This work was partially funded by the National Science Foundation under
grant numbers MCS-81/05894, and by the IBM Corporation and the State of
California through project MICRO.

FAST ALGORITHMS FOR BIPARTITE NETWORK FLOW

Dan Gusfieldl
Charles Martel2
David Fernandez-BacaZ2

YALEU/DCS/TR-356
January, 1985

1Department of ComputerIScience, Yale University

2Department of Computer Science, University of California, Davis

Table of Contents

1Introduction e e e e e e e e e e e e e e e e 1
2 Computing maximum bipartite flow in time O(JS’[T|). 4
2.1 The Modified MPM Algorithm 4

2.2 Analysis of The Modified MPM Algorithm. 6

2.3 An O(|S|?|T|) bound for Karzanov's algorithm 9
2.3.1 Corollary to Theorems1and 2. 12

3 Bipartite flow with bounded degree onthe T-podes 12
4 Applications L L L L e e e e e e e e e e e e e 16
4.1 Multiprocessor Scheduling with Release Times and Deadlines 7

4.2 Uniform Processors 00 e 18

4.3 Applications based on Provisioning 0L 0L 19
4.3.1 Maximum Subgraph Density L. 19

4.3.2 Weighted Subgraph Density Problems. 22

4.4 Additional Applications L ... oL 23

5 Acknowledgement. L. Lo e 24
8 References L L e e e e e e e e e e e 25

Abstract

‘e discuss network flow in a bipartite graph G with node sets S ax‘xd T. We show }hat
Ka\r\z‘;ni‘v’s algorithm runs in time O(|S|°|T|) on G, and that the MPM algonth.m can :ngd;ﬁ;d,
to rup in the same bound. For the common case that the degrec.of each nofle inT ;s unded by
a constant, we show that a modified version of the MPM algorithm runs in O(|S]> + IS||TI) c;)n
G. The importance of these results comes from the common occurrence of problems tba'i.caxf e
modeled and solved as network flow on bipartite graphs wher; |S| << |T|. In many app :at:mi
involving bounded degree of the nodes in T,3 |T| = 6©(|S|), and our rgsults: reguce t ebte.s
bounds on bipartite flow from o(|s|®) to O(ISI*). We use our results on bxpz.u-me flow :;d?‘ axx;
the fastest know bounds on several combinatorial problems, and mention nine itiona
problems involving bipartite flow where |S] is often much smaller than IT].

1. Introduction

The maximum flow and minimum cut problem is used both as an algorithmic and
mathematical tool to model and solve hundreds of interesting and practical problems in
combinatorics and combinatorial optimization, and the importance of the network flow problem
is well established. A large subset of these network flow problems are modeled and solved on
graphs which are bipartite, and which have the property that the set of nodes, S, on one side of
the graph is much smaller than the set of nodes, T, on the other side of the graph; we list and
discuss several such problems in section four.
Main Results

In this paper we show that the flow problem (finding the maximum flow and the minimum
cut) on such bipartite graphs can be solved far more efficiently than has been previously
established. In particular, we show that the bipartite flow problem can be solved in time
O(|S[*|T]) when |S| < |T|, and for the class of graphs where the degree of each node in T is
bounded by a constant, bipartite network flow can be solved in time O(|S|>+|S||T]). Many
network flow problems of importance have exactly this bounded degree structure, as we will later
illustrate. We then express the main result in terms of the size of the maximum independent set
in the graph, and show that our results imply faster network flow algorithms for graphs with one
large independent set of nodes; the bipartite graphs are a special case of this class. We also
mention simpler, slower network flow algorithms which can be shown to run faster on bipartite

graphs than the general bounds suggest.

Presently known gencral upper bounds for network flow imply O((|S|+|T|)®) or
O((|S|+]T|)|E|log|E|) time bounds for bipartite flow. For most of the applications we consider,
IT| = 6(|S|?), and so our results reduce the best bounds from from O(|S|®) to O(|S|%) and often to

O(JS[]®). For many of the problems discussed, there are known methods for solving the problems

which do not use bipartite flow, and which previously looked superior to solution methods based
on bipartite flow. For each problem discussed in this paper, our bounds on bipartite flow yield
methods that beat or equal the best previously known bounds of any of the other solution

methods.

The better running times presented in this paper are achieved by a closer than standard
analysis of well known flow algorithms, and by simple modifications of these algorithms: we use
a new charging argument to count the work in the well-known MPM and Karzanov algorithms;
we establish the O(|S|?|T|) bound in MPM by the use of F-heaps in the implementation, but it is
the the charging argument that shows the introduction of F-heaps is useful; we establish the same
bound for Karzanov's algorithm without needing any modification of the algorithm; we establish
the O([S|*+|S||T|) bound, for the case of bounded degree, using another modification of the MPM

algorithm, but without the use of F-heaps.

Applications of these results
The importance of these algorithms and bounds are due to the common occurrence, both in
practice and as problem models, of bipartite flow problems where IS| << |T]. The payoffs from

our results are two-fold.

