Steps Toward an APL Compiler
Alan J. Perlis

Research Report #24

January 1974

1. Introducti;n .

APL tl] is’ghe forerunner of an approaching development of arra& processing
languages and machines. Microcircuitry opens the possibility for the design of
mini computers that can do direct array processing. Several such designs have
_already been reported in the literature. APL programming is different from.’
FORTRAN or Algol 60 programming in some important ways. Most importaﬁtly the
enorimous computational potential of the APL "expression' makes the construction
of "structured programs' and the efficient execution of>these expressions by
computer somewhat more difficult than with Algol60 and FORTRAN. .

'APL is a high-level programmlng language in the same sense that BASIC,

PL/I and the above-mentloned are. But should it ideally translate into the same
kind of machine code as these other "scalar" oriented'languages? Presumably if
one defined an appropriate maéhine organization APL could be "compiled" into it
and the resultant programs run as effectively as machine -code programs compiled
from FORTRAN. In most implementations APL is handled as a conversational language,
and why do otherwise since APL programs tend to be interp;eted? However the chief
consequence of interpretation isvnot dynamic creation of text but the dynamic
shaping of daté arrays——and that dynamic shaping should not be'unduiy constrained
in any compiling effort, e.g., use of declarations to bind shapes. This work

has been strongly influenced by the description of an APL gachine and various
optimization algorithms developed by Phil Abrams in his Ph.D. thesis [2].

2. ‘The ladder

A fundamental activity ofrAPi data is the use of elements of arrays in
some order. Hence an array delivers its elements in some sequence. The normal

sequence is the ravel, i.e., the subscripts in the order of (gAf T1x/p4d in

0 origin for the array A.

wé associate with eacﬁ uee of an array A, a “stream" generator. This
generator may be variously represented and implemented, e.g., as an array itself.
The generator may be a sequence of generators and such a sequence we will informally
denote as a "ladder". Generators are cyclic.

Example: 1. A vector V has the generator:

~

6@ generates the elements of V, denoted by ?, in ravel order. w is the
index or place offY, 1, 3 and 4 represents the initial)"next" and "exit" links
of the generator, respectively.

2. An array 4, ppA is 3, may have the 3 step ladder.

or the two
step ladder

or the one
step ladder

Ah denotes all the generators for A but A3

We may associate with each use of an array A a "ladder" represented by
an arrava. To simplify notation we will assume in our examples that ppd is 3.

Then a ladder L for A is:

the array: _ ’ o | .
‘ ~

PC b 3 e02
e i ’ ‘

. 11 1 1 Py &9
®21 1 S P2 ®22
. i p e
L i, 5, 3 32

- for which pL 1s (1+4ppd) , 5. There is one control program that "traverses" any

L ’ .
ladder and executes the co-routine:

begin
START: C meB; j€2;

while j<l+ppA do begin
€1 L[j;2]«1;
j«jtl end;

while 3=1 . do begin

while L[j;2)<L]j;4] do begin
o i Hl; TR, end;

. ®32* T3 3 -,
while j<ppd " do begin
J<j+1; ej’l ij+l . end end

J«i-1 ~ end; ,
e0’2‘ 'go_to START end

the ej’l and ej’2 are co-routines and PC points to the place in the ladder control

where execution commences (resumes) on use of the ladder control for a particular
. - ~;

ladder. B is the base address of the array A and 7 is the current array element

are the indices in each dimension of the current array value

,

- location. 4i_,1i,,1i
1’7273
at location.

For ravel sequencing 6l=52=0, 63=l

Exampie. let A be 324p1 24

"A ladder for A is PC B T j €02
e D 3 D)
€1 1 °o 2 ©22
e 13 1 4 €39

~Let €3, be print (m); 02 be halt; and th? other ejk be null. Then

executing the ladder for array A wiil'print out 1, 2, 3, ..., 24.

3. Ladder to ladder communication.
Stream generators communicate by means of co-routine jumps,‘* P, each

generator being considered a co-routine. Operations on generator outputs are

routines of sequences of elementary scalar operations.

é

one forms the composite by splicing

represented as co-
Example: R<A/B

From the separate generators:

~'2
1. t'N; Gx)
2. _:_L_f_?T‘= 1 then &y 5 - Ox
3. ;+t;_C+Y S

Initially X is 1 QE_A and Y is 1 of R and control starts at 1 of B

L]

X and Y are co-routine communication registers.

An important transformation of the above stream diagram uses a co-vector.
Let U be a co?vector of 2 components, initially set at 1 of A, 1 of R. Then

introduce the co-vector shift jump, ﬁ U and the precedlng dlagram may be written as:

¥ &

B

1. t%;- é;U
2. if 1r = 1 then éU else 1214)(./
3. n+t, é;U

The vector U attains the following sequence of values:

1of A, 1 of R

1 of R, Bl
81, 82

1of A, 1 of R
The operation ;S U has the meaning: Let the control counter contain «. Then
| X«14U
U[1])<a
U<14U
X

~ Suppose we have a sequence of stream generators SO,S Sz,.:.3sk for arrays

09

result of:

A Al,...,Ak with the property that Sj links to Sj-l’ J=l,.T.,k and Ao holds the

’

