problems will follow from Theorem 2. Results for completely
asynchronous message passing systems which are similar to those presented in the sequel
appear also in [TKM1]. As we shall see in Section 8, the results presented in this section
implies those in [TKM1].

We say that a problem can be solved in an environment where ¢ processes may fail, if
there exists a robust(t) protocol that solves it. Since we assume an asynchronous shared
variable environment where ¢ processes may fail, any protocol that solves a problem should
satisfy properties P1 — P5, and the requirement R(t). Thus, we are now left with the
obligation of identifying those problems which force any protocol that solves them also to
satisfy requxrements D1(t) and D2. Let Q denote a set of processes, and 7 and v’ be vectors.
We say that ¢ and v’ are Q-equivalent, if they agree on all the values which correspond to
the indices (of the processes) in Q. A set of vectors H is Q-equivalent if any two vectors
which belong to H are Q-equivalent. Also, we define: T(H) = U T(a).

adeH

Definition: A problem T : [—2P—{0} is a dependent(t) problem iff it satisfies the

requirements:

T1(t): There exists a set of processes Q where |Q| > n —t, and there exists a Q-equivalent
set H C I such that T(H) is not a Q-equivalent set.

T2: For every @ € I, every set of processes Q where |@Q| = n — 1, and every two different
decision vectors d and d, if both d and &' belong to T'(@) then they are not Q-
equivalent.

Requirement T'1(t) means that n — ¢ input values (in an input vector) do not determine the
corresponding n — t decision values (in the decision vectors). Any problem that does not

11

satisfy requirement T'1(¢) can easily be solved in a completely asynchronous environment
where t processes may fail. (Each process sends its input value to all other processes, then
it waits until it receives n —t values; assuming it does not satisfies T'1(?), it has now enough
information to decide.) Note that T'1(t) implies T1(t + 1). Requirement T2 means that a
single input vector cannot be mapped into two decision vectors that differ only by a single
value.

THEOREM 4: A dependent(t) problem cannot be solved in an asynchronous shared
memory system which support only atomic read and write operations and where ¢ failures
may occur.

Proof: As already explained any protocol that solves a dependent(t) problem, in an
asynchronous shared variable model where ¢ processes may fail, should satisfy P1— P5 and
R(t). It follows from T'1(t) that such a protocol must satisfy D1(t). Also, it follows from T2
that the protocol satisfies D2. Hence, such a protocol is necessarily a ROAD(t) P. Applying
Theorem 2 the result is proven. O

For the two corollaries of Theorem 4, we use the following definitions and observations.
A problem T : T-2P—{8} includes a problem T : ['=2D'—{@} iff (1) I' = I, and (2) for
every @’ € I': T'(a’) C T(a’). It is easy to see that a protocol P minimally solves a problem
T iff there exists a problem T’ which is included in T such that P solves T'. A problem
T : I—»2D '—{0} is a sub-problem of a problem T : I—2D_{@} iff (1) I' C I, and (2) for
every @’ € I': T(a’) = T'(a’). It is easy to see that if a protocol P solves (minimally solves)
a problem T then P solves (minimally solves) any sub-problem T of T.

Corollary 4.1: If some sub-problem of T includes only dependent(t) problems then T
cannot be minimally solved in a completely asynchronous environment where ¢ processes
may fail.

Corollary 4.2: If a problem T has a dependent(t) sub-problem then T cannot be solved
in a completely asynchronous environment where t processes may fail.

Ezample: Consider the following variant of the consensus problem T : I —2D_{0} where:
all processes are to decide on the same value from the set D; I is the set of all vectors @ such
that @ € (0+1)" and |#1 — #0| > t, and there exist two input vectors @ and a' such that
T(@)NT(a’) = 0. It is not difficult to see that T is a dependent(t) problem and furthermore
that T includes only dependent(t) problems. From Corollary 4.1 we conclude that T cannot
be minimally solved in a completely asynchronous environment where ¢ processes may fail.

Nowhere up to now, have we assumed anything about the process ids, hence the results
we proved hold even if all processes have distinct id’s which are mutually known.

