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Abstract

The routing of traffic between Internet domains,Aartonomous SysteniaSes), a task known as
interdomain routing is currently handled by the Border Gateway Protocol (BGF).[ Using BGP,
autonomous systems can apply semantically rich routinigipslto choose interdomain routes in a dis-
tributed fashion. This expressiveness in routing-policgice supports domains’ autonomy in network
operations and in business decisions, but it comes at a grieeinteraction of locally defined routing
policies can lead to unexpected global anomalies, inctutiite oscillations or overall protocol diver-
gence (sees.g, [20]). Networking researchers have addressed this pmobledevising constraints on
policies that guarantee BGP convergence without undulitiicn expressiveness and autonomy (see,
e.g, [7,8)]).

In addition to taking this engineering or “protocol-desiggpproach, researchers have approached
interdomain routing from an economic or “mechanism-déesppint of view. It is known that lowest-
cost-path (LCP) routing can be implemented in a truthful /B&@mpatible manner [3] but that sev-
eral other natural classes of routing policies cannot [2)B]this paper, we present a natural class of
interdomain-routing policies that is more realistic tha@R.routing and admits incentive-compatible,
BGP-compatible implementation. We also present seversitipe steps toward a general theory of
incentive-compatible interdomain routing.
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1 Introduction

The Internet is comprised of many separate administrativeains known ag&utonomous Systerf&Ses).
Routing occurs on two levels, intradomain and interdomanp/emented by two different sets of protocols.
Intradomain-routing protocols, such as OSPF [15], routekgs within a single AS. Interdomain routing,
currently handled by the Border Gateway Protocol (BGP),[id{ites packets between ASes. It has been
studied by computer scientists for many years from an eeging or “protocol-design” perspective and re-
cently from an economic or “mechanism-design” perspe@s/eell. Combining algorithmic and economic
considerations in the study of interdomain routing is vemyunal, because the many separate domains that
make up the Internet really are independent economic agesitsnust jointly execute a distributed algo-
rithm in order to choose routes.

In their seminal paper [16], Nisan and Ronen gave the folgWormulation of interdomain routing as a
mechanism-design problem: Each AS incurs a per-pamator carrying traffic, where the cost represents
the additional load imposed on the internal AS network byg thaffic. To compensate for these incurred
costs, each AS is givengaymentfor carryingtransit traffic, which is traffic neither originating from nor
destined for that AS. It is through these costs and paymbatscbnsideration of “incentive compatibility”
was introduced to the interdomain-routing framework, ahes currently realized by BGP, does not explic-
itly consider incentives. The goal in [16] was to optimize tise of network bandwidth by routing packets
alonglowest-cost path§LCPs) and to do so with &uthful mechanisnthat can be computed ipolyno-
mial time Nisan and Ronen observed that the Vickrey-Clarke-Grov&xy) mechanism, well known to
be truthful, solves the LCP mechanism-design problem andoeacomputed in polynomial time. Many
researchers have followed up on Nisan and Ronen’s origingk vincluding Feigenbaum, Papadimitriou,
Sami, and Shenker [3], who showed that lowest-cost pathsv&d payments could be computed in a
“BGP-compatible” fashioni.e., computed by a distributed algorithm that requires onlylsmadifications
to the (already universally deployed) Border Gateway Rwlto In this paper, we continue the study of
BGP-compatible, truthful computation of interdomain esiand payments that was begun in [3].

Although it was viewed as a step forward in our attempt to ustded the interplay of engineering,
algorithmics, and economics in interdomain routing, thekno [3] was by no means a fully satisfactory
solution. In particular, one of the valuable features of B&Ehat it allows ASes to choose interdomain
routes according to semantically rich policies that meeirtbperational and business requirements; LCP
routing is just one example of a valid policy, and, in pragtimany ASes do not use it [1]. Thus, it is natural
to ask whether more realistic, expressive interdomaitkrgypolicies admit truthful, BGP-compatible com-
putation of routes and payments. Previous work on this gqurestas been discouraging: Negative results
have been obtained for general policy routing [5], for “&dbve-cost” policy routing [2], for “forbidden-
set” policy routing [2], and for “next-hop” policy routingg]. The next-hop case (defined below) admits a
satisfactory centralized-algorithmic solution, but tingient requirements put forth in [5] for a satisfactory
distributed-algorithmic solution cannot be met.

In this paper, we provide the first example of a class of padidhat is more realistic than LCP and
that admits incentive-compatible, BGP-compatible corapom of routes and payments, to wit: next-hop
policies that obey the Gao-Rexford conditions for globabsity. We now proceed to describe these policies
and then outline other contributions of this paper; thesfationtribute to a general theory of incentive-
compatible interdomain routing.

Thenext hopof a route is the source AS’s immediate neighbor along thateroAn AS has aext-hop
policy if it decides among available routes to a destination baskdlyson the routes’ next hops. Because
ASes do not control packet forwarding beyond the neighlgoAS to which traffic is initially sent, it is



realistic to express route preferences based on next hops.aHowever, uncoordinated and unconstrained
local configuration of next-hop policies can produce ragiimstability [10, 20].

Gao and Rexford [7] proposed constraints on policies thatayuee route stability without global co-
ordination. They assume that two types of business rekttips exist between neighboring pairs of ASes:
customer-providerin which one AS purchases connectivity from another, p@ekring in which two ASes
agree to carry transit traffic to and from each other’s custane.g, to shortcut routes through providers.
(These relationships accurately represent today’s comiaténternet; see [13].) These relationships natu-
rally induce route preferences. Gao and Rexford formalihede preferences (we review the formalization
in Sec. 3.1) and proved that they induce stable routing retla@eno customer-provider cycldse., no AS
is an indirect customer of itself). This requirement is istad, because it is unlikely that a large Internet
provider would purchase connectivity from a smaller ISRs$roivn customer hierarchy.

We show that this realistic class of policies admits inagmtiompatible, BGP-compatible computation
of routes and payments. Furthermore, we are able to givéyeostsults for more general classes of policies.
We identify three conditions that together form a sufficiemstraint on policies to permit the computation
of welfare-maximizing routes by any path-vector protodntiuding BGP). We show that, if any of these
conditions is violated, thprice of anarchy[14]—a measure of how far from optimal the computed routing
tree is, with respect to welfare maximization—for pathteeaouting is unbounded. We also exhibit an
incentive-compatible algorithm that, while not spaceesdfit, computes payments and routes for any class
of routing policies that obeys the first two of these threeditions and, through its payments, enforces that
nodes obey the third condition. This general-case algarithnot subject to any of the methods of rational
manipulation formulated by Shneidman and Parkes [18].

Our space-efficient implementation for the realistic clagpolicies discussed above is a special case
of the general-case algorithm; we also discuss anotheresgfficient special case, that ofetric-based
valuations that is a generalization of lowest-cost routing.

The remainder of the paper is organized as follows. In Sewe2formally define the interdomain-
routing problem and review some necessary notation. We theBec. 3, give an incentive-compatible,
BGP-compatible algorithm to compute routes and paymentseii-hop policies that obey the Gao-Rexford
conditions. Following that, we discuss the three cond#ion policies that permit welfare-maximizing route
computation in Sec. 4 and give an algorithm for the genersg ta Sec. 5. We present open questions and
conclude in Sec. 6.

2 Preliminaries

We begin this section by formally defining the interdomastmg problem and providing some useful
notation. We then review the Border Gateway Protocol (B&#) standard protocol used for interdomain
routing today.

2.1 Problem Statement

In the interdomain-routing problem, we are given an AS gr@ph (N, L) that describes the network topol-
ogy. The set of noded corresponds to the ASes in the graph. Because routes araitemiripdependently
for each destination, without loss of generality, we asstiraeV consists of: source node$l, ..., n} and

a destination nodé. The set of linksL corresponds to connections between ASes.Il’et 2" be the set
of all simpleroutes {.e., routes with no loops) fromto d in G.



An instancel = (G,P,V) of theinterdomain-routing problenms defined by an AS grap&, a set of
permitted routesP (i) = P* C L' for each nodeé € [n], and thevaluation functionV(i) = v; : P* — R>q
of each node. Every sét’ contains the paths ih’ that are not removed from consideration by eithiéself
or 's neighbors. Every valuation function specifies the “monetary value” of each routec P’ from
nodei. We assume that;(()) = 0, i.e, no route is worth nothing, and that, for all pairs of roufésand
R, through different neighboring nodes( R,) # v;(R2), i.e., there are no ties in valuatiohsTherouting
policy of each node is thus captured by; and P*: The only routes considered forare those inP?, and
preference among these routes is given by the valuatiortifumg, .

The goal is to allocate to each source nade [n] a routeR; € P'. The resultingroute allocation
Ty = {Ri,...,R,} should form a confluent tree to the destinatibnFurthermore, we are interested in
route allocations that maximize the “total social welfaoé"the nodesj.e., we want to find an allocation
satisfying

n
Ty = argmaxy_(g, . s,} Z v;i(55)-
=1

Incentive compatibility is introduced into this problem pgying nodes for their contribution to the
routing tree in the hope of incentivizing truthful behavidrherefore, in our version of the problem, we
assume, as in [18], thaV contains one more node, call¢ide bank that is in charge of distributing a
payments;(7,) to each source nodebased on the path allocatidry.

We define theitility functionof each nodé, u; : [, P! — R, to beu;(Ty) = v;(R;)+s;(Ty). Although
the global goal is to maximize the total social welfare, guational node; would only be interested in
maximizing its own utility, even if this comes at the expen$aot achieving the global goal. An algorithm
(protocol) istruthful if it is in the best interest of each node to reveal its truaugabn function to the
algorithm. An algorithm isncentive-compatibléwith respect to some notion of equilibrium) if it is in the
best interest of each node to comply with all the algorithmstructions (with respect to the same notion of
equilibrium); compliance includes, but is not limited toppiding truthful input of valuation functions.

