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1. INTRODUCTION

Interest in the modeling and formal analysis of operating system
protection mechanisms has increased in the last few years [2-7,11-14].
In [7] it was shown that for arbitrary systems the sort of questions
we are interested in asking, such as whether rights can be passed to
unauthorized persons, are generally undecidable. On the other hand,
in [12] it was shown that for a system which had previously been pro-
posed in the literature [4,11], such questions could be decided in
linear time.

This paper will be divided into two parts. In the first part,
we will demonstrate new results concerning the latter system mentioned
above, answering some questions proposed in [12]. 1In the second part,
we attempt to bridge the gap between this specific system and general
"undecidable" systems. We define a relatively large class of protec-
tion systems based on the model of [12], and using some well known
results from language and automata theory we are able to prove that for

many of these systems the safety question can be answered in linear time.
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2. RESULTS CONCERNING THE SUBJECT/OBJECT PROTECTION SYSTEM

é

The Subject/Object protection system has been analyzed previously
in the literature [4,11,12]. We will briefly outline.the details and
pertinent results which are known about that system here.

The state of the system is represented by a graph G where the ver-
tices of the graph are of two kinds: subjects (intuitively processes)
and objects (intuitively files). Directed arcs between vertices then
represent rights which one verﬁex has over another. Arcs are‘labeled
with letters from some finite alphabet I. For instance, an arc labeled
r represents the ability to read the indicated vertex, and one labeled
w the ability to write. We will refer to arcs labeled with other ele-
ments of I as being imert, since they can be passed around but play no
special role in the rewriting rules.

We model dynamic change in the system by a set of rewriting rules,
which by means of local changes transform a graph G into a new graph G'.
There are three rewriting rules, shown in figure 1. Solid dots represent
subjects, open ones objects, and crossed dots represent either subjects

or objects. o indicates any element of ZI.

o]
TAKE —L @ CRENS => I .o o3
o
GRANT g—Y  —o—2 5o => —Y o &
CREATE ® => — 2V _ .o

Figure 1
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We shall use the phrase P can o Q to mean that by a finite sequence
of rewritings we can construct an arc between P and Q labeled a.

If two subjects are connected by an arc labeled r or w, we shall
say they are directly connected. We define a block in a graph G to be
any maximal directly connected subgraph.

For each simple path in G we can associate a word over the alphabet
Euf in the obvious way, for instance the path shown in figure 2 has the

>+ > > <
word rrwrw

@ >0<

>@ >0< @

Q

Figure 2

* ok Shock Skeok
Let E be the union of the following regular languages {? ,? ,; 3? ,? wr }.

We say there is a bridge between two blocks A and B if there is path with
associated word in E between some subject in A and some subject in B.

We can now state the results proved in [12]. Let ae{r,w}.

Theorem 1: [12] 1f P, Q and X are in the same block and X is connected

to Q by an arc labeled a, then P can a Q.

Theorem 2: [12]1 1If P, Q are subjects with some subject having an edge

to Q with label o, then P can o Q Zff

Condition 3: There exists a sequence of blocks Bl,BZ,...,Bkvwith P in

Bl’ Q in Bk’ and for each i = 1,...,k~1 there is a bridge from Bi to Bi+1'
In the course of proving these two theorems, there are two lemmas

which are instrumental. We shall have occasion to refer to each of them

later, hence we restate them both here.
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Lemma 1: (Proved as Lemma 3 in [12].) Let P, Q and X be distinct ver-
tices in a protection graph. Assume oceX. Let there be an arc from X

to Q with label o and let P and X be directly connected. Then P can « Q.

Lemma 2: (Proved as Lemma 7 in [12].) If P and Q are subjects connected
by a path with word in E, then there is a sequence of takes, grants and

creates such that P and Q can become directly connected.

Two open problems proposed in [12] concerned extensions of this

system to incorporate inert rights and conspirators.

Inert Rights

As mentioned previously, we can characterize an inert right as
simply a right which plays no special role in the rewriting rules, as do
r and w. Analogous to the first two theorems, we have two theorems con-

cerning inert rights.

Theorem 3: 1f there exists some vertex X with inert rights n to some ver-

tex Q, and P and X are in the same block, then P can n Q.

