
Yale University
Department of Computer Science

Incentive-Compatible Interdomain Routing

Joan Feigenbaum Vijay Ramachandran
Michael Schapira

YALEU/DCS/TR-1342
May 2006

This work is supported in part by the U.S. Department of Defense (DoD) University Research Ini-
tiative (URI) program administered by the Office of Naval Research (ONR) under grants N00014–
01–1–0795 and N00014–04–1–0725. An extended abstract was previously published as [4].



Incentive-Compatible Interdomain Routing

Joan Feigenbaum∗

Department of Computer Science
Yale University

New Haven, CT, USA
jf@cs.yale.edu

Vijay Ramachandran†

Department of Computer Science
Stevens Institute of Technology

Hoboken, NJ, USA
vijayr@cs.stevens.edu

Michael Schapira‡

Department of Computer Science
The Hebrew University

Jerusalem, Israel
mikesch@cs.huji.ac.il

Abstract

The routing of traffic between Internet domains, orAutonomous Systems(ASes), a task known as
interdomain routing, is currently handled by the Border Gateway Protocol (BGP) [17]. Using BGP,
autonomous systems can apply semantically rich routing policies to choose interdomain routes in a dis-
tributed fashion. This expressiveness in routing-policy choice supports domains’ autonomy in network
operations and in business decisions, but it comes at a price: The interaction of locally defined routing
policies can lead to unexpected global anomalies, including route oscillations or overall protocol diver-
gence (see,e.g., [20]). Networking researchers have addressed this problem by devising constraints on
policies that guarantee BGP convergence without unduly limiting expressiveness and autonomy (see,
e.g., [7,8]).

In addition to taking this engineering or “protocol-design” approach, researchers have approached
interdomain routing from an economic or “mechanism-design” point of view. It is known that lowest-
cost-path (LCP) routing can be implemented in a truthful, BGP-compatible manner [3] but that sev-
eral other natural classes of routing policies cannot [2, 5]. In this paper, we present a natural class of
interdomain-routing policies that is more realistic than LCP routing and admits incentive-compatible,
BGP-compatible implementation. We also present several positive steps toward a general theory of
incentive-compatible interdomain routing.

This work is supported in part by the U.S. Department of Defense (DoD) University Research Initiative (URI) program admin-
istered by the Office of Naval Research (ONR) under grants N00014–01–1–0795 and N00014–04–1–0725. An extended abstract
was previously published as [4].

∗Supported in part by ONR grants N00014–01–1–0795 and N00014–04–1–0725, NSF grants 0208972, 0219018 and 0428422,
and HSARPA grant ARO–1756303.

†Work done while at the International Computer Science Institute (ICSI), Berkeley, CA, USA. Supported by ONR grant
N00014–01–1–0795, by NSF grant CNS-0524139, and by the Stevens Technogenesis program.

‡Supported in part by ONR grant N00014–01–1–0795. Work done in part while visiting Yale University.

1



1 Introduction

The Internet is comprised of many separate administrative domains known asAutonomous Systems(ASes).
Routing occurs on two levels, intradomain and interdomain,implemented by two different sets of protocols.
Intradomain-routing protocols, such as OSPF [15], route packets within a single AS. Interdomain routing,
currently handled by the Border Gateway Protocol (BGP) [17], routes packets between ASes. It has been
studied by computer scientists for many years from an engineering or “protocol-design” perspective and re-
cently from an economic or “mechanism-design” perspectiveas well. Combining algorithmic and economic
considerations in the study of interdomain routing is very natural, because the many separate domains that
make up the Internet really are independent economic agentsthat must jointly execute a distributed algo-
rithm in order to choose routes.

In their seminal paper [16], Nisan and Ronen gave the following formulation of interdomain routing as a
mechanism-design problem: Each AS incurs a per-packetcostfor carrying traffic, where the cost represents
the additional load imposed on the internal AS network by this traffic. To compensate for these incurred
costs, each AS is given apaymentfor carrying transit traffic, which is traffic neither originating from nor
destined for that AS. It is through these costs and payments that consideration of “incentive compatibility”
was introduced to the interdomain-routing framework, which, as currently realized by BGP, does not explic-
itly consider incentives. The goal in [16] was to optimize the use of network bandwidth by routing packets
along lowest-cost paths(LCPs) and to do so with atruthful mechanismthat can be computed inpolyno-
mial time. Nisan and Ronen observed that the Vickrey-Clarke-Groves (VCG) mechanism, well known to
be truthful, solves the LCP mechanism-design problem and can be computed in polynomial time. Many
researchers have followed up on Nisan and Ronen’s original work, including Feigenbaum, Papadimitriou,
Sami, and Shenker [3], who showed that lowest-cost paths andVCG payments could be computed in a
“BGP-compatible” fashion,i.e., computed by a distributed algorithm that requires only small modifications
to the (already universally deployed) Border Gateway Protocol. In this paper, we continue the study of
BGP-compatible, truthful computation of interdomain routes and payments that was begun in [3].

Although it was viewed as a step forward in our attempt to understand the interplay of engineering,
algorithmics, and economics in interdomain routing, the work in [3] was by no means a fully satisfactory
solution. In particular, one of the valuable features of BGPis that it allows ASes to choose interdomain
routes according to semantically rich policies that meet their operational and business requirements; LCP
routing is just one example of a valid policy, and, in practice, many ASes do not use it [1]. Thus, it is natural
to ask whether more realistic, expressive interdomain-routing policies admit truthful, BGP-compatible com-
putation of routes and payments. Previous work on this question has been discouraging: Negative results
have been obtained for general policy routing [5], for “subjective-cost” policy routing [2], for “forbidden-
set” policy routing [2], and for “next-hop” policy routing [5]. The next-hop case (defined below) admits a
satisfactory centralized-algorithmic solution, but the stringent requirements put forth in [5] for a satisfactory
distributed-algorithmic solution cannot be met.

In this paper, we provide the first example of a class of policies that is more realistic than LCP and
that admits incentive-compatible, BGP-compatible computation of routes and payments, to wit: next-hop
policies that obey the Gao-Rexford conditions for global stability. We now proceed to describe these policies
and then outline other contributions of this paper; the latter contribute to a general theory of incentive-
compatible interdomain routing.

Thenext hopof a route is the source AS’s immediate neighbor along that route. An AS has anext-hop
policy if it decides among available routes to a destination based solely on the routes’ next hops. Because
ASes do not control packet forwarding beyond the neighboring AS to which traffic is initially sent, it is

2



realistic to express route preferences based on next hops alone. However, uncoordinated and unconstrained
local configuration of next-hop policies can produce routing instability [10,20].

Gao and Rexford [7] proposed constraints on policies that guarantee route stability without global co-
ordination. They assume that two types of business relationships exist between neighboring pairs of ASes:
customer-provider, in which one AS purchases connectivity from another, andpeering, in which two ASes
agree to carry transit traffic to and from each other’s customers,e.g., to shortcut routes through providers.
(These relationships accurately represent today’s commercial Internet; see [13].) These relationships natu-
rally induce route preferences. Gao and Rexford formalizedthese preferences (we review the formalization
in Sec. 3.1) and proved that they induce stable routing if there areno customer-provider cycles(i.e., no AS
is an indirect customer of itself). This requirement is realistic, because it is unlikely that a large Internet
provider would purchase connectivity from a smaller ISP in its own customer hierarchy.

We show that this realistic class of policies admits incentive-compatible, BGP-compatible computation
of routes and payments. Furthermore, we are able to give positive results for more general classes of policies.
We identify three conditions that together form a sufficientconstraint on policies to permit the computation
of welfare-maximizing routes by any path-vector protocol (including BGP). We show that, if any of these
conditions is violated, theprice of anarchy[14]—a measure of how far from optimal the computed routing
tree is, with respect to welfare maximization—for path-vector routing is unbounded. We also exhibit an
incentive-compatible algorithm that, while not space-efficient, computes payments and routes for any class
of routing policies that obeys the first two of these three conditions and, through its payments, enforces that
nodes obey the third condition. This general-case algorithm is not subject to any of the methods of rational
manipulation formulated by Shneidman and Parkes [18].

Our space-efficient implementation for the realistic classof policies discussed above is a special case
of the general-case algorithm; we also discuss another space-efficient special case, that ofmetric-based
valuations, that is a generalization of lowest-cost routing.

The remainder of the paper is organized as follows. In Sec. 2,we formally define the interdomain-
routing problem and review some necessary notation. We then, in Sec. 3, give an incentive-compatible,
BGP-compatible algorithm to compute routes and payments for next-hop policies that obey the Gao-Rexford
conditions. Following that, we discuss the three conditions on policies that permit welfare-maximizing route
computation in Sec. 4 and give an algorithm for the general case in Sec. 5. We present open questions and
conclude in Sec. 6.

2 Preliminaries

We begin this section by formally defining the interdomain-routing problem and providing some useful
notation. We then review the Border Gateway Protocol (BGP),the standard protocol used for interdomain
routing today.

2.1 Problem Statement

In the interdomain-routing problem, we are given an AS graphG = (N,L) that describes the network topol-
ogy. The set of nodesN corresponds to the ASes in the graph. Because routes are computed independently
for each destination, without loss of generality, we assumethatN consists ofn source nodes{1, . . . , n} and
a destination noded. The set of linksL corresponds to connections between ASes. LetLi ⊂ 2L be the set
of all simpleroutes (i.e., routes with no loops) fromi to d in G.

3



An instanceI = (G,P,V) of the interdomain-routing problemis defined by an AS graphG, a set of
permitted routesP(i) = P i ⊂ Li for each nodei ∈ [n], and thevaluation functionV(i) = vi : P i → R≥0

of each node. Every setP i contains the paths inLi that are not removed from consideration by eitheri itself
or i’s neighbors. Every valuation functionvi specifies the “monetary value” of each routeR ∈ P i from
nodei. We assume thatvi(∅) = 0, i.e., no route is worth nothing, and that, for all pairs of routesR1 and
R2 through different neighboring nodes,vi(R1) 6= vi(R2), i.e., there are no ties in valuations.1 Therouting
policy of each nodei is thus captured byvi andP i: The only routes considered fori are those inP i, and
preference among these routes is given by the valuation function vi.

The goal is to allocate to each source nodei ∈ [n] a routeRi ∈ P i. The resultingroute allocation
Td = {R1, . . . , Rn} should form a confluent tree to the destinationd. Furthermore, we are interested in
route allocations that maximize the “total social welfare”of the nodes,i.e., we want to find an allocation
satisfying

Td = argmaxT={S1,...,Sn}

n
∑

i=1

vi(Si).

Incentive compatibility is introduced into this problem bypaying nodes for their contribution to the
routing tree in the hope of incentivizing truthful behavior. Therefore, in our version of the problem, we
assume, as in [18], thatN contains one more node, calledthe bank, that is in charge of distributing a
paymentsi(Td) to each source nodei based on the path allocationTd.