A distributed setting such as ours poses an inherentlyrdiitechallenge for the design of incentive-
compatible mechanisms (see [3, 18]) than a centralized Bhis.is because the computation is performed
by the strategic agents themselves and not by a reliable plairty. In this paper, we focus on achieving
incentive compatibility inex-post Nash equilibriumwhich has been argued to be most appropriate for
distributed-mechanism computation [18]; using this algtiim concept enables the consideration of several
forms of rational manipulation other than lying about irgp(gee Sec. 5.2 for a detailed discussion).

We are interested in efficient, distributed, and incentiwexpatible welfare-maximizing algorithms for
the interdomain-routing problem. We require our algorithim assume no prior knowledge of the nodes of
the topology of the network.

2.2 Notation

First, we present some notation for the representation weso Asimpleroute is a finite sequence of
consecutive links from a source node to the destination tlegiecontains no loops (cyclesAll routes
in this paper are simple unless stated otherwi®e say that node is in route R (or writei € R) if ¢
participates in one of the links iR.

1This assumption is consistent with BGP and the model of daerain routing in [10]: Because at most one route can be
installed in a router’s forwarding table to each destinatioodes have some deterministic way to break &#eg, based on the
next hop's IP address; so, valuations can be adjusted angtydo match this. However, because only one route perhiigis
considered at a time, ties in valuation are permitted fote®through the same neighboring node.



Update messages between neighboring ASes
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Figure 1: Route computation using BGP.

If Ris a route fromy (its source to the destinationl, andi is a node that is not i and is adjacent to
j in G, we denote by, j) R the route that hag, j) as a first link and then follow® to the destination. If
J andk are intermediate nodes on a routewe denote byzj; ;) the subpath ofz from j to k.

Throughout this paper, we will consider sub-instances efitlterdomain-routing problem obtained by
removing one node from the AS gragh For every node, we denote byG—* the subgraph o7 that
contains all nodes inV excepti and all links in L except those participates in. We can now define
I7t = (G7%, V', P") to be a sub-instance of the original interdomain-routirgtancel, in which the AS
graph isG—¢ and, for each nodg # i, P'(j) = {R € P(j) | i ¢ R}, i.e, any route containing is
removed from the permitted-route setgfand)’(j) is V(j) restricted to the sub-domaiR’(j), i.e., the
valuation of a permitted route ifi—* is identical to the valuation of that route in We denote b)Td"' a
welfare-maximizing route allocation fdr—.

2.3 Routing with BGP

The Border Gateway Protocol (BGP) [17] belongs to the famiflpath-vector protocolsthe abstract prop-
erties of which were studied in [9]. A sketch of how BGP congsutoutes is shown in Fig. 1. The basic idea
is that a routing tree to a given destination is built, hopHop, as knowledge of how to reach that destina-
tion propagates through the network. Communication betwegles takes place througpbdate messages
that announce chosen routes.

The process is initialized when some destination A8nnounces itself to its neighbors by sending
update messages. Then, each noitlieratively establishes routes ddoy:



1. importing, via update messages, routeg thosen by neighbotsand storing the routes inrauting
table

2. choosing the best route froito d (through a neighbor af) among those available in the routing table
based on local routing policy; and

3. if there is a change tis best route, exporting the newly selected route to alfoheighbors using
update messageés.

At any given time, each node’s (internally stored) routiablé contains the route updates received from its
neighbors, and each node is assigned at most one best raa@ da its policy. (A node may not have a
best route if it has not yet received any updates or if itsmaags havevithdrawntheir routese.g, because

of network failures). We assume that the network is asymatus; so, it is possible that the network delays
the arrival of update messages along selective links.

Path-vector routing has several advantages. First, bedfesonly routes considered are those an-
nounced by neighbors, the protocol enforces the requirethahroute choices form a confluent tree. Sec-
ond, each node is able to maintain its autonomy by makingiterchoice based on local, expressive routing
policies. Third, changes in the network due to the additiosubtraction of nodes or links can be announced
through update messages, and routers can use alternats sborted in the routing table to adapt quickly.
Fourth, because entire paths are announced, nodes carfehledps and exclude them from routing tables.

Because BGP is currently the standard protocol for Intemtetdomain routing, we desire algorithms
that areBGP-compatiblei.e., that can be implemented with only small modifications to BGP

3 A Realistic, Incentive-Compatible Routing Model

In this section, we present an incentive-compatible, BGPymatible algorithm for the interdomain-routing
problem (defined in the previous section) when valuatiorctions belong to a restricted but realistic class
of policies: next-hop routing that obeys the Gao-Rexfondditions for global stability. We first define this
class of policies. We then present the algorithm and disicsigsoperties.

3.1 Policies for the Commercial Internet

Packets are forwarded based on destination alone; theréfisensible for ASes to usext-hop policies-
those that only consider the immediate neighbor along @&+rebiecause an AS actually has no control over
packets once they are forwarded to a neighboring AS. We filyrdefine these policies as follows.

Definition 3.1. If ¢ € [n], defineneighbors(i) = {j € N | (i,5) € L}, i.e, the set of nodes adjacentito

Definition 3.2. If R € L7 andR = (i, j)R/, then define theext hopon R to benext(R) = j. Node
i € [n] has anext-hop valuation function; iff there exists a functiory; : neighbors(i) — Rx¢ such that,
for every routeR € P, v;(R) = f(next(R)).

If all nodes have next-hop valuation functions, we say tlia instance uses next-hop policies.” Next-
hop policies are semantically rich enough to permit globating instability (see Sec. 4.1); therefore, we
require additional constraints on policies. One realstid well-studied set of constraints, which we discuss

2Some neighbors may refuse to send particular routes.
3Again, nodes may not send certain routes to certain neighbor



in this section, assumes that some business hierarchyliesdiéie AS graph and that policies are based on
the economic nature of this hierarchy.

Huston’s study of the commercial Internet [13] suggests tiypes of business relationships that char-
acterize AS inter-connections: Pairs of neighboring nduege either acustomer-provideror a peering
relationship. Customer nodes pay their provider nodes donectivity—access to Internet destinations
through the provider’s links and advertisement of custodestinations to the rest of the Internet. Peers are
nodes that find it mutually advantageous to exchange traifiée among their respective customexsgj,
to shortcut routes through providers. A node can be in maifgrdnt relationships simultaneously: It can
be a customer of one or more nodes, a provider to others, aadragyet other nodes. These agreements
are assumed to be longer-term contracts that are formedidmof various external factors.g, the traffic
pattern between two nodes.

Intuitively, these business relationships naturally celwuting policies. Gao and Rexford [7] formally
modeled these relationships and policies with the follgnthree conditions.

No customer-provider cycles: Let Gcp be the digraph with the same set of node&:and with a directed
edge from every customer to its provider. We demand thaethemo directed cycles in this graph.
If this requirement is met, we say that “the AS graph contaiosustomer-provider cycles.” This
demand is a natural economic assumption, because, if hamycle inGcp, then a node is indirectly
its own provider.

Prefer customers to peers and peers to providersA customer routes a route in which the next-hop AS
is a customer.Provider and peer routesare defined similarly. We require that nodes always pre-
fer (i.e., assign a higher value to) customer routes over peer rowtash are in turn preferred to
provider routes. This also has an obvious economic judiificgiven the financial agreement for
each relationship.

Provide transit services only to customers:Nodes do not always carttyansit traffic—traffic that origi-
nates and terminates at hosts outside the node. Nodes ayatebl(by financial agreements) to carry
transit traffic to and from their customers, but nodes do aotyctransit traffic among only providers
and peers. Therefore, nodes should share only customessrauth their providers and peers but
should sharall of their routes with their customers.

It was proven in [6, 7] that, if all nodes obey these condgioenforced naturally by Internet economics,
BGP predictably converges to a stable routing tree, evear afide and link failures. Later work [8, 19]
showed that the Gao-Rexford conditions are only one clag®lafies that prevent routing anomalies; we
will discuss the more general characterization in Sec. él@w

Using the terminology and notation of Sec. 2, we formallyniethe Gao-Rexford conditions as follows:

Definition 3.3. The Gao-Rexford conditionkold iff the AS graph contains no customer-provider cycles,
and, for all nodes € [n], the following hold for all pairs of node§j, k} C neighbors(i) and for all pairs
of routes{R;, R} C P* such thatext(R;) = j andnext(Ry) = k:

1. If j is a customer and is not, thenv;(R;) > v;(Ry). If j is a peer and: is a provider, then
v;(R;) > vi(Ry). (The remaining cases are implied by symmetry.)

2. If neitherj nor k is a customer, thetyj,i) Ry ¢ P? and(k,i)R; ¢ P*, becauseé does not sharéy,
with j or R; with k. If j is a customer, then, whatevis relationship tok, R; is shared withk, and
Ry, is shared withj. Thus,(k,i)R; € P* if permitted byk, and(j, i) Ry, € P7 if permitted byj.



3.2 A BGP-Compatible Algorithm

The following algorithm is a straightforward extension t&B that computes routes and payments for
incentive-compatible, welfare-maximizing routing wheolipies are next-hop based and obey the Gao-
Rexford conditions described above in Sec. 3.1.

The algorithm essentially computes best routes using B&&duls extra information to update messages
so that nodes can compute the mechanism’s payments. Thisniation is also stored in nodes’ routing
tables, requiring one extra bit of storage for every traASiton an imported route. These bits are used to
determine the next hop of the bdstvoiding route—the best route i ~*—for every transit nodé on the
best route for each node ih The next hops are used directly in computing payments andeastored
using one extra row in the routing table, denofgdelow.