Proof: Since P and X are in the same block, there must be a path between

them which is composed entirely of subjects. A simple induction on the

length of this path using Lemma 1 then serves to provide the result.

Theorem 4: Given a subject P and a vertex X (either subject or object)
then for all labels o in I, P can a X Zff there exists some subject Q

*
connected by a path with word ? Z with X, and Condition 3 is true for P

and Q.

Proof: Assume Condition 3 is true for P and Q. Lemma 2 tells us that P




(5)

and Q can become directly connected. By a sequence of takes, Q can o X.

Then by Lemma 1 P can o X.

To prove the other direction we assume P can q X. We create a new
system by modifying the protection graph G as follows.

The right which P obtained must have been passed by a sequence of
takes and grants from some vertex Y which had the ability to o X in the
original graph. We remove this arc, and replace it by a read arc to a
new vertex X'; furthermore, we give X' the ability to read a new vertex

X" (see figure 3).

I N S

>@
x! x"

Figure 3

By following the same sequences of moves as before, P can r X' in
the new system. A single take shows P can r X". Theorem 2 then asserts

that Condition 3 must be true for P and X". We then have two cases.

Case 1. Y is a subject.
In this case, since Y and X" are in the same block, Condition 3

must be true also of P and Y. Let Q = Y and we are done.
Case 2. Y is an object.

In this case, X' and X" are in a block to themselves. There must be
a block between P and X' such that the block and X' are connected by a
path in E; furthermore, this path ends in ;. From this we can deduce the
path must have been ;*. Let Q be the subject in that block connected to

this path, Theorem 2 asserts that Condition 3 must be true for P and Q.
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Since Q is connected to X in the original graph by a path with word

+*-+ » .
r o we are finished.

We note that this theorem extends Theorém 2 in two different direc-
tions, by telling us under what conditions P can obtain rights to objects
as well as subjects, and by telling us under what conditions P can obtain
inert righfs.

As a corollary to this, we see that given a vertex Q and an arc
labeled o into Q, there is an algorithm which works in linear time in
the size of the protection graph which enumerates all the vertices which

can obtain o rights to Q.

Conspirators

It should be obvious that in all but the most trivial cases it is
not possible for a vertex P to acquire rights to another vertex Q, even
if ail other conditions are met, without the assistance of other inter-
mediary vertices. If by a finite sequence of rewritings P can acquire
the ability to a Q, then we define a comspirator to be any vertex which
was required to perform a take, grant or create in that sequence. Notice
this does not automatically include all vertices on the path between P
and Q; for instance, in figure 4 P can w Q without the assistance of any

conspirators.

Figure 4
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We define a vertex weighing function by assigning each vertex a
value from the table given in figure 5. Where more than one value
would apply, we choose the lowest. Objects are assigned weights the
same as subjects, except that where we assign a subjeét the weight of
one we assign an object a weight of infinity. Vertices with indegree
or outdegree one are assigned a weight of zero.

Notice that given a path this function assigns a weight to each
vertex depending upon the label on the entering and leaving arcs, the
type of the vertex (subject or object) and the label on any ofher arcs
which may be connected to the vertex. For this given path we define

the path weight to be the sum of these values.

r 0 r \ 1 T
1. > 2. >
0 1
3. T w . 4. w \" S
5. < r 1 r . 6. < \ 1 r S
7. < r 1 \4 S 8. < \ 1 W S
T r,w
0
9a. 3 > 1< 3
1 0
9. r > < r 10. \ S < r
0 1
11. .3 < L 12. Lk > < ¥
0 0
13. «—=% L 14, «—¥ L3
r l w w 1 w
15. < 16. <

Figure &
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Theorem 6: Given a subject P and a vertex Q, if P can acquire the o
rights to Q, then it must require at least M conspirators, where M is

the minimum path weight of all paths between P and Q.
Proof: The proof will be in three steps.

Step 1. We are given a graph G which consists solely of a vertex
X which can o a vertex Q, and a cycle free path between a subject P and

X which does not include Q. (See figure 6.)

[¢]
Pof / / §T—>OQ
Figure 6

We then show that P can a X only with the help of at least M conspirators
where M is the path weight.

First we note that if any vertex was marked with a value of infinity,
then by Theorem 4 P cannot o Q since we have a sequence of objects but no
bridge over them. If P can a Q we will show that all the M vertices marked

with a one must be conspirators. First we need the following lemma.