We define theutility functionof each nodei, ui :
∏

i P
i → R, to beui(Td) = vi(Ri)+si(Td). Although

the global goal is to maximize the total social welfare, every rational nodei would only be interested in
maximizing its own utility, even if this comes at the expenseof not achieving the global goal. An algorithm
(protocol) is truthful if it is in the best interest of each node to reveal its true valuation function to the
algorithm. An algorithm isincentive-compatible(with respect to some notion of equilibrium) if it is in the
best interest of each node to comply with all the algorithm’sinstructions (with respect to the same notion of
equilibrium); compliance includes, but is not limited to, providing truthful input of valuation functions.

A distributed setting such as ours poses an inherently different challenge for the design of incentive-
compatible mechanisms (see [3, 18]) than a centralized one.This is because the computation is performed
by the strategic agents themselves and not by a reliable third party. In this paper, we focus on achieving
incentive compatibility inex-post Nash equilibrium, which has been argued to be most appropriate for
distributed-mechanism computation [18]; using this equilibrium concept enables the consideration of several
forms of rational manipulation other than lying about inputs (see Sec. 5.2 for a detailed discussion).

We are interested in efficient, distributed, and incentive-compatible welfare-maximizing algorithms for
the interdomain-routing problem. We require our algorithms to assume no prior knowledge of the nodes of
the topology of the network.

2.2 Notation

First, we present some notation for the representation of routes. Asimple route is a finite sequence of
consecutive links from a source node to the destination nodethat contains no loops (cycles).All routes
in this paper are simple unless stated otherwise.We say that nodei is in routeR (or write i ∈ R) if i
participates in one of the links inR.

1This assumption is consistent with BGP and the model of interdomain routing in [10]: Because at most one route can be
installed in a router’s forwarding table to each destination, nodes have some deterministic way to break ties,e.g., based on the
next hop’s IP address; so, valuations can be adjusted accordingly to match this. However, because only one route per neighbor is
considered at a time, ties in valuation are permitted for routes through the same neighboring node.

4



 

Announce
destination

BGP Router BGP RouterBGP Router

to neighborsfrom neighbors
Import routes

Choose best
route based
on policy

Export route

in routing table
Store routes

If best route
changes

If best route
is unchanged

Wait for updatesmessages
via update

BGP Router at one AS

via update
messages

 

Update messages between neighboring ASes

destination AS
Initialize at

Figure 1: Route computation using BGP.

If R is a route fromj (its source) to the destinationd, andi is a node that is not inR and is adjacent to
j in G, we denote by(i, j)R the route that has(i, j) as a first link and then followsR to the destination. If
j andk are intermediate nodes on a routeR, we denote byR[j,k] the subpath ofR from j to k.

Throughout this paper, we will consider sub-instances of the interdomain-routing problem obtained by
removing one node from the AS graphG. For every nodei, we denote byG−i the subgraph ofG that
contains all nodes inN excepti and all links inL except thosei participates in. We can now define
I−i = (G−i,V ′,P ′) to be a sub-instance of the original interdomain-routing instanceI, in which theAS
graph isG−i and, for each nodej 6= i, P ′(j) = {R ∈ P(j) | i 6∈ R}, i.e., any route containingi is
removed from the permitted-route set ofj, andV ′(j) is V(j) restricted to the sub-domainP ′(j), i.e., the
valuation of a permitted route inI−i is identical to the valuation of that route inI. We denote byT−i

d a
welfare-maximizing route allocation forI−i.

2.3 Routing with BGP

The Border Gateway Protocol (BGP) [17] belongs to the familyof path-vector protocols, the abstract prop-
erties of which were studied in [9]. A sketch of how BGP computes routes is shown in Fig. 1. The basic idea
is that a routing tree to a given destination is built, hop-by-hop, as knowledge of how to reach that destina-
tion propagates through the network. Communication between nodes takes place throughupdate messages
that announce chosen routes.

The process is initialized when some destination ASd announces itself to its neighbors by sending
update messages. Then, each nodei iteratively establishes routes tod by:

5



1. importing, via update messages, routes tod chosen by neighbors2 and storing the routes in arouting
table;

2. choosing the best route fromi to d (through a neighbor ofi) among those available in the routing table
based on local routing policy; and

3. if there is a change toi’s best route, exporting the newly selected route to all ofi’s neighbors using
update messages.3

At any given time, each node’s (internally stored) routing table contains the route updates received from its
neighbors, and each node is assigned at most one best route based on its policy. (A node may not have a
best route if it has not yet received any updates or if its neighbors havewithdrawntheir routes,e.g., because
of network failures). We assume that the network is asynchronous; so, it is possible that the network delays
the arrival of update messages along selective links.

Path-vector routing has several advantages. First, because the only routes considered are those an-
nounced by neighbors, the protocol enforces the requirement that route choices form a confluent tree. Sec-
ond, each node is able to maintain its autonomy by making its route choice based on local, expressive routing
policies. Third, changes in the network due to the addition or subtraction of nodes or links can be announced
through update messages, and routers can use alternate routes stored in the routing table to adapt quickly.
Fourth, because entire paths are announced, nodes can checkfor loops and exclude them from routing tables.

Because BGP is currently the standard protocol for Internetinterdomain routing, we desire algorithms
that areBGP-compatible, i.e., that can be implemented with only small modifications to BGP.

3 A Realistic, Incentive-Compatible Routing Model

In this section, we present an incentive-compatible, BGP-compatible algorithm for the interdomain-routing
problem (defined in the previous section) when valuation functions belong to a restricted but realistic class
of policies: next-hop routing that obeys the Gao-Rexford conditions for global stability. We first define this
class of policies. We then present the algorithm and discussits properties.

3.1 Policies for the Commercial Internet

Packets are forwarded based on destination alone; therefore, it is sensible for ASes to usenext-hop policies—
those that only consider the immediate neighbor along a route—because an AS actually has no control over
packets once they are forwarded to a neighboring AS. We formally define these policies as follows.

Definition 3.1. If i ∈ [n], defineneighbors(i) = {j ∈ N | (i, j) ∈ L}, i.e., the set of nodes adjacent toi.

Definition 3.2. If R′ ∈ Lj andR = (i, j)R′, then define thenext hopon R to benext(R) = j. Node
i ∈ [n] has anext-hop valuation functionvi iff there exists a functionfi : neighbors(i) → R≥0 such that,
for every routeR ∈ P i, vi(R) = f(next(R)).

If all nodes have next-hop valuation functions, we say that “the instance uses next-hop policies.” Next-
hop policies are semantically rich enough to permit global routing instability (see Sec. 4.1); therefore, we
require additional constraints on policies. One realisticand well-studied set of constraints, which we discuss

2Some neighbors may refuse to send particular routes.
3Again, nodes may not send certain routes to certain neighbors.

6



in this section, assumes that some business hierarchy underlies the AS graph and that policies are based on
the economic nature of this hierarchy.

Huston’s study of the commercial Internet [13] suggests twotypes of business relationships that char-
acterize AS inter-connections: Pairs of neighboring nodeshave either acustomer-provideror a peering
relationship. Customer nodes pay their provider nodes for connectivity—access to Internet destinations
through the provider’s links and advertisement of customerdestinations to the rest of the Internet. Peers are
nodes that find it mutually advantageous to exchange traffic for free among their respective customers,e.g.,
to shortcut routes through providers. A node can be in many different relationships simultaneously: It can
be a customer of one or more nodes, a provider to others, and a peer to yet other nodes. These agreements
are assumed to be longer-term contracts that are formed because of various external factors,e.g., the traffic
pattern between two nodes.

Intuitively, these business relationships naturally induce routing policies. Gao and Rexford [7] formally
modeled these relationships and policies with the following three conditions.

No customer-provider cycles: Let GCP be the digraph with the same set of nodes asG and with a directed
edge from every customer to its provider. We demand that there be no directed cycles in this graph.
If this requirement is met, we say that “the AS graph containsno customer-provider cycles.” This
demand is a natural economic assumption, because, if there is a cycle inGCP, then a node is indirectly
its own provider.

Prefer customers to peers and peers to providers:A customer routeis a route in which the next-hop AS
is a customer.Provider and peer routesare defined similarly. We require that nodes always pre-
fer (i.e., assign a higher value to) customer routes over peer routes,which are in turn preferred to
provider routes. This also has an obvious economic justification given the financial agreement for
each relationship.

Provide transit services only to customers:Nodes do not always carrytransit traffic—traffic that origi-
nates and terminates at hosts outside the node. Nodes are obligated (by financial agreements) to carry
transit traffic to and from their customers, but nodes do not carry transit traffic among only providers
and peers. Therefore, nodes should share only customer routes with their providers and peers but
should shareall of their routes with their customers.

It was proven in [6, 7] that, if all nodes obey these conditions, enforced naturally by Internet economics,
BGP predictably converges to a stable routing tree, even after node and link failures. Later work [8, 19]
showed that the Gao-Rexford conditions are only one class ofpolicies that prevent routing anomalies; we
will discuss the more general characterization in Sec. 4.2 below.

Using the terminology and notation of Sec. 2, we formally define the Gao-Rexford conditions as follows:

Definition 3.3. The Gao-Rexford conditionshold iff the AS graph contains no customer-provider cycles,
and, for all nodesi ∈ [n], the following hold for all pairs of nodes{j, k} ⊂ neighbors(i) and for all pairs
of routes{Rj , Rk} ⊂ P i such thatnext(Rj) = j andnext(Rk) = k:

1. If j is a customer andk is not, thenvi(Rj) > vi(Rk). If j is a peer andk is a provider, then
vi(Rj) > vi(Rk). (The remaining cases are implied by symmetry.)

2. If neitherj nor k is a customer, then(j, i)Rk /∈ P j and(k, i)Rj /∈ P k, becausei does not shareRk

with j or Rj with k. If j is a customer, then, whateveri’s relationship tok, Rj is shared withk, and
Rk is shared withj. Thus,(k, i)Rj ∈ P k if permitted byk, and(j, i)Rk ∈ P j if permitted byj.

7



3.2 A BGP-Compatible Algorithm

The following algorithm is a straightforward extension to BGP that computes routes and payments for
incentive-compatible, welfare-maximizing routing when policies are next-hop based and obey the Gao-
Rexford conditions described above in Sec. 3.1.

The algorithm essentially computes best routes using BGP but adds extra information to update messages
so that nodes can compute the mechanism’s payments. This information is also stored in nodes’ routing
tables, requiring one extra bit of storage for every transitAS on an imported route. These bits are used to
determine the next hop of the bestk-avoiding route—the best route inI−k—for every transit nodek on the
best route for each node inI. The next hops are used directly in computing payments and can be stored
using one extra row in the routing table, denotedLi below.