7 | Initial Failures

In this section we give complete characterization of the problems that can be solved in an
asynchronous shared memory environment where ¢ processes may initially fail. We use the
intuitive appeal of a game-theoretical characterization by reducing the question of solvability
in the model under consideration to whether there is a winning strategy to a certain game
which we describe below. The exposition here is influenced by the “Ehrenfeucht Game”
[EFT], which is used in mathematical logic to determine if two structures are elementarily
equivalent. (That is, if they satisfy the same first-order sentences.) Similar results for

12

message passing model appears in [TKM2, Section 4]. However, unlike in [TKM2] we do
not need to assume here that only up to half of the processes may fail. Also, similar
characterization, for the solvability of problems in an asynchronous shared memory model
where crash failures may occur using random protocols is given in [ChM].

Informally, a protocol can tolerate up to t initial failures if in spite of a failure of any
group of up to t processes at the beginning of the computation, each of the remaining
processes eventually decides on some value. We now characterize such protocols formally.

Definition: A protocol can tolerate up to t initial failures iff for every set @ of processes
where |Q| > n — t, every Q—fair sequence which consists only of events on processes which
belong to Q, has a finite prefix in which any p; € Q has decided.

Note that the class of protocols that can tolerate up to t initial failures strictly includes
the class of protocols that can tolerate only up to ¢t — 1 initial failures. To see that the
inclusion is strict consider the rotating(t) problem, where each process p; has to decide on
a decision value from the set of input values of processes Di(mod n)+1» --+sPi+t—1(mod n)+1- I
any protocol that solves this problem, process p; will never be able to decide if all processes
Di(mod n)+1» ++sPitt—1(mod n)+1 fail. We say that a problem can be solved in an environment
where ¢ initial failures may occur, if there exists a protocol which can tolerate up to ¢ initial
failures that solves the problem.

The game G;(T, 1), corresponding to a problem T : I—+2P—{0} and a number ¢ (0 <
t < n—1),is played by two players A (Adversary) and B, according to the following rules.
Each play of the game begins with a move of player A and in the subsequent moves both
players move alternately. The game is played on a board which has n empty circles drawn
in a straight line. The circles are numbered from 1 to n. At the first move player A chooses
n — t input values from (the set of input values) I and “places” them on arbitrary n — ¢
empty circles. Then player B chooses n — t decision values from (the set of decision values)
D and uses them to cover all the n — t input values placed by player A in the previous
move. The other subsequent moves consist of player A choosing a single value from I, in
each move, and placing it on an empty circle, and then player B choosing a single value
from D and covering the previous value placed by player A. The play is completed when
all the n circles are covered with decision values from D. We emphasize that at any time
each player knows all the previous moves.

We denote by a; € I and d; € D the values players A and B placed on the #'th circle in
the course of the play, respectively. For simplicity we assume that the final vector (ay,...,a5)
belongs to I. Player B has won the play iff de T(@). Player B has a winning strategy in
the game G;(T,t), denoted B wins G1(T, 1), if it can always win each play.

For simplicity we assume that the processes have distinct identities which are mutually
known. We will remove those assumptions later.

THEOREM 5: A problem T can be minimally solved in an asynchronous shared

memory environment where ¢ processes may initially fail (0 < ¢t < n — 1), iff player B wins
G1(T,1).

Proof: This proof is similar to that appears in [TMK2, Theorem 1]. We first prove the if
direction. The proof is based on the fact that in the model under consideration, it is possible
to elect a leader in the presence of up to n — 1 initial failures [Ta2]. Suppose player B has a

13

winning strategy in the game G,(T',t). We describe a protocol that minimally solves T in
the presence of t initial failures. First each process writes its input in a shared register, and
then one of the processes is elected as a leader. Then the leader try to read the input value
of all the processes. Since at most ¢ processes might be faulty, the leader is guaranteed
to read n — t input values (including its own). By consulting with the winning strategy
of player B the leader determine the corresponding n — t decision values, and transfer (by
writing to a shared register) the relevant decision value to each process from which it read
an input value. Afterwards the leader repeatedly tries to read the input value of the other
processes. Upon reading an additional input value, by using the winning strategy of player
B, it produces the right decision value, and transfer it to the process from which it read the
input value. Each process that gets a decision value from the leader decides on that value.