First, they lead to the fastest known solutions for certain combinatorial problems which can be
modeled as bipartite flow. We illustrate this with two problems: for a well known scheduling
problem, we reduce the previous best running time from O(m?51%) to O(mn?), where m is the
number of machines, and n is the number of jobs; and for a large class of 0-1 integer
programming problems, we reduce the best upper bounds from O((ISI3|T|+IT|2IS|2)log2IT|) to
O(IS|*|T]). In the second application, |T| is often tremendously larger than IS|; the only bound on
IT] is 2!, although |T]| is polynomially bounded in |S| for most of the interesting problems in this

class.

Second, our results allow the use of bipartite flow as an efficient model for many problems that
can be modeled both as bipartite flow and as flow in a non-bipartite graph. For most of these
problems, the bipartite model is conceptually simpler, but the competing non-bipartite model
typically has fewer nodes: |S| versus |[S|%. For that reason, the belief reflected in the literature
has been that the non-bipartite model permits faster execution of network flow algorithms—
O(|S|®) time verses the unattractive O(|S|®). The results of this paper show that flow in the
competing bipartite models also can be solved in O(IS]‘.’) time, and hence the accepted logic for
preferring the more complex non-bipartite models is flawed, although we of course don't know
which model ultimately permits the most efficient flow computation. In the applications section
of this paper we will discuss several problems that have such competing bipartite and non-
bipartite solutions. One such problem, the subgraph density problem, is also an example of the
class of O-1 integer programming problems mentioned above. Building on these results, we note
that the time needed to solve weighted generalizations of the subgraph density problem can be

reduced from the reported bound of O(|n®) to O(|nl¥).

More generally, our results encourage the consideration of bipartite flow models where more
complex non-flow models are known, and demonstrate the utility of looking beyond general upper

bounds.

Outline of the paper

In section 2 we give the basic definitions, review the MPM and Karzanov algorithms, and
analyze the MPM algorithm applied to the bipartite flow problem. Using F-heaps and a new
charging argument, we obtain the O(|S|?|T|) time bound. We also show the same time bound for
Karzanov's algorithm. In section 3 we examine the case of bounded degree on each T-node
(excluding the source or sink); we modify the MPM algorithm and show that it has running time

O(|S|>+]S||T|) for this class of graphs. In section 4 we discuss applications of these results to a

variety of problems: scheduling on uniform parallel machines, a class of 0-1 integer programuﬁng
problems, the maximum subgraph density problem and weighted generalizations, network
reliability testing, metwork vulnerability, statistical clustering, the transportation problem,
decomposing a graph into disjoint spanning trees, optimal partitioning of a data-base, optimal
rounding of statistical tables, security of statistical tables, and the sportswriter's end-of-season

problem.

2. Computing maximum bipartite flow in time O(|S|?|T|)
In this section we briefly describe and analyze the MPM maximum flow algorithm, with the
modification that we use Fibonocci heaps [FT] in its implementation; this is the only modification

we make to obtain the O(|S|*|T|) bound.

We will also show that Karzanov's algorithm without modification runs in O(|S|?|T|) time on a

bipartite flow graphs. Our main contribution is the analysis of these algorithms on bipartite

graphs.

2.1. The Modified MPM Algorithm
We assume familiarity with the s-t flow problem and the standard MPM algorithm but outline
the algorithm in order to establish notation and introduce an important modification. The

algorithm iterates phases, where a phase is the following:

Phase: Given a graph G = (V,E) with source node s, sink t, and the current flow F, construct
a directed layered graph G(F), and find the mazimal s-t flow in G(F). A maximal s-t flow is one
where at least one edge of every st path is saturated (a maximal flow is not necessarily a
maximum flow). If the maximal flow is zero, then F is the mazimum flow in G, else use the

maximal flow to update F.

We will not describe how to construct a layered graph and update the flow, but it is well
known [E] that both those operations can be done in time linear in the number of edges in the
graph. In G(F) the nodes are partitioned into layers which are ordered so that edges only run
from a layer to its successor. It is well known that the number of layers in the layered graph

increases in each consecutive phase.

Finding a maximal flow: Now we describe in more detail how to find the maximal flow in a
layered graph; our analysis of MPM will concentrate on these details. We need the following

definitions.

Definition 2.1: For a node v in a layered graph G(F) define the forward potential of a node
v, f(v) to be the sum of capacities on the edges out of v, the the backward potential, b(v) to be

the sum of the capacities of the edges into v, and the potential p(v) = min|[f(v),b(v)]. Define p

= min[p(v)].
The algorithm finds a maximal flow in G(F) by iterating the following augmentation step:

augmentation: Find the node w of minimum potential, and push p(w) units of flow in G(F)
from w to node t as follows. Choosing some ordering of the edges out of w, push flow along the
edges in order, until p(w) units of flow are allocated. Note that at most one edge out of w is
partially filled, i.e. has flow strictly between zero and its capacity. Edges with flow at their
capacity are said to be saturated. For each node that receives incoming flow, push that flow out
in the same way as above, and continue such pushes until p(w) units of flow reach node t. The
facts that w is the node of minimum potential and G(F) is a layered graph assure that p(w) units
will arrive at t. In a similar way, push p(w) units from w to s. After augmenting, all saturated
edges are deleted. Notice that this either cuts all paths from s to w, or all paths from w to t,

hence node w can be removed also.