A +A101A292A3e3 0,14

Wﬁere 01 are APL dyadic operators. Then: we would have:

Y s
\}J S\ S e NSk

with U being initially: 1 gi'Ak—l"'fl QE-AO'

4, Operations on ladders
The Si control the order of delivery of elements in an array. Some APL
operators change this ordering in very régular ways, €.8., +,¢,k?and some types of
subscripts. In what follows we will often use an array A of rank 3 as a basis
for discussioen.
= Mlil= 8 +E (@ 1xXG
where 8 §§_M[1;l;...;1]
The Gk are recursively defined by:
G <1
r
for k<r-| step -1 until 1 do
G Cra1 Pren
If we wish to compute the elements,.M[n] in ravel order using-a ladder of r
rungs, passage along any rung inctements w'by an amount of Sk on the kth rung.
Gk is the kth component of the vector § computed by:
§ <G
r r
for k«r-1 step -1 until 1 do

810 Par® Cirt St

4.1 Transpose
Suppose we transform A, A +dQ4 where l—A/aetppA AND pa 1> pPA
a:'fmfnlz]-n 1111]=M[112;A al-M[111] pA" it k‘z
Example: A is 2 34p V24 '
A'is s1209A phis 234
pA'is 3 L 2 |
61=M'IZ 11]-M'][1 p f3 '1=M[2 1 1[3 1 2]]-M[1p Pq 1]=M[1 2 1]-M[2Z 1 4= -1
65=M'[1;2;1]—M'il;l;pé]=M[l 2 }[3 1 2]11-M[1313 3(A 31 211=M[2 1 1]-M[1 3 1]= -11
6§=M'[1;l;2]—M'Il;l;l]:M[Z 1 1]-M[1 1 1]=12
g' =g=1
and the délivery order is 1 5 913172126 ... The formula must be modified
if pIrl for then the corresponding 5IF0.
In general, given & and G one can compute the § of the transformed array

directly from § and shape information. But it is easiest to perform the

calculations:

Let Re €Y A where 1= A/ (A1ppA)6cA

then G' ig_G[A c] and p' is pld c]
and l

6; < G;

‘ for k<r-1 step -1 until 1 do

1 1 _ oAt ot 1
84 € 6~ Prar” Gt S

The diagonal plane case, (pc)'> [/c, is somewhat more complicated:

g

To compute p' - t« [/c; I¢1
: ~while t 2 I do
p'[1]« L/(I c)/oA;
I«I+1l '

To compute G': . He 105 I+l
o . whileI<tdo
- He H, +/(I=c)/G
I« I+1
.ic'f/H[A((lpc) =cic)/c]

To compute the new rank: r' « ¢t
To compute 6‘rwe perform on r', p', G' as they have been defined.
Example: R+3212‘Qé345p1120
' p' is 4 32
G is 602051
H is 60 21 5
G' is 5 21 60
§' is -97, -39, 60
Note that the Gk ultimately depend on the shape gnd the G vector. The latter

also makes random accessing quicker.

4.2 Reversal
The operation ¢[K]A reverses the Xth co-ordinate. Thus the XKth co~ordinate
is chosen in the order: ¢1p[£]. Let us use the array A'.of section 4.1.
Example: pA' is 3 4 2, X=1, 81 -11, 3= -11, 8}= 12
6§=M'[312] -M'[311]= 12
6;=M'[321] —}1'[3103]= -11
§U=M' [211] ' [3p,p,)= -19
B"=M'[311]= 9 ’ R

d

Thus the order of delivery‘in $[11(3 1 2)&4 is 9 21 10 22 11'23 12 24 517 ...

. — . S TR S 1 "_ 1_1Yy 1
Indeed, in the case K=1 pnl) 51 changes: 61 61 2 x Gl. 8. 8+(p1 1) x Gl
o n_ ot Mo oav _ 5 N_ st ' v n_ 1. '
In case =2, 8)= 61, 65 =8, =2 xC), 6=61 +2 xG) x (p; -~ 1). 8 B+(pj-1) % G
=' o ot 1, st gt ~t t_1Yy n_ ot t t_
In case K=3, 63 53 2 x G3, 62 62 +2 XVG3X (p3 1), Gl 51+2 x G3 X (p3 1).

" - o
8 =8+(p3 1)G3

The genéral case for reversal is:
‘Let R « ¢[K]4

Let the primes refer to the quantities for R; the unprimed to A:

For ke r step -1 watil k#l do

] ' <.]
Sp 83 G < 6y

1 - . 1 -
dk+6k 2 ka’ Gk+ Gk

for k « k-1 step -1 until 1 do

| - .