We now prove the only if direction. Let P be an asynchronous protocol that minimally
solves T in the presence of ¢ initial failures. We describe a winning strategy for player B
in G1(T,t). Let @ € I be an arbitrary input vector, and let Q be a set of process where
|Q] = n — t such that player A chooses in his first move the set of values {a;|p; € Q} and
places each value a; on the circle numbered with ¢. Since P can tolerate up to t initial
failures, there exists a computation z € C such that z consists only of events on processes
which belong to Q, and any process p; € Q reads the input value a; and decides in z. Let d;
denotes the value on which process p; € Q decided in z. By using P, player B can simulate
the computation z, output the n — t decision values, and cover each input value a; by the
corresponding decision value d;. Now assume that player A chooses next some value aj
where p; ¢ Q and places it on the j'th circle. Since P can tolerate up to t initial failures,
there is an extension y of z in which process pj reads the input value a; and decides on some
value d;, z consists only of events on processes which belong to Q U {p:}. Thus again, by
using P, player B can continue the simulation of z in order to simulate computation y and
choose d;. A similar construction holds also for any further input values that A chooses.
Finally, since P minimally solves T, d € T(&) and hence player B wins the game. D

Examples of problems that can be shown to be unsolvable using the above theorem (in
the model under consideration), are transaction commitment, sorting and rotating(t). To
show the impossibility for transaction commitment we demonstrate that B has no winning
strategy. The adversary can choose at its first move n — ¢ “1” values; B then must also
use n — t “1” values since player A may later choose only “1” values. Then A can add the
value “0” and B loses. The above theorem also points out how to construct a solution (i.e.,
a protocol) to any solvable problem 7'. First find a winning strategy for player B in the
game G(T,t) and then plug it into the (schematic) protocol presented in the “if” part of
the proof of Theorem 5.

In the proof of Theorem 5, the assumption that the processes have distinct identities
which are mutually known is used at the point where the leader (in the “if” part) has to
consult with the winning strategy of player B. We now remove this assumption and only
require that the input values are distinct. (This, of course, also covers the case where the
processes have distinct identities which are not mutually known). Next, we modify Theorem
5 so that it holds under this weaker requirement.

Recall that @ and d are the vectors players A and B placed in the course of the play,
respectively. Let r = (my,...,m,) be a permutation of 1, ...,n, and let 7(@) denote the vector
(@ry sy @x,). We say that player B strongly won the play iff for every permutation 7 of

14

1,...,n where 7(&@) € I it is the case that x(d) € T(n(&@)). Player B has a strong winning
strategy in the game G1(T,t) and write “B strongly wins G1(T,t)” if it is possible for him
to strongly win each play. If we now substitute in Theorem 5 the term “strongly wins” for
“wins” then the modified theorem will hold under the requirement that the input values
are distinct, and with no need to assume anything about the process identities. The proof
of this theorem involves some technical modification of the previous proof, and is based on
the fact that a leader can still be elected. Another way of resolving this problem is the
following. We say that a problem T : »2D—{0} is symmetric iff for every vector & € T
and for every permutation 7 of 1,...,n, it is the case that (@) € I and 7(d) € T((a)).
For symmetric problems the notion of strongly wins and wins coincide, and hence for such
problems the original formulation of Theorem 5 still holds (without the assumption that
the processes have distinct identities). We mention that the notion of strongly wins makes
sense only when dealing with symmetric problems.

8 Simulations of Various Message Passing Models by a
Shared Memory Model

In this section we examine all the 32 message passing models considered by Dolev, Dwork
and Stockmeyer [DDS]. For each of 30 out of those models we will either prove that it can
be simulated by an asynchronous shared memory model which support only atomic read
and write operations (abbv. shared memory model), or will prove that it cannot. By saying
that model A can simulate model A’ we mean that whenever there is a protocol that solves
some problem in the presence of ¢ failures in model A’, this protocol can be translated to a
protocol which solves the same problem in the presence of ¢ failures in model A. Evidently,
all the impossibility results that we proved so far hold for any model that can be simulated
by a shared memory model.

We informally review some of the results presented in [DDS]. The authors identify five
critical parameters in message passing systems that may effect the possibility of achieving
consensus. The digits 0 and 1 below refer to situations that are unfavorable or favorable
for solving a problem, respectively. The notion of atomic step is used for an undivided
sequence of events on some process. A process which executes an atomic step cannot fail
before completing that step. The five parameters are:

Processes

0. Asynchronous - Any finite numbers of events can take place between any two consec-
utive events on a process.

1. Synchronous - There is a constant ¥ > 1 such that for any computation (z;y), if
there are ¥ + 1 events on some process in y then there is an event on any nonfaulty
process in .