The extra bit per transit node in each row of the routing tald the extra row used to store the next
hops require a constant-factor increase in the space cgitypté the original BGP; a similar amount of
extra storage was used by the algorithm described in [3pfeest-cost-path routing. We use the teB@P-
compatibleto mean that the algorithm has the same basic structure asaBGEhat it is “space-efficient,”
in that it requires only a modest increase to the storagarmsqgeant of the original BGP. This is consistent
with use of the term in [3].

Computation of best routes akeavoiding next hops is triggered when nodes receive updatsages,
just as in BGP (see Sec. 2.3). Update-message processingleddnto two cases: (I) the message is from
the most valued neighbor that has yet sent a message, in wasehthe route contained in the message
is chosen as the best route; and (ll) the message is not frermdst valued neighbor that has yet sent a
message, in which case the extra bits in the message areaugpdate the choices of the bésavoiding
next hops. Unlike BGP, if node chooses nodg as its next hop, an update message is still sent frdrack
to y; this extra message is used to send availability wf k-avoiding routes through and is processed
using case (Il).

Setting: An instance of the interdomain-routing problem with negplpolicies obeying the Gao-Rexford
conditions. As in Def. 3.2, we assume that there exists dt padei € [n] a functionf; : neighbors(i) —
R>g, such thaw;(R) = fi(next(R)).

Outcome: A route allocationTy = {Ry, ..., R, } that forms a confluent tree tf) such that

n
Ty = argmaxy_(g, . 5,1 Z v; (S;).
i=1

Structure of Update MessagesAn update message sent by node contains a route?,,, € P’ and, for
everyk € R, (k ¢ {i,d}), abitB,,(k). Bn(k) = 1if i has, in its routing table, k-avoiding route tad,
i.e., some routek € P’ such that ¢ R. These bits are used to correctly populate thellistefined below,
that is used to compute the mechanism’s payments.

Storage at Each Node:Each node has a routing tabl&; indexed by neighbors af If j € neighbors(i),
thenY;(j) is the update message sent by ngdso that at most one advertised route is stored per neighbor.
Initially, Y;(j) = 0 for all j. Each node also has a lisf;: Assume the current best routeiais R;; if

k € R; is a transit nodek ¢ {i,d}), thenL;(k) = next(R'), whereR’ is the best:-avoiding route ini’s
routing table.L; (k) will be used, at the end of the algorithm, to compute the carepbof the payment to
nodek that is attributable to nodg denotedsi. Fig. 2 shows an example of the storage at each node.

Start: AS d sends update message= (d, 0)) to all neighbors.



[Dest.|| L.(2)=1] L.(4) =2 ] L.(5) =1 || — L.: bestk-avoiding next-hop ASes for trangiton z's best route

d AS 2 AS 4 AS 5 — Ry, the route chosen by neighbor 2Sz’s current best route
Bsy(4) = Bs(5) =0 || — Bo, the bit vector sent with update from neight2or

d AS 1 AS 3 AS 5 — Ry, the route chosen by neighbor AS
B1(3)=0 | B1(5) =1 || — By, the bit vector sent with update from neightor

Figure 2: An example routing table for source nadasing the algorithm from Sec. 3.2.

Update-Message Processingtet m = (R,,, B,,) be the update message received at noffem j €
neighbors(i). If (i,j)R,, ¢ P! andnext(R,,) # i, then discard the message. Otherw{sgj) R, € P’ or
next(R,,) = i, and the update message should be stored in the routings@atiatY;(j) = (R, Bm)-

(Case I)If next(R,,) # i and

fi(4) = max fi7),

{j’€neighbors(4)|Y; () #0}

i.e. j is the most valued neighbor that has sent an update meskagesitherR,,, is a new best route t@
(i.e., R,, is the newR;) or the neighbor exporting,,, has an updated bit vectdt,,. Resetl; to empty and,
for eachk € R, such that: # d, do the following to repopulaté;: If B,,(k) = 1, then setl;(k) = j; if

By, (k) =0o0rk = j, then:

1. LetA = neighbors(i) — {;} and let

@ = argmax (g ay,()20}.fi(@)
be the most valued node i. Let (R,, B,) = Y;(a) be the routing-table entry far.
2. Ifk ¢ R,, then setl;(k) = a.
3. Ifnot, k € R,. If B,(k) =1, then setl;(k) = a.

4. If L;(k) has still not been set, then repeat at (1) witk= A — {a}. Discontinue repeat il = {a},
i.e. there would be no nodes left i.

Finally, setR; = (i,j)R.
(Case ))If next(R,,) =i or

fi(G) # max fi(0),

{j’€neighbors(4)|Y; () #0}

i.e.,, j is not the most valued neighbor that has sent an update neesbag, for each current transit node
ke R; (k ¢ {i,d}), setL;(k) = j if j has ak-avoiding route ang is more valued that;(k), the current
bestk-avoiding next hopi.e.:

1. fi(y) > fi(Li(k)); and either
2a. k € R,, andB,, (k) = 1; or
2b. k & Ry,.



If any changes were made 1q in either of the cases above (including any time Case | wggdred),
then send update messages = (R;, B),,) to all neighbors ofi, where B/, (k) = 1 if L;(k) # ( and
Bl (k) = 0if L;(k) = 0. (If R; is a non-customer route and neighbois also a non-customer, then the
update messad@, () should be sent to comply with the Gao-Rexford conditionglying a withdrawal of
the previous route. Note that, in Lem. 3.7 below, we prové dghaithdrawal will never happen.)

Payment Computation: Once the algorithm converges, the bank obtains from eack htte payment

componentt = fi(next(R;)) — fi(Li(k)) for everyk € R; (k ¢ {i,d}), which is the component of the

total payment td: that is attributable t@. The bank then disburses to each nédepayment; = Z#k st.
We next investigate the truthfulness and correctness adltfeithm. We show that the algorithm con-

verges, at which time each nodéhas a valid, utility-maximizing route?; to d and, for eachk € R;

(k ¢ {i,d}), the next hop of the best route @, L;(k), that is used in the computation of payment

components: .

3.3 Truthfulness and Correctness

We define the payment to each node to be

sk =Y vi(Ri) =Y wvi(R), 1)
ik ik

whereR; is the route allocated tbin T,;, andR; ¥ is the route allocated toin 7, *.

Our mechanism then belongs to the familywidkrey-Clarke-GrovegVCG) mechanisms. A classic re-
sult of Green and Laffont [11] states that a truthful pricmgchanism maximizing a social-welfare function
of the formV (T) = >, vi(R;) must be a VCG mechanism, with payments expressible as

pr=Y_vi(Ri) = hi (T ), 2
ik

in which hy(+) is an arbitrary function of ¥ In particular, this means that every strategic agent'smeat
must depend solely on the other agents. Note that, if

h(T; %) = v R
i#k

in (2), thenpy = s.

Intuitively, the payment to each nodés the increase in the social welfare of the other nodes ddoge
i's participation in the algorithm. The key observation iattthese payments can be “broken down” into
components computed by the different nodes (in a distribfashion). Loosely speaking, nods compo-
nent in the payment to nodecorresponds tg’s contribution toi’'s welfare—the difference in the values
assigns to the paths he gets with and withputhese components are computed during the algorithm, and
the final payment is the sum of payment components computegltbe algorithm converges.

Definition 3.4. Thepayment componeifibr j attributable tai is

st = vi(R;) — vi(R7),

J 7

=350

i#]

and thepaymento each nodé is
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It is easy to verify that the paymeast in Def. 3.4 is the same as that in (1). At the end of the algorjth
each nodeé has enough information to compLﬁ?'Jafor all transit nodeg: Because preferences are next-hop
based,s;l = v (R;) — fi (Li(j)), wheref; is the next-hop valuation as in Def. 3.2, abdj) is the next hop
of the bestj-avoiding route computed by the algorithm. Payment comptsnmust only be computed for
transit nodes: Ifj is not a transit node oils best routej.e., j ¢ R;, thenR; = Ri—], ands;'- =0.

VCG payments guarantee the truthfulness of the algorithmSdc. 5.2, we show that (with minor
modifications) our algorithm is immune to all types of rabmanipulation as formulated by Shneidman
and Parkes [18]; this means our algorithm is incentive-catibfe with respect to ex-post Nash equilibrium.
The algorithm is BGP-compatible because it has the sametsteuas BGP and requires only a constant-
factor increase in space complexity.

Theorem 3.5. The algorithm in Sec. 3.2 is truthful and BGP-compatible.

Proof. As discussed above, payments to nodes have the form of VC@qrdy; VCG payments guarantee
truthfulness [11]. We must now show that the algorithm is B&hpatible. In addition to the routing-table
storage required by the original BGP, this algorithm reggiiiat node, storage of:

1. the bitB,,(j) for everyj € R, sentin an update messagestored at; and

2. the next hops on the currently best knoavoiding routes for every € R;, whereR; is the current
best route tal.

This requires one additional bit per transit AS, per row @tpdnessage) in the routing table and one addi-
tional row to store the next hops. This amounts to a congeedr increase in space complexity and fulfills
our requirements for BGP compatibility. O

The following theorem implies the correctness of the athani

Theorem 3.6. Regarding the algorithm in Sec. 3.2 on instances with negtialuations obeying the Gao-
Rexford conditions:

(C1) the algorithm converges;
(C2) the outputly is optimal (welfare-maximizing); and
(C3) the noded.;(k) are indeed the next hops of the optimal routesifior G—*.

