The Yale Haskell Users Manual
Version Y2.0-beta
The Yale Haskell Group

. Paul Hudak, John Peterson, Sandra Loosemore
Research Report YALEU/DCS/RR-935
September, 1992

The Yale Haskell Users Manual
Version Y2.0-beta

September 25, 1992
The Yale Haskell Group
Department of Computer Science
Yale University

New Haven, CT 06520

1 INTRODUCTION 1

1 Introduction

This manual describes version Y2.0-beta-2 of the Yale Haskell system. The Haskell language is fully
defined in the “Haskell Report” [2]. This document refers to version 1.2 of the Haskell report; we
advise that copies of older versions be replaced by this new report as there are many significant
differences.

1.1 About Yale Haskell

The Yale Haskell compiler is part of a Lisp environment; the compiler itself is written in a small
Lisp dialect similar to Scheme or EuLisp which runs on top of Common Lisp. Haskell programs
are translated into Lisp and then compiled by the underlying Lisp compiler. The Yale Haskell
system retains the interactive nature of the Lisp environment: programs are compiled, executed, and
modified within a single process. We do not yet generate stand-alone executable Haskell programs.

Yale Haskell can be used either by itself using a command style interface or as part of a larger
programming environment. We supply an interface for GNU Emacs which runs Yale Haskell as a
subprocess. Within the Emacs enviroment Haskell expressions can be evaluated during the editing
of a Haskell source file. A tutorial on the Haskell language is also part of the Emacs environment.

1.2 The 2.0-beta-2 Release

This is the ‘beta-2’ release of the Yale Haskell compiler, version 2.0. We appreciate any and all user
comments, suggestions, and bug reports. We will not be issuing patches to the beta system; instead,
we hope to collect and fix all reported bugs in the official release of the system. This official release
should occur about one month after the beta release.

We are releasing the system in two forms: an executable built on top of CMU Common Lisp and
a full source release which can be used to build either on the CMU system, Lucid Lisp, or AKCL.
We have not yet ported to other Lisp systems; porting instructions are included with the release but
we do not feel that it is ready for porting by unassisted users.

‘'While we are very concerned with both speed of compilation and the speed of execution, we have
not yet had time to address either of these issues completely. We expect significant improvements
in both aspects of our system in future releases. Execution time is especially dependent on the
underlying Lisp compiler. We have not yet had time to tune our generated code (through declarations
and compiler settings) to achieve optimal performance. Please avoid benchmarking our generated
code until we have had time to improve this part of the system. Another problem we are working
on is the size of the system — we currently generate a very large executable, mainly due to the
embedded Lisp system. ‘ '

A number of aspects of the system are as yet incomplete. These include:

e Some error messages are rather cryptic.

o Some errors are not recovered from correctly, causing the compiler to crash later during com-
pilation.

o Some IO requests are not implemented or are not meaningful in the Haskell environment we
supply.

o We do not handle interface files yet.

2 USING HASKELL FROM EMACS 2

o The system has not been extensively tested.

Since we are releasing the full sources to our system, users are free to modify the compiler or port
the code to other Lisp systems. However, we are not yet in a position to support these activities.
The sources are still changing rapidly — compiler modifications you make may no longer be valid
when the next release comes. The code is as yet poorly documented.

1.3 Haskell Mailboxes

There are a number of mailboxes associated with Haskell and the Yale Haskell Project, as described
below.

e haskell-requests@cs.yale.edu
Use this address to communicate with us about our compiler. We also maintain the Haskell
mailing list.

e haskell-bugs@cs.yale.edu
Send bug reports to this address.

e haskell@cs.yale.edu
This is a mailing list for general issues concerning the language. Messages sent to this address
will be forwarded to all members of the Haskell discussion list, which has a USA distribution
managed by Yale and an European distribution managed by the University of Glasgow. Please
do not send bug reports or other messages specifically about the Yale implementation to this
list!