B'+B + G X (Dk"l)

4,3 Derp (4;)1
Consider (Ql FQZ Q3) v A
where A has the shape ' p1 Py p3
M'[I; J;-K] = M[I + (Ql> 0) x Qi; J + (Q2> 0) x QZ; K+ (Q3> 0) x Q3]
'andij; ‘_:_i._g oM~ | (¢ Ql Qz QB) For exaﬁxple, ‘
ai;-M'[z;l;l] —M'[l;éz;p3] vhile §} =6,

. . 1 :
From which we can obtain: & =6, % (IQZ) xG, + (|Q3) x Gy

v - -
65 =8, + (lag) x63 83784
gB' =M' [1;1;1]

The general situation for Qv 4 is:
§' <6 3t « 0
r r

for k < r-1 step -1 until 1 do

t<t+ (IQk)‘ x Gy

]
6k+6k+t

. |
g« 8 + k@ >0 xq x G

10

j_ 4,4 Take (%)

@ 9, | Q) + 4 and pd 1s o) 0, Py -
Then o' 1s | @, @, '
M'[T;3;K]=M[I+ (@ < 0) x | pl;Qi; I+ (@ <0) x| o=@ K+ {é3 <0) x| py=@,]

Using the definitions of di we can derive:

1] = -— '=.
§5=68,+ (py = 19 xGy, 8578,
B' = M'[13131) =8 + (@ < 0) x| p;- @) x6 + ((@ <0) x|py=Q) xGC,

+ (@ < 0) x| pym @) xGg
The general situation for @ * A is:
§'« & ;£ <0
T T

for k < r-1 step -1 until 1 do

t <t -+ (pk- le) x Gk
1 .
Sie &y ¢)

'« 8 HE (@ <0) x |- Q) x6

The G vector is not affected by + and Y.

4.5 Rotate
The general rotation operator is:

N¢ [K] A _ .
where pA is Py pz...pK...pppA , PN is (X # 1ppd) / pA
Example: Ais 324 p1 24 , K is 2

Nis34p10121
Define V3 =1, VI = Pri x V I=1,2.

The delivery order is 5, 2, 7, 4, 1, 6, 3, 8, 13, 14 ...

11

The'generai rotation operator does not compose like ', +, + and ¢ [K] and
it is an example of a "break" operator, i.e., one that induces temporary storage.
. If the operators to the left of ¢ [X] in an expression do not alter delivery orders
the»temporary storage array U ;equlred is of shape Py pk+l"°ppbA for we may
deliver that many elements from 4 to U, rotate within U, and deliver the rotated

elements as the result. The stream network, in such a case is: (sﬁown for the.

case k=2, ppAd is 3):

—¢

X: initially 1 of N3 Z: initially 1 of destinations Y: initially 1 of U
l. u~< Il
2. t+V, 1T-1; q < M[%); O X

3. S« M[F); h <V Je-5% V5 Ulh] <« q; X

b T <B + (U-1) xV

1
5. & X
6. w< M[?’r]; < 2

7. & ¥

-

4.6 Subscripts
APL permits very flexible subscripting. We will limit our attentioh to
arrays each of whose subscripts'is (a) blank, (b) scalar constant or (c) an

interval (of the form c:d as in Algol 60). Subscripting is reducible to a case

of take and drop applied successively.

12

Thus x[gI;MZ;M3] is (Q; Q, Q)+ (Py'P, Py) ¥ X

.’ N . = =
where. if Ji is §1ank, Qi pi, Pi 0 .

if Mi

is the constant c then
Q = and P;= c -1

if M, is the interval c:d then Pif ¢ -1 and Q is d-ctl.
Thus we have shown that a sequence of the operators §, ¢[X] (reversal), +,‘4'and
[;;] of a restricted type can be collapsed into one calculation of the vectors
&, p, G and the constant B. Cleariy it is appropriate that such sequences be

collapsed prior to the evaluation of expressions. Let us now extend these

simplifications to include other operators.

4.7 Reduction

Consider 0/[2]4 where 0 is a scalar dyadic operator and where p4 is
CI §3 then this is equivalent to: @/(1 3 ZﬁQA. In the general case 0/[k]A,
where p4 is Py Pye Py is equivalent to /(12 ...N ktl N—l}Ql.

Furthermore,

dQS/A is equivalent to 0/ (c;ppA)RY

c + 0/4 = 0/(c;(pA)[ppAl) + A
c + 6/4 =0/(c;0) + A
¢[K10/4 = 0/¢1X] A

and (O/A)[Ml;MZ;...,MN] = O/A[Ml;Mz;...MN];

4,8 Outer product A oB

Consider the case:

dQA °.0B

13

We introduce the notation
.“{on .} to specify an order in which the elements of A and B
are to be_combined. ’
Congider the following examples:
(a) pA is 3 4 5 ; pB is 4 6
A24351° 1B

Then the streams for A and B are spliced after transpositions: 13 ZRA

and 2 I§B to yield:

joined with co-routine register initialized to 1 of A, X initialized to 1 gﬁ_Bl.

The code pieces are: ’ -
1. t<«M[7]; Gx
2. O6Y
3. &Y
4, 'C%?X

A splice at a would give:

r<t0 M[nJ;C§ w where w is the co-routine register cénnecting to the user
of the result.
(b) A and B as in (a) and

Re(2 3 1D} ¥/[2] + /121((3 2 D{A) 4B

This is equivalent to

R+ (23 1gx/(1 4 2 3)Q...

SR« x/(2 31 4)8€L 4 3 2)%+/[2]...

R < x/(249.13)%+/]12]...

n

I

R+ x/(2 413)3+/(1 5 2 3 4y ..

R« /+/(2 413 SR(1 5 2 3 4.