Proof. We will show that the Gao-Rexford conditions imply (C1) ahdttadding next-hop valuations im-
plies (C2). These are special cases of more general restiitsh are discussed in Sec. 4.2-4.4. The
welfare-maximizing routing tree output by the algorithntwihis class of policies has the additional prop-
erty that the routes allocated to the nodes are not only tjjobptimal, but also locally optimal (best with
respect to each node’s valuation function). Thereforepdas comply with the algorithm'’s instructions,
they should receive their highest valued routes. This tésalso true for more general classes of policies;
see Sec. 4.5 below. The proof of (C3) is particular to this@algm and this class of policies.

To prove (C1), we must show that our algorithm will stop segdipdate messages along every edge in
the network. The Gao-Rexford conditions imply convergenicemple path-vector protocols (SPVPSs) like
BGP—discussed in Sec. 2.3—on instances and sub-insta®cds however, our algorithm differs slightly
from SPVPs. In both algorithms, an update message is sent:fto j when a new best route is chosen at
i. In SPVPs, this message either (1) contains the new routedifi export its choice tg), or (2) contains
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a withdrawal (ifi cannot export its choice tg). In our algorithm, (1) still occurs, but (2) does not; in
particular, our algorithm does not send or process withdramessages. However, the following lemma
shows that this is irrelevant. For valuations obeying the-Baxford conditions, withdrawal messages are
never sent.

Lemma 3.7. If, at some time, node sends nodé an update messadev,,,, B,,) such thatR,, # 0, i.e,,
nodea exports a route to nodg and we assume there are no failures, then at any future tineee will
exist a routeR,, in i's routing table, such thatext(R,) = a.

Informally, this lemma means that once a node exports a @gabte to a neighbor (where “usable”
means allowed by the Gao-Rexford conditions), any routsehdy the node will be a usable route for that
neighbor. Therefore, route withdrawals are unnecessanyes are only replaced with new (usable) routes.

Proof. Changes to the routing table are update-driven. A changetala new update or withdrawal, will
only be sent ifa switches fromR,,, to some other routé&,. We must show that, in this case, an update
message witlR,, is sent toi, and a withdrawal is not sent.

If a is a provider ofi, thena will export R, to i. Therefore, we can assume, without loss of generality,
thata is a peer or customer af then R,,, must be a customer route of or it would not have been sent to
i. If a switches toR, because,(R,) > v.(R,,), then R, must also be a customer route, and it will be
exported ta. If not, thenR,,, must have been withdrawn. (If it was replaced, next-hopcpesidictate that
va(Ra) = vq(Ry,), and that route will be exported 9 In this case, its customer= next(R,,) switched
to a route that was filtered; but, this new route must be a nsitemer route at. Because it is less valued
than the customer rout®,,. 4, that switch must have also happened because of a withdranalthese
same arguments apply. This could continue downstreaihat the last link must be a customer route that
is always available; this leads to a contradiction. O

Given Lem. 3.7, the convergence implied by the Gao-Rexfordlitions for SPVPs also applies to our
algorithm, because the dynamics of update messages (far choices in the original instand@ are the
same as that of SPVPs. However, our algorithm also finds ragpd sub-instances *, wherek € [n];
to do so, it sends update messages whenever the availailibavoiding routes changesd,, a change in
the list ;). These messages are not used in SPVPs, so we must showethavémtually stop as well.

First, note that the Gao-Rexford conditions hold for suttances if they hold for the original instance;
therefore, a unique, stable routing tree exists for eackirsthnce, and route withdrawals are unnecessary.
Second, because valuations are next-hop based, only thebility of a k-avoiding route through a given
neighbor needs to be known, not the route itself. (This is thieyalgorithm only sends a bit vector of avail-
ability.) But, because routes are never withdrawn, onceighber indicatest-avoiding-route availability,

a k-avoiding route through that neighbor will always be aua#ain the future. Because there are a finite
number of neighborg;-avoiding-route availability can only improve a finite nuentof times. Thus, at some
point along every edge, update messages will no longer lidmehis reason.

Therefore, we have shown that at some point, update mesgdljas longer be sent (either for route
choices in or next hops i —*); thus, the algorithm converges, proving (C1).

To prove (C2), we show that the welfare-maximizing routirgetfor the instance) = (04, ...,0,),
is stable—e,, for every nodei and every;j € neighbors(i), v;(O;) > v;((2,7)0;) (see Def. 4.1). Itis
clear (and implied by [6, 7]) that our algorithm converges tgtable routing tree. Because the Gao-Rexford
conditions imply that there is a unigue stable routing t&€&T, the tree computed by the algorithm must be
welfare-maximizing.
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We show this by contradiction: Assume that the welfare-mm@zing treeO is not stable; then there is
some nodeé with a neighborj such that

vi(0;) < vi((4,5)0;). (3)

Construct the routing tre®” = (O1',...,0,') as follows. LetO; = (i,j)O0; andO’; = O;. (Note that
i ¢ Oj, otherwisev;((i,7)0;) # v;(O;) because the route would not be simple.) Eo# {i,j,d}, if
1 Qé O, IetO;C = O. If i € O, then IetO;C = Ok[]m](z,j)Oj

The latter is possible becausl € P*. Letm € O, be the neighbor of such thatext(0),) = i. If
m is a customer of, thenO; will be exported tom, andO/,, will be exported and extended fobecause
the Gao-Rexford conditions imply these links are custoimésl! If m is not a customer af, thenj must be
a customer of; if (3) is true, then the Gao-Rexford conditions imply thitherefore, the rout®, must be
exported ton; because no relationships have change@; iivas exported byn, so will O..

In the treeO’, (3) implies that nodé has higher welfare. Because valuations are next-hop bamkd a
the nodes routing throughcontinue to route through the valuations of no other nodes have changed.
Therefore O’ has higher welfare thaf, contradicting the welfare maximization 6. This must mean that
O is stable, which completes the proof of (C2).

Note that the above argument can also be used to prove thanthee stable routing tree, which is
welfare-maximizing, assigns each node its most valuecercdgsume this is not true: Some node does not
receive its most valued patR; in (3), replace(i, j)O; with R, and the contradiction follows. Therefore,
the routing tree found by the algorithm is essentially “oyal” in the global (welfare-maximizing) and local
sense. This fact will be used below, and is a special case wf. Atil3. For the remainder of this proof,
we will use “optimal” to mean both globally and locally optinbecause of this equivalence; for a full
discussion of this for more general cases of policies, seedsSe.

To prove (C3), we shall require the following four lemmas.

Lemma 3.8. If j is the optimal next hop far, and, for somé: € [n], j has ak-avoiding route, then the next
hop of the optimak-avoiding route at is alsoj.

This lemma justifies the step in the algorithm that immedifadetsk-avoiding next hops whenever an
update message containing a new best route is received.

Proof. Assume thayj is not the optimak-avoiding next hop; then, becaugdas ak-avoiding route, there
must be some other nodewith a betterk-avoiding routeR; *. Because of next-hop valuations, this implies
fi(a) > fi(4). But, because is not optimal fori with k& present, this implies that must not have a usable
route tod whenk is present. Thus, whehis presenta chooses a rout&, throughk but does not export

it to 7. (Otherwise, removing: would make no difference.) This means that{R,) > v,(R;*), and
next(R,) andi both must be non-customers®{only non-customer routes can be filtered by Gao-Rexford
policies). But this means that,* must also be a non-customer routenabecause it is less valued than
R,. In this case,R;* would not be exported to either, contradicting the possibility thathas a usable
k-avoiding route for. O

Lemma 3.9. If node: has not received an update message from neighbtinen either node’s route in
I7F (for anyk € [n]) cannot be exported tg or nodea has no route inf —*.

This lemma means that neighbors witkavoiding routes permitted atwill send update messages to
1; information from neighbors that do not send update messamgeis irrelevant in computing payment
components.
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Proof. If a is routing through, thena will send an update message if it has @angvoiding routes available.
Thus, without loss of generality, we can assume thiatnot routing throughi.

If a has not sent an update message be@cause it has not learned any pathd,tthena also has no
k-avoiding routes tal.

The remaining case is thathas not sent an update message b@cause it cannot share its roukg
with . In this case; must not be a customer af andnext(R,) is also not a customer ef If k£ ¢ R,, then
R, is ak-avoiding route, but: cannot export it ta becausenext(R,) andi are both non-customers.

If k € R,, thena may choose a different rout®;* in I~%. If R;* is a non-customer route, then it is
still unusable byi, which accounts for an update not being sentRif* is a customer route, then it must
not be available ta whenk is present, otherwise would choose it over the non-customer roiitg But
this is not possible, because every link w) € R;* is a customer link, including the last link tb This
means the route must be exported up the chain of provideraitall times, which leads to a contradiction;
therefore,ng cannot be a customer routecatwhich makes it unusable to O

Lemma 3.10.1f £ ¢ R,, the route allocated ta by the algorithm for the original instanck and(i,a)R, €
Pi, then there exists a routB; * € P® such that(i,a) R;* € P’ for the sub-instancé—*.

This lemma has to do with-avoiding-route availability. Even though a node may clecak-avoiding
route as its best route fdr, it may be that downstream changes prevent it from choosiagroute in the
sub-instancd ~* in which k is removed; in fact, it is possible that ieavoiding route is available. This
lemma excludes this possibility. The algorithm uses this fa populate the listg;.

Proof. If no node;j € R, chooses a different path (other th&R) whenk is not present, thef,, itself is a
k-avoiding path usable by If some downstream nodeswitches to a different patR; whenk is removed,
then the pattRa[a7j}R; should be usable af unless it is filtered somewhere betweeand:.