2 Using Haskell From Emacs

We supply two different programming environments with Yale Haskell: an editor based environment
built on the Emacs editor and a command interpreter. Both provide the same functionality but the
Emacs environment is much more convenient and is the recommended way of using Yale Haskell. If
you plan to use the command interpreter, you can skip this section.

2.1 The Haskell Emacs Mode

Before using the Haskell Emacs mode, you must first configure your .emacs file as described in
section 7. Once your .emacs file has been modified to recognize Haskell programs, the Emacs
editor will enter Haskell mode whenever a file with extension .hs or .1hs is visited. Haskell mode
provides commands to control the Haskell compiler as an inferior process under Emacs. There are
two basic commands: evaluating and printing expressions (C-c e) and running dialogues (C-c r).
They operate as follows:

1. Emacs prompts you for a Haskell expression. For C-c e, the value of expression must in class
Text. For C-c r, the value must be of type Dialogue.

2. An inferior Haskell process is started if one is not already running.

3. All .hs and .1hs buffers are saved.

2 USING HASKELL FROM EMACS 3

4. The file containing the cursor is compiled by the Haskell compiler if necessary.

5. The expression is evaluated or run in the context of the module containing the cursor (there
may be more than one module in a file). The Haskell dialogue buffer, named shaskells, will

pop up.

All interaction with the Haskell process occurs in the Haskell dialogue buffer. This buffer receives
status and error messages and well as IO operations on stdin and stdout. The cursor moves to
this buffer automatically if a running program requests input.

2.2 Scratch Pads

While developing Haskell programs it is often convenient to temporarily add definitions to a module.
A scratch pad is a special buffer associated with a module (not with a file!) in which you may place
definitions for use during the editing session. Changes to the scratch pad definitions do not require
full recompilation of the module and are especially useful when large programs are being developed.
The scratch pad is also a good place to enter and test new functions before moving them into the
source file. When you use either the C-c e or C-c r commands are used in a scratch pad, you may
reference the definitions in the pad.

To avoid global recompilation, there are a number of restrictions on definitions which may be
placed in a scratch pad:

e A scratch pad may not contain any import or fixity declarations. Only names visible in the
associated module or within the pad itself can be referenced.

e No definition in a pad can be exported from the associated module.
o The pad cannot redefine anything in the associated module.

When Haskell is not started from within a Haskell source file, a scratch pad onto an empty
program (*Main-pad#) pops up. You can use this pad to play with the system without creating a
.hs file.

2.3 Emacs Commands

This section describes in detail the commands available when running Haskell mode.

In the following, the current module is determined by the type of buffer containing the cursor.
In a .hs buffer, the current module is the module definition containing the cursor. In a pad, it is
the module associated with the pad. In the *haskell#* buffer, the most recently used module is
remembered.

A dialogue is any Haskell expression that is of type Dialogue.

The minibuffer commands M-p and M-n allow you to search back and forth through the history
of the last 30 expressions you have typed in when Haskell prompts you for something to evaluate.

haskell-eval (C-¢ e) This command prompts you for a Haskell expression to bé evaluated. Eval-
uation occurs in the context of the current module. The result is then printed; the value must
be in class Text.

2 USING HASKELL FROM EMACS 4

haskell-run (C-¢ r) This command prompts you for a Haskell dialogue and runs it. Its behavior
is similar to haskell-eval.

haskell-run-main (C-¢ m) This command runs the dialogue named Main in the current module.
haskell-run-file (C-¢ C-r) Runs all the dialogues in the current file.

haskell-get-pad (C-c p) Pops up the buffer containing the scratch pad for the current module,
and makes it the current buffer.

haskell-printers (C-c C-p) This command pops up a buffer that lets you set Haskell compiler
print options from a menu and makes it the current buffer. Use ? to get further help.