SR /+/(254 138032 Na) . + B

SR« x4/ (32 A2 5413 b+ B

yielding:

= R+ x/+/0[3]13[21(3 2 1)8A{2 54 1 3° .}+B

1.<2Y

2. 2> %
3.z
4. 2
5. r+« M[;];C%X
~a. to destinationl{S W
Initially '
X is set to 1 2£.A3
Y is set to 1 2£~Al
Z is set to } gg_Bl
The network commences at 1 of B,

START

6.
7.
8.
9.

10.

S« 1

X

t<0

S <« txS§

t <t + M[71)+r

1o

Consider the case:
(-]
(9) 95 939, 95) * A .08
" Again we write as -
)
Al(q) 9y 959, a) + .19B
which becomes:
)) ‘
((q; q, 45)94) 'G(qa qs) + B

%, [;;] and ¢]K] similarly decompose.

4.9 Inner product.
The inner product is a specialized use of outer product, reduction and
" transposition.. The following definition holds:
if R« A 61. @2 B is defined then so is
.
'91/ Z\QA . 9,B.

where Z is (1-1 + pp4), (2p-1 + (ppd) + ppB),(—l + ppd) + 1-1 + ppB

and is,équalbto R. 1Indeed this is exactly how the inner product operator is
implemented from the streams for A and B, i.e., as:
- ~ ©
o,/ MZR’ .)o,3
Thus, are all the simplifications associated with the outer product adapted‘to
the inner product.

Example: ppA is 3, ppB is 2.

0 /A {124 3§ }.0,B

1.5 X . 5. t <+ M[n];<2

2.9 ' 6. O 2
3.9 Y 7. s« (toM[T])gs
4. Y . 8. S <« identify (6))

a. result is S;<OW

Initially: X is 1 of B,
Y is 1l of A
z is 1 of B

For each of the selection operators Sl we have the identitres:

4,10 Index of. (dyadic 1):

JSLA1B=ZA1L.B

4,11 Membership. (e€):

A€B= (/A) €B

4,12 Compression [
e A/[K]B
(a) 1 is e A
cRA/IKIB = A/c]l 2...ppB...-1 + ppB] 'Qg 1§
_'(b).ﬂ- is c4 _q;'&

ct A/B = A/(c,-14pB) + B

I

1l

ct A/B = A/(c,0) + B

() $IK] A/B = A/¢IKIB ,KeppB -

n

hl

(¢A)/¢B , K=ppB or elided.

4,13 Expansion) :

Treated in precisely the same way as compression.

S

4.14.;¢{and ¥)
(a) “A%4IKIB = 4[A[K]]AYB
However

¢[K]@[J}B = %[J]¢[K]B only if K#J [;;], ct and ct do not usefully commute

with 4 . and .}

"~ 4.15 Catenate

oNA, [K]B = (c$4), [cIK]) ckB
vhere (opB)‘Q ppA and 1 = A/(K = 1ppA)/(pA) = pB
If (ppB) # ppA and |(ppA) - ppB| =1 and 1 = A (oB) = (KzlébA)/oA then
WA, [KIB =-(c4A), [cIKIIC((K # 1ppA)/c)§B
If (ppB) # ppA and B is a scalar, a then create the array B' is
((k#10pA) /0A)p o, Teduce to the case i, [KIB'. |
Kr ¢]K]:
$[K] 4,318 = (¢[KJA), [J] ¢[K]B K =J
= (¢IxJB), K] ¢[K]JA K =1J
For c + A,[K]B:
= (c'#A), [K] D'4B

In case (i):

c¢' is obtained from c by changing c[K].

cIK] « ((cIK]120)x ((pA) [KDLc[K]) + (c[K1< 0)x((c[K]) + pB)LO
and D' from ¢ by changing c[K]:
cIK] « ((c[K]20) x (c[K]-(pA)[K])TO) + (c[K]< 0) x c[KIl-(pB) K]

In case (ii): i ‘ ‘ . | '

c[K].+~ ((cIk] 2 0) x ((pA)[K]Lc[K]) + (c[K]< 0) x ((c[K])+.l) Lo

| But D' is now:
D' « (cIK]z 0)A((cIK]) < (pA)IK]) x (pB)pO
+((cKI> (pA) [KI) V c[K]< 0) x (K = 1pA)/c
We omit the computétions for ¢ ¥ A,[K]B since they are so similarly

derived.

17

4.16 Example.
Let pA-be 2 3, pB be 2 3, pc ég 3 2 and the expression.to be evaluated:
2511+ A+ .x3128+/[118°. +c
= o t/BlA 1 2 3" e
+/312 Qs 12 3 e
+.x+/B{4 31 2\;° .}+c
+ox31254+/Bl4 31 2, ° e
+Tx4/ 312 4{BL4 31 22" e
(271 1) 4+ A+7x+/B{46231° .1
‘ (234 A)+.x7113++/B{42 3 10.}c

oot/ 113248 {4231° Je

(2344)+x 4/ 21+B){46231°.34+¢371) 4 ¢
where X +.x Y is an inner product where last of X is combined with last

of Y.