Assume this happens. The relationships of nodes betwee i have not changed: Because these
nodes originally propagatefi;, they would also propagat®’; therefore,j itself must fiIterR}. This means
thatR;. must be a non-customer route, and the node upstregintosfardse must also be a non-customer.
But becausé?; was not filtered, it must be a customer route. BecayéR;) > v;(R}) in this casej would
never have switched tB; upon removal ok unlessR; was filtered downstream gt However, this same
argument applies to all downstream nodes (which must alubtomers); because the last link adjacent to
must be a customer link and the direct route is always exgottés leads to a contradiction. O

Lemma 3.11. Given some fixed, it is not possible fol;(k) = j and L;(k) = i at the same time.

In the algorithm, nodes send their next hdpavoiding-route availability. This lemma precludes the
possibility that two nodes choose each other as thavoiding next hop.

Proof. If i is a customer of, then the only routes exported fare customer routes. Therefore; gxports
a k-avoiding routeR to j such thatj considers(j, i) R its bestk-avoiding route,R is a customer route at
i. This implies f;(next(R)) > fi(4); so, L;(k) # j. The same argument works, by symmetry; i a
customer of.

If + andj are peers, then the only routes they can share are custooies.rcAssume that each node
chooses the other as a bésavoiding next hop; then each must have a customer routatexpio the other.
But those customers would be better choicesifavoiding next hops, contradicting the assumption.]

We are now ready to prove (C3). By (C1), the algorithm coreergand when it does, by (C2), the
route choice is optimal; thus every noteeceives a route through its most highly valued neighbdfrom
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Lemma 3.7, we know that, on@édearns a route througjy it always has a current update message fijom
update messages are sent whenever a change to the bestrrthaebestk-avoiding next hop (for any)
occurs.

Once the algorithm converges, consider the ehffy:) for eachk. The algorithm populates these entries
in the following way. L;(k) = j if Bj(k) = 1 ork ¢ (i,j)R;; i.e, L;(k) = j if j has ak-avoiding route.
By Lemma 3.8, ifj has ak-avoiding route for some, then this setting is optimal.

If B;(k) =0andk € (i,j)R;, thenj does not have &-avoiding route. In this case, the algorithm sets
L;(k) to be the most valued neighbor that has sent an update mess@lig,, B,,,) in which eitherk ¢ R,
or B,,(k) = 1. First, we show that the algorithm chooses the most valugghber; then we show that the
neighbor has &-avoiding route.

By Lemma 3.9, we must only consider neighbors that send epdassages as candidates for the optimal
k-avoiding next hop; thus the algorithm is not excluding eathoices by examining update messages alone.
The entry forL;(k) is set in either Case | or Case Il of the algorithm. If set in€Clashe entry is the most
valued neighbor because the latest update messages anedaadecreasing order of valuation; the scan is
accurate because Case | redetand then examines the most recent update messages. If segeéniCthe
entry is the most valued becaubg k) is only set when an update message is received from a neigirer
valued than the previous;(k), which was either set by a Case | or Case Il message; thushegrgence,
the entry will represent the most valued neighbor wititaoiding route.

By Lemma 3.10, ift ¢ R,,, thenm must have &-avoiding route usable by and the algorithm does
not need to scar,,. If B,,(k) = 1, the update message fromitself states thatn has ak-avoiding route.
Therefore, the neighbor chosen foy(k) certainly has &-avoiding route.

Finally, Lemma 3.11 and the Gao-Rexford conditions assarthat the next hops chosen at different
nodes do not create routing loops; thus they are consistiémawree. O

4 Towards a General Theory of Incentive-Compatible Interdanain Routing

In Sec. 3, we presented a realistic class of policies thaitadntentive-compatible, BGP-compatible com-
putation of routes and payments. However, many of our techas apply to other classes of policies. In
this section and the next, we present several positive st&@ad a general theory of incentive-compatible
interdomain routing.

The algorithm in Sec. 3.2 is able to find a welfare-maximiziog globally optimal, route allocation,
even though routes are chosen through local decisions. | ldecésion making cannot always achieve a
globally optimal solution; the class of policies descrilie&ec. 3 satisfy specific constraints that allow this.
In this section, we describe three constraints on routirlgips. For each, we give an example in which
removing the constraint results in an unboung@ede of anarchy meaning that the result of nodes’ acting
rationally but selfishly is arbitrarily worse than the résofl a centralized, optimal computation. In other
words, local decisions using a BGP-compatible protocol n@yfind a welfare-maximizing route allocation
if one or more of the constraints are not satisfied. We themvshowever, that these three constraints
together form a sufficient condition for policies to admistdibuted, incentive-compatible computation of
welfare-maximizing routes. Later, in Sec. 5, we presentigorghm that is not space-efficient but computes
welfare-maximizing routes and VCG payments for any clagsotities that obeys these three constraints.
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4.1 Stability, Robustness, and the Price of Anarchy

Path-vector protocols like BGP function much like an iteagame, because, at each step of the protocol,
ASes examine the routes chosen by their neighbors and me&kdecisions as to which routes are best.
Convergence to some equilibrium is thus an implicit goalhef protocol. Informally, a route allocation is
stableif no node prefers changing his allocated route to a routeftiaws one of its neighbors’ allocated
routes. A stable route allocation can be regarded as a Naslibegm.

Definition 4.1. A route allocationl; = { Ry, ..., R, } is stable iff, for every node,

vi(R;) = argmaxy(; jr, e pi|(i,j)eLnigr; Vi (1, 1) 1j).

However, a stable route allocation that is reached by I@edlish decision making may not be welfare
maximizing. Theprice of anarchy14] measures how bad selfish computation can be.

Definition 4.2. In an instancd, let

n

Wielfish = min ZU‘ R;
Sets stableT;={Ru,....,Rn} i—1 Z( 2)

be the minimum total social welfare obtained by a stableimguitee, and let

Weopt = max v; (R;
pt Td:{Rl,...,Rn}; ()

be the maximum total social welfare (over all routing tre@$)eprice of anarchyof path-vector routing on
Iis
Wopt
Wsolﬁsh

To design a welfare-maximizing path-vector protocol—atrthated protocol in which decisions are
made locally and selfishly—we must find conditions under Whiwe price of anarchy i$. We develop
such a condition in the remainder of this section.

In addition to stability, network operators want routingréspond to topology changes due to failures.
Stability even in the presence of failures is formally dediaes follows.

Definition 4.3. An instance of the interdomain-routing problermabustiff, for every sub-instance obtained
by removing any set of nodes and links from the original graipére exists a unique stable route allocation
to which a path-vector protocol converges from any init@alte allocation.

4.2 Dispute Wheels

There is an inherent trade-off in achieving the desiredraurtty and policy expressiveness at a local level
and robustness at the global level [8]. Early work conjexduthat only shorest-paths routing might be
provably stable [20]. However, Griffin, Shepherd, and Wiljo[10] presented a sufficient condition on
policies that guarantees robust convergence while allpwaiicies broader than shortest-path routing.

This condition is callecho dispute wheel A dispute wheel is essentially a representation of a set of
nodes and their routing policiesd., ordinal preferences on paths) that induce a routing anoratetwork
instance on which BGP might oscillate contains a disputeelyhieus, the absence of a dispute wheel in an
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v(21d) =1+«
’U2(2d) =0

Figure 3: A routing instance with a dispute wheel.

instance guarantees that it will never oscillate. Morergihy the absence of a dispute wheel means that the
instance and every sub-instance has a unique stable réateatain.

The absence of a dispute wheel is, in fact, the broadest+#rsaificient condition for stability and
robustness. In the design of an incentive-compatible mgutiechanism, we want to ensure that our routing
algorithm does reach a stable tree in some equilibrium. \&kethbre require that nodes’ valuations, which,
in our model, express routing policies, do not induce a desptheel.

The following defines an equivalent sufficient conditionngsihe language of valuation functions. The
equivalence between this definition and the original définibf a dispute wheel in [10] can be found
in [8,9].

Definition 4.4. Define two relations on permitted routes in an instafice
1. LetR; ©1 Ry iff Ry is a suffix of Ry, i.e., there is somg such thatR; = Ry l5,d] andR; € PJ.
2. LetR1 &y Ryiff 3i€e N: Ri,Ry € P andvi(Rl) > Ui(Rg).

Leto = (61 U S2)* be the transitive closure af;, ©,. Note that2 is inherently reflexive and transitive.
Instancel hasno dispute whesdff Ry @ Ry andRy; @ R, implies that eithetR; = R5 or Ry, Ry start
at the same node. (Informally, this is antisymmetryoéxcept that ties are allowed in valuations.)

Fig. 3 shows a routing instanceI6AGREE, from [10]) with policies that induce a dispute wheel. This
instance has two stable route allocatiofi$d, 21d} and{12d, 2d}. Because the network is asynchronous,
the timing of update messages may cause BGP to convergdéo eftthese solutions or oscillate between
them [10]. This anomaly is manifested by the following digpwheel:

1d ©9 21d ©1 2d ©1 12d &4 1d.

The price of anarchy in this example(is+ «), which can be arbitrarily bad given the choicecof> 0.

4.3 Policy Consistency

Our interdomain-routing problem is an optimization problen which each node assigeardinal values

to the different routes. Even without dispute wheels, figdinstable route allocation based on ordinal
preferences does not suffice, because that allocation® \an be much lower than that of the optimal
route allocation.