The extra bit per transit node in each row of the routing tableand the extra row used to store the next
hops require a constant-factor increase in the space complexity of the original BGP; a similar amount of
extra storage was used by the algorithm described in [3] for lowest-cost-path routing. We use the termBGP-
compatibleto mean that the algorithm has the same basic structure as BGPand that it is “space-efficient,”
in that it requires only a modest increase to the storage requirement of the original BGP. This is consistent
with use of the term in [3].

Computation of best routes andk-avoiding next hops is triggered when nodes receive update messages,
just as in BGP (see Sec. 2.3). Update-message processing is divided into two cases: (I) the message is from
the most valued neighbor that has yet sent a message, in whichcase the route contained in the message
is chosen as the best route; and (II) the message is not from the most valued neighbor that has yet sent a
message, in which case the extra bits in the message are used to update the choices of the bestk-avoiding
next hops. Unlike BGP, if nodex chooses nodey as its next hop, an update message is still sent fromx back
to y; this extra message is used to send availability toy of k-avoiding routes throughx and is processed
using case (II).

Setting: An instance of the interdomain-routing problem with next-hop policies obeying the Gao-Rexford
conditions. As in Def. 3.2, we assume that there exists at each nodei ∈ [n] a functionfi : neighbors(i) →
R≥0, such thatvi(R) = fi(next(R)).

Outcome: A route allocationTd = {R1, . . . , Rn} that forms a confluent tree tod, such that

Td = argmaxT={S1,...,Sn}

n
∑

i=1

vi(Si).

Structure of Update Messages:An update messagem sent by nodei contains a routeRm ∈ P i and, for
everyk ∈ Rm (k /∈ {i, d}), a bitBm(k). Bm(k) = 1 if i has, in its routing table, ak-avoiding route tod,
i.e., some routeR ∈ P i such thatk /∈ R. These bits are used to correctly populate the listLi, defined below,
that is used to compute the mechanism’s payments.

Storage at Each Node:Each nodei has a routing tableYi indexed by neighbors ofi. If j ∈ neighbors(i),
thenYi(j) is the update message sent by nodej, so that at most one advertised route is stored per neighbor.
Initially, Yi(j) = ∅ for all j. Each nodei also has a listLi: Assume the current best route ati is Ri; if
k ∈ Ri is a transit node (k /∈ {i, d}), thenLi(k) = next(R′), whereR′ is the bestk-avoiding route ini’s
routing table.Li(k) will be used, at the end of the algorithm, to compute the component of the payment to
nodek that is attributable to nodei, denotedsi

k. Fig. 2 shows an example of the storage at each node.

Start: AS d sends update messagem = (d, ∅) to all neighbors.

8



Dest. Lz(2) = 1 Lz(4) = 2 Lz(5) = 1 → Lz: bestk-avoiding next-hop ASes for transitk onz’s best route

d AS 2 AS 4 AS 5 → R2, the route chosen by neighbor AS2; z’s current best route
B2(4) = 1 B2(5) = 0 → B2, the bit vector sent with update from neighbor2

d AS 1 AS 3 AS 5 → R1, the route chosen by neighbor AS1
B1(3) = 0 B1(5) = 1 → B1, the bit vector sent with update from neighbor1

Figure 2: An example routing table for source nodez using the algorithm from Sec. 3.2.

Update-Message Processing:Let m = (Rm, Bm) be the update message received at nodei from j ∈
neighbors(i). If (i, j)Rm /∈ P i andnext(Rm) 6= i, then discard the message. Otherwise,(i, j)Rm ∈ P i or
next(Rm) = i, and the update message should be stored in the routing tableso thatYi(j) = (Rm, Bm).

(Case I)If next(Rm) 6= i and

fi(j) = max
{j′∈neighbors(i)|Yi(j)6=∅}

fi(j
′),

i.e., j is the most valued neighbor that has sent an update message, then eitherRm is a new best route tod
(i.e., Rm is the newRi) or the neighbor exportingRm has an updated bit vectorBm. ResetLi to empty and,
for eachk ∈ Rm such thatk 6= d, do the following to repopulateLi: If Bm(k) = 1, then setLi(k) = j; if
Bm(k) = 0 or k = j, then:

1. LetA = neighbors(i) − {j} and let

a = argmax{a′∈A|Yi(a′)6=∅}fi(a
′)

be the most valued node inA. Let (Ra, Ba) = Yi(a) be the routing-table entry fora.

2. If k /∈ Ra, then setLi(k) = a.

3. If not,k ∈ Ra. If Ba(k) = 1, then setLi(k) = a.

4. If Li(k) has still not been set, then repeat at (1) withA = A − {a}. Discontinue repeat ifA = {a},
i.e., there would be no nodes left inA.

Finally, setRi = (i, j)Rm.

(Case II)If next(Rm) = i or

fi(j) 6= max
{j′∈neighbors(i)|Yi(j)6=∅}

fi(j
′),

i.e., j is not the most valued neighbor that has sent an update message, then, for each current transit node
k ∈ Ri (k /∈ {i, d}), setLi(k) = j if j has ak-avoiding route andj is more valued thanLi(k), the current
bestk-avoiding next hop;i.e.:

1. fi(j) > fi(Li(k)); and either

2a. k ∈ Rm andBm(k) = 1; or

2b. k /∈ Rm.

9



If any changes were made toLi in either of the cases above (including any time Case I was triggered),
then send update messagesm′ = (Ri, B

′
m) to all neighbors ofi, whereB′

m(k) = 1 if Li(k) 6= ∅ and
B′

m(k) = 0 if Li(k) = ∅. (If Ri is a non-customer route and neighborn is also a non-customer, then the
update message(∅, ∅) should be sent to comply with the Gao-Rexford conditions, implying a withdrawal of
the previous route. Note that, in Lem. 3.7 below, we prove that a withdrawal will never happen.)

Payment Computation: Once the algorithm converges, the bank obtains from each node i the payment
componentsi

k = fi(next(Ri)) − fi(Li(k)) for everyk ∈ Ri (k /∈ {i, d}), which is the component of the
total payment tok that is attributable toi. The bank then disburses to each nodek a paymentsk =

∑

i6=k si
k.

We next investigate the truthfulness and correctness of thealgorithm. We show that the algorithm con-
verges, at which time each nodei has a valid, utility-maximizing routeRi to d and, for eachk ∈ Ri

(k /∈ {i, d}), the next hop of the best route inG−k, Li(k), that is used in the computation of payment
componentssi

k.

3.3 Truthfulness and Correctness

We define the payment to each node to be

sk =
∑

i6=k

vi(Ri) −
∑

i6=k

vi(R
−k
i ), (1)

whereRi is the route allocated toi in Td, andR−k
i is the route allocated toi in T−k

d .
Our mechanism then belongs to the family ofVickrey-Clarke-Groves(VCG) mechanisms. A classic re-

sult of Green and Laffont [11] states that a truthful pricingmechanism maximizing a social-welfare function
of the formV (Td) =

∑n
i=1 vi(Ri) must be a VCG mechanism, with payments expressible as

pk =
∑

i6=k

vi(Ri) − hk(T
−k
d ), (2)

in whichhk(·) is an arbitrary function ofT−k
d . In particular, this means that every strategic agent’s payment

must depend solely on the other agents. Note that, if

hk(T
−k
d ) =

∑

i6=k

vi(R
−k
i )

in (2), thenpk = sk.
Intuitively, the payment to each nodei is the increase in the social welfare of the other nodes caused by

i’s participation in the algorithm. The key observation is that these payments can be “broken down” into
components computed by the different nodes (in a distributed fashion). Loosely speaking, nodei’s compo-
nent in the payment to nodej corresponds toj’s contribution toi’s welfare—the difference in the valuesi
assigns to the paths he gets with and withoutj. These components are computed during the algorithm, and
the final payment is the sum of payment components computed once the algorithm converges.

Definition 3.4. Thepayment componentfor j attributable toi is

si
j = vi(Ri) − vi(R

−j
i ),

and thepaymentto each nodek is
sk =

∑

i6=j

si
k.

10



It is easy to verify that the paymentsk in Def. 3.4 is the same as that in (1). At the end of the algorithm,
each nodei has enough information to computesi

j for all transit nodesj: Because preferences are next-hop
based,si

j = vi(Ri)− fi (Li(j)), wherefi is the next-hop valuation as in Def. 3.2, andLi(j) is the next hop
of the bestj-avoiding route computed by the algorithm. Payment components must only be computed for
transit nodes: Ifj is not a transit node oni’s best route,i.e., j /∈ Ri, thenRi = R−j

i , andsi
j = 0.

VCG payments guarantee the truthfulness of the algorithm. In Sec. 5.2, we show that (with minor
modifications) our algorithm is immune to all types of rational manipulation as formulated by Shneidman
and Parkes [18]; this means our algorithm is incentive-compatible with respect to ex-post Nash equilibrium.
The algorithm is BGP-compatible because it has the same structure as BGP and requires only a constant-
factor increase in space complexity.

Theorem 3.5. The algorithm in Sec. 3.2 is truthful and BGP-compatible.

Proof. As discussed above, payments to nodes have the form of VCG payments; VCG payments guarantee
truthfulness [11]. We must now show that the algorithm is BGP-compatible. In addition to the routing-table
storage required by the original BGP, this algorithm requires, at nodei, storage of:

1. the bitBm(j) for everyj ∈ Rm sent in an update messagem stored ati; and

2. the next hops on the currently best knownk-avoiding routes for everyk ∈ Ri, whereRi is the current
best route tod.

This requires one additional bit per transit AS, per row (update message) in the routing table and one addi-
tional row to store the next hops. This amounts to a constant-factor increase in space complexity and fulfills
our requirements for BGP compatibility.

The following theorem implies the correctness of the algorithm.

Theorem 3.6. Regarding the algorithm in Sec. 3.2 on instances with next-hop valuations obeying the Gao-
Rexford conditions:

(C1) the algorithm converges;

(C2) the outputTd is optimal (welfare-maximizing); and

(C3) the nodesLi(k) are indeed the next hops of the optimal routes fori in G−k.

Proof. We will show that the Gao-Rexford conditions imply (C1) and that adding next-hop valuations im-
plies (C2). These are special cases of more general results,which are discussed in Sec. 4.2–4.4. The
welfare-maximizing routing tree output by the algorithm with this class of policies has the additional prop-
erty that the routes allocated to the nodes are not only globally optimal, but also locally optimal (best with
respect to each node’s valuation function). Therefore, if nodes comply with the algorithm’s instructions,
they should receive their highest valued routes. This result is also true for more general classes of policies;
see Sec. 4.5 below. The proof of (C3) is particular to this algorithm and this class of policies.