Lemma 3: Given a graph as above, if P can o Q then if we replace all the

vertices marked zero with object vertices, P can still o Q.

Proof: Recalling Theorem 2, we need only show that we have not destroyed
any bridges and that any new sequence of object vertices we have created
are also bridges.
I shall show the proof for the case where we had a bridge in
> K > ke > e <« +

{(r) ,(r) w,(r) w(r) }, and in which we add object vertices on the left.

The remaining cases can be shown in a similar fashion.
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*
Assume we had a bridge with word (;) . The applicable cases are

I, 3, 9a and 11, and all give us words still in E; hence we still have

a bridge.
r,w
L s5o—f 0L o T L o—tf 0T gL
Lso—L o—L oW L so—L o F g ¥

Figure 7

*
Next assume the bridge had word (;) w. The only applicable case is 14,

which stills gives us a word in E.

Figure 8

*
Lastly, assume our bridge had word (;) ;(¥)+. The only rule that would

apply is 13, which again still leaves us a bridge.

>0 >0— >0< O< —O< —Q<

Figure 9
The other cases can be shown in a similar fashion. I claim now that
since the original bridge could have been null, we have also shown that

we have not created any sequence of objects which is not a bridge.

Hence by Theorem 4, P can still a Q.

By the above lemma, if we replace all the vertices marked with a
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zero with objects, P can still a Q. Next, we simply observe that if
we make any subject vertex marked with a one into an object, we will
have created a path with a word not in E, hence not a bridge and hence,
by Theorem 4, P cannot o Q.

In a certain sense, M then represents the "minimum" number of con-

spirators required for P to obtain the a rights to Q.

Step 2. Given a graph G which consists solely of the following:
a subject vertex P connected by a cycle free path to a vertex Q, with
another vertex X having o rights to Q, then for P to obtain a rights to
Q requires at least M conspirators, where M is the path weight on the
path between P and Q.

Assume P can obtain the rights using less conspirators, that is, the
graph shown in figure 10 is somehow "easier" (in terms of the number of
conspirators) than the one shown in figure 11, which we know requires at

least M conspirators.

P.i / / §< .X
Q
Figure 10
o / / o2 e
P Q
Figure 11

Since takes and grants only move the tail of the arc, we can convert the

first graph into that shown in figure 12

® / / o<—> 02 se

Figure 12
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and by following the same sequences of moves as before, P can obtain
the a rights to Q' in less than M conspirators. But the path weights
are monotonic in the length of the path, hence the path weight of
this graph cannot be less than that of figure 11, whiéh we know to

take M comspirators. This contradiction gives us our result.

Step 3. The main theorem.

Proof: Assume P can o Q using only n conspirators with n < m. P can
only o Q in virtue of having taken the right or having been péssed it
from some vertex X. In fact, in the final graph there must be a path
D = XO’Xl""’Xk’P such that X0 could o Q in the original graph and Xi
can o Q in virtue of having been passed the right or taken it from Xi—l'
Since the rewriting rules preserve connectedness and do not connect
disjoint components there must have been some path between P and Q in
the original graph. The form of D depends only upon this original path.

But by hypothesis the original path required more than M conspirators to

move the right over it. This contradiction gives us the main theorem.

Cost Metrics

The function used in the previous section is an example of a much
more general class of path-vertex weighting functions. We characterize
a Path-Vertex Weighting Function as any non-negatively valued function
which assigns a vertex a value depending upon 1) the label on the arc
entering the vertex, 2) the label on the arc leaving the vertex, 3) the
nature of the connections to the immediate neighbors of the vertex and

4) any a priori assigned value associated with the vertex (type, degree
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of difficulty in passing rights over this vertex, measure of reliability,
etc.).

The reader is assumed to be familiar with Dijkstra's single source
shortest path algorithm [1]. The complexity of this algorithm is O(Vz);
however, Johnson [10] has shown how, using a treesort-like approach, one
may improve Dijkstra's algorithm to O(E). We need not concern ourselves
here with the details of either algorithm other than to note that they
both operate by taking the known shortest distance to a vertex X (see
figure 13), adding on the distance from the vertex X to the vertex Y to

obtain the distance to the vertex Y.