Communication

0. Asynchronous - Any finite numbers of events can take place between the sending and
receiving of a certain message.

15

1. Synchronous - There is a constant A > 1 such that, every message that is sent is
delivered within A attempt which are made to accept it.

Messages

0. Unordered - Messages can be delivered out of order.

1. Ordered - If the sending m, is sent before the message m, (w.r.t. real time), and both
message are sent to the same process, then m; must be received before m;.

Transmission Mechanism

0. Point to point - In an atomic step a process can send to at most one process.

1. Broadcast - In an atomic step a process can send to all processes.
Receive/Send

0. Separate - In an atomic step a processes cannot both receive and send.

1. Atomic - In an atomic step a processes can received and send.

By varying the above five parameters the authors defined 32 models and found the max-
imum resiliency for each one of them. These results are summerized together with our
results, in the table in Figure 2. In an entry of the table the letters 0,1,n describe the
maximum resilience for the relevant model as proved in [DDS]. (Recall that n is the number
of processes, thus when n appears in an entry it means that it is possible to tolerate any
number of faulty processes.) The words “Yes ” and “No ” state whether the particular
model can be simulated by a shared variable model, while “?” declares that we do not
know the answer.

We now use the above results of [DDS] together with the result that it is not possible
to solve the consensus problem in an asynchronous shared memory model which support
only atomic read and write operations and where a single processes may fail, and prove the
claims, which appear in Figure 2, about the models that a shared memory model can or
cannot simulate.

As can be seen from the results of [DDS] there are 19 models that can tolerate a single
process failure, and hence clearly they cannot be simulated by a shared memory model.
As for the other 6 models for which we claim that they cannot be simulate by a shared
memory model, the proof of that follows easily from the following observation. Let A and
A’ be two models that are the same in all parameters except that in A communication
is asynchronous and in A’ communication is synchronous. If a shared memory model can
simulate A then it also can simulate A’ (and vice versa). Put another way, if A’ cannot be
simulated by a shared memory model then so do A. The correctness of this observation
follows from fact that, assuming that no write override a previous write, communication is
(always) synchronous in a shared memory model (in fact it is instantaneous). and hence
any simulation for model A will work also for A’.

We show now how a shared memory can simulate message passing model where com-
munication is synchronous, transmission mechanism is broadcast and all the other three
parameters are set to 0.

16

mbi(00| 01 |11 | 10 00| 01 [11 | 10

PC
00 0 0 n 0 0 0 n 0
Yes | Yes | No| ? || No| No| No| No
01 0 0 n 0 1 n n 1
Yes | Yes | No| ? || No| No| No| No
01 n n n n N|{N|N]|N

No | No [No| No|| No| No| No | No

01 0 0 n n 0 0 n n

No| No[No| No|l No| No| No| No
s=0 s=1

Figure 2: Each entry in the table is defined by different setting of the five system param pro-
cesses (p), communication (c), Messages (m), transmission Mechanism (b), and receive/send

(s)-

With each process we associate an unbounded array of shared register which all processes
can read from but it only can write into. (Instead of an unbounded array we can use one
unbounded size register.) To simulate a broadcast of a message a process writes to the next
unused register in its associate array. When it has to read, it reads from each process all
the new broadcast messages.

Exactly the same simulation is used to show that a shared memory can simulate the
other three message passing models (at the upper left corner) where (1) communication is
asynchronous and transmission mechanism is broadcast, (2) communication is synchronous
and transmission mechanism is point-to-point, a (3) communication is asynchronous and
transmission mechanism is point-to-point. We notice that in this simulations we strongly
used the fact that the initial value of each shared register is L (or it is set to some other
value which is mutually known to all the processes).

Also, the simulation shows that in all of the above four models (where the parameter of
message order is 0) the fact that they can be simulated by a shared memory model holds,
even under the assumption that messages sent from one process to another are received in
the order they were sent.

9 Discussion

We used an axiomatic approach to show that there is a class of problems which cannot
be solved in a completely asynchronous shared memory system which support only atomic
read and write operations and where multiple undetectable crash failures may occur.