To prove (C1), we must show that our algorithm will stop sending update messages along every edge in
the network. The Gao-Rexford conditions imply convergenceof simple path-vector protocols (SPVPs) like
BGP—discussed in Sec. 2.3—on instances and sub-instances [6, 7]; however, our algorithm differs slightly
from SPVPs. In both algorithms, an update message is sent from i to j when a new best route is chosen at
i. In SPVPs, this message either (1) contains the new route (ifi can export its choice toj), or (2) contains

11



a withdrawal (if i cannot export its choice toj). In our algorithm, (1) still occurs, but (2) does not; in
particular, our algorithm does not send or process withdrawal messages. However, the following lemma
shows that this is irrelevant: For valuations obeying the Gao-Rexford conditions, withdrawal messages are
never sent.

Lemma 3.7. If, at some time, nodea sends nodei an update message(Rm, Bm) such thatRm 6= ∅, i.e.,
nodea exports a route to nodei, and we assume there are no failures, then at any future time,there will
exist a routeRa in i’s routing table, such thatnext(Ra) = a.

Informally, this lemma means that once a node exports a usable route to a neighbor (where “usable”
means allowed by the Gao-Rexford conditions), any route chosen by the node will be a usable route for that
neighbor. Therefore, route withdrawals are unnecessary; routes are only replaced with new (usable) routes.

Proof. Changes to the routing table are update-driven. A change, due to a new update or withdrawal, will
only be sent ifa switches fromRm to some other routeRa. We must show that, in this case, an update
message withRa is sent toi, and a withdrawal is not sent.

If a is a provider ofi, thena will export Ra to i. Therefore, we can assume, without loss of generality,
thata is a peer or customer ofi; thenRm must be a customer route ofa, or it would not have been sent to
i. If a switches toRa becauseva(Ra) > va(Rm), thenRa must also be a customer route, and it will be
exported toi. If not, thenRm must have been withdrawn. (If it was replaced, next-hop policies dictate that
va(Ra) = va(Rm), and that route will be exported toi.) In this case, its customerc = next(Rm) switched
to a route that was filtered; but, this new route must be a non-customer route atc. Because it is less valued
than the customer routeRm[c,d], that switch must have also happened because of a withdrawal, and these
same arguments apply. This could continue downstream tod, but the last link must be a customer route that
is always available; this leads to a contradiction.

Given Lem. 3.7, the convergence implied by the Gao-Rexford conditions for SPVPs also applies to our
algorithm, because the dynamics of update messages (for route choices in the original instanceI) are the
same as that of SPVPs. However, our algorithm also finds next hops in sub-instancesI−k, wherek ∈ [n];
to do so, it sends update messages whenever the availabilityof k-avoiding routes changes (i.e., a change in
the listLi). These messages are not used in SPVPs, so we must show that they eventually stop as well.

First, note that the Gao-Rexford conditions hold for sub-instances if they hold for the original instance;
therefore, a unique, stable routing tree exists for each sub-instance, and route withdrawals are unnecessary.
Second, because valuations are next-hop based, only the availability of a k-avoiding route through a given
neighbor needs to be known, not the route itself. (This is whythe algorithm only sends a bit vector of avail-
ability.) But, because routes are never withdrawn, once a neighbor indicatesk-avoiding-route availability,
a k-avoiding route through that neighbor will always be available in the future. Because there are a finite
number of neighbors,k-avoiding-route availability can only improve a finite number of times. Thus, at some
point along every edge, update messages will no longer be sent for this reason.

Therefore, we have shown that at some point, update messageswill no longer be sent (either for route
choices inI or next hops inI−k); thus, the algorithm converges, proving (C1).

To prove (C2), we show that the welfare-maximizing routing tree for the instance,O = (O1, . . . , On),
is stable—i.e., for every nodei and everyj ∈ neighbors(i), vi(Oi) ≥ vi((i, j)Oj) (see Def. 4.1). It is
clear (and implied by [6,7]) that our algorithm converges toa stable routing tree. Because the Gao-Rexford
conditions imply that there is a unique stable routing tree [6,7], the tree computed by the algorithm must be
welfare-maximizing.

12



We show this by contradiction: Assume that the welfare-maximizing treeO is not stable; then there is
some nodei with a neighborj such that

vi(Oi) < vi((i, j)Oj). (3)

Construct the routing treeO′ = (O1
′, . . . , On

′) as follows. LetO′
i = (i, j)Oj andO′

j = Oj . (Note that
i /∈ Oj , otherwisevi((i, j)Oj) 6> vi(Oi) because the route would not be simple.) Fork /∈ {i, j, d}, if
i /∈ Ok, let O′

k = Ok. If i ∈ Ok, then letO′
k = Ok [k,i](i, j)Oj .

The latter is possible becauseO′
k ∈ P k. Let m ∈ O′

k be the neighbor ofi such thatnext(O′
m) = i. If

m is a customer ofi, thenO′
i will be exported tom, andO′

m will be exported and extended tok because
the Gao-Rexford conditions imply these links are customer links. If m is not a customer ofi, thenj must be
a customer ofi; if (3) is true, then the Gao-Rexford conditions imply this.Therefore, the routeO′

i must be
exported tom; because no relationships have changed, ifOi was exported bym, so will O′

i.
In the treeO′, (3) implies that nodei has higher welfare. Because valuations are next-hop based and

the nodes routing throughi continue to route throughi, the valuations of no other nodes have changed.
Therefore,O′ has higher welfare thanO, contradicting the welfare maximization ofO. This must mean that
O is stable, which completes the proof of (C2).

Note that the above argument can also be used to prove that theunique stable routing tree, which is
welfare-maximizing, assigns each node its most valued route. Assume this is not true: Some node does not
receive its most valued pathR; in (3), replace(i, j)Oj with R, and the contradiction follows. Therefore,
the routing tree found by the algorithm is essentially “optimal” in the global (welfare-maximizing) and local
sense. This fact will be used below, and is a special case of Thm. 4.13. For the remainder of this proof,
we will use “optimal” to mean both globally and locally optimal because of this equivalence; for a full
discussion of this for more general cases of policies, see Sec. 4.5.

To prove (C3), we shall require the following four lemmas.

Lemma 3.8. If j is the optimal next hop fori, and, for somek ∈ [n], j has ak-avoiding route, then the next
hop of the optimalk-avoiding route ati is alsoj.

This lemma justifies the step in the algorithm that immediately setsk-avoiding next hops whenever an
update message containing a new best route is received.

Proof. Assume thatj is not the optimalk-avoiding next hop; then, becausej has ak-avoiding route, there
must be some other nodea with a betterk-avoiding routeR−k

a . Because of next-hop valuations, this implies
fi(a) > fi(j). But, becausea is not optimal fori with k present, this implies thata must not have a usable
route tod whenk is present. Thus, whenk is present,a chooses a routeRa throughk but does not export
it to i. (Otherwise, removingk would make no difference.) This means thatva(Ra) > va(R

−k
a ), and

next(Ra) andi both must be non-customers ofa (only non-customer routes can be filtered by Gao-Rexford
policies). But this means thatR−k

a must also be a non-customer route ata because it is less valued than
Ra. In this case,R−k

a would not be exported toi either, contradicting the possibility thata has a usable
k-avoiding route fori.

Lemma 3.9. If nodei has not received an update message from neighbora, then either nodea’s route in
I−k (for anyk ∈ [n]) cannot be exported toi, or nodea has no route inI−k.

This lemma means that neighbors withk-avoiding routes permitted ati will send update messages to
i; information from neighbors that do not send update messages to i is irrelevant in computing payment
components.

13



Proof. If a is routing throughi, thena will send an update message if it has anyk-avoiding routes available.
Thus, without loss of generality, we can assume thata is not routing throughi.

If a has not sent an update message toi because it has not learned any paths tod, thena also has no
k-avoiding routes tod.

The remaining case is thata has not sent an update message toi because it cannot share its routeRa

with i. In this case,i must not be a customer ofa, andnext(Ra) is also not a customer ofa. If k /∈ Ra, then
Ra is ak-avoiding route, buta cannot export it toi becausenext(Ra) andi are both non-customers.

If k ∈ Ra, thena may choose a different routeR−k
a in I−k. If R−k

a is a non-customer route, then it is
still unusable byi, which accounts for an update not being sent. IfR−k

a is a customer route, then it must
not be available toa whenk is present, otherwisea would choose it over the non-customer routeRa. But
this is not possible, because every link(u,w) ∈ R−k

a is a customer link, including the last link tod. This
means the route must be exported up the chain of providers toa at all times, which leads to a contradiction;
therefore,R−k

a cannot be a customer route ata, which makes it unusable toi.

Lemma 3.10. If k /∈ Ra, the route allocated toa by the algorithm for the original instanceI, and(i, a)Ra ∈
P i, then there exists a routeR−k

a ∈ P a such that(i, a)R−k
a ∈ P i for the sub-instanceI−k.

This lemma has to do withk-avoiding-route availability. Even though a node may choose ak-avoiding
route as its best route forI, it may be that downstream changes prevent it from choosing that route in the
sub-instanceI−k in which k is removed; in fact, it is possible that nok-avoiding route is available. This
lemma excludes this possibility. The algorithm uses this fact to populate the listsLi.

Proof. If no nodej ∈ Ra chooses a different path (other thanRj) whenk is not present, thenRa itself is a
k-avoiding path usable byi. If some downstream nodej switches to a different pathR′

j whenk is removed,
then the pathRa[a,j]R

′
j should be usable ati, unless it is filtered somewhere betweenj andi.

Assume this happens. The relationships of nodes betweenj and i have not changed: Because these
nodes originally propagatedRj , they would also propagateR′

j; therefore,j itself must filterR′
j. This means

thatR′
j must be a non-customer route, and the node upstream ofj towardsa must also be a non-customer.

But becauseRj was not filtered, it must be a customer route. Becausevj(Rj) > vj(R
′
j) in this case,j would

never have switched toR′
j upon removal ofk unlessRj was filtered downstream ofj. However, this same

argument applies to all downstream nodes (which must all be customers); because the last link adjacent tod
must be a customer link and the direct route is always exported, this leads to a contradiction.

Lemma 3.11. Given some fixedk, it is not possible forLi(k) = j andLj(k) = i at the same time.

In the algorithm, nodes send their next hopsk-avoiding-route availability. This lemma precludes the
possibility that two nodes choose each other as theirk-avoiding next hop.

Proof. If i is a customer ofj, then the only routes exported toj are customer routes. Therefore, ifi exports
a k-avoiding routeR to j such thatj considers(j, i)R its bestk-avoiding route,R is a customer route at
i. This impliesfi(next(R)) > fi(j); so, Li(k) 6= j. The same argument works, by symmetry, ifj is a
customer ofi.