*— -/ / *— ©
X

Hence, all we need to do is redefine the term '"distance from X to Y"
to be the vertex-weight of X, and we have enough features of a metric

(i.e., Monotonicity) to allow us to use this procedure.

Theorem 6: Given an arbitrary cost metric and an initial vertex P, there
is an algorithm which works in linear time in the size of the protection
graph to determine for each vertex in the graph the cost for P to obtain

rights to that vertex.

Notice this algorithm not only allows us to answer the conspiracy
question as posed in [121], but allows for very broad generalizations of
that problem. For instance, suppose we can somehow establish a priori
likelihoods that any individual will contribute to a conspiracy. As an

example, if I covertly wish to obtain rights to a file it might be easier
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to go through five unreliable processes than to use one certified
reliable process.

Now, instead of just giving each potential conspirator a weight of
one, as we did previously, let us give each conspirator a weight propor-
tional to this likelihood; say, a number from one to one hundred.

We can then answer such questions as given a vertex P, what files
can he obtain rights to at a cost of less than 1000 units. Such ideas
can be used to provide more of a statistical measure on the security of

a system.
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3. EXTENSIONS TO MORE GENERAL PROTECTION SYSTEMS

In view of the undecidability results already mentioned, it is
interesting that the system studied in the lést section has sucn easy
decision properties. In this section, we attempt to bridge the gap
between this particular system and completely general systems by demon-
strating other systems which also have simple decision procedures. 1In
doing so, we uncover some relationships between protection systems and

language theory.

Safety in Protection Systems

With regards to the work of Harrison, Ruzzo and Ullman [7], we can
define two general questions to be analyzed with respect to protection

systems.

Question 1: The safety question.

Given a protection system G and two objects Xi and Xj in that system,
if we introduce the right of Xi to a Xj’ what other objects can thereby

obtain the rights to a Xj'

Question 2: The extended safety question.

Given a protection system G and two objects Xi and X.j in that system,
if we introduce the right of Xi to o Xj’ what potential changes will this

produce in the entire system.

Harrison, Ruzzo and Ullman have shown [7] that for general protection
systems these problems are undecidable. For certain restricted types of

systems they were able to give decision procedures for the safety problem;
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however, their procedures worked in exponential time.

The remainder of this paper will be devoted to the classifications
of differing protection systems, indicating some classes for which poly-
nomial or linear time results can be shown for the above mentioned ques-—
tioms.

Our paradigm of a protection system will be as follows:

We are given N objects in the system (Xl""’Xn) where each Xi is
of type Ti which is an element of some finite alphabet T. Between any
two objects there may be an arbitrary number (possibly empty) of rights,
where each right is indicated by an element from some finite alphabet I.

At any time we indicate the current status of the system by a graph
G where each object is represented by a vertex and each right by a labeled
directed arc.

The differences we will emphasize in classifying protection systems
will be in the rules they use for adding or deleting arcs from an existing
graph. These we will call the transition rules.

If starting from some initial configuration by a finite number of
applications of the transition rules we can connect a vertex X to a vertex
Y by an arc labeled a,.we will say that in the initial configuration X
can o Y.

We will not consider systems which have rules roughly equivalent to
"If I have a right to something, I can give it to anyone I choose," or

graphically,

o}
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Such systems we can refer to as "loose." For these systems, the
safety question tends to be either trivial or nonsensical. For example,
if T can obtain the o right to Z, then anybody can obtain the o right to Z.

The hazardous effects of having a loose protection system have
generally not been recognized; for instance, all the examples given in
[4,7] suffer from being loose.

Notice that there is a simple relationship between systems repre-
sented in this graphical format and systems represented in the access

matrix format of [4,6,7].

Grammatical Protection Systems

We will call a protection system grammatical if for each right oel
there is a grammar L and start symbol S such that given two vertices X

and Y, X can o Y 2ff X and Y are connected by a path in L(S).

We will illustrate this concept by demonstrating a class of protection
systems and showing them to be grammatical; from this we can obtain a

polynomial time solution to the extended safety question.

General Arc Passing Systems

Working within the model described previously, we will define a
General Arc Moving system to be a protection system with transition rules

of the following form

Figure 14
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where the types of Ti’ Tj and Tk indicate the necessary types for the
vertices and o, B and y are rights. The directionality on the arcs must
be specified, but they are here omitted for generality.