When we change the flow in an arc we will call this a saturating edge push if the arc becomes
saturated, otherwise we call it a non-saturating edge push. Note that an augmentation changes
the potential of all nodes incident with an arc whose flow is changed. In order to repeatedly find
the minimum potential node efficiently, we will store and update the node potentials using the
Fibonacci Heaps of Fredman and Tarjan [FT). We will refer to these as F-heaps. The
introduction of F-heaps here, instead of some other priority queue, is the only modification we

make to the standard MPM algorithm.

Thus the work for each phase is:

(1) Build the layered network.
(2) Compute all node potentials and store them in an F-heap.

Iterate the following steps until a maximal flow is achieved.

(3) Find the node of least potential.

(4) Push flow through the network, updating the flow on changed arcs.

(5) Update the node potentials, and rebuild the heap of node potentials.
2.2. Analysis of The Modified MPM Algorithm

In the following analysis we will assume that |[T| > |S|, however, a similar result will hold

when |T| < [S|. Let E be the set of arcs in the flow network and let V=8SUTU{s}U{t}, be the
set of nodes in the network. Since G(F) is bipartite, every layer (except the {s} and {t} layers)
consists exclusively of nodes of S or exclusively of nodes of T; we call a layer an S-layer or a T-

layer depending on the type of nodes it contains.

Theorem 1: The algorithm described in section 2.1 finds a maximum flow in O(IS*|T]) time

on a bipartite flow network, for |T| < 2ISI.

Note that the standard analysis would give O((|S|+|T])%), so our analysis shows there is a
substantial savings when |T| >> |S|. The assumption that |T| < 210 is no restriction in our

applications, and is not needed in the analysis of Karzanov's algorithm.

Proof: We first prove a general lemma about algorithms which work in phases on a bipartite

flow graph.

Phase Lemma: At most O(|S|) phases are required to find a maximum flow in a bipartite

flow graph.
This is in contrast to the O(|S|+|T|) phases needed for a general graph.

Proof of phase lemma: In any layered graph G(F), every other layer (except {s} and {t}) is

an S layer, hence G(F) has at most 2|S|+2 layers.0

We will now show that each phase can be run in O(|S||T|) time. Steps (1) and (2) are done
once per phase and can be done in O(|E|) time, which is O(|S||T|). Using F-heaps, step (3) needs
only time O(|V|log|V|) = O(|T||S]) for |T| < 2!Sl. The heart of the O(JS]|T|) bound is in the
analysis of steps (4) and (5). In order to analyze the work in step (4) we need to bound the
number of edge pushes used. Each edge push either saturates the edge or is a non-saturating
push. Clearly, the total number of saturating edge pushes in a phase is O(E) = O(|S||T|), so the
key issue is how many non-saturating edge pushes there are in a phase. Standard uialysis of
MPM gives O((|S|+|T])%). Our key observation is that this can be reducecll to O(|S||T|). The

proof of Theorem 1 will be completed with the following two lemmas.

Charging Lemma: Let A be the number of augmentations in a phase. Then the total

number of non-saturating edge pushes in a phase is at most 4A|S| + |E|, which is O(|S||T]).

Proof: We examine the pushes from x, the minimum potential node, towards t. The pushes
towards s are handled in a similar manner. In any augmentation there is at most one non-
saturating edge push from any node. Each such non-saturating edge push will be charged to

either an S-node or to a saturated arc.

Let (v,w) be an arc which has its flow increased without being saturated. If v is an S-node
then (v,w) is charged to the node v. If v is a T-node then there must be some arc (u,v) that has
its flow increased by the current augmentation, and u must be an S-node. If (u,v) is saturated by
the current augmentation, then (v,w) is charged to (u,v). If (u,v) is not saturated, then (v,w) is
charged to node u. Note that an arc (v,w) incident from the T-node v may be eligible to be
charged to several arcs or nodes or both. In this case it can be charged to any one of them.

Figure 1 illustrates an allocation of charges.

In each augmentation, each S-node can be at most charged at most twice: once for the arc
leaving it which has a non-saturating edge push, and once for the arc leaving the T-node incident
to this arc. Hence in A augmentations, there are at most 2A[S| charges to S-nodes per phase. In
a phase, each arc can be charged at most once, and this can happen only in the augmentation
which saturates it. So, there are O(|E|)=0(|S||T|) charges to arcs per phase. Thus the total
number of charges per phase is at most 2A|S| + |E] - O(IS||T|), since A = O(|T|) and |E| =
O(|S||T|). Repeating the analysis for pushes from x to s, and observing that every edge in the

graph is saturated at most once, the bound of 4A|S| + |E| is proved. O

Potential Lemma: In a phase, the total number of node potential changes is at most 4A|S| +

|[E| = O(|S||T|), which bounds the time needed for step (5).

Proof: A node potential changes only when flow is pushed in an incident edge. Since
potentials only decrease, the F-heap maintains the node potentials in time linear in the number of
changes, which is, by the charging lemma, at most 4A|S| + |E| = O(|S||T|) per phase. Note that
without the charging lemma, we would Have to count O((|S|+|T])?) for the potential éhanges,

even using F-heaps. O

2.3. An O(|S|?|T|) bound for Karzanov’s algorithm
In this section we will show that for bipartite graphs Karzanov's algorithm [HU], unmodified,
bas the same O(|S|?|T|), assuming only that |S| < |T|. We assume familiarity with Karzanov's

algorithm, but outline it here in order to permit the analysis.

