Yale University
Department of Computer Science

Real-Time Sequence Transmission Problem

Da-Wei Wang Lenore Zuck

YALEU/DCS/TR-856
May 1991

This work was supported in part by the National Science Foundation under grants CCR-
8910289 and IRI-9015570 and by an IBM