Fig. 4 shows an instance without a dispute wheel; assume 0. The unique stable route allocation
is {1d, 2d, 31d,431d}. However, the optimal route allocation {8d, 2d, 32d, 432d}. This allocation will
never be chosen by local decisions, because Bodeuld much prefer routing through node a route
that is always available for it to choose. Therefore, thegdf anarchy in this example,+ nga, is also
unbounded.
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v4(432d) = 100 + «
v4(431d) = 99

v3(31d) = 100
v3(32d) = 99

v1(1d) = 100
v1(132d) = 0

v2(2d) = 100
v2(231d) = 0

Figure 4: A routing instance without policy consistency.

To overcome this problem, we formally introduce thaicy-consistencyroperty. This property helps
to ensure that the optimal route allocation is stable anc&enrdombined with dispute-wheel freeness and
consistent filtering/defined in the next subsection), means that any path-vecttocol converges to an
optimal route allocation. (We explore the interesting axiions between the three conditions in Thm. 4.10,
first studied in a modified form by Sobrinho in [19].)

Informally, a nodei is policy-consistent with an adjacent nogle# there are no two routes fromto d
with next hopy, such thatj prefers one to the other, biitisagrees.

Definition 4.5. Let: andj be two adjacent nodes (. We say that is policy-consistenwith j iff for every
two routes{Q, R} C P’ suchthat ¢ Q,i ¢ R, and{(i,5)Q, (i,j)R} C P,

it 0,(Q) > v;(R), thenui((i,)Q) > vil(i, /) R).

Definition 4.6. An instance is policy-consistent (or “policy consistenolds”) iff, for every two adjacent
nodesi andy, i is policy-consistent witly.

Assuming policy consistency in a network is natural for thee reason that next-hop preferences are:
Nodes have little control over forwarding paths beyond thet fnop. Note that next-hop valuations are, in
fact, policy-consistent.

Other examples in which policy consistency holdsmedric-based valuation&lefined in [9]):

Definition 4.7. Let 6 : L — Ry be a positive real-valued function that specifies the “Iehgif each
link (a “metric” function). A valuation functiorv that is based o is one in whichv(Q) > v(R) iff

ZleQ 5(1) < ZleR 5(1)-

Itis easy to see that, if all nodes’ valuations are based ®@sdime underlying metric functionthen the
network is policy-consistent. In particular,dfl) = 1 for every linkl, then this is precisely the well known
shortest-path-routing problem.

4.4 Consistent Filtering

In traditional formulations of interdomain routing, nodse allowed tdilter routes arbitrarily when export-
ing updates to or importing updates from neighbaes, nodes can arbitrarily remove paths from consider-
ation (restrictingP?).

18



f5(4) =2+a
f5(1) =1

Figure 5: Next-hop policies without consistent filtering.

In the welfare-maximizing formulation of interdomain rg, arbitrary filtering is often disallowed.
Arbitrary filtering, like the lack of policy consistency, mwanake the price of anarchy unbounded, because
a node may value a route that is filtered by a neighbor much thare any other route available. This is
the case in Fig. 5, an instance with next-hop policies (wlaiah policy-consistent) and no dispute wheel.
(Again, assumer > 0.) Although nodes generally prefers routing through nodigthe pathb43d is filtered.

If node 4 chooses to route through noflenode5 can route through nodg and this leads to the optimal
route allocation,{1d, 2d, 3d, 42d,542d}. However, this allocation is not stable, because nbgeefers
routing through nod@&, which prevents nodé from routing through nodd, leading to the unique stable
route allocation{1d, 2d, 3d,43d, 541d}. The price of anarchy in this examplelis+ %a, which can grow
arbitarily large agy — oo.

In order to achieve our objective of welfare maximizatiore sequire that nodes not filter routes arbi-
trarily. If a node filters a route, it must value that routeslézan any route that is not filtered—this is called
consistent filtering

Definition 4.8. Nodei filters consistentlywith respect to (adjacent) nodéff, for any route R € P’ such
that(j,7)R ¢ P7 and(j,i)R is simple,v;(R) < v;(Q) for all routesQ € P’ such that(j,)Q € P7.

We say that an instance “filters consistently” if every notters consistently with respect to every other
adjacent node.

Remark 4.9. The isotonicity property studied by Sobrinho in [19] for its relationshipdptimal routing
essentially combines policy consistency and consistdatifip.

4.5 Local and Global Optimality

We now turn to the interesting relationship among the threpgrties presented in this section: no dispute
wheel, policy consistency, and consistent filtering. Retalt, if an instance has no dispute wheel, then it
has a unique stable route allocation. The following theos&ates that, if all three properties hold, then this
unique route allocation is globally optimald,, it maximizes the total social welfare).
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Theorem 4.10. If the valuation functions do not induce a dispute wheel, aodes filter consistently and
are policy-consistent, then there exists a unique stahleerallocationTy, and

n
Tq = argmaxyp_(g, . s, Z vi (Sh)-
i=1

Proof. We will use the following lemma in the proof of the theorem.

Lemma4.11.If T = {R,,..., R,} is a globally optimal allocation for an instance with policgnsistency
and consistent filtering, thefi is stable.

Proof. Assume by contradiction th&t is not stable; then, by Def. 4.1, there are two adjacent nbded j
such that

vi(R;) < vi((4, ) Ry). (4)
Let k£ be a node such thatext(R;) = i. Becausek is policy consistent with, and becauséandk filter
consistently, (4) implies that

Uk(Rk) < Uk((k7 2)(17])R])7

by induction, this is also true for every nodlewith next hopk in T', etc, so that every node routing through
iin T prefers the routdi, |, ; (i, j) R; to R,. Note that we have identified a route allocation in whiend
all nodes routing through are strictly better off, and all nodes not routing througire unaffected. This
new allocation has higher total social welfare tignhowever, this contradicts the optimality #f Thus,
our assumption must be incorrect, dhidnust therefore be stable. O

Now, letT" be some optimal route allocation. By Lemma 4.11, becauselafypconsistency and con-
sistent filtering,I" is stable. However, because there is no dispute wheel, iierdy one stable allocation
T, [10]. Therefore,I' = T,, and the unique stable allocation is also optimal. O

A locally optimal route allocation is one in which nodes assigned their most valued routes.

Definition 4.12. A route allocationT; = {Ry,...,R,} is locally optimaliff, for every nodei, R; =
argmax pc pi v;(R), i.€.,, every node is allocated its highest-valued route.

The following theorem shows that the combination of no diepuheel, policy consistency, and consis-
tent filtering ensures not only global optimality but locationality as well.

Theorem 4.13. If an instance has no dispute wheel, consistently filterd, iarpolicy consistent, then any
globally optimal, stable route allocation is also locallptimal.

Proof. Consider a noden € N. Let R = ugug_1...u;...uy be some simple route i+, such that
ur = m andug = d. By induction, we show for each; € R thatS;, the solution’s route for node; in T,
is at least as good d8; = Ry, q- Wheni = m we get thatS,, is at least as good &; because? andm
were chosen arbitrarily, we prove local optimality’ Bf.

Base casei = 0. The induction hypothesis is trivially true, because thly ooute is the empty one.
Induction step. Assume that the induction hypothesis is truedpr, i.e.,

vuifl(Si_l) > Uui,l(Ri—l = Uj—1Uj—2 - - . d) (5)

Note thatu; does not lie onR;_1, or R would not be simple.
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Case |.Assumeu; ¢ S;—1. Then extendS;_; and R;_; along the edgéu;,u;_1). Consistent filtering
ensures thatu;, u;—1)S;—1 € P"; thus, from (5) and policy consistency, we have

O, (Wi ui—1)Si—1) > vy, (Ri = witi—1ui—2 . .. d). (6)
T, is stable; soS; is at least as good as any other route,ain particular,
Oy (S5) > vu; ((uiy wi-1)Si-1). (7)

Combining (6) and (7) gives
Vu; (SZ) > Uy, (Rl)v

which is the induction statement fat.

Case Il.Assumeu; € S;_1. In this case we cannot use the policy consistency argunseint Gase |,
because extending;_; to u; creates a loop. But then_; ¢ S;.

Suppose the induction statementf@s not true:v,, (R;) > vy, (S;). ThenR; 52 S;. Becausei;_1 ¢ S;
butu; € S;_1, it must be thatS; ©; S;_1. From the induction hypothesis; 1 ©2 R;_1, and because
R; = (us,ui—1)R;—1, Ri—1 ©1 R;. Therefore we have a cycle in the relation in particular, we can
say thatR; @ R;_1 and R;_1 @ R;, but these routes do not start at the same node. This vidlaeso-
dispute-wheel property; thus the assumption thatR;) > v,,(S;) leads to a contradiction. Therefore,
vy,; (Ri) < vy, (S;), which is the induction statement fag. (Recall there are no ties in valuations.) [

Remark 4.14. (C2) in Thm. 3.6 is a special case of this result, because #weRexford conditions imply
no dispute and consistent filtering, and next-hop valuatiomply policy consistency.

Remark 4.15. Global and local optimality also hold for sub-instancesanf of the three properties (no
dispute wheel, policy consistency, consistent filteringylhin an instance, they also hold in all sub-instances.
Thus, all sub-instances of an instance satisfying the reognts of Thm. 4.10 and Thm. 4.13 also satisfy
the requirements of these theorems.

5 An Algorithm for General Classes of Policies

The no-dispute-wheel property guarantees that any patforprotocol converges to the unique stable route
allocation. When combined with policy consistency and @iaat filtering, this route allocation is globally
optimal. Therefore, if these three properties hold, we cs aipath-vector protocol to compute welfare-
maximizing routes. However, there is still the matter of .eimg) that the ASes have no motivation to
rationally manipulate the protocol in order to better tlmitcome.

We now present an incentive-compatible, distributed #lgar for interdomain routing on instances that
are dispute-wheel-free and policy-consistent. We ingasi its incentive-compatiblity properties in detail;
its payment structure naturally enforces consistent ifiigeand truthful participation, and the algorithm is
also not subject to other forms of rational manipulationaamiulated by Shneidman and Parkes in [18].