Karzanov's algorithm, like MPM, iterates phases, where each phase finds a maximal flow in a
layered network by repeated augmentations. During a phase, the flow in an arc may be increased
severil times, but it can be reduced at most once, after which the arc is declared closed and can

be used no longer. We need the following

Definition 2.2: A preflow is a function f on the arcs of a layered graph such that for each arc
u f(u) < capacity(u), and for any v € V, T f(e) > X {(a), where a(v) is the set of arcs going into
eealv) geB(v)
v and BA(v) is the set of arcs leaving v.

A node is unbalanced if the flow entering it is greater than the flow exiting it. A preflow is
similar to an an ordinary flow, but it allows unbalanced nodes. Karzanov's algorithm repeatedly
augments until there are no unbalanced nodes except s and t. An augmentation consists of two
steps: advance of preflow and balance of preflow, which are described below. Let L, denote the
k-th layer of the layered graph, k = 0 ,..., r, where L, = {s} and L, = {t}, and let j be the
index of the layer from which the augmentation starts. Initially, all arcs are open, j = 1, and the

arcs directed out of s are saturated.

Advance of Preflow: The purpose of this step is to establish a new preflow in the layered
graph. Repeat the following operation for each L, i = j ,.., r, until either the last layer is

reached or it is impossible to push any flow into the next layer:

For each unbalanced node u € L, balance it, if possible, by pushing excess flow into the next

layer.

10

Outgoing arcs are used in a fixed order, in such a way that the advance leaves at most one
partially filled arc per node. Notice that it is not Decessary to consider all the unbalanced nodes
in a given layer; it suffices to look at those that have just had their incoming flow increased or

their outgoing flow decreased.

Balance of preflow: Let L, be the highest layer containing unbalanced nodes in the graph.
For each unbalanced node v € L,, reduce the flow in its incoming arcs, starting from the last arc
that was used, and proceeding in reverse order of usage until v is balanced. The flow in an arc is
decreased only if the flow in other, more recently used, arcs has already been reduced to zero.

Declare closed all arcs in a(v). The next advance starts at Lj, where j =k - 1.

We say a node v is blocked if every path from v to t contains at least one saturated arc. It can
be proved [HU] that an unbalanced node becomes blocked after an advance, that a blocked node
remains blocked throughout the entire phase, and that a node is balanced at most once in a
phase. Furthermore, from the description of the algorithm, we see that every augmentation,
except the last, balances at least one node. These properties, together show that Karzanov's
method correctly computes a maximal flow in a layered graph using at most VI -1
augmentations per phase.

We summarize the steps in a phase of Karzanov's algorithm:

- (1) Build the layered network.

Iterate the following steps until every node is balanced
except s and t.

(2) Advance preflow.

(3) Balance the preflow.

Our analysis parallels that of MPM, the key argument being a modification of the charging

lemma of section 2.1.

11

Theorem 2: Karzanov's algorithm finds a maximum flow in O(|S|%|T|) time, where |S| < IT].

Proof: We will show that each phase can be carried out in O(|S||T|) time, which, together
with the phase lemma proves the theorem. Step (1) is done once per phase and takes O(|S||T|)
time. Steps (2) and (3) are repeated O(|V|) = O(|T|) times. The total number of saturating edge
pushes is O(|E|) = O(|S||T|). The total number of edge flow reductions in both saturated and
unsaturated arcs is also O(|E|). The problem now is to bound the number of edges that are used
in step (2) but not saturated, and which are not subsequently closed in step (3). For this
analysis, we divide a phase into its augmentations. Each augmentation begins at a particular
layer L and pushes flow from L to t. We charge all non-saturating edge pushes out of layers
higher than L exactly the same way as in the Charging Lemma. However, the non-saturating

edge pushes out of L must be charged differently.

In the first augmentation, L = L; so, we charge all non-saturating edge pushes out of nodes in
L to saturated arcs leaving s. For each subsequent augmentation, excess flow is pushed out of a
node v € L only if there was at least one arc out of v that had its flow reduced in the previous
balance step. Thus, we charge a non-saturating edge push from v to the last arc emanating from
v whose flow was reduced. Recall that such flow reduction is done at most once per arc in a

phase, so there are at most O(E) of these charges.

As was the case for MPM, all charges are either to S-nodes or to edges. During an
augmentation, no S-node is charged more than twice, giving us O(|S||T|) charges to S-nodes per
phase. An arc is charged at most twice per phase, once when it is saturated and once when its
flow is reduced; so, we have O(|S||T|) charges to arcs. The total amount of work in each phase is

thus O(|S||T|), yielding an overall running time of O(|S|?|T|). D

12

2.3.1. Corollary to Theorems 1 and 2

Definition 2.3: A graph is called a partitioned flow network if its nodes can be partitioned
into two sets S and I, so that that no two nodes in I are connected by an arc. The partitioned
graphs properly contain the bipartite graphs, and for a bipartite graph either of the two sides of

the graph can take the role of 1.

Theorem 3: Both modified MPM and Karzonov's algorithm find a maximum flow in

O((|1]+S/)IS|?) time on a partitioned flow network.