If i andj are peers, then the only routes they can share are customer routes. Assume that each node
chooses the other as a bestk-avoiding next hop; then each must have a customer route exported to the other.
But those customers would be better choices fork-avoiding next hops, contradicting the assumption.

We are now ready to prove (C3). By (C1), the algorithm converges, and when it does, by (C2), the
route choice is optimal; thus every nodei receives a route through its most highly valued neighborj. From

14



Lemma 3.7, we know that, oncei learns a route throughj, it always has a current update message fromj;
update messages are sent whenever a change to the best route or the bestk-avoiding next hop (for anyk)
occurs.

Once the algorithm converges, consider the entryLi(k) for eachk. The algorithm populates these entries
in the following way.Li(k) = j if Bj(k) = 1 or k /∈ (i, j)Rj ; i.e., Li(k) = j if j has ak-avoiding route.
By Lemma 3.8, ifj has ak-avoiding route for somek, then this setting is optimal.

If Bj(k) = 0 andk ∈ (i, j)Rj , thenj does not have ak-avoiding route. In this case, the algorithm sets
Li(k) to be the most valued neighborm that has sent an update message(Rm, Bm) in which eitherk /∈ Rm

or Bm(k) = 1. First, we show that the algorithm chooses the most valued neighbor; then we show that the
neighbor has ak-avoiding route.

By Lemma 3.9, we must only consider neighbors that send update messages as candidates for the optimal
k-avoiding next hop; thus the algorithm is not excluding viable choices by examining update messages alone.
The entry forLi(k) is set in either Case I or Case II of the algorithm. If set in Case I, the entry is the most
valued neighbor because the latest update messages are scanned in decreasing order of valuation; the scan is
accurate because Case I resetsLi and then examines the most recent update messages. If set in Case II, the
entry is the most valued becauseLi(k) is only set when an update message is received from a neighbormore
valued than the previousLi(k), which was either set by a Case I or Case II message; thus, at convergence,
the entry will represent the most valued neighbor with ak-avoiding route.

By Lemma 3.10, ifk /∈ Rm, thenm must have ak-avoiding route usable byi, and the algorithm does
not need to scanBm. If Bm(k) = 1, the update message fromm itself states thatm has ak-avoiding route.
Therefore, the neighbor chosen forLi(k) certainly has ak-avoiding route.

Finally, Lemma 3.11 and the Gao-Rexford conditions assure us that the next hops chosen at different
nodes do not create routing loops; thus they are consistent with a tree.

4 Towards a General Theory of Incentive-Compatible Interdomain Routing

In Sec. 3, we presented a realistic class of policies that admits incentive-compatible, BGP-compatible com-
putation of routes and payments. However, many of our techniques apply to other classes of policies. In
this section and the next, we present several positive stepstoward a general theory of incentive-compatible
interdomain routing.

The algorithm in Sec. 3.2 is able to find a welfare-maximizing, or globally optimal, route allocation,
even though routes are chosen through local decisions. Local decision making cannot always achieve a
globally optimal solution; the class of policies describedin Sec. 3 satisfy specific constraints that allow this.
In this section, we describe three constraints on routing policies. For each, we give an example in which
removing the constraint results in an unboundedprice of anarchy, meaning that the result of nodes’ acting
rationally but selfishly is arbitrarily worse than the result of a centralized, optimal computation. In other
words, local decisions using a BGP-compatible protocol maynot find a welfare-maximizing route allocation
if one or more of the constraints are not satisfied. We then show, however, that these three constraints
together form a sufficient condition for policies to admit distributed, incentive-compatible computation of
welfare-maximizing routes. Later, in Sec. 5, we present an algorithm that is not space-efficient but computes
welfare-maximizing routes and VCG payments for any class ofpolicies that obeys these three constraints.

15



4.1 Stability, Robustness, and the Price of Anarchy

Path-vector protocols like BGP function much like an iterative game, because, at each step of the protocol,
ASes examine the routes chosen by their neighbors and make local decisions as to which routes are best.
Convergence to some equilibrium is thus an implicit goal of the protocol. Informally, a route allocation is
stableif no node prefers changing his allocated route to a route that follows one of its neighbors’ allocated
routes. A stable route allocation can be regarded as a Nash equilibrium.

Definition 4.1. A route allocationTd = {R1, ..., Rn} is stable iff, for every nodei,

vi(Ri) = argmax{(i,j)Rj∈P i|(i,j)∈L∧i/∈Rj}vi((i, j)Rj).

However, a stable route allocation that is reached by local,selfish decision making may not be welfare
maximizing. Theprice of anarchy[14] measures how bad selfish computation can be.

Definition 4.2. In an instanceI, let

Wselfish = min
stableTd={R1,...,Rn}

n
∑

i=1

vi(Ri)

be the minimum total social welfare obtained by a stable routing tree, and let

Wopt = max
Td={R1,...,Rn}

n
∑

i=1

vi(Ri)

be the maximum total social welfare (over all routing trees). Theprice of anarchyof path-vector routing on
I is

Wopt

Wselfish
.

To design a welfare-maximizing path-vector protocol—a distributed protocol in which decisions are
made locally and selfishly—we must find conditions under which the price of anarchy is1. We develop
such a condition in the remainder of this section.

In addition to stability, network operators want routing torespond to topology changes due to failures.
Stability even in the presence of failures is formally defined as follows.

Definition 4.3. An instance of the interdomain-routing problem isrobustiff, for every sub-instance obtained
by removing any set of nodes and links from the original graph, there exists a unique stable route allocation
to which a path-vector protocol converges from any initial route allocation.

4.2 Dispute Wheels

There is an inherent trade-off in achieving the desired autonomy and policy expressiveness at a local level
and robustness at the global level [8]. Early work conjectured that only shorest-paths routing might be
provably stable [20]. However, Griffin, Shepherd, and Wilfong [10] presented a sufficient condition on
policies that guarantees robust convergence while allowing policies broader than shortest-path routing.

This condition is calledno dispute wheel. A dispute wheel is essentially a representation of a set of
nodes and their routing policies (i.e., ordinal preferences on paths) that induce a routing anomaly. A network
instance on which BGP might oscillate contains a dispute wheel; thus, the absence of a dispute wheel in an

16



1 2

d

v2(2d) = 0
v2(21d) = 1 + αv1(12d) = 1

v1(1d) = 0

Figure 3: A routing instance with a dispute wheel.

instance guarantees that it will never oscillate. More strongly, the absence of a dispute wheel means that the
instance and every sub-instance has a unique stable route allocation.

The absence of a dispute wheel is, in fact, the broadest-known sufficient condition for stability and
robustness. In the design of an incentive-compatible routing mechanism, we want to ensure that our routing
algorithm does reach a stable tree in some equilibrium. We therefore require that nodes’ valuations, which,
in our model, express routing policies, do not induce a dispute wheel.

The following defines an equivalent sufficient condition using the language of valuation functions. The
equivalence between this definition and the original definition of a dispute wheel in [10] can be found
in [8,9].

Definition 4.4. Define two relations on permitted routes in an instanceI:

1. LetR1 ⊖1 R2 iff R1 is a suffix ofR2, i.e., there is somej such thatR1 = R2[j,d] andR1 ∈ P j.

2. LetR1 ⊖2 R2 iff ∃ i ∈ N : R1, R2 ∈ P i andvi(R1) > vi(R2).

Let⊘ = (⊖1 ∪⊖2)
∗ be the transitive closure of⊖1,⊖2. Note that⊘ is inherently reflexive and transitive.

InstanceI hasno dispute wheeliff R1 ⊘ R2 andR2 ⊘ R1 implies that eitherR1 = R2 or R1, R2 start
at the same node. (Informally, this is antisymmetry of⊘ except that ties are allowed in valuations.)

Fig. 3 shows a routing instance (DISAGREE, from [10]) with policies that induce a dispute wheel. This
instance has two stable route allocations:{1d, 21d} and{12d, 2d}. Because the network is asynchronous,
the timing of update messages may cause BGP to converge to either of these solutions or oscillate between
them [10]. This anomaly is manifested by the following dispute wheel:

1d ⊖2 21d ⊖1 2d ⊖1 12d ⊖2 1d.

The price of anarchy in this example is(1 + α), which can be arbitrarily bad given the choice ofα > 0.

4.3 Policy Consistency

Our interdomain-routing problem is an optimization problem in which each node assignscardinal values
to the different routes. Even without dispute wheels, finding a stable route allocation based on ordinal
preferences does not suffice, because that allocation’s value can be much lower than that of the optimal
route allocation.

Fig. 4 shows an instance without a dispute wheel; assumeα > 0. The unique stable route allocation
is {1d, 2d, 31d, 431d}. However, the optimal route allocation is{1d, 2d, 32d, 432d}. This allocation will
never be chosen by local decisions, because node3 would much prefer routing through node1, a route
that is always available for it to choose. Therefore, the price of anarchy in this example,1 + 1

399α, is also
unbounded.

17



1

d

2

4

3

v1(132d) = 0
v1(1d) = 100 v2(2d) = 100

v2(231d) = 0

v3(31d) = 100
v3(32d) = 99

v4(432d) = 100 + α
v4(431d) = 99

Figure 4: A routing instance without policy consistency.

To overcome this problem, we formally introduce thepolicy-consistencyproperty. This property helps
to ensure that the optimal route allocation is stable and, when combined with dispute-wheel freeness and
consistent filtering(defined in the next subsection), means that any path-vectorprotocol converges to an
optimal route allocation. (We explore the interesting connections between the three conditions in Thm. 4.10,
first studied in a modified form by Sobrinho in [19].)

Informally, a nodei is policy-consistent with an adjacent nodej if there are no two routes fromi to d
with next hopj, such thatj prefers one to the other, buti disagrees.

Definition 4.5. Let i andj be two adjacent nodes inG. We say thati is policy-consistentwith j iff for every
two routes{Q,R} ⊂ P j such thati /∈ Q, i /∈ R, and{(i, j)Q, (i, j)R} ⊂ P i,

if vj(Q) > vj(R), thenvi((i, j)Q) > vi((i, j)R).

Definition 4.6. An instance is policy-consistent (or “policy consistency holds”) iff, for every two adjacent
nodesi andj, i is policy-consistent withj.

Assuming policy consistency in a network is natural for the same reason that next-hop preferences are:
Nodes have little control over forwarding paths beyond the next hop. Note that next-hop valuations are, in
fact, policy-consistent.

Other examples in which policy consistency holds aremetric-based valuations(defined in [9]):

Definition 4.7. Let δ : L → R>0 be a positive real-valued function that specifies the “length” of each
link (a “metric” function). A valuation functionv that is based onδ is one in whichv(Q) > v(R) iff
∑

l∈Q δ(l) <
∑

l∈R δ(l).

It is easy to see that, if all nodes’ valuations are based on the same underlying metric functionδ, then the
network is policy-consistent. In particular, ifδ(l) = 1 for every link l, then this is precisely the well known
shortest-path-routing problem.