We obtain a grammar L by defining a new production for each rewriting
rule. For each rule such as that in figure 14, we define a production of
L as follows. If they do not already exist, we introduce three non-ter-
minals A, B and C € TxRxT such that A corresponds to an arc labeled o
between vertices of type Ti and Tk’ and in a similar fashion B and C are

defined. We then have the production
A > BC .

Note that the nonterminals A, B and C encode both the nature of the
right and the type of the vertices that the right connects. For each non-
terminal A, we create its terminal counterpart a and add the production
A > a.

We then have the following lemma:

Lemma 4: Given two vertices P and Q of types Tp and Tq’ respectively, P '

can a Q 7ff there exists a path between P and Q in L((Tp,a,Tq)).

Proof: 1f P and Q are connected by a path with word in L((Tp,a,Tq)),
then the derivation of that word gives us a constructive method by which
we can join P to Q by an arc labeled a; hence, P can o Q.
The proof the other way will be by induction on the number of appli-
cations of the transition rules which lead to P being able to a Q.
If this number is zero, that is, P had the rights to Q in the original

graph, then we trivially have our result. Hence, we assume P did not ori-
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ginally have the o rights to Q, and that it took n applications of the
transition rules for P to obtain that right.

The very last application of a transition rule must have been for
P to get the ability to a Q from some vertex X (see figure 15). This
must have been permitted in virtue of some right B between P and X and
some right y between X and Q and there being a transition rule as shown

in figure 14.

Figure 15

Now, it took less than n applications of the transition rules to
form the arcs between P and X and between X and Q; hence, by the induction
hypothesis there must have been a path between P and X in L(TP,B,TX) and
between X and Q in L(Tx,y,Tq). But associated with the transition rule
shown in figure 15 is the production (Tp,a,Tq) > (TP,B,TX)(Tx,y,Tq).
Hence, it must be the case that Q and P were connected by a path with

word in (T ,o0,T ).
(P”q

We can note the similarity between grammars in this form and context
free grammars in Chomsky Normal Form [9]. 1In view of this, and the rela-
tionship between parsing and protection systems demonstrated by Lemma 4,
it is too much to expect the safety question for arbitrary arc passing
systems to be answered in linear time. However, we can demonstrate a

polynomial time result as shown by the following theorem.
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Theorem 7: The extended safety question can be answered for a general arc

moving protection system in 0(N2'81).
Proof: For this result we assume the protection network is kept in an

N by N matrix (call it M), similar to the access matrix of [3,6,5]. We

then define a matrix '

'multiplication" operation by substituting produc-
tion reduction (BC = A Zff A -~ BC) for scalar multiplication and set union
for scalar addition in the standard matrix multiplication algorithm.

We next observe that since the lower triangular portion Qf M is the
inverse of the upper triangular part, by suitably adding production rules
we can just work with the upper triangular part of M. Hence, we have
reduced the problem to that of finding the transitive closure of an upper
triangular matrix with respect to our matrix multiplication operation.

Valiant [15] has shown how this can be accomplished in O(NZ'81

) opera-
tions.
To give a solution to the extended safety question, we simply per-

form this operation twice, once with and once without the additional arcs.

Comparing the results then gives us our answer.
Example 1. A non-regular Arc Passing System.

In this example, we are just concerned with the movement of read
privileges. Assume we have a right called the indirect right, such that
if X has the indirect right to Y, and Y can read Z, then in effect X can
read Z. Next there is the request right, which says that if X can request
of Y, and Y has indirect rights to Z, then X can obtain indirect rights to

Z. (Notice here, as in the take/grant system [12], we take the worst case
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approach by assuming requests are always granted.) Finally, if X has
read rights to Y, and Y has request rights to Z, X can obtain request

rights to Z.
The transition rules are shown in figure 16. If we let A repre-

sent read, B indirect and C request, we obtain the following grammar.

A - BA
B+~ CB

C > AC

This obviously is an arc passing grammar; hence, Theorem 7 gives
us a method for solving the safety question. Furthermore, it can be

shown [8] that this grammar is not regular.

T
i r ,//Ef’~_~“\;\§i
> => >

i

Figure 16

Regular Grammatical Systems

If it happens that for each right the language generated by the
grammar associated with a grammatical protection system is regular, we
will say the system is a regular grammatical system.