Proof: At least one node from S must appear in any two consecutive layers except the first
and the last two; so, there are O(|S|) phases. Each non-saturating edge push can be charged to
either a node of S or to a saturated arc, just as in the charging lemma. The argument holds for
partitioned graphs because arcs incident to an I-node must be to or from nodes in S. Thus as in
the bipartite case, a non-saturating edge push out of a node in I can be charged to an S-node or
to a saturated arc. Thus the work within a phase is O(|E|) + O(IVIIS)=O((|1]+|S)IS]), and the

total work is O((]1]+S|)|S|?).0.

3. Bipartite flow with bounded degree on the T-nodes

In this section we consider the bipartite flow problem when the degree of each T-node of G,
other than s or t, is bounded by the constant d. We will refer to this problem as the bounded
degree bipartite flow problem. We show that a simple modification of the MPM algorithm, even
without the use of F-heaps, results in a running time of O(d|S|® + d2s||T)) = o(JsI® + Is|IT)).
Bounded degree bipartite flow problems are common; in fact, it is common that d = 2 (we will
discuss several examples in the applications section). Note that since we have assumed that IS|

< |T|, the case of bounded degree of S-nodes is trivial.

13

The Key Idea

The key idea in this section is that we will modify the definitions of node potentials and their
use in the MPM algorithm so that, in each augmentation, we need search only the S-nodes for
the node to which flow is pushed from s, and from which flow is pushed to t. Consequently, the
number of augmentations inside a phase is bounded by |S| instead of |S|+|T]|, and further, since
we only need to find the minimum potential among the S-nodes, we can find the node in O(|S])
time by simply scanning all the S nodes. Hence no F-heaps are needed. The assumption of

bounded degree on the T-nodes is used to allow efficient updating of the node potentials.

Definition 3.1: For a node y in a T layer of layered graph G(F), we define f(y) as before, as
the sum of the capacities of all the edges out of y, and we define b(y) as the sum of the capacities

of all the edges into y.

Definition 3.2: If (x,5) is a directed edge from an S-node x to a T-node y in G(F), and the
capacity of (x,y) is ¢(x,y), then c(x,y) is defined to be Minje(x,y), f(y)]. We call ¢(x,y) the
pscudo-capacity of edge (x,y), and it is the amount that can be sent from x through edge (x,y) to

the next S-layer closer to t.

Definition 3.3: For an S-node x in G(F), define f(x) (the forward potential) asﬁEc? (x,3 ie.
inthe layer o f4en

the maximum amount of flow that can be pushed from x to all the nodes of th: next Sylayei in
G(F). Similarly, define b(x) (the backward potential) as the amount of flow that can be pushed
from the S layer preceding the layer containing node v, to node v. Let p(v) = min|f(v), b(v)], and

let p be the minimum p(v) value over all S-nodes of G(F).

Note that the definitions of potentials for a T-node are standard, but the d:finitions of
potentials for an S-node differ from the standard definitions in that we are looking two layers

ahead and back. Further, the definition of p differs from the standard in that it is the minimum

16

pseudo-capacities during a phase. A push from an S-node x along edge (x,y) only affects the
potentials of x and y and the capacity of edge (x,y). A push from a T-node y to a node w only
affects the potentials of y, the capacity of (y,w), the potentials of tke S-nodes adjacent to y, and
the pseudo-capacities of the associated edges. Hence, since each T-node has bounded degree d, at
most O(d) updates are required after any edge push. Then since the total number of edge pushes
per phase is bounded by O(ISI2 + d|T]), the number of potential, capacity and pseudo-capacity

changes is bounded by O(d|S|® + d?|T]).

Note that in order to find p at each augmentation, we need the current values of b(v) for each
node v. Th>se can be maintained in the same time bound that the forward potentials are, in a

symmetric way. Hence the lemma is proved. O
Lemmas 3 and 4 and the phase lemma then yield the following

Theorem 3: With the above modifications of the MPM algorithm . bounded degree bipartite

flow can be computed in time O(d|S|> + d*[S||T|) = O(|S|*+]S||T}).

The case of d = 2: For d=2 (a common case) the modification of MPM can be viewed as
merging length two paths between consecutive S-layers into a single edge. Then there are only
IS| nodes in the resulting graph, and clearly then the phase runs in O(|S|*+|T|) time. No such
simple interpretation is known for arbitrary values of d. We note that for |E| = O(|T})), it is

easily shown that the Dinic algorithm runs in O(ISIZITI) time on bipartite graphs.

4. Applications

We will now present several problems which can be solved using network flow in a bipartite

graph where [T| >> |S|.

17

4.1. Multiprocessor Scheduling with Release Times and Deadlines

We are given n jobs and m processors. The jth job has a release time s and deadline di such
that the job cannot be started before time T and must be completed by time dj. In addition the
jth job has a processing time P; which is the time required to complete the jth job. Each
processor can run only one job at a time and each job can only be run on one processor at a
time. We also assume that a job can be preempted at any time, and be resumed immediately on
a mew processor or later on any processor at no cost. Our goal is to find a schedule which

completes all jobs subject to their release time and deadline restrictions.

Horn [HO] showed that this problem can be formulated and solved as a network flow problem
as follows. Lett, <t, < .. <t bethe distinct times in the multiset {rl, d,r,d,, .., r, d }.
The time period between two successive t, values will be called an interval. The flow network is
used to determine how much of each job is to be completed within an interval. If an interval has
length A, and q; }=1,2,...n, is the amount of job j to be completed within this interval, then

these processing amounts can be completed if and only if

(1) max {qj, i=12,.n} < 4, and

(2) &qj < Am.

g5

Once the q values are determined, the schedule for this interval can be constructed in O(n)

time [MC].