We introduced a simple game and reduced the question of whether a certain problem
can be solved in asynchronous shared memory model where a number of processes may fail
prior to the execution to the question of whether there is a winning strategy for this game.

As we already mentioned, it follows from the results in [ChM] together with our results in
section 7, that in a shared memory model which support atomic read and write operations,

17

a problem can be solved by a deterministic protocol that can tolerate up to ¢ initial failures
if and only if the problem can be solved by a randomize protocol that can tolerate up to
t crash failures. This result can also be shown to hold for asynchronous message passing
model (assuming termination). It would be nice to show that this relationship holds also
in other models.

It follows from our results that for both initial failures and crash failures, there exists a
resiliency hierarchy. That is, for each 0 < t < n — 1 there are problems that can be solved
in the presence of ¢ — 1 failures but can not be solved in the presence of t failures. These re-
sults extend and generalize previously known impossibility results for various asynchronous
systems. ‘

One conclusion that follows from our results is that it is sometimes necessary to use
stronger synchronization primitives than atomic read and write such as the well known
test-and-set primitive, or alternatively to use randomized protocols.

Acknowledgements: We are grateful to Michael J. Fischer, Shmuel Katz and Lenore D.
Zuck for helpful discussions concerning this work.

References

[Abr] Abrahamson, K. On achieving consensus using shared memory, A CM-PODC1988,
291-302.

[ABDKPR] Attiya, H., Bar-Noy, A., Dolev, D., Koller, D., Peleg, D., and Reischuk, R.
Achievable cases in an asynchronous environment, ACM-FOCS 1987, 337-346.

[BMZ] Biran, O., Moran S., and Zaks, S. A Combinatorial characterization of the dis-
tributed tasks which are solvable in the presence of one faulty processor, ACM-
PODC 1988, 263-275.

[BW] Bridgland, M., and Watro, R. Fault-tolerant decision making in totally asyn-
chronous distributed systems, ACM-PODC 1987, 52-63.

[ChM] Chor, B., and Moscovici, L. Solvability in asynchronous environments, manuscript,
1989.

[CIL] Chor, B., Israeli, A., and Li, M. On processor coordination using asynchronous
hardware, ACM-PODC 1987, 86-97.

[CM1] Chandy, M., and Misra, J. On the nonexistence of robust commit protocols, Un-
published manuscript, November 1985.

[CM2] Chandy, M., and Misra, J. How processes learn, Distributed Computing 1986, 40-
52.

[DDS] Dolev, D., Dwork, C., Stockmeyer, L. On the minimal synchronism needed for
distributed consensus, JACM Vol. 34, No. 1, 1987, 77-97.

[DLS] Dwork, C., Lynch, N., Stockmeyer, L. Consensus in the presence of partial syn-
chrony, JACM Vol. 35, No. 2, 1988, 288-323.

18

[FLP]

[Had]

[Her]

(LA]

[MW]

[Ta1]

[Ta2]

[TKM1]

[TKM2]

Fischer, M., Lynch, N., Paterson, M. Impossibility of distributed consensus with
one faulty process, JACM Vol. 32, No. 2, 1985, 374-382.

Hadzilacos, V., A knowledge theoretic analysis of atomic commitment protocols,
ACM-PODS 1987, 129-134.

Herlihy, P.M. Impossibility and universality results for wait-free synchronization,
ACM-PODC 1988, 276-290.

Loui, C.M., and Abu-Amara, H. Memory requirements for agreement among un-
reliable asynchronous processes, Advances in Computing Research, Vol. 4, 1988,
163-183.

Moran, S., and Wolfstahl, Y. An extended impossibility result for asynchronous
complete networks, IPL Vol. 26, November 1987, 145-151.

Taubenfeld, G. Impossibility Results for Decision Protocols, Technion Technical
Report #445, January 1987. Revised version, Technion Technical Report #506,
April 1988.

Taubenfeld, G. Leader election in the presence of m — 1 initial failures,
YALEU/DCS/TR-709, 1989.

Taubenfeld, G., Katz, S., and Moran, S. Impossibility Results in the presence of
multiple faulty processes, Technion Technical Report #492, January 1988.

Taubenfeld, G., Katz, S., and Moran, S. Initial Failures in Distributed Computa-
tions, Technion Technical Report #517, August 1988.

19