4.4 Consistent Filtering

In traditional formulations of interdomain routing, nodesare allowed tofilter routes arbitrarily when export-
ing updates to or importing updates from neighbors,i.e., nodes can arbitrarily remove paths from consider-
ation (restrictingP i).

18



d

1

2 3

4

5

f5(4) = 2 + α
f5(1) = 1
543d /∈ P 5

f4(3) = 2
f4(2) = 1
f4(5) = 0

f1(d) = 1

f2(d) = 1
f2(4) = 0

f3(d) = 1
f3(4) = 0

Figure 5: Next-hop policies without consistent filtering.

In the welfare-maximizing formulation of interdomain routing, arbitrary filtering is often disallowed.
Arbitrary filtering, like the lack of policy consistency, can make the price of anarchy unbounded, because
a node may value a route that is filtered by a neighbor much morethan any other route available. This is
the case in Fig. 5, an instance with next-hop policies (whichare policy-consistent) and no dispute wheel.
(Again, assumeα > 0.) Although node5 generally prefers routing through node4, the path543d is filtered.
If node4 chooses to route through node2, node5 can route through node4, and this leads to the optimal
route allocation,{1d, 2d, 3d, 42d, 542d}. However, this allocation is not stable, because node4 prefers
routing through node3, which prevents node5 from routing through node4, leading to the unique stable
route allocation{1d, 2d, 3d, 43d, 541d}. The price of anarchy in this example is1 + 1

6α, which can grow
arbitarily large asα → ∞.

In order to achieve our objective of welfare maximization, we require that nodes not filter routes arbi-
trarily. If a node filters a route, it must value that route less than any route that is not filtered—this is called
consistent filtering.

Definition 4.8. Nodei filters consistentlywith respect to (adjacent) nodej iff, for any routeR ∈ P i such
that(j, i)R /∈ P j and(j, i)R is simple,vi(R) < vi(Q) for all routesQ ∈ P i such that(j, i)Q ∈ P j.

We say that an instance “filters consistently” if every node filters consistently with respect to every other
adjacent node.

Remark 4.9. The isotonicity property studied by Sobrinho in [19] for its relationship tooptimal routing
essentially combines policy consistency and consistent filtering.

4.5 Local and Global Optimality

We now turn to the interesting relationship among the three properties presented in this section: no dispute
wheel, policy consistency, and consistent filtering. Recall that, if an instance has no dispute wheel, then it
has a unique stable route allocation. The following theoremstates that, if all three properties hold, then this
unique route allocation is globally optimal (i.e., it maximizes the total social welfare).

19



Theorem 4.10. If the valuation functions do not induce a dispute wheel, andnodes filter consistently and
are policy-consistent, then there exists a unique stable route allocationTd, and

Td = argmaxT={S1,...,Sn}

n
∑

i=1

vi(Si).

Proof. We will use the following lemma in the proof of the theorem.

Lemma 4.11. If T = {R1, . . . , Rn} is a globally optimal allocation for an instance with policyconsistency
and consistent filtering, thenT is stable.

Proof. Assume by contradiction thatT is not stable; then, by Def. 4.1, there are two adjacent nodesi andj
such that

vi(Ri) < vi((i, j)Rj). (4)

Let k be a node such thatnext(Rk) = i. Becausek is policy consistent withi, and becausei andk filter
consistently, (4) implies that

vk(Rk) < vk((k, i)(i, j)Rj );

by induction, this is also true for every nodek′ with next hopk in T , etc., so that every nodeu routing through
i in T prefers the routeRu[u,i](i, j)Rj to Ru. Note that we have identified a route allocation in whichi and
all nodes routing throughi are strictly better off, and all nodes not routing throughi are unaffected. This
new allocation has higher total social welfare thanT ; however, this contradicts the optimality ofT . Thus,
our assumption must be incorrect, andT must therefore be stable.

Now, let T be some optimal route allocation. By Lemma 4.11, because of policy consistency and con-
sistent filtering,T is stable. However, because there is no dispute wheel, thereis only one stable allocation
Td [10]. Therefore,T = Td, and the unique stable allocation is also optimal.

A locally optimal route allocation is one in which nodes are assigned their most valued routes.

Definition 4.12. A route allocationTd = {R1, . . . , Rn} is locally optimal iff, for every nodei, Ri =
argmaxR∈P i vi(R), i.e., every nodei is allocated its highest-valued route.

The following theorem shows that the combination of no dispute wheel, policy consistency, and consis-
tent filtering ensures not only global optimality but local optimality as well.

Theorem 4.13. If an instance has no dispute wheel, consistently filters, and is policy consistent, then any
globally optimal, stable route allocation is also locally optimal.

Proof. Consider a nodem ∈ N . Let R = ukuk−1 . . . ui . . . u0 be some simple route inP uk , such that
uk = m andu0 = d. By induction, we show for eachui ∈ R thatSi, the solution’s route for nodeui in Td,
is at least as good asRi = R[ui,d]. Wheni = m we get thatSm is at least as good asR; becauseR andm
were chosen arbitrarily, we prove local optimality ofTd.

Base case.i = 0. The induction hypothesis is trivially true, because the only route is the empty one.

Induction step. Assume that the induction hypothesis is true forui−1, i.e.,

vui−1
(Si−1) > vui−1

(Ri−1 = ui−1ui−2 . . . d). (5)

Note thatui does not lie onRi−1, or R would not be simple.

20



Case I.Assumeui /∈ Si−1. Then extendSi−1 andRi−1 along the edge(ui, ui−1). Consistent filtering
ensures that(ui, ui−1)Si−1 ∈ P ui ; thus, from (5) and policy consistency, we have

vui
((ui, ui−1)Si−1) > vui

(Ri = uiui−1ui−2 . . . d). (6)

Td is stable; so,Si is at least as good as any other route atui; in particular,

vui
(Si) > vui

((ui, ui−1)Si−1). (7)

Combining (6) and (7) gives
vui

(Si) > vui
(Ri),

which is the induction statement forui.
Case II.Assumeui ∈ Si−1. In this case we cannot use the policy consistency argument as in Case I,

because extendingSi−1 to ui creates a loop. But thenui−1 /∈ Si.
Suppose the induction statement fori is not true:vui

(Ri) > vui
(Si). ThenRi⊖2 Si. Becauseui−1 /∈ Si

but ui ∈ Si−1, it must be thatSi ⊖1 Si−1. From the induction hypothesis,Si−1 ⊖2 Ri−1, and because
Ri = (ui, ui−1)Ri−1, Ri−1 ⊖1 Ri. Therefore we have a cycle in the relation⊘; in particular, we can
say thatRi ⊘ Ri−1 andRi−1 ⊘ Ri, but these routes do not start at the same node. This violatesthe no-
dispute-wheel property; thus the assumption thatvui

(Ri) > vui
(Si) leads to a contradiction. Therefore,

vui
(Ri) < vui

(Si), which is the induction statement forui. (Recall there are no ties in valuations.)

Remark 4.14. (C2) in Thm. 3.6 is a special case of this result, because the Gao-Rexford conditions imply
no dispute and consistent filtering, and next-hop valuations imply policy consistency.

Remark 4.15. Global and local optimality also hold for sub-instances. Ifany of the three properties (no
dispute wheel, policy consistency, consistent filtering) hold in an instance, they also hold in all sub-instances.
Thus, all sub-instances of an instance satisfying the requirements of Thm. 4.10 and Thm. 4.13 also satisfy
the requirements of these theorems.

5 An Algorithm for General Classes of Policies

The no-dispute-wheel property guarantees that any path-vector protocol converges to the unique stable route
allocation. When combined with policy consistency and consistent filtering, this route allocation is globally
optimal. Therefore, if these three properties hold, we can use a path-vector protocol to compute welfare-
maximizing routes. However, there is still the matter of ensuring that the ASes have no motivation to
rationally manipulate the protocol in order to better theiroutcome.

We now present an incentive-compatible, distributed algorithm for interdomain routing on instances that
are dispute-wheel-free and policy-consistent. We investigate its incentive-compatiblity properties in detail;
its payment structure naturally enforces consistent filtering and truthful participation, and the algorithm is
also not subject to other forms of rational manipulation as formulated by Shneidman and Parkes in [18].

The BGP-compatible algorithm in Sec. 3 is a specific case of this algorithm; we conclude this section by
presenting another BGP-compatible special case, that of metric-based valuations. Note that the general-case
algorithm is not BGP-compatible, because its implementation requires more than a modest increase to the
storage space at each node.

21



5.1 Algorithm Specification

This algorithm can be thought of as a “meta-algorithm” in thesense that it ignores implementation aspects
(including those related to internal memory considerations and message passing). We prove the correctness
of our algorithm for the case in which policies do not induce adispute wheel and nodes are policy-consistent.

Setting: An instanceI = (G,P,V) of the interdomain-routing problem that is dispute-wheel-free and
policy-consistent.

Outcome: A route allocationTd ={R1, . . . , Rn} that forms a confluent tree tod, such that

Td = argmaxT={S1,...,Sn}

n
∑

i=1

vi(Si).

The Algorithm: The algorithm runsn + 1 copies of a path-vector protocol (see Sec. 2.3) to find the locally
optimal route allocationT−i

d for eachI−i, 1 ≤ i ≤ n, and the locally optimal route allocationTd for I. It
can therefore be regarded as composed of many similar “sub-algorithms” that are executed simultaneously.

Once all sub-algorithms reach a stable route allocation, every nodej is assigned its route inTd. Its
payment is computed as follows: Every nodei computes apayment componentfor j, si

j = vi(Ri)−vi(R
−j
i ),

in which Ri andR−j
i are the routes allocated toi in Td andT−j

d , respectively. The total payment to nodej
is defined to be the sum of these payment components,sj =

∑

i6=j si
j.

Theorem 5.1. If policies do not induce a dispute wheel and are policy-consistent, this algorithm converges
to a route allocation that maximizes total social welfare.

Proof. The payments computed by the algorithm naturally enforce consistent filtering; we defer this discus-
sion to Sec. 5.2. Therefore, we can assume that instances (and, by Rem. 4.15, all sub-instances) have no
dispute wheel, are policy consistent, and consistently filter. By Thm. 4.10, there exists a unique stable route
allocation for the instance and each sub-instance; by Thm 4.13, this route allocation is both globally and
locally optimal. Because each sub-algorithm converges to alocally optimal route allocation, the final route
allocation for the original instance maximizes total social welfare, and the allocations for each sub-instance
can be used to compute the payments (that enforce consistentfiltering).