To find the processing amounts within an interval we construct a flow network with a node for
each job and a node for each interval. The source is connected to the jth job node with an arc of
capacity p;- The jth job node has an arc to the ith interval node if r <t and d.i 2t and
this arc has capacity t, , - t,. The ith interval node has an arc to the sink with capacity m(t,

i+1

- t,). See figure 2. The flow network described is bipartite, with |S|=n and |T|=k. By Theorem

18

1 and the symmetric roles of S and T, we can find a maximum flow in O(IS|IT|>)=0(nk?) time.

This is an improvement on the previous O(n’.’) time bound in the common case when k is o(n).

4.2. Uniform Processors

We will now generalize the previous scheduling problem by allowing the speeds of the
processors to be different. Let the m processors have speeds $; 2 85.. 2 8. A job with
processing requirement p takes P/s, units of time to be completed on the ith processor. As in the
previous problem, once we have determined the amount of processing to be done on the jobs
within an interval, the schedule for that interval can be constructed quickly. Gonzalez and Sahni
{.O8A] have shown that if q 2 gy ... 2> q_ are the amounts of processing to be done in an

.wierval of length A, then a schedule can be constructed in O(nlogm) time if and only if

3) f}qj < }:','sjA, for eachi =12,...,m-1 and

J=t 33!

m
4) Yq < XYsA
;20 9 MK

#'edergruen and Groenevelt [FeGr]| have shown that the amount of processing to be done within
cach interval can be found using the following flow network. As in the case for processors with
identical speeds, there will be a source and n job nodes. However, we will have m speed nodes,
(i,1), (,2), ..., (i,m), associated with the ith interval. The source is connected to the jth job node
with an arc of }capa.city P} The jth job node is connected to node (i,k) if T, <t and dj 2 b
This arc has capacity (sy - sk+lx"i+1 - t.), (where we let 8n41=0)- Each speed node (i,r) is

connected to the sink with an arc of capacity (8- 8, Nbiyy -)

The number of intervals k can be as large as 2n-1; so, there are O(mn) speed nodes. A simple
analysis of solving this network using the MPM algorithm results in an O(m3n%) time bound.

Federgruen and Groenevelt reduced this to O(m2'5n3) using Cherkaski's flow algorithm [Cher].

19

However, since we have a bipartite flow network with |S|=0O(n) and |T|=O(mn), Theorem 1
gives us a time bound of O(|T| |S|°)=0(mn3). In fact, Federgruen and Groenevelt show that if
there are only r distinct processor speeds we can reduce the number of speed nodes to O(rn)
which gives us a time bound of O(rns). Hence the bounds obtained using Theorem 1 of this

paper beat the best previously established bounds.

4.3. Applications based on Provisioning

A rich class of problems that can be modeled and solved as bipartite flow fall under the
beading of provisioning or shared fized cost problems. Picard [PIC79-1,PIC82-2] has shown that
a large class of 0-1 integer programming problems can be solved this way. These problems are
solved with a sequence of up to |S| bipartite flow computations, each on a bipartite graph with
IS| £ |T| £ 28l In that graph, each S node represents a variable in the integer programming
problem, and each T-node represents a constraint. In general, |T| >> |S|, although in most of
the applications, the number of T-nodes is polynomial in |S|. For the class of problems defined in
[PIC79-1,PIC82-2], Picard obtains the general time bound O((|SP|T|+|T/2S|*)log?|T|) using
complex flow algorithms. Theorem 1 in this paper shows that these problems can all be solved
by MPM with F-heaps, or by Karzanov's algorithm in time (|S]°|T|). Below we will discﬁss one

of the specific problems discussed in [PIC79-1,PIC82-2]: the maximum subgraph density problem.

4.3.1. Maximum Subgraph Density

Let G = (V,A) be an undirected graph without parallel edges, where |[V| = n, and |A| =
m. Let V' C V be a subset of vertices of V, and let G(V) be the subgraph of G induced by V".
The density of G(V’) is defined as the number of edges of G(V°) divided by the number of nodes
in V’. The maximum subgraph density problem is to find a set V' C V to maximize the density
of G(V’). The problem is of interest for its own sake, and has non-direct applications in

problems of network vulnerability [G83], [CUNNB83], statistical clustering [M72, M77], and

20

decomposition of graphs into edge disjoint spanning trees [PIC79-2], [TU] [NW]. Several
generalizations of subgraph density involving weights on edges and nodes are introduced in

[GOL); we will discuss some of these below.