haskell-compile (C-c ¢) The Lisp code produced by the Yale Haskell compiler can either be in-
terpreted or compiled. Since compiling the generated Lisp code into machine language takes
much longer than generating it from the Haskell source program, you probably don’t want to
do this during program development. So, commands such as C-c¢ e and C-¢ r do not compile
the code generated or write any compiled code into files. When you are ready to create fully
compiled code and save it in output files, use the C-c ¢ command. This command recur-
sively compiles all imported compilation units. Use the :cspeed command to select the fast
(nonoptimizing) lisp compiler or the slow (optimizing) one.

haskell-exit (C-c q) This command terminates the Haskell subprocess. It leaves all buffers open.
haskell-switch (C-c k) Pops up the *haskell#* buffer and makes it the current buffer.

haskell-interrupt (C-c i) This command sends an interrupt to the Haskell subprocess. You can
use it to terminate execution of a running program (for example, if it gets stuck in an infinite
loop) and return to the command loop.

haskell-please-recover (C-c d) Sometimes Lisp errors may cause the synchronization between
Emacs and Haskell to be lost. This command attempts to reset both the Emacs interface and
the Haskell subprocess to a known state. You should not ordinarily need to use this command,
since the Emacs interface tries to recognize when Lisp errors have occured and reset itself
automatically.

haskell-command (C-c :) You can submit commands directly to the command interface with
this command. Use C-c :cspeed fast and C-c :speed slow to select the lisp compiler used
by C-¢c c.

haskell Starts up a Haskell subprocess, popping up the *haskell# buffer. You normally don’t need
to do this explicitly since any of the commands that cause code to be evaluated or compiled
will also start up a Haskell subprocess if there isn’t already one running.

haskell-mode Puts the current buffer into the Haskell editing mode.
haskell-tutorial Starts the online Haskell tutorial.

2.4 The Haskell Tutorial

An online supplement to the Hudak and Fasel tutorial (supplied in the $BASKELL/doc direc-
tory and published in Sigplan Notices) is available. Start this tutorial using the command
M-x haskell-tutorial. This will explain some of the Emacs commands as well as the Haskell
language.

3 THE COMMAND INTERFACE 5

3 The Command Interface

This section gives brief descriptions of all commands used by the command interface. Users of the
Emacs environment can skip this section.

To enter the command interface, execute the program $HASKELLPROG.

The command interface gives you control over the compiler and surrounding environment and
provides an incremental compilation ability through program eztensions. An extension is a Haskell
program which is scoped within an existing module.

The command interface reads both Haskell program extensions and system commands. Com-
mands start with a : and control the compiler and the environment. Commands which refer to an
extension always deal with the most recently entered extension within the context of the current
module. The current module name is used as the system prompt.

Any input line which does not begin with : is assumed to be a line of Haskell source code and
is added to the current extension. There are two abbreviations provided within extensions. A line
beginning with = prints an expression. This expands into a definition of a dialogue to accomplish
the printing when executed. Lines beginning with @ run user dialogues. All other lines are treated
as ordinary Haskell source code.

Command arguments are separated by whitespace. All commands may be abbreviated using the
shortest unique prefix of the command name. For a description of them see Figure 1.

The :eval, :save, :clear and :kill commands terminate the current extension. All other
commands allow the current extension to be continued.

Any command using a file refers to the most recently referenced file when no file is provided.
Files extensions are implicit in the commands and should not be supplied.

To interrupt a running Haskell program, use ~C (or whatever interrupt character is used by your
system).

3.1 An Example

Haskell Y2.0 Command Interface. Type :? for help

Initially, Haskell evaluates in @ module containing only the Prelude
Main> fact 0 = 1

Main> fact n = n*fact(n-1)

Main> :save This makes fact an addition to Main

Main> = fact 4 This will print J! when evaluated. No need to save this.
Main> :eval

Evaluating temp_1 temp; is generaled by ezpanding = to Haskell syntaz
24

Main> :cd $HASKELL/progs/demo

Main> :run fact An interactive factorial supplied in demo

Evaluating main. The name of the variable in fact being evaluated
Type in N: 4

24

Ertensions to the original Main are now lost.