Regular grammatical systems are important on account of the following

theorem.
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Theorem 8: For regular grammatical systems, the safety question can

be answered in linear time in the size of the protection graph.

Proof: We prove this result by appealing to the fact that regular
grammars can be recognized by finite state automata. Assume for a given
grammar G we have an automata with T states that recognizes L(G). And
assume our protection graph has B vertices. We then construct a new
graph with BXT vertices, where there is an arc from (Gi’Tj) to (Gk’Tl)
i1ff there was an arc from Gi to Gk in the original graph, and if we were
in state Tj at the point Gi that arc would carry us to state Tl'
Starting from the vertex X and using depth-first search on the
original graph, we see we can construct this new graph in O0(E) operations.
Again using a depth-first search on the new graph, we mark those vertices
we encounter which are in designated final states for the automata. These

are then the only vertices which can obtain rights to X. Again we have a

complexity of O(E) operationms.

We wish then to characterize protection systems which have regular
languages.

A class of grammars which seem to arise quite frequently are what
we call non-discriminating grammars. Informally, we will say a protection
system is non-discriminating if all the transition rules are of the form
"If X and Y are constructed by an arc with some right y, and Y has any
right to Z, then X can obtain that right to Z."

The name is meant to imply the fact that we don't discriminate between

rights in the second context.
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Formally, we will say a protection system is nondiscriminating if
it has a nondiscriminating grammar. We define a nondiscriminating

grammar as follows.

There are five types of nonterminals, Al,...,Aka, Bl""’Bkb’
Cl""’ckc’ Dl""’Dkd and Z. We allow productions of the following
forms (greek letters represent strings of terminal symbols).

Any nonterminals of type A, B, C or D can produce a finite string

of terminal symbols.

A's, B's, C's and D's are allowed productions of the following forms:

A, > BA

5 3 Bi+Bjy

i 3
Z ~ C, Z ~>~D

i i

Z - CiDj

Z > 7ZZ
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Theorem 9: Nondiscriminating grammars are regular.

Proof: We wish to show that starting from any nonterminal, the language
produced from this grammar is a regular‘event. The proof for nonterminal
of the first four classes quickly reduces to showing the language pro-
duced from Z is a regular event; hence, we show only this case.

Notice first that the nonterminals A (B) form by themselves a right
linear (left linear) language and hence associated with every nonterminal
Ai or Bi we have a regular event which represents the language that can
be generated from that start symbol.

Let us consider first the set of sentential froms that can be
generated from Z using only productions of the type Z — Ai’ A~ Bi’ YARS Ci
and Z ~ Di'

Let us construct a regular event L as follows. If there are produc-—
tions Z ~ Di’ Di -> AjZ or Di - BjZ and Aj => W, Bj => Vv then both w and v
are in L, and nothing else is in L. We can do a similar trick with Ci to
form a regular event R; finally, we can define a regular event F as
follows: 1If there are productions Z - Ai and Ai => p, then w is in F;
similarly for Bi’ Ci and Di'

It should be obvious that the set of sentential forms Z can generate
is L*(Z!F)R*. That is, everything in this form can be generated from Z
(using only the productions we have indicated) and nothing else can.

Now assume we have a production Z -+ ZZ (the proof in the case where
we don't have this production is easier and won't be given here). Con-

sider whal can happen with one application of this rule.
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* %
=> L ZZR

* % x % * %
=> L (L (Z!F)R )(L (Z!F)R )R

* k% *
=> (L (Z!F)R ) (L (Z!F)R )

A simple induction argument can be used to show that the set of
* % %
sentential forms Z can generate is then (L (Z!F)R ) .
We now wish to add the productions Z - CiBj'

Let us look at what we can generate with one application of this

rule.

Z =

\"4

a R LR 2mr*
* * % % % % ) % *
=> (L (Z!F)R ) L CiDjR L (Z!F)R )
* % % % % % % %
=> (L (Z!F)R ) L ZNINZZR (L (Z!F)R )
= (L*(zzF)R*)*(L*(zzF)R*)*Nluz(L*(zzF)R*)*(L*(z!F)R*)*

= (L*(Z!F)R*)*NINZ(L*(Z!F)R*)*

Associated with each nonterminal pair NlNZ is a regular event. Let
us call the union of all such regular events W. Hence, we have that the

set of sentential forms Z can generate with one application of a produc-

tion Z - CiDj is simply
* * % * % %
(L (Z'F)R ) W(L (Z!F)R ) .