In Sec. 4.5, we showed that, if an instance is dispute-free, is policy-consistent, and filters consistently,
then every path-vector protocol converges to a route allocation that is both globally and locally optimal.
However, Thm. 5.1 only requires no dispute wheel and policy consistency. In Sec. 5.2, we show that these
two properties suffice—if both properties hold, then nodes have no incentive, given the payments computed,
to filter any routes.

The local optimality of the route allocation reached by the algorithm leads to two important observations
regarding the computation of payments: First, all payment components calculated by the nodes are nonneg-
ative; so, the payment to each node is nonnegative. Hence, weare guaranteed that nodes will not have to
pay the bank for their participation in the algorithm. Second, nodei’s payment componentsi

j for every node

j /∈ Ri (Ri is i’s optimal route) is always0, becauseRi = R−j
i . Therefore, every nodei only needs to store

in its memory alternate routes and payment-component values for the transit nodes on its best route.

5.2 Incentive Compatibility

To prove that our mechanism is incentive-compatible, we first consider the restricted case in which the only
form of rational manipulation available to the nodes is not revealing their true preferences. In particular,
nodes can lie about what routes are available by filtering routes arbitrarily.

22



Theorem 5.2. The paymentssi =
∑

j 6=i sj have the form of VCG payments.

Proof. The proof is identical to that of Thm. 3.5, except thatfi(Li(k)) (next-hop policies) is replaced with
vi(R

−k
i ) (valuation using general policies).

VCG payments guarantee the strongest possible result for the restricted case: truthful behavior of all
nodes leads to adominant-strategy equilibrium. That is, a rational node’s best strategy is conveying its true
preferences no matter what the preferences of the other nodes are. Hence, a node need not make any kind
of assumptions on the other nodes’ behavior or have anya priori knowledge about their preferences. Thus,
incentives naturally enforce the consistent-filtering condition, because nodes have no motivation to filter
routes beyond what is necessary to enforce no dispute wheel (e.g., the third Gao-Rexford condition; see
Sec. 3.1).

As pointed out by Shneidman and Parkes [18], in a distributedsetting, there are many other forms of
rational manipulation available to the strategic agents. This is because the computation is executed by the
strategic agents themselves (and not by some reliable thirdparty, as is the case in a centralized setting). In
our model, for example, nodes may refuse to pass messages or choose to alter the contents of messages that
go through them.

Let us consider the more general case in which nodes have manyways of rationally manipulating the
algorithm. We prove incentive compatibility by showing that a node cannot benefit by deviating from the
information revelation, communication, and computational actions it is instructed to perform by the proto-
col.4 We make use of the techniques in [18] to show that, with a minoradjustment, our algorithm obtains
incentive compatibility inex-post Nash equilibrium. The only modification needed is requiring, as in [18],
that all communication between the bank and the nodes be signed and receive signed acknowledgments.
(The bank has the power to investigate when receipts are not received.)

An ex-post Nash equilibrium is a robust solution concept: Insuch an equilibrium, no single node would
deviate from the algorithm even if it knew the other nodes’ private valuations. If we aim at an ex-post Nash
equilibrium, we must assume only that all nodes are rationaland wish to maximize their utilities.5 Shnei-
dman and Parkes view the need to settle for an ex-post Nash equilibrium in the general case (instead of an
equilibrium in dominant strategies in the restricted case)as “the cost of distributing mechanism computation
across a network” [18].

Theorem 5.3. The modified algorithm is incentive compatible in ex-post Nash equilibrium.

Proof. We prove the theorem by addressing the various ways in which anode might attempt to rationally
manipulate the algorithm. We show that such possible attempts can only harm the node. The proof relies on
the fact that the bank is a trusted party, that the bank-nodescommunication uses cryptographic signing, and
that the bank also has the power to “restart” the algorithm ifit notices any rational manipulation attempts.

Let us look at a single nodei and assume that all other nodes are obeying the algorithm’s instructions.
Node i could choose to misreport its true preferences or what routes are available when asked by other
nodes. However,i’s payment depends solely on other nodes;i is paid for its contribution to social welfare.
It can be shown using VCG argumentation that this payment technique means thati has nothing to gain by
lying; in particular,i gains nothing from lying about the availability of routes (see Cor. 5.4 below).

4These three properties are what Shneidman and Parkes [18] refer to as IC-, CC-, and AC-compatibility.
5The ex-post Nash equilibrium concept is strictly stronger than the well known Nash-equilibrium concept. A Nash-equilibrium-

oriented implementation of our algorithm would have to assume that every node is familiar with the preferences of all other nodes.
This assumption is unrealistic in interdomain routing.

23



Another possible way in whichi might try to rationally manipulate the algorithm is by refusing to pass
messages from other nodes addressed to the bank or by passingmessages after altering their contents. The
cryptographic signing of bank-nodes communication excludes the possibility ofi making any such attempts.
This is true no matter what the computational and information-revelation actions ofi are.

Finally, one more possible form of rational manipulation isperforming incorrect calculations ofi’s
components of other nodes’ payments. However, it is easy to see thati has nothing to gain by doing so,
since these payments have no effect oni’s route or payment. This is true no matter what the communication
and information-revelation actions ofi are.

One can also show that any combination of rational manipulation attempts will not lead to any improve-
ment ini’s condition compared to what he would get by abiding by the algorithm’s rules. This is achieved
using the general proof technique of Shneidman and Parkes [18].6

Hence, we have shown that this slightly modified version of the algorithm in Sec. 5.1 is not subject to
any of the possible forms of rational manipulation available to the nodes. Hence the modified algorithm is
incentive-compatible in ex-post Nash equilibrium.

Corollary 5.4. The incentive structure of our mechanisms ensures consistent filtering.

This is because in ex-post Nash equilibrium no node has an incentive to filter any of the routes. Because
this fact is especially important to prove the correctness of our algorithm, we explicitly include the argument
used for its proof below.

Proof. Assume that nodei filters some routeR ∈ P i on export to nodej. If R is noti’s optimal route, then
filtering R has no effect on the algorithm’s route allocation toi or j, because, given Thm. 4.10,R is unstable
as a route choice ati; so,i will export some other route toj.

Therefore, without loss of generality, assume thatR is i’s optimal route. There are two cases:

1. (j, i)R is notj’s optimal route. In this case,sj
i = 0 regardless of whether or noti filters R; so, there

is no change ini’s utility.

2. (j, i)R is j’s optimal route. In this case, filteringR will force j to choose another routeR′. Becausei
filters its best route,i /∈ R′, and sosj

i = 0. However, ifi had not filteredR, theni would be a transit
node onj’s best path, andsj

i ≥ 0. Therefore,i’s utility can only decrease by filtering.

Nodes thus have no incentive to filter routes arbitrarily.

Remark 5.5. Because dispute-free policies imply robustness, the problem has a unique stable solution; this
solution is also optimal. Since every such stable solution is an ex-post Nash equilibrium, we have only one
ex-post Nash equilibrium. Therefore, we avoid the problem that arises when multiple equilibria exist,i.e.,
making sure that the nodes select the same equilibrium.

Remark 5.6. As in [18], we too assume that nodes arebenevolentin the sense that they will implement the
algorithm’s instructions as long as they do not strictly prefer choosing another strategy. Therefore, we only
require a weak ex-post Nash equilibrium.

6Using the terminology of [18], what we have shown is that the corresponding centralized algorithm is truthful and that the
specification is strong-CC and strong-AC.

24



5.3 Metric-Based Valuations

The algorithm in Sec. 3.2 is a special case of the general algorithm in Sec. 5.1; the class of policies used
in the former allows the algorithm to be more space-efficientthan runningn + 1 copies of a path-vector
protocol. We now briefly present another special case, that of metric-based valuations, defined in Sec. 4.3.

Metric-based valuations are inherently dispute-wheel free [8, 9, 19]; they are also policy-consistent.
Thus, if nodes do not filter routes arbitrarily, metric-based valuations permit incentive-compatible, dis-
tributed computation of welfare-maximizing routes.

The important observation regarding metric-based valuations is that, just as with next-hop policies,
when running a path-vector protocol on an instance with metric-based valuations, an AS need not store in
its memory and communicate in each time step entire paths. This is because the value an AS assigns a route
depends solely on the route’slength, and so merely storing and communicating routes’ lengths issufficient.
Thus, to computesi

k = vi(Ri)− vi(R
−k
i ), nodei only needs the lengths ofRi andR−k

i , as these determine
the valuation; furthermore, because of local optimality, nodei need only do this for transit nodes on its best
(and chosen) route to the destination (si

k = 0 for non-transit nodes).
A straightforward extension of BGP can be used to propagate this information. Update messages fromj

will include, in addition toj’s best routeRj, the length ofRj and, for everyk ∈ Rj (k /∈ {j, d}), the length
of the best known route atj that avoidsk. Update messages are sent whenever this information changes at
j. The BGP routing table is extended to store this extra information, requiringO(1) extra space per node,
per route, stored in the table.

When a node receives an update message, it checks the provided lengths to determine whether a shorter
k-avoiding route is known (for each transit nodek on the current best route). At the end of the algorithm,
nodes have enough information to compute the payment componentssi

k.

Remark 5.7. We note that, because routes with shorter lengths are chosenas best, routes are forced to be
simple. If a node knows of ak-avoiding route with a loop, it must also know of the route without the loop.
If all lengths are positive, then the simple path will be strictly shorter.

We present the details of the algorithm for this class of policies below.

Setting: An instance of the interdomain-routing problem with metric-based valuations,i.e., an instance in
which: (1) there exists a positive functionδ : L → R>0 specifying the length of each link; and (2) for
every nodei and for all pairs of permitted routes{Q,R} ⊂ P i, vi(Q) > vi(P ) if and only if

∑

l∈Q δ(l) <
∑

l∈R δ(l).

Outcome: A route allocationTd = {R1, . . . , Rn} that forms a confluent tree tod, such that

Td = argmaxT={S1,...,Sn}

n
∑

i=1

vi(Si).

Structure of Update Messages:An update message from a nodem contains: (1)Rm, the current choice
of best route atm; (2) ∆m =

∑

l∈Rm
δ(l), that route’s length; and (3) for each transit nodek ∈ Rm, the

length of the best route known tom that avoidsk, denotedAm(k).

Storage at Each Node:Each nodei has a routing tableYi, indexed by neighbors ofi. At most one (the
most current) update message is stored from each neighbor. Initially, Yi(j) = ∅ for all j ∈ neighbors(i).
Each node also indicates its choice of current best route, denotedRi; that route’s length,∆i; and, for each
transit nodek ∈ Ri (k /∈ {i, d}), the length of the best knownk-avoiding path is stored, denotedLi(k).

25



Start: The destination noded sends the message(Rd = ∅,∆d = 0, Ad = ∅) to all of its neighbors.