The BGP-compatible algorithm in Sec. 3 is a specific casei®tlgorithm; we conclude this section by
presenting another BGP-compatible special case, that miatased valuations. Note that the general-case
algorithm is not BGP-compatible, because its implementatequires more than a modest increase to the
storage space at each node.
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5.1 Algorithm Specification

This algorithm can be thought of as a “meta-algorithm” in $e@se that it ignores implementation aspects
(including those related to internal memory consideratiand message passing). We prove the correctness
of our algorithm for the case in which policies do not induakspute wheel and nodes are policy-consistent.

Setting: An instancel = (G, P,V) of the interdomain-routing problem that is dispute-whiee& and
policy-consistent.

Outcome: A route allocationly={R;, ..., R,} that forms a confluent tree t§ such that

n
1q = argmaxyp_(g, . 5,1 Z vi(Sh)-
i=1

The Algorithm: The algorithm rung: + 1 copies of a path-vector protocol (see Sec. 2.3) to find thalipc
optimal route aIIocatioﬂT for each/ =%, 1 < i < n, and the locally optimal route allocatidfy, for I. It
can therefore be regarded as composed of many similar ‘igglthms” that are executed simultaneously.

Once all sub-algorithms reach a stable route allocatioaryerode; is assigned its route ifiy. Its
payment is computed as follows: Every nadmmputes gayment componefr j, sé = vi(Ri)—’ul-(Ri—j),
in which R; and R/ are the routes allocated ton 7, andT}; 7, respectively. The total payment to nofle
is defined to be the sum of these payment componepts,zi# S5

Theorem 5.1. If policies do not induce a dispute wheel and are policy-csiest, this algorithm converges
to a route allocation that maximizes total social welfare.

Proof. The payments computed by the algorithm naturally enforosistent filtering; we defer this discus-
sion to Sec. 5.2. Therefore, we can assume that instanceskigiRem. 4.15, all sub-instances) have no
dispute wheel, are policy consistent, and consistentgrfiBy Thm. 4.10, there exists a unique stable route
allocation for the instance and each sub-instance; by TH, 4his route allocation is both globally and
locally optimal. Because each sub-algorithm convergesldoally optimal route allocation, the final route
allocation for the original instance maximizes total sbaialfare, and the allocations for each sub-instance
can be used to compute the payments (that enforce condittenmg). O

In Sec. 4.5, we showed that, if an instance is dispute-feepplicy-consistent, and filters consistently,
then every path-vector protocol converges to a route almtahat is both globally and locally optimal.
However, Thm. 5.1 only requires no dispute wheel and polaysistency. In Sec. 5.2, we show that these
two properties suffice—if both properties hold, then nodmsemo incentive, given the payments computed,
to filter any routes.

The local optimality of the route allocation reached by tlywathm leads to two important observations
regarding the computation of payments: First, all paymenmonents calculated by the nodes are nonneg-
ative; so, the payment to each node is nonnegative. Hencarevguaranteed that nodes will not have to
pay the bank for their participation in the algorithm. Set.amdei’'s payment componen;gﬂ for every node

J ¢ R; (R; isi's optimal route) is alway$, because?; = R, 7. Therefore, every nodeonly needs to store
in its memory alternate routes and payment-component sditdhe transit nodes on its best route.
5.2 Incentive Compatibility

To prove that our mechanism is incentive-compatible, wédogasider the restricted case in which the only
form of rational manipulation available to the nodes is reealing their true preferences. In particular,
nodes can lie about what routes are available by filteringesoarbitrarily.
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Theorem 5.2. The payments; = Z#i sj have the form of VCG payments.

Proof. The proof is identical to that of Thm. 3.5, except thigtZ;(k)) (next-hop policies) is replaced with
vi(Ri‘k) (valuation using general policies). O

VCG payments guarantee the strongest possible result éoreftricted case: truthful behavior of all
nodes leads to dominant-strategy equilibriumThat is, a rational node’s best strategy is conveying lits tr
preferences no matter what the preferences of the othesravde Hence, a node need not make any kind
of assumptions on the other nodes’ behavior or haveagmyjori knowledge about their preferences. Thus,
incentives naturally enforce the consistent-filtering dibon, because nodes have no motivation to filter
routes beyond what is necessary to enforce no dispute wheglthe third Gao-Rexford condition; see
Sec. 3.1).

As pointed out by Shneidman and Parkes [18], in a distribgttting, there are many other forms of
rational manipulation available to the strategic agentsis s because the computation is executed by the
strategic agents themselves (and not by some reliablethintg, as is the case in a centralized setting). In
our model, for example, nodes may refuse to pass messaglesasecto alter the contents of messages that
go through them.

Let us consider the more general case in which nodes have weays of rationally manipulating the
algorithm. We prove incentive compatibility by showing tlsanode cannot benefit by deviating from the
information revelation, communication, and computatia@ions it is instructed to perform by the proto-
col* We make use of the techniques in [18] to show that, with a mamtjustment, our algorithm obtains
incentive compatibility inex-post Nash equilibriumThe only modification needed is requiring, as in [18],
that all communication between the bank and the nodes bedignd receive signed acknowledgments.
(The bank has the power to investigate when receipts aresneived.)

An ex-post Nash equilibrium is a robust solution conceptsuah an equilibrium, no single node would
deviate from the algorithm even if it knew the other node#/aie valuations. If we aim at an ex-post Nash
equilibrium, we must assume only that all nodes are ratiandlwish to maximize their utilitie3.Shnei-
dman and Parkes view the need to settle for an ex-post Nadibagm in the general case (instead of an
equilibrium in dominant strategies in the restricted casgthe cost of distributing mechanism computation
across a network” [18].

Theorem 5.3. The modified algorithm is incentive compatible in ex-posttiNequilibrium.

Proof. We prove the theorem by addressing the various ways in whitbda might attempt to rationally
manipulate the algorithm. We show that such possible atieogn only harm the node. The proof relies on
the fact that the bank is a trusted party, that the bank-nodesnunication uses cryptographic signing, and
that the bank also has the power to “restart” the algorithitnnibtices any rational manipulation attempts.
Let us look at a single nodeand assume that all other nodes are obeying the algoritmsteuctions.

Node: could choose to misreport its true preferences or what soaite available when asked by other
nodes. Howeveri's payment depends solely on other nodés;paid for its contribution to social welfare.
It can be shown using VCG argumentation that this paymehnigoe means thathas nothing to gain by
lying; in particular,i gains nothing from lying about the availability of routes€<Cor. 5.4 below).

“These three properties are what Shneidman and Parkes fé8la@s IC-, CC-, and AC-compatibility.

5The ex-post Nash equilibrium concept is strictly strongantthe well known Nash-equilibrium concept. A Nash-ebuiilim-
oriented implementation of our algorithm would have to assthat every node is familiar with the preferences of aleotiodes.
This assumption is unrealistic in interdomain routing.
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Another possible way in whichmight try to rationally manipulate the algorithm is by rafugto pass
messages from other nodes addressed to the bank or by pawsisgges after altering their contents. The
cryptographic signing of bank-nodes communication exafutie possibility of making any such attempts.
This is true no matter what the computational and infornmatievelation actions ofare.

Finally, one more possible form of rational manipulationperforming incorrect calculations afs
components of other nodes’ payments. However, it is easgddisat; has nothing to gain by doing so,
since these payments have no effeci’'emoute or payment. This is true no matter what the commtioica
and information-revelation actions o#re.

One can also show that any combination of rational manigulatttempts will not lead to any improve-
ment in:'s condition compared to what he would get by abiding by tlypathm’s rules. This is achieved
using the general proof technique of Shneidman and Park$ [1

Hence, we have shown that this slightly modified version efdlgorithm in Sec. 5.1 is not subject to
any of the possible forms of rational manipulation avaiatal the nodes. Hence the modified algorithm is
incentive-compatible in ex-post Nash equilibrium. O

Corollary 5.4. The incentive structure of our mechanisms ensures consfétering.

This is because in ex-post Nash equilibrium no node has amiive to filter any of the routes. Because
this fact is especially important to prove the correctndssioalgorithm, we explicitly include the argument
used for its proof below.

Proof. Assume that nodgfilters some route? € P* on export to nodg. If R is noti's optimal route, then
filtering R has no effect on the algorithm’s route allocatiori tw j, because, given Thm. 4.18,is unstable
as a route choice at so,: will export some other route tn

Therefore, without loss of generality, assume tRas i's optimal route. There are two cases:

1. (j,7)R is notj’s optimal route. In this caseg = 0 regardless of whether or nofilters R; so, there
is no change in’s utility.

2. (j,9)Ris j's optimal route. In this case, filtering will force j to choose another roufe®/. Because
filters its best route; ¢ R/, and sosf = (0. However, ifi had not filteredR, then: would be a transit

node ony’s best path, an@l{ > 0. Thereforej’s utility can only decrease by filtering.
Nodes thus have no incentive to filter routes arbitrarily. O

Remark 5.5. Because dispute-free policies imply robustness, the pnolilas a unique stable solution; this
solution is also optimal. Since every such stable solutsoani ex-post Nash equilibrium, we have only one
ex-post Nash equilibrium. Therefore, we avoid the problaat arises when multiple equilibria exise.,
making sure that the nodes select the same equilibrium.

Remark 5.6. As in [18], we too assume that nodes aenevolentn the sense that they will implement the
algorithm’s instructions as long as they do not strictlyferehoosing another strategy. Therefore, we only
require a weak ex-post Nash equilibrium.