Main> adds (x:xs) (y:ys) = x+y : adds xs ys

Main> :s

Main> £ = 0 : 1 : adds f tail £

3 THE COMMAND INTERFACE

Commands:
-?

:eval
:s8ave

:clear

:Main

:quit

:module module

:run file

:compile file
:1oad file

:ed dir

:list

:kill

:p?

:p= printers

:p+ printers

:p- printers

:cspeed fast | slow
: (lisp — code)

Prints a help file.

Evaluate any executable definitions in the current
extension. The extension may still be saved.

Save the current extension. If any errors are

found, nothing will be saved.

Remove all saved extensions in the current module
Enter the empty Main module.

Exit the Haskell system.

Set the current module. The :run command also
sets the current module. Initially, an empty module
Main which imports the prelude is available.
Compile and load a file. The directory and filename
default to the most recently used. If the file
contains a definition of main it will be run.

Like :r except than no execution occurs.

Load a Haskell program into memory without compiling
generated Lisp code or creating a compiled output file.
Set the current directory (absolute path only)

List the current extension.

Kill (erase) current extension.

List available printers.

Set printers.

Turn on printers.

Turn off printers.

Select the compiler for :c.

Evaluate a Lisp expression.

Figure 1: Command interface directives

4 THE COMPILATION SYSTEM 7

Main> :s
[TYPE-ERROR] Phase error in phase TYPE:
Type conflict: type [al does not match [a]l -> [a]
Error occurred at line 2 in file interactive.
While type checking
adds (f) tail
Argument type mismatch
Types: Num b => [b]
[c] => [c]
Cannot save: errors encountered.
Main> £ = 0 : 1 : adds f (tail f)
Main> :s
Main> = take 5 f Since f is infinite, print only the first § elements
Main> :e
Evaluating temp_2
[0,1,1,2,3]

4 The Compilation System

The compilation system is responsible for gathering all components of a program for compilation.
When a single file contains the entire program, this task is trivial. However, when a program contains
more than one file, compilation units must be used.

4.1 Compilation Units

A Haskell program consists of a collection of modules. The Haskell report does not define how this
collection is to be assembled; this is left to the implementation.

Yale Haskell defines the follqwing objects:

Module The syntax for a module (actually, a module implementation) is as described in the Haskell
report. Modules cannot span file boundaries. '

File Each file must contain one or more modules.

Compilation Unit A compilation unit is described by a .hu file. This file defines a set of source
file names and a set of imported compilation units.

Program A program consists of the modules in a compilation unit combined with all modules
found in imported compilation units.

The set of modules in a program must satisfy two criteria:

1. No module may appear more than once. It is an error for two modules in a program to have
the same name.

2. All modules referenced in import statements must be declared in the program. The module
Prelude is implicitly added to every program by the system.

4 THE COMPILATION SYSTEM 8

Compilation units in Yale Haskell are defined by files with the .hu extension. They are only
necessary for programs containing more than one source file. The contents of the .hu file are similar
to the command line used to invoke other compilers from a command line. The .hu file simply
contains a list of source files to be compiled as well as other units to be imported. Some of the
functionality of the make utility is also provided since the compiler will compile any uncompiled
units needed and determine whether a source file has been updated after the last compile.

Yale Haskell places one significant restriction on compilation units: each compilation unit must
itself be a valid program. The effect of this restriction is that compilation units cannot be mutually
dependent. If two modules are mutually recursive, each importing the other, you must place them
in the same compilation unit. Within a compilation unit, there are no restrictions on the importing
of modules.

4.2 Compilation Unit Files

Compilation units are defined in files with a .hu extension. A .hu file contains a list of file names,
one per line. Each file name should be either a source (.hs or .1hs) file or a unit file (.hu). The
former specifies a consituent file of the compilation unit, while the latter specifies a unit to import.
If you specify a file name without an extension, the system will look for a unit file first and then a
source file. File names may appear in any order. You can omit directories from the file names if the
file is in the same directory as the .hu file.