Let A" be A repeated r times, with A0 = A. We now want to show that
the set of sentential forms generated by Z using n applications of pro-

ductions of the form Z - CiBj is

* * % n % * %
(L (Z!F)R ) W) (L (Z!F)R)
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which is equal to
* * % * * %
= (L (Z!IFR) (WL (ZIF)R ) )™

The proof is by induction. We have just shown it true for 1,
hence we assume it is true for n and show it is true for n+l.
First we note that if P,Q <= n then the set of sentential forms

we can derive from
* % * %
(L ZR )(L ZR)

where the left Z is expanded using p applications of the rule and

question and the right Z using q, is just

L*(L*(zzF)R*)*(W(L*(zzF)R*)*)PR*L*(L*(zzF)R*)*(W(L*(st)R*)*)qR*

* * k% po % * % * * kg
(@ (ZIF)R ) W (L (Z!F)R ) (WL (Z!'F)R ) )

w @R wet zimrH e |

From this we see that the set of sentential forms that can be
generated using n applicationé of the productions in question starting
* X k| * * % * % % p
from (L (Z!F)R ) is just (L (Z!F)R) W@ (Z!'F)R ) ).
To show the induction step, we note that there must be a first time
a production Z - CiDj is applied. Following this, as we previously ob-

served, we will have a sentential form in
* * k% * %
Z => (L (ZIF)R ) W(L (Z!F)R ) .

Now let us assume there are p applications of the productions in

question to the left of the W and q to the right and ptq=n. From what
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we have seen before, this means the set of sentential forms we can

generate 1is

et @mrH et @neH RN e et @mrh  wat @rrhHH RN
(R P @R W @R Wt @imr e
p+l

* * * * * % q * * %
(L (ZIF)R ) W) (@ (Z!F))R ) W (Z!'F)R )
)p+q+l

(2R W @ z1mrRH”

Hence the hypothesis holds.

Since we cannot bound the number of times productions of the form
Z ~ CiBj will be used, we replace the exponent by a star. Adding the
final production Z -~ A, we then have that the set of words which Z can

produce lie in the regular expression
* X k  k _k * %
(L (AYF)R ) W) (L (MIF)R ) .

We note that L's, F's, R's and W's can be computed in any quantity

in any order; hence the regular event we derive is just

*
(LIFIRIW) .
Example 2.

The grammar associated with the subjecy/object take and grant system
[12] is an example of a nondiscriminating grammar. Given the definition
of the nonterminals shown in figure 6, it can be demonstrated that we
have the grammar shown in figure 7. If we assume A is our starting
symbol, we can eliminate productioms 3, 4, 6, 8, 11, 12, 14 and 16, thereby

giving us a nondiscriminating grammar.
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Following the mechanical transformations used in the proof of
the theorem, we see the regular expression associated with A is as

follows:

* * % * * % * * *
(bdp ! bdphg! jhg!l!bdshg!e!bdc! el fh gl jlbdk ! m!

* % *
nh g) (a ! bd c)

These methods provide us with a means for giving an alternative

proof of the Theorem 2 in [12].

A = (S,7,8) B = (S,r,0) c = (0,7,9) D = (0,r,0)
E = (5,%,9) F = (S,%,0) ¢ = (0,%,S) H= (0,r,0)
I= (5,%,5) J=(5,w,00 K= (0,7,5) L = (0,u,0)
M= (S,%,5) N = (5,%,0) 0 = (0,%,S) P = (0,w,0)

Figure 17
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1. A-*ZRa Ra-*a Ra—>Rbc
2. B—*ZRb Rb-*Rbd R.b-*b
3. C~>0A
4., D > OB
5. E~>L 2 L »+e L > fL
e e
6. F ~> EJ
7. G>LZ L - hL L »g
g g g g
. 8 H~>GJ
9. I~ ZRi Rl > i Ri - Rbk
10. J > ZR, R, > j R, = 2
J J J J Rb
11. K-+ 01
12. L > 0J
13. M~>1L Z L -»m L > aL
m m m g
14, N ->MJ
. O0~>1L
15 0Z LO > g LO > pLg
16. P > 0J
17. Z » 72z Z > A Z > E Z~>1 Z~>M
Z +~ JG Z > BO Z > A
Figure 18

Non-Grammatical Protection Systems

As useful as the concept of grammatical protection systems is to
obtaining linear time results to the safety question, a great many sys-
tems described in the literature fail to possess this property [2,5,13].