5. Rags
A useful generalization of the APL array is the fagged array: A ragged
array is "uneven" only in its lasﬁ subscript position. For ragged arrays the
operator a plays a role analogous to that of p. Thus, let H be an array and V
a vect;r._ HaV shapes V into a ragged array suéh that the value of an element
of H is the length of tﬁe corresponding rag of V. For examélé:
His 79 11
W <« Ho 'THE ONE AND ONLY RAG PICKER'
4 \
W[2;] is AND ONLY
The unary o gives the rag shape of W.

oW is 7 9 11

10

19

The unary'a'gives.the rag shaée of W:
oW is 7 9 11
An array A can, of course; be made ragged:
A< ((-1 + pA) p =1 + pA)oA

oW is the null vector if W is not ragged. Ragged arrays are homogeneous.

Ragged arrays provide a convenient means of attaching a single name to
a collection of vectors. For example, an APL function can be looked upon as
a ragged array whose associated "rags" are the header and function lines. There
is some advantage to being able to represent functions as a more structured
data type than the character string. While ragged arrays do not proyide the
most general data structure one might'like; they do provide additional flexibility -
to APL without doing violence to the sémantics<and syntax of the.language.

Suppose M is a ragged array for which.ppaM‘ié_k. Then k+1 subscripts
are neeéed to isolate an entry of M. Suppose k is 2. Then M[I;J;] is thévrag
having (oM) [I;J] elements. M[;31] is thé arfay of fi{gt comporents of all the
rags of M. The genéralization of V[Q], where V and Q are vectors and 1=A/Qe1pV,
to ragged arrays is W[H] where W and H are ragged arrays for which dw and oH
are identical and for Il’ Iz,...Ik such that Ip €1 (ﬁuw)[p], §=l, 2,...,k
1= A/‘Hlll;...;lk;] € iuWIIl;IZ;...;Ik].

' The control for the access of ragged arrays is thréugh the uge of two

ladderé, called the "core" and the "rag": The core produces, in order, the
location from which the pair Bk, pk used in successive geliveries by the rag,

4

can be determined:

20

1. t«M1;6X where t is the rag‘base and knowing t we may
2. S < M[#]'— computer p of the rag base.
3. Ox

Operations on oW and the rags are treated as described in sections 4.2
to 4.6, |

Ragged arrays are most convenientiy treated as delivering a succession
of arrays of rank 1 (vectors) and thus, with their inclusion, some APL operators
can be extended to become vector operators.

These extensions are simply handled thrbugh the use of ladder networks, but
not so easily handled in ordinary APL syntax. We give two examples:

() H< (1+0t= " ")il)em |
left justifies the character string vecfor M. Suppose however M is a ragged
charagter array. One would pgstulate that the same actian isvt§ hold on successive

rags of M,

(11) VI[4V]
sorté the vector V. But then what interpretation are we to give (ii) when V is a
ragged array? The purpose of ragged\arrays is to attach a sequence of vectors to

the same name so that similar actions on all members of the sequence can be easily

and naturally programmed. Consider example 2, expressed in stream form

“’L\{/{thz(Jf

—

1 t<Mn];GX
2. s+« M[r];S>Y
3.- M[1]«S; 5 ¥
b W Pu; G2

5. M[w] <« base of W;<>X

To maintain simple syntax it is to be understood that ragged arrays occurring

in an expression are all synchronously being delivered (in their ravel order) one

- vector (instead of one scalar) at a time. Thus

ML $M], TIT + 2 ¢+ M)

deliver ragged arrays (in sequenced orders) whose rags are indiyidually sorted.

~ This interpretation defines the extension of operators to ragged arrays. More

specifically, if V, Vl and Vz are ragged arrays:

1.

Monadic and dyadic scalar operations'Q haye the extensionng1©Y2 _

is defined if either V., or V2 is a scalar or an array of one element or if.

1
aVl = aVz.or if ngl = paV2 gné if (&Vl)[ll;...lk] 2 (&VZ)IIl;...;Ik] then’

at least Qne of (aVl)IIl§Iz...,I*]rand (&VZ)IIl;...Ikg.is 1. Then the ’
operation © is applied to corresponding rags of Vl and V2 as a.successign of
vector operations. |

The core of a raggéd array may be thoughﬁ of as holding, in each array position,
two data: p of the corresponding rag and tﬁé corresponding rag. Thus 0/V
applies to the rags-of V and produces an array. |

Inner and outer products are not defiged when one of the operants is ragged.

The index génerator{ monadic i is extended to vectors:.>iV is a ragged array,

e.g., 114 is 1
1
123

1234

Ravel is the ravel of the ravel of the rags.
Reversal ¢V is the reversal of the rags of V.
$[K]V, K#l+ppaV refers to reversals of the core. T

Monadic transposition does not apply to a ragged array.

Grade~up and-down epply to ihe fags.

9.

10.

.Reshape, in the form HaV, restructures ragged arrays. The following is a

"crop" by a ragged array V to a homogeneous array:
((aV), n)pn + V . .
1° V2 is defined if (aVl) = °‘V2 and the corresponding rags

are catenated. However a more general definition of catenation for

Catenation, V

ragged arrays is possible and 1s based on treatment of array catenation
in some APL implementations. Vl,[K]V2 is permitted and has the significance

, oV in the K direction. The conformability conditions

of concatenating aV 9

1

are:

(1) 1f (ppaVl) = p;uVZ then K must be in lppaVl and (paVl) = paVz except possibly

in the K dimension.