Surprisingly, the subgraph density problem can be solved efficiently, despite its similarity to
the maximum clique problem. All of the proposed methods involve solving at most |V|
optimization problems called parametric problems; each has the following form: Given graph G
= (V,A) and a number), find the subset of vertices W C V to minimize \|W| + |c(A(W))],
where ¢c(A(W)) is the set of edges in A-A(W), and A(W) is the set of edges in the subg'raﬁh G(W)
induced by W. The solution to the subgraph density problem is found by searching for the value
of A where the solution to the parametric problem is exactly |A]. Details of how the subgraph
density problem reduces to these parametric problems are given in [PIC79-1,PIC82-2,GOL] and
omitted here. Each of the above parametric problems can be solved using network flow on either
a bipartite or a non-bipartite graph. In either case, exactly the same sequence of parametric
problems is solved. We will first describe a bipartite solution to the parametric problem found in
[PIC79-1,PIC82-2], and then a non-bipartite solution derived from [CUN83]. Other non-bipartite

solutions appear or can be derived from [PIC82-1], [GOL), [FUG], [TOP].

In the bipartite solution, the graph G(S,T) is constructed from G as follows. Node set S
contains one node for every node in G, and node set T contains one node for every edge of G. A
node u in S is connected to a node e in T if and only if u is an endpoint of the edge in G that e
represents; each edge from S to T has infinite capacity. Node s is attached to each node in S,
and each of these edges has capacity \. Node t is attached to each node in T and each of these
edges has capacity one. Then, the minimum s-t cut in G(S,T) defines the optimal node set W: W

contains every S node that is on the t side of the minimum s-t cut (see figure 3).

In the non-bipartite solution of the parametric problem, the graph NB is constructed by adding

21

a source node, s, and a sink node, t, to the original graph G. There is one edge (s,v) connecting s (
to each node v in V; this edge has capacity A\. There is also one edge (v,t) connecting each node
v to t; each such edge (v,t) has capacity d(v)/2, where d(v) is the degree of node v in G. Each
original edge in G has capacity 1/2 (see figure 4). The optimal node set W is again the set of

pnodes of S that are on the t side of a2 minimum s-t cut.

It has been generally accepted in the literature that the subgraph density problem can be more
efficiently solved using the non-bipartite graph NB than by using the bipartite graph G(S,T).
Since, in the worst case, |A| is ©(]V|?), naive application of the general upper bounds on the
running times of the Dinic, MPM and Karzanov algorithms on G(S,T) yield guaranteed times (for
each flow computation) of no better than O(|V[E), O(JV[®), and O(|V]®) respectively. However,
when run on NB, the corresponding upper bounds are the square root of the above bounds for
G(S,T). Even using more complex algorithms [SL] which take advantage of the sparsity of
G(S,T) (G(S,T) is sparse even when |A| = 6(|V|?)), naive application of the upper bounds gives a
guaranteed worst case running time of O(|V|*log]V]) for the bipartite graph; hence even‘
sophisticated algorithms appear to run slower on the bipartite graph than do the simpler

algorithms on the non-bipartite graph.

The results of section 3 refute the above reasoning. In G(S,T) every node in T has bounded
degree two, and so both the Dinic and the modified MPM algorithms run as fast (O(|V]%),
O(|V[®)) on G(S,T) as those algorithms run on NB. Further, it can be shown, using ideas similar
to those in this paper, that the unmodified Karzanov algorithm also runs as fast (O(|V|%)) on
G(S,T) as it does on NB. Hence, the accepted argument for the superiority of the non-bipartite

model is incorrect, although we don’t know which model actually permits more efficient solutions.

22

4.3.2. Weighted Subgraph Density Problems

Several generalizations of the subgraph density problem were proposed in [GOL]; we mention
here an observation that reduces the running time of the solutions. The most general density
problem is that each edge e has a (real) weight w(e) and each node v has a (real) weight w(v),
and the objective is to find a subset V' of the vertices to maximize the ratio w(A(V’))/w(V’),
where w(V’) is the total weight of the vertices in V’, and w(A(V’)) is the total weight of the
edges in the graph induced by V’. Note that the subgraph denSity problem is just the problem

where the weight of each edge and vertex is one.

The weighted density problem is again solved with a sequence of parametric optimization
problems, each of the form: given X, find the subset of vertices W C V to minimize Aw(W) +
w[c(A(W))]. Each of these problems is solved by network flow in a graph identical to G(S,T) or
NB, except for the edge capacities; in G(S,T), each edge (s,v) has capacity Aw(v), and each edge

(e,t) has capacity w(e).

The generalized density problem is solved by finding the value A* of A\ for which the
parametric problem has solution w(A). The key issue then is how to vary A to home in on *.
Goldberg [GOL] gives a method which never uses more than O(|V]?) trial values of A, and hence
finds the optimal V* in O(]V|®) arithmetic operations (on reals). We note here that at most V|
trial values of \ are ever needed, and hence the weighted density problem can be solved in
O(|V|*) time. This follows from a result in [ES] that as X varies from 0 to infinity, there can only
be V| values of A\ where the set of edges in the minimum cut changes. Further, the value of the
minimum cut as a function of X\ can be completely determined (traced out) in O(|V]*) time [ES};
after that, * can be found trivially. A similar theorem [ST] applies to minimum cuts in the non-
bipartite graph NB. Other weighted problems (over rationals) are also discussed in [GOL] and

their solutions can similarly be sped up with the above observation.

23

4.4. Additional Applications
We briefly sketch several more applications of flow in a bipartite graph with node sets S and
T, where [T| >> [S]| either as a structural feature of the model (as in subgraph density) or in

frequent problem instances

1. Network reliability Testing [SAS]: In a communication network, each node i can test k(i)
incident lines per day, and each line j must be tested t(j) times. Minimize the number of days to

finish the tests. Here |T| = 6(|S|?), and d = 2.