In this section we wish to show that certain systems, while failing

to be truly grammatical, are sufficiently close to grammatical systems
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to enable us to utilize the results of the last section.

We will say a protection system is near-grammatical if for each
right a there is some regular expression Ea such that a necessary
condition for a vertex X to o a vertex Y is that they be connected by
a path with word in Ea; furthermore, this condition becomes sufficient
if at certain identifiable points in the regular expression we check
that certain more global conditions are satisfied. We assume these
conditions do not involve the vertex x, and they can be verified in

constant time (i.e., independent of the number of edges in the graph).

Theorem 10: The safety question for Near-Grammatical systems can be

answered in linear time in the size of the protection graph.

Proof: This theorem is proved in a similar fashion to the previous
Theorem 8. We place "finger" symbols in the places in the regular
expressions where the conditions are to be verified. Again we assume

to have a finite state automaton with T states and a protection graph
with B vertices. Again we construct a new graph with BxT vertices, only

this time we connect an arc from (Gi’Tj) to (Gk’Ti) iff

1) there was an arc from Gi to Gk in the original graph, and if
we were in state Tj at the point Gi that arc would carry us

to state Tl’ or,

2) one of the "finger conditions" is true for Gi' In this case,
k=1 and Tl is the state we would transfer to having accepted

that "finger" in state Tj.

Again, having constructed the graph the result is then a standard

reachability argument from automata theory.
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Example 3.

In many current protection systems having a right to an object
does not, as we have been assuming, automatiéally allow you to p~ss
that right on to another individual. For instance, in the Multics
system an individual can have access to a file only if his name is
written on a list of individuals who are permitted to have that right.
Therefore, if X has certain access privileges, another vertex Y, no
matter what relationship it may have with X, cannot obtain those privi-
leges without somehow getting its name on the list of permitted
individuals.

We model this situation by means of a special right called control
[2]. Having Control rights over X could, for instance, mean having the
ability to write on the list of people who can access X.

We will use the subject-only take and grant transition rules of
[12], only we include the concept of control. The control privilege
cannot be passed. The rules are shown in figure 19.

That the system is not grammatical can be easily demonstrated. 1In
the first graph in figure 20, X can obtain the read rights to Z, but it
cannot do so in either of the two following graphs, thereby demonstrating
that the ability to obtain rights does not depend solely upon the nature
of the path between the two vertices.

We can observe that for ae{r,w}, X can obtain a rights to Y Zff

*
1) X and Y are connected by a path in (rl!w) and

2) every vertex on that path has control rights to y.

This system is obviously near-grammatical. Hence, the safety ques-

tion can be answered in linear time.
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Q.
r a,c = [//:/’—_*\;j:\xg
a
-V a,e . . L w a,c N ‘
Figure 19
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Figure 20
Conclusions

The security of computer systems is a topic which appears will be
of increasing concern in the near future. We feel that true under—
standing and trust in access privilege mechanisms which are proposed
can only be achieved by formal analysis of the capabilities of these
systems.

We have attempted to form a basis for the study of protection systems
by classifying transformation rules which allow for formal analysis. In
doing so we are trying to fill in the gap between a specific system for
which linear time results can be demonstrated [12], and very general sys-
tems for which problems are known to be undecidable [7].

We hope that further research will bear out the utility of theée

studies by allowing us to model protection systems which are actually
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being used today. We feel the concept of a grammatical or near-grammatical
system is natural and justified, since disregarding those systems which we

are labeling '"loose,"

if T have a right and I wish to give it to you I can
only do so in a sense by passing it from hand to hand until it reaches you.
Hence to a certain extent my ability to pass rights must depend upon the
nature of the path between us.

It appears that further research along these lines will have important
consequences not only for the formal analysis of abstract protection sys-

tem models, but also for the practitioner .who must design and implement

actual access privilege mechanisms.
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