(2) 1If (ppavl) z pquz then 1 = (pm yl) _.ppavé or aVz is an array of ramk 1.,

and (paVl) = patVz except for the K co-ordinate.

- Examples:
(a) ch is 2 3 p16
aVZ is 4 3 p3+19
paVl,Il]V2 is 6 3 and
p(v,,111V,)1552;] is 11
(b) -V, is 53
pch2 is 5
then poz\ll,IZJV2 is 5 4 ' .
11. Rotation. Rotation may be on the rags-part of a ragged array, V. The

12.

rags may be rotated separately as in A¢V where (pA) = mV. .However the
core may also be rotated as in use of A$[K]V where K # 1+ pmV.
Index of (dyadic 1). Let V2 be a-ragged afray. If in Vlle, 1

vector then V11V2 has the same mterpretatwn as if V2 were a standard array.

is a

If, however, V1 is itself a ragged array then (paV) = ponV2 and the operation

is applied to corresponding rags.

Example:

12 3421 3321
123 1 1132 is 1132
21 | 2 1 '
4 44 | 112

13. Base value (decode). In V 1V2 , ifAV is a vector then the original.

1
APL decode is applied (with Vl) to every rag in V2. If Vl is a ragged

1

array then (puVl) = gin and decode is applied to correspondiﬁg rags.

14. Representation (encode). In VlTV2 is V2 is a vector, then Vl and encode

1

is applied to each component of V2. I1f Vl is a ragged array then V2 must
be an array such that (ngl) = sz , OT V2 must bé a scalar.
15. Compression. Compression may be applied to each of the rags as in Vl/V2

or to the core of V_ as in Vl/[K]V2 for 1 £ K<1 +'pa1Vé.

2

16.' Expansion. Rags may be expanded if they obey the conformability condition:
In V,\V, (+/v1[I;J;])= (av,)[1;7])
17. Dyadic transposition is applicable only to the core of a ragged array.
18. Take + and drop ¢ are applicable to both the core and the.rags of a ragged
array. | .
19, Membership. If Vl and Vz are ragged arrays the membership function is
. applied rag by rag. | ' . ‘
With respect to scalar monadic and dyadic operation$ scalars are permitted
to combine with arrays, as in .
3 4+ 2 2p14 being 2 2p3 + i&.
Ragged arrays provid; a data structure which permifs vectors (arrays of rank 1)

to combine with ragged arrays using many of the standard APL operators. Thus in

UOV if V is a ragged array then U is either a vector or a ragged array for which

24

' ﬁxU énd mV are the samc. In thé former caéé U as a left operant is combined
with each rag §f Vv, while in the latter corresponding rags of U and V are combined.
This conformébility condition applies to the operationms:
€ ,(dyadic)1, L, (dyadic)/, (dyadic) \
In subscripting,»if U and V are ragged arrays and cbey the above conformability -
condition V[U] applies each rag of U to the corresponding rag of V to
select. |
20. Indexing is applied to core and/or rags.
6. Operator definition in terms of ladder networks;
Given a set of arrays each with its own stream generator, how are they
combined under APL operations'to yield the stream generator for an expression?
Five pieces of information are required from generators in order to "splice"
them together: o ' -
. | 1. entry point
2. exit point
3. result
4, emission point‘
5. a control communication of synchronization register.

Let us consider an example: Given A and B, construct the generator for

f. B. Assume ppA is 3, ppB is 3. From

and we construct

with the atﬁached'code:

1. Ox |

2. s« identify (£,); &Y

3. & x

4. result $;<> ;&Y

5. t <« M[7];5z

6. s<(t£, M[%])fl $;6> Z
where the new stream has:

1. entry point: entry point of A
2. exit point: exit point of A
3. result : S

4., emission point: code piece 4

5. synchronization register: (¢

Let us carry the process one step farther. Suppose the expression is:

Cf3.f4Afl.f2B where ppC is 1 and A and B are as before.

reduces.to:
~n . .
CIEAC |2 3)‘5§Afl{ 12486 3,{}.}f23
and then to

Cf, £, AT 26 G134 S}E,B

and the stream network with attached code is:

Then the expression

25

26

1. &> X

2.5 X

3.t < indentify (f3); <S>y

4, r « identify (fl);q Z;.QV
5. S < M[1]; W

6. r <« (S ‘fz M[;r']) fl r; &S W
7. ©2Z

8. t <« (M[7) £, T) £y 13V

9. result t; & U;5Y.

27

The quintet for this stream 1s: | entry of Az’ exit of A).‘-’ {;,, 7, U
The initial values of the internal communication registers X ,Y, Z, \(/ and W
are the entry points to Ba', Au)/43, .C an:i B‘.

We now proceed to an examination of the individual APL operations.