Update-Message Processing:When nodei receives an update message(Rm,∆m, Am) from nodem,
the route and length is first extended to nodei, and the message is then stored in the routing-table entry
for m, denotedYi(m). The length ofR′

m = (i,m)Rm is ∆′
m = ∆m + δ(i,m). The lengthA′

m(k)
of any k-avoiding route known tom, if used ati, would beAm(k) + δ(i,m). Thus, the entry stored is
Yi(m) = (R′

m,∆′
m, A′

m(k)).

(Case I.)If vi(R
′
m) > vi(Ri), then the update message contains a better route. The current best route is

changed and the list of lengths of transit-node-avoiding routes is repopulated:

1. SetRi to beR′
m and∆i to be∆′

m.

2. Clear the listLi.

3. For eachk ∈ Ri (k /∈ {i, d}):

(a) SetLi(k) = ∞.

(b) For eachj ∈ neighbors(i) such thatYi(j) 6= ∅:

i. If k /∈ R′
j and∆′

j < Li(k), then setLi(k) = ∆′
j and continue to check the next neighborj.

ii. If k ∈ R′
j andA′

m(k) < Li(k), then setLi(k) = A′
m(k) and continue to check the next

neighborj.

(Case II.)If vi(R
′
m) < vi(Ri), then the update message does not contain a better route. However, it

may contain betterk-avoiding routes for transit nodesk on the current best route tod. For eachk ∈ Ri

(k /∈ {i, d}), if A′
m(k) < Li(k), then setLi(k) = A′

m(k).

If any changes were made toRi or Li, then send the update message(Ri,∆i, Ai(k)), in whichAi(k) =
Li(k) for each transit nodek /∈ {i, d} onRi.

Payment Computation: When the algorithm converges, each nodei has a routeRi, which is its route
in the routing tree, and enough information to compute its payment component for transit nodesk on Ri,
si
k = vi(Ri) − vi(R

−k
i ), because

∑

l∈Ri
δ(l) = ∆i and

∑

l∈R−k
i

δ(l) = Li(k). The total payment made to

nodej by the bank is the sum of the payment components forj, sj =
∑

a6=j sa
j .

Theorem 5.8. The algorithm converges to an optimal tree and computes the correct VCG payments.

Proof. Metric-based valuations satisfy the requirements of theorems discussed earlier that imply conver-
gence of the algorithm and optimality of the output tree. We must still prove that each payment components
are computed correctly. BecauseRi is the optimal route for the original instance, its length isknown, and
valuations are metric-based, it is enough to show that nodeshave enough correct information to determine
∑

l∈R−k
i

δ(l). We will show that this is simplyLi(k).

The algorithm converges once the routesRi and lengthsLi(k) stop changing everywhere (at all nodesi
and for all transit nodesk). Because nodes have no incentive to arbitrarily filter, we know that the best route
information sent via update messages is accurate and complete.

ConsiderTd \ {k} for somek ∈ Td, and letT ∗ be the component still containingd. For all nodes
i ∈ T ∗, R−k

i = Ri, because the routesRi are the shortest (and thus most valued) routes tod, and they

are unaffected by removingk. Let H0 =
{

i /∈ T ∗ | ∃j ∈ T ∗ : {i, j} ∈ T−k
d

}

. Although the nodes inH0

normally route throughk, whenk is removed, these nodes’ best routes have a next hop inT ∗. Thus, for

26



each nodei ∈ H0, R−k
i is always made available becausej = next

(

R−k
i

)

exportsRj as its best choice. If

δ(i, j) + ∆j is indeed shortest, the algorithm correctly sets (through Case II of update-message processing)
Li(k) = δ(i, j) + ∆j, corresponding to the length of(i, j)Rj = R−k

i .

Now consider nodesH1 =
{

i /∈ T ∗ | ∃j ∈ H0 : {i, j} ∈ T−k
d

}

. Every nodei ∈ H1 will receive an

update message from a neighborj ∈ H0 with Aj(k) =
∑

l∈R−k
j

δ(l). Because(i, j)R−k
j is shortest, the

algorithm will correctly set (through Case I, ifnext(Ri) = j, or Case II, ifnext(Ri) 6= j) Li(k) = δ(i, j)+

Aj(k) =
∑

l∈R−k
i

δ(l). We can continue this argument forHx =
{

i /∈ T ∗ | ∃j ∈ Hx−1 : {i, j} ∈ T−k
d

}

until we have shown thatLi(k) is set correctly for every node.

6 Conclusions and Open Questions

In this paper, we addressed the problem of incentive-compatible interdomain routing. Our main result is a
BGP-compatible, incentive-compatible mechanism for a realistic class of routing policies, thus answering
an open question posed in [3]. Additionally, we stated general conditions that are sufficient for designing
incentive-compatible, welfare-maximizing protocols formore general classes of routing policies. Using this
general characterization, we presented a BGP-compatible mechanism for yet another class of valuations,
namely metric-based valuations. It would be interesting tofind other natural classes of valuations for which
BGP-compatible mechanisms exist.

There are many other issues that remain unresolved and call for further research. One such issue is
that of designing distributed (preferably BGP-compatible) mechanisms that obtaingood approximationsto
the total social welfare. Very little is known about the approximability of the interdomain-routing problem.
Feigenbaum, Sami, and Shenker [5] show that, if we impose no restrictions on the routing policies, then no
good approximation ratio is attainable. A first step towardsthe design of BGP-compatible approximation
mechanisms is finding a nontrivial characterization of routing policies for which the price of anarchy is low.

Introducing incentive compatibility into the interdomain-routing setting involves paying ASes for their
participation in the algorithm. The way these payments are computed leads to many interesting questions:
How can we make sure that the ASes are not overpaid for the transit services they provide? (VCG mecha-
nisms are often criticized in the literature for overpayingthe strategic agents.) In our formulation, the ASes
do not pay each other but are paid bythe bank(as in [18]). Is it possible to get rid of the bank and have
ASes pay other ASes directly for transit services rendered?

A distributed setting such as ours poses an inherently different challenge for the design of incentive-
compatible mechanisms (see [3, 18]) than a centralized one.This is because the computation is performed
by the strategic agents themselves and not by a reliable third party. We reconcile the strategic model and
the distributed computational model by using techniques similar to those in [18]. In particular, we use
cryptographic signing. Is it possible to reconcile the two models without having to resort to this technique?

Finally, the question of optimal communication complexityfor the computation of routes and payments
remains open. We have stressed space complexity in this paper, but there may be an increase over BGP in
the number of update messages sent by our algorithms. This isbecause our algorithms have an additional
condition that triggers sending an update message, namely,any change to the best knownk-avoiding route
(or next hop), for any transit nodek on the current best path. Update messages are not sent for this reason
in the original BGP. Although the message complexity of our algorithms is not unreasonable with respect to
BGP’s worst-case performance, the optimal number of messages needed to compute payments in addition
to routes is currently unknown.

27



7 Acknowledgements

The authors would like to thank Tim Griffin, Aaron Jaggard, Jennifer Rexford, Rahul Sami, and Scott
Shenker for many helpful discussions about interdomain routing.

References

[1] M. Caesar and J. Rexford. BGP Policies in ISP Networks.IEEE Network Magazine19(6):5–11,
Nov. 2005.

[2] J. Feigenbaum, D. Karger, V. Mirrokni, and R. Sami. Subjective-Cost Policy Routing. InProc. Wshp.
Internet and Network Economics (WINE), pp. 174–183, LNCS vol. 3828. Springer-Verlag, Dec. 2005.

[3] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP-based Mechanism for Lowest-Cost
Routing.Distributed Computing18(1):61–72, Jul. 2005.

[4] J. Feigenbaum, V. Ramachandran, and M. Schapira. Incentive-Compatible Interdomain Routing (Ex-
tended Abstract). InProc. ACM Electronic Commerce (EC’06). ACM Press, Jun. 2006.

[5] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism Designfor Policy Routing. InProc. 23rd Symp.
Principles of Distributed Computing (PODC’04), pp. 11–20, ACM Press, Jul. 2004.

[6] L. Gao, T. G. Griffin, and J. Rexford. Inherently Safe Backup Routing with BGP. InProc. IEEE
INFOCOM’01, pp. 547–556. IEEE Computer Society, Apr. 2001.

[7] L. Gao and J. Rexford. Stable Internet Routing without Global Coordination. IEEE/ACM Trans.
Networking9(6):681–692, Dec. 2001.

[8] T. G. Griffin, A. D. Jaggard, and V. Ramachandran. Design Principles of Policy Languages for Path
Vector Protocols. InProc. ACM SIGCOMM’03, pp. 61–72. ACM Press, Aug. 2003.

[9] T. G. Griffin, F. B. Shepherd, and G. Wilfong. Policy Disputes in Path Vector Protocols. InProc. 7th

Int’l Conf. Network Protocols (ICNP), pp. 21–30. IEEE Computer Society, Nov. 1999.

[10] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The Stable Paths Problem and Interdomain Routing.
IEEE/ACM Trans. Networking10(2):232–243, Apr. 2002.

[11] J. Green and J. Laffont. Incentives in Public Decision Making. InStudies in Public Economics, vol. 1,
pp. 65–78. North Holland, Amsterdam, 1979.

[12] J. Hershberger and S. Suri. Vickrey Prices and ShortestPaths: What is an edge worth? InProc. 42nd

Symp. Foundations of Computer Science (FOCS), pp. 129–140. IEEE Computer Society, 2001.

[13] G. Huston. Interconnection, Peering, and Settlements. In Proc. Internet Global Summit (INET). The
Internet Society, Jun. 1999.

[14] E. Koutsoupias and C. H. Papadimitriou. Worst-case Equilibria. In Proc. 16th Symp. Theoretical
Aspects of Computer Science (STACS), pp. 387–396, LNCS vol. 1563 (G. Meinel and S. Tison, eds.).
Springer-Verlag, Mar. 1999.

28



[15] J. Moy. Open Shortest Pouting First (OSPF) version 2. RFC 2328. Internet Engineering Task Force
(IETF), Apr. 1998.

[16] N. Nisan and A. Ronen. Algorithmic Mechanism Design.Games and Economic Behavior35(1,2):166–
196, 2001.

[17] Y. Rekhter and T. Li. A Border Gateway Protocol (BGP-4).RFC 1771. Internet Engineering Task
Force (IETF), Mar. 1995.

[18] J. Shneidman and D. C. Parkes. Specification Faithfulness in Networks with Rational Nodes. InProc.
23rd ACM Symp. Principles of Distributed Computing (PODC’04), pp. 88–97, ACM Press, Jul. 2004.

[19] J. L. Sobrinho. An Algebraic Theory of Dynamic Network Routing. IEEE/ACM Trans. Networking
13(5):1160–1173, Oct. 2005.

[20] K. Varadhan, R. Govindan, and D. Estrin. Persistent Route Oscillations in Interdomain Routing.Com-
puter Networks32(1):1–16, Jan. 2000.

29