2. Find a maximum size set of edge disjoint spanning trees in an undirected graph [TUJ, [NW],

[PIC78-2]. |T| = 6(|S])?), and d = 2.

3. Network vulnerability [G83], [CUNN83]: Given a connected graph G, and a set of edges W
in G, define ¢(W) as the number of additional components created by deleting edge set W from
G. Find the best edge set W to maximize the ratio ¢((W)/|W|. Here again, |T| = 6(|S[?), and d

= 2.

4. Partitioning a data-base between fast and slow memory [ES): The data base consists of n
pieces of data which will be distributed between fast (expensive) memory and slow (cheaper)
memory. There are m possible queries that will be made on the data base, each defined by a
subset of the data. A cost c(i) is incurred for storing data i in fast memory, and a cost c(j) is
incurred when query j is made and some of the data needed for query j is in slow memory.
Determine the minimum cost partition of the data. |T| = m and |S| = n, and typically m >>

n.

5. Security of statistical tables [G84): Estimate the best upper and lower bounds on the value
of any missing data in an n by m statistical table. |T| = m and |[S| = n, and m and n can be

very different.

24

6. Provisioning and shared fixed cost [RHY]: general selection problem with many specific

applications of bipartite flow.

7. Optimal controlled rounding of statistical tables [CE]: Given a two dimensional table D of
cross tabulated integer statistics, and numbers d and p, round each entry to a multiple of d so
that the sum of the rounded numbers equals their rounded sum, and so that the ZID(i) - R(i)JP is

minimized, where D(i) and R(i) are the original and rounded values in the table.

8. The classical transportation problem [FF]: Given n origins, m destinations, a supply s; at
each origin i, a demand of di at each destination j, and a capacity c(i,j) on the amount that can
be shipped from origin i to destination j, determine if all demands can be satisfied by the
supplies, and determine how to allocate the supplies. Here n and m can be very different. The

classical problem of disjoint set representatives is a special case of this problem.

9. Sportswriter's End-of-Season Problem [SW],[HOFF]. Given the win-loss record of a set of n
teams in a league, and the schedule of the remaining games, determine whether there is an
outcome of the remaining games so that a given team x wins the pennant® , (wins more games

than any other team). Here again, |T| = 6(|S|?) and d =2

6. Acknowledgement
We would like to thank Gregory Sullivan at Yale for helpful and insightful comments during

the middle stages of this work.

%A harder problem of computing the probability that x wins is NP-hard |GS]

25

6. References

[CH] Cherkaski, B., “Algorithm of construction of maximal flow in
networks with complexity O(lVlzlEI'/ %) operations” Math.
Methods of Solutions of Economic Problems 7 (1977), 117-125 (in
Russian).

[CE] L. Cox and L. Ernst, “Controlled Rounding”, INFOR vol. 20,
no. 4, Nov. 1982.

[CUNN83] W. H. Cunningham, “Optimal Attack and Reinforcement of
a Network”, Preprint Dec. 1983.

[E] S. Even, Graph Algorithms, Computer Science Press, 1979.

[ES] M.J. Eisner and D.G. Severance, “Mathematical Techniques
for Efficient Record Segmentation in Large Shared Databases”, J. of
the Assoc. for Comp. Mach. 23, No 4, 610-635, 1976.

[FF] L. Ford, and D. Fulkerson, Flows in Networks. Princeton University
Press, 1962.

[FG] A. Federgruen and H. Groenevelt, “Preemptive scheduling of
uniform machines by ordinary network flow techniques”, preprint.

[FT)M.L. Fredman and R.E. Tarjan, “Fibonacci Heaps and their
uses in improved network optimization”. 25th Annual Symposium on
Foundations of Computer Science. IEEE. 1984.

[FU] “Lexicographically optimal base of a polymatroid with respect
to weight vector”, Math. of Operations Research. 5 (1980).

[GOL] A.V. Goldberg, “Finding a Maximum Density Subgraph”, Tech.
Report UCB/CSD 84/171 May 1984, Computer Science Division, U.C.
Berekely.

[GOSA] T. Gonzaler and S. Sahni, “Preemptive scheduling of uniform
processor systems”, JACM 25, no. 1, Jan. 1978, pp. 92-101.

[G84) Gusfield, “A Graph Theoretic Approach to Statistical Data
Security”, Yale Technical Report no. 326, August 1984.

[G83] Gusfield, “Connectivity and edge disjoint spanning trees”.
Information Processing Letters, February 26, 1983.

[GS] Gusfield and G. Sullivan, “Determining Possible End-of-Season
Rankings”. Yale Technical report in preparation.

[HO] Horn, W., “Some simple scheduling algorithms”, Naval Res. Log.

Arc | Charged
to

(,4) [wodel

| (48) [moded
- | (68) Jarc (1,5)
@/ . (6.9) |are (8.6)

®
O

1 (29) [wodes

S- Loyer T-Layer S-Layer
Only sugmented arcs are shown. An &rc s is saturated by the current sugmentation.

Figure | . Cbarge allocation for pon-saturating edge pushes.

Job | b | Ty |d;

35
" g
N w

Figure2 . A flow network for a 2-processor scheduling problem.