1. Scalar operations A OB

@ @ 1. t <« M[T];OX
) Cji CEL 2. r<t oM[T);S ;X

{ entry of A, exit of A, r, 2, q} init (X) is 1 of B

2. Reduction: /A
|:{; : 1. S <« identify (0)
3 2. s« M¥ e
Ao 3. C‘) q

——

{ entry of A, exit of A, S, 3, q}
3. The inner product has already been described.
4, Catenation: A,JK]B

(1) (ppA) = ppB

@ 1. s+« M[7);Sq

I

b LR

/‘ 2, &x
/ N
2" | 46_ 3. S« Mfl;¢q
o ' 4, &%
(A ‘‘* {entry of A, exit of B, S,(1,3)3q} init (X) is 1 of B
N B -
:l. 3 | .

(ii) (ppA) # ppB. The same stream structure as (i) holds

28
- 5. Index (A1 B)

1.. S « M[T]; <X

2. k+1l;r«1+pA

A\ 3. 1if M[¥)=S then r < k; go to 4
—3 else k « k+l

4, Sq; X
{ entry of B, exit of B, r, 4, q} init (X) is 1 of A.
6. Compression A/B.
, (9 B 1. S <« M[n];<3X
| 2. if M[n] =1 then & q; <> X

«\<§:}i) { entry of B, exit of B, s, 2, q} init (X) is 1 of A.
er '
t{] >. A ,

[

=L

7. Expansion

®©

The same as for compression 1. S < M[n];<>X
except in the code pieces: 2, if M[n] = then S <« unit(B)&> q;>X
- J

- 7. Expression eyaluation
We will now consider an example where all the ranks are known prior to

- execution of the expression:

R< x/[13(3 4 1 2)§%+/]21(1 3 "2 12) 4+ HUQI/I2]6)+. x+/]2]R <L

whose constituent shapes are: R 3 4 4
L 3 3 4
G 2 8 5-6 3
M 8

We first bring the expression into standard form by a scan from the right

to the left to accumulate ranks.

R+« x/[1](3 4 1 2)&+/[2](1 3-2 1-2) 4 HU(4/[2]6)+. x +/[2]R x L

. 5. 5 2 3
3 3 4 55

29

R « xJo+] Hi((310)/(2 1721 3)+(A 53 4 2)8G)+. x+/¢ 2 3 1@ x 2 3 1§L
R« x/[1](3 4 1 2)x+/[2]1 372 1 2)4H1 M/ [2]1G)+.x+/[2]R x L
Q) x/¢4123)%(3 41 2)x.,- |
(2) Q/(Z 34 18t
(3) x/(2 3 4 1INH/[2] ., -
(4) *T$(2 3 4 1IN/ (1 523 4R -
(5) x/¢+/(2 3 4 1 5)RL 5 2 3 4x .« ¢
(6) */+7$[416(2 5 3 & 1)R(1 372 1 2)4H1 * */
) ...@M/[2]6)+{ ¢[4]¢(2 534 1)8(137212)412347;55 61.x¢ (2 1)8+/[2]R x L
(8) ...(13721 Ul)+¢M/[2]G)+{ 0[4]6(2 53 4 1)§1 2 3 4 7; 5 6}..¢
(9) ... +{9¢l41¢7 1 3 4 2; 5 6}...
10) ...((1 3425813721 U)o/ [2]6)+ L 914167 1 2 3 s 5 6)...
(A1) ...(6[316[411 3 4 2 5)R(1 372 1 U)+¢M/[2]G)
+{...
a2) ... (13721 U)M/[2]46) - -
a3 ... ((L 3 4 2 5)R(34M)/[2]1(1 3 72 1 U;)496)
¢[319[41(34M)/[3]1(1 3 4 2 5)§...
SN (o310 /[314 13141411 3 4 2 5)x...)
((1L 2 45 38(34M0) /(1 2 5 3 H)xs[31¢[41(1 3 4 2 5HN. ..
(15) ...((L 2 4 5 3)R(63tM)/¢4[31(1 5 3 2 4)}(L 3 72 1 U;)146)
+{71234; 56} U2)+¢(2 1)} +/[2]R x L
(16) Lo(2 U102 DR /(13 2R R X L
7). coe$ +/(2 3)NR XL
coH 2 U, U212 3 DRR X L

(18) T2 U, TN 3 1) [1IR)x¢(2 U, U)4(2 3 1)xe[1]L

30

The final expression is: ‘
R« JaTHu (L 2 4 5 DROGIMN/64131(1 5 3 2 HR(L 3 72 1 0))466)
+{7123 4556} x+/(4(2 U, U423 186 [11R)x
$(2 U, UDH(2 3 LRe[LIL
1’ U2, U3 are computed direcfly from the shapes of the arrays G and R

directly. “The notation / and . refers to operations using the direct order given

where U

by stream production. The following transformations were used on the inner product:
Assuming ppA is 3 and ppB is 3:
| A +.xB is
(6A)+{1 2 & 5; 3 6}.x¢(3 1 2)¥B
where {1 2-4 5; 3 6} defines the orde? of delivery of the components. The
corresponding stream diagram has alreaay been given. If wévhaV;, for example,
(4 2 3 1)RA+.xB
it becomes, successively,
(4A)+{ (4 2 3 1)RL 2 4 53 3 6}.x6(3 1 2)B
cot {52415 3 6%,
and, finally, '
((2 1 3)%¢A)+{4 15 23 3 6).x(2 1 3% (3 1>2?QB
or A'+{4 1 52; 3 6}.xB'

whose stream diagram is:

st - Lo 9. X i
& —)(_ > 2. $<«0 ‘&, result available ac
@ 3. t< M[;];(—éw
<:jij 4, OX |
5. &2
6. &Y