Compiling a unit with the C-¢ ¢ or :compile writes two output files: an object code file and
an interface file. Both of these files contain compiled Lisp code. The name of the interface file is
suffixed with -hci. The extension used for the output files varies depending on the underlying Lisp
implementation.

4.3 Recompilation as Needed

Compilation units serve to break a program into separately compilable pieces. To run the program,
all component pieces must be compiled and loaded into the system. Yale Haskell attempts to reduce
the amount of processing needed when compiling a program by saving previously compiled units in
. files and only recompiling them when they change.

Once compiled, a compilation unit may become outdated in one of several ways:

o A source file within the compilation unit changes.

e An imported unit becomes outdated.

o The definition of the unit changes.
In addition to these three possibilities, a unit must certainly be compiled if no compiled version
exists.

The compilation system will not compile a unit based on outdated imported information; it will
attempt to bring the imported units up-to-date by compiling them if necessary.

5 ERRORS AND DEBUGGING 9

4.4 Using Compilation Units

Some care must be taken when using compilation units from either the Emacs interface or the
command interface. The program being compiled must be specified by a compilation unit. To
avoid creating .hu files for one file programs, the compiler can be called with a single source file.
Otherwise, the system needs to know about the compilation unit in use.

In the command interface, the file used by the :compile and :load commands is actually a
compilation unit. The .hu extension is not needed: the system will look for a .hu before looking
for a source file. In a program consisting of a unit U with two source files A and B, you need to load
unit U after editing either A or B. Trying to compile A or B directly will result in an error.

The Emacs interface assumes that the unit file associated with a source file has the same name
but an extension of .hu. If the name is different, add a comment line containing unit: file at the
start of the file, as in: =-- unit: myunit

4.5 Defining Primitive Units

Primitive functions in the Yale Haskell system are defined in Lisp; they are compiled to produce
units whose definitions can be imported just like those arising from compiling Haskell source. We
have not yet documented the use of primitives. .

5 Errors and Debugging

5.1 Type Errors

Type errors can be difficult to deal with. If the error becomes especially difficult to uncover, turn
on the type printer. Do this from Emacs via C-c C-p and selecting the printer for type or use
:p+ type in the command interface.

We suggest that top level declarations be affixed with type signatures. This practice has a number
of advantages:

o Incorrect definitions of a function are caught by the typé signature instead of causing a type
error at a call site.

e Unwanted overloading is eliminated.

o The signatures provide an additional level of documentation.

When dealing with an ordinary type signature mismatch, check that the proper number and
types of arguments are being passed to the function. Also examine infix operators and make sure
that their precedences are what you expect.

The pattern binding rule can be the source of unexpected errors. This rule restricts overloading
of variables bound in pattern bindings. Global overloaded constants, structures which contain over-
loaded functions, and functions without arguments (that is, defined by a pattern bmdmg) can cause
an error when they have no explicit type signature.

The class system causes type checking to fail in a different way for overloaded function parameters
than for non-overloaded parameters. For example,

5 ERRORS AND DEBUGGING 10

length True

gives a standard type mismatch error. An overloaded function, like +, handles type mismatches
differently. The + function accepts any type of argument in class Num. An error in a call to +, as in:

True + False

results in a message indicating that Bool is not in class Fum. Such messages usually result from
ordinary type mismatches.

Another source of subtle type errors are overloaded numeric constants. An integer constant
has the typing ¥um a => a. When integers are used unexpectedly, the type unification algorithm
complains that the parameter type is not in class Num. For example, in:

length 3

the type error generated indicates that lists (the expected argument type to length) are not a
member of class ¥um.

Application is represented internally by a type constructor named Arrow. When a functional
object is used in a situation in which it is constrained by a class, an “instance not found” for type
Arrow is generated. For example, in:

(max 1) + 1

the argument to + must be in class ¥um. The value of max 1 is a function since both arguments have
not been supplied. Since functions are not in class Num an error message indicating that Arrow is
not a member of Num is generated. The omission of a function argument is the most common way of
generating this error. Tuples and lists also have internal type names used in error messages: Tuplek
and List.