6Using the terminology of [18], what we have shown is that theresponding centralized algorithm is truthful and that th
specification is strong-CC and strong-AC.
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5.3 Metric-Based Valuations

The algorithm in Sec. 3.2 is a special case of the generatidigoin Sec. 5.1; the class of policies used
in the former allows the algorithm to be more space-efficttan runningn + 1 copies of a path-vector
protocol. We now briefly present another special case, thatatric-based valuationglefined in Sec. 4.3.

Metric-based valuations are inherently dispute-wheet f& 9, 19]; they are also policy-consistent.
Thus, if nodes do not filter routes arbitrarily, metric-bdhsaluations permit incentive-compatible, dis-
tributed computation of welfare-maximizing routes.

The important observation regarding metric-based valoatis that, just as with next-hop policies,
when running a path-vector protocol on an instance with ic¥btised valuations, an AS need not store in
its memory and communicate in each time step entire pathis.i§hecause the value an AS assigns a route
depends solely on the routéength and so merely storing and communicating routes’ lengtksfficient.
Thus, to compute?, = v;(R;) — v;(R;*), nodei only needs the lengths @; andR; ", as these determine
the valuation; furthermore, because of local optimalitydes need only do this for transit nodes on its best
(and chosen) route to the destinatiaf) & 0 for non-transit nodes).

A straightforward extension of BGP can be used to propagéeriformation. Update messages frgm
will include, in addition toj’s best routeR;, the length ofR; and, for everyk € R; (k ¢ {3, d}), the length
of the best known route gtthat avoidsk. Update messages are sent whenever this information chanhge
j. The BGP routing table is extended to store this extra inédiom, requiringO(1) extra space per node,
per route, stored in the table.

When a node receives an update message, it checks the prdeiighs to determine whether a shorter
k-avoiding route is known (for each transit nokl®n the current best route). At the end of the algorithm,
nodes have enough information to compute the payment coempex]..

Remark 5.7. We note that, because routes with shorter lengths are classbest, routes are forced to be
simple. If a node knows of A-avoiding route with a loop, it must also know of the routehaiiit the loop.
If all lengths are positive, then the simple path will bectlyi shorter.

We present the details of the algorithm for this class ofqoedi below.

Setting: An instance of the interdomain-routing problem with metrased valuations,e., an instance in
which: (1) there exists a positive function: L — R specifying the length of each link; and (2) for
every node and for all pairs of permitted routd), R} C P¢, v;(Q) > v;(P) if and only if deqdl) <
>1er 0(1).

Outcome: A route allocationTy = {Ry, ..., R, } that forms a confluent tree tf) such that

n
Ty = argmaxy_(g, . 5,1 Z v; (S;).
i=1

Structure of Update MessagesAn update message from a nogecontains: (1)R,,, the current choice
of best route atn; (2) A, = >, 6(1), that route’s length; and (3) for each transit ndde R,,, the
length of the best route known ta that avoidsk, denotedA,, (k).

Storage at Each Node:Each node has a routing tabléd’;, indexed by neighbors af At most one (the
most current) update message is stored from each neightitally, Y;(j) = 0 for all j € neighbors(7).
Each node also indicates its choice of current best routegtdd R;; that route’s length;; and, for each
transit node: € R; (k ¢ {i,d}), the length of the best knowkravoiding path is stored, denotéd (k).

25



Start: The destination nodeé sends the messag&, = 0, A, = 0, A; = ) to all of its neighbors.

Update-Message ProcessingWhen nodei receives an update message,,, A,,, A,,) from nodem,

the route and length is first extended to nadand the message is then stored in the routing-table entry

for m, denotedY;(m). The length ofR], = (i,m)R,, is A, = A,, + 6(i,m). The lengthA! (k)

of any k-avoiding route known ton, if used ati, would be A,, (k) + d(i,m). Thus, the entry stored is
(Case L)If v;(R.,) > vi(R;), then the update message contains a better route. The tchesirroute is

changed and the list of lengths of transit-node-avoidinge® is repopulated:

1. SetR; to beR], andA; to beA! .
2. Clear the listZ;.
3. Foreactk € R; (k ¢ {i,d}):

(a) SetL;(k) = cc.
(b) For eachy € neighbors(i) such thaty;(j) # 0:
i If k ¢ R;andA; < Li(k), then setl;(k) = A’ and continue to check the next neighljor

i. If k€ R;andA, (k) < Li(k), then setl;(k) = Aj,(k) and continue to check the next
neighboryj.

(Case IL)If v;(R],) < vi(R;), then the update message does not contain a better routeevieiouit
may contain bettek-avoiding routes for transit noddson the current best route tb For eachk € R;
(k ¢ {i,d}), if Al (k) < L;(k), then setl;(k) = Al (k).

If any changes were made I or L;, then send the update messége, A;, A;(k)), in which 4;(k) =
L;(k) for each transit nodé ¢ {i,d} on R;.

Payment Computation: When the algorithm converges, each nadeas a routeR;, which is its route
in the routing tree, and enough information to compute ifgpEnt component for transit nodéson R;,
st = vi(R;) — vi(R;), because ;. (1) = A;and}, .-+ 6(1) = L;(k). The total payment made to
nodej by the bank is the sum of the payment componenté’,f@; = Ea# Ch

Theorem 5.8. The algorithm converges to an optimal tree and computesdhed VCG payments.

Proof. Metric-based valuations satisfy the requirements of teasrdiscussed earlier that imply conver-
gence of the algorithm and optimality of the output tree. Weststill prove that each payment components
are computed correctly. Becau&g is the optimal route for the original instance, its lengttknewn, and
valuations are metric-based, it is enough to show that nbdes enough correct information to determine
> 1er—+ 0(1). We will show that this is simply_, (k).

The algorithm converges once the roufgsand lengthd.; (k) stop changing everywhere (at all nodes
and for all transit nodek). Because nodes have no incentive to arbitrarily filter, wavkthat the best route
information sent via update messages is accurate and cample

ConsiderTy \ {k} for somek € T, and letT* be the component still containingg For all nodes
e T R k— R;, because the routeR; are the shortest (and thus most valued) routeg, tand they

are unaffected by removink. Let Hy = {z ¢T*|3jeT*:{ij} € Tcl"f}. Although the nodes i
normally route throughk, whenk is removed, these nodes’ best routes have a next h@g.inThus, for
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each nodé € Hy, R; " is always made available becayse next (RZ.‘ k) exportsiz; as its best choice. If
d(i,j) + A; is indeed shortest, the algorithm correctly sets (througbeQl of update-message processing)
Li(k) = 6(i,5) + A, corresponding to the length ¢f j)R; = R; "

Now consider nodes$!; = {z ¢T*|35€ Hy:{i,j} € Td"“}. Every nodei € H; will receive an
update message from a neighoe H, with A;(k) = ZZGR;k o). Because{z‘,j)Rj‘k is shortest, the
algorithm will correctly set (through Case liifxt(R;) = j, or Case ll, ifnext(R;) # 7) Li(k) = 6(i,5) +
Aj(k) = ZleR;k 4(1). We can continue this argument féf, = {z ¢T*|3je Hy1:{i,j} € Td‘k}
until we have shown that; (k) is set correctly for every node. O

6 Conclusions and Open Questions

In this paper, we addressed the problem of incentive-cabipahterdomain routing. Our main result is a

BGP-compatible, incentive-compatible mechanism for $ig@ class of routing policies, thus answering

an open question posed in [3]. Additionally, we stated galinewnditions that are sufficient for designing

incentive-compatible, welfare-maximizing protocols foore general classes of routing policies. Using this
general characterization, we presented a BGP-compatibshamism for yet another class of valuations,
namely metric-based valuations. It would be interestinfynid other natural classes of valuations for which
BGP-compatible mechanisms exist.

There are many other issues that remain unresolved andocdlither research. One such issue is
that of designing distributed (preferably BGP-compajilmlechanisms that obtagood approximationo
the total social welfare. Very little is known about the appmability of the interdomain-routing problem.
Feigenbaum, Sami, and Shenker [5] show that, if we imposestnictions on the routing policies, then no
good approximation ratio is attainable. A first step towatdsdesign of BGP-compatible approximation
mechanisms is finding a nontrivial characterization ofirmpolicies for which the price of anarchy is low.

Introducing incentive compatibility into the interdomaiouting setting involves paying ASes for their
participation in the algorithm. The way these payments areputed leads to many interesting questions:
How can we make sure that the ASes are not overpaid for thsitrsarvices they provide? (VCG mecha-
nisms are often criticized in the literature for overpayihg strategic agents.) In our formulation, the ASes
do not pay each other but are paid tye bank(as in [18]). Is it possible to get rid of the bank and have
ASes pay other ASes directly for transit services rendered?

A distributed setting such as ours poses an inherentlyrdiffechallenge for the design of incentive-
compatible mechanisms (see [3, 18]) than a centralized Dhis.is because the computation is performed
by the strategic agents themselves and not by a reliablg plairty. We reconcile the strategic model and
the distributed computational model by using techniqueslar to those in [18]. In particular, we use
cryptographic signing. Is it possible to reconcile the twadwls without having to resort to this technique?

Finally, the question of optimal communication complexiy the computation of routes and payments
remains open. We have stressed space complexity in this, fapdehere may be an increase over BGP in
the number of update messages sent by our algorithms. Thecause our algorithms have an additional
condition that triggers sending an update message, naargl\change to the best knovkravoiding route
(or next hop), for any transit nodeon the current best path. Update messages are not sentdoedsion
in the original BGP. Although the message complexity of dgoathms is not unreasonable with respect to
BGP’s worst-case performance, the optimal number of messageded to compute payments in addition
to routes is currently unknown.
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