7. S < (exM[T])4S; O W
8. &1z

()

o3

The splices refer té the following code:
Loo¢ - M[F]-qql

2. if M[n] =1 ..hen C}q C}ql

3. M['rr] “ t:l,C->q2

4. S qq

5. t,«1

6. t3 « M[;];9q4

7. t2 R (1:3 x M[v?]) + t

2
8. t, * (t:5 x t2)+t4;C->q5
9' C‘>q6
10. t4+l ’

11. t5 *—M[%];Qqs

12, C—)q7; {:6+rl+t6

- 13. <—>q6

14, < a3

5. k) <151 «1+on
16.,'_:££M[‘1?]=t4_gh_er_1_b_e_@ T <k g0 to 17 end

elsekl+k + 1

1
17. & q
18. 't6 + 0
19. t7 < t6 X t7
20. t7 «~ 1
21. & dg

33

4

Initial values for the q;¢ (all refer to 1 of the‘appropriate ladder)

1. M - | BT
2. F' (a)
]
3. Rl
4o L
|
5. R2 ~
6. F' (b)
7. H
8. T

The initialization of all arrays, i.e., affect of transposition, reversal, etc,
is omitted. T is the temporary location for R's values until the stream is
completed. Then R points to the values held by T. The temporary storage locations

are t The array;F is the only array temporary storage.

12 Tpreeeaty

The output of the parse is the expression in Polish Postfix Form (PPF)
. or some variant théreof. The compiler proceeds to create "ladder codé“. What
'information is needed: Primarily it is the rank of e?ery.sub—e%pression.
‘When can an APL expression be éompiled? And into what? We assert:
(1) Only functions are to be compiled.

(2) Only function lines whose expressions are rank-inyariant will be compiled.

An expression is rank-invariant iff successive executions find the ranks

of all sub-expressions unchanged from those holding during the first execu-
tion of the expreséion. |

(3) A function is in a compiled state if any of its lines are compiled.

%) vInitially a function is in the uncompiled state. On first execution the
ranks of the actual parameters serve to fix ranks. Any subsequent execu-
tion with different ranks converts the function to the uncompiled state--
and it remains that way.

(5) What is the class of rank-invariant e#pressions? Actually almost all APL

‘expressions are rank-invariant. Those which may not be are those containing

occurrences of:

.(1) function calls
(i1) X p € where X is a computed vector
(1i1) X ¢ f where X is a computed vector
Some functions may be.easily shown éo be rank-invariant (their results are
' ;ank-invariant) so thag
(1) may be changéd to:
(15 Functions calls on functions not known to be rank-invariant.

The flow of control for executing an expression is:

Is the expression rank-invariant?

v N

Has the expression been ’

compiled?

vl L

Transform into standard form

Constrﬁct the net

/N

Execute shape code

Construct shape code

Execute net and
scalar code

Construct sgalar code

Denote the expression

e*i‘ as compiled

34

35

For those operators where thé_raﬁk must be computed, the compiler decomposes
- the expression into disjoint sequences of expressions, disjoint in the sense that
one doesn't commence executing until another has terminated. For each operation
we need kéep note of the 5 connectors (entry, exit result produced, line of result
production'and communicating register) and the identity of the scalar value(s)

transmitted.

A complete example:

H <+« R/(D ° .: =k?E)+.><C

1. The expression is rank-invariant. Let the ranks be:
| array rank
c . 1
E v 2
D . §
' R 1

Since H will be filled in rawel order knowledge of its rank is unnecessary.
However it may be computed to be:
H -2

2. left to right transformations required gléfd1~

H< R/(D) ~ .=¢xE)+{ 1 2; 3 4}-x¢C

¢

the communication registers are: dys s 935 and q

5

-

3. The shapes of the arrays are, of course, variable

array shapes
C gl
E ‘ n2 n3
D . . n4
R : n5

4, The code piece establishes the conformability conditions:
a. if (n2 # nl)‘/(n5 z n3) then error
. . - S ! E V c
6y * CDELIR E Stt‘KEVE) o€ R

The other code pieces are:

Lot < Hn];Cq)
2. &g
3.ty €0 ~)
be oty «t; = M1},
5.ty « (£, x M[T]) + £,350q,
6. < aqq
7. if M[w] = 1 then &3 q,; &> qq

_8.v M[r] « t3; C—}q4

The function call C DELTR E computes:

1 1 - (pgl4chin)
| | +ox 614 c]
0 1 -

t ‘ e ' versg\.
In this case: C is 2 1, GE-iiny 1. ReV k& com‘,“{-es S tor veversg

Entry is to the entry point of D. Exit is to the exit point of D.

References
[1] Falkoff, A. D.. and K, E, Irverson, "APL/360 User's Manual", IBM Corp., 1968.

2] Abrams, P. S., "An APL Machine'"; Ph.D. Thesis, Stanford University, 1970

37