Another typing error that can be difficult to understand is the ambiguous context. These are
often generated when a specific type constructor does not instantiate all type parameters in a data
type. For example, the typing of [0 is (List a). By itself, [0 does not require a specific element
type in the list. However, instance declarations for the list data type often place constraints on the
list components. For example, [a] is in class Text only when a is. In

print O

an ambiguous context occurs since print requires that the list elements, whose type remains un-
known, be in Text. This can be avoided using a type signature:

print (O :: [Intl)

since this removes the type variable a from the signature of [J.

Another common type-related error can occur in instance declarations. Instance declarations
require the user to explicitly state the entire context associated with an instance. If the body of
an instance requires a more general context than declared in the context component of the instance
declaration, an insufficient context error message will occur.

6 PERFORMANCE ISSUES 11

. 5.2 Runtime Errors

When the Haskell error function is called at runtime, the system displays the message associated
with the error and aborts execution. There is currently no way to examine the system state when
this occurs. Some constructs, such as case statements, add error calls to the program.

Add explicit “error handlers” to non-exhaustive case statements and function definitions; this
is good coding practice and eases debugging. It is also good coding practice to avoid non-disjoint
patterns whenever possible (such patterns also tend to translate into less efficient code than patterns
written disjointly).

Using Int arithmetic can lead to serious runtime errors when overflows occur. Only unsafe Int
operations are currently provided. If you run into memory protection problems, illegal instruc-
tions, or other mysterious errors when the program executes, check for potential overflow problems.
Changing Int to Integer should fix this problem.

If you think your program is in an infinite loop, use C~¢ i from the Emacs or “C from the
command interface to interrupt the Haskell process.

6 Performance Issues

Many different factors affect the speed of the compiled Haskell code and the compilation time. This
section deals with both of these issues.

6.1 Improving Compilation Time

The best way to reduce the time of compilation is to break your program into small compilation
units. This is not only good programming style, but also helps to isolate compilation errors and
allows you to take advantage of the separate compilation capability of the system. In particular, you
should place common datatype declarations in a separate file whenever possible — this conforms
with good application of abstract datatype principles, if nothing else. Smaller compilations units
also use much less memory during compilation.

Some Haskell constructs expand into large amounts of code; this must be taken into account when
considering the size of a compilation unit. Derived instances for types with many data constructors
contain large amounts of code. Pattern matching and list comprehensions can generate unexpectedly
large amounts of code.

The underlying lisp compiler can be used in either a fast (nonoptimizing) mode or a slow (opti-
mizing) mode. By default, the fast compiler is used. If you want to get the best possible code out
of the system you should select the slow compiler using the : cspeed command.

6.2 Generating Faster Code

Two factors affect the speed of the compiled code: the efficiency with which Haskell constructs are
translated into Lisp code and the speed of the primitives used. The math primitives are the most
visible. The performance of the primitives reflects the underlying Lisp system. Some facts about
the primitives:

e Int arithmetic is very fast. It is usually done inline with a single instruction.

REFERENCES 14

References

[1] Chuck Consel. Fast strictness analysis via symbolic fixpoint iteration. Technical Report
YALEU/DCS/RR-867, Yale University Department of Computer Science, September 1991.

(2] Paul Hudak, Simon Peyton Jones, Philip L. Wadler, Brian Boutel, Jon Fairbairn, Joseph H.
Fasel, Maria M. Guzman, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz,
Rishiyur Nikhil, and John Peterson. Report on the programming language haskell: a non-strict,
purely functional language, version 1.1. Technical Report YALEU/DCS/RR-777, Yale University
Department of Computer Science, August 1991.

[3] S. L. Peyton Jones. Flic - a functional language intermediate code. ACM SIGPLAN Notices,
23(8):30-48, 1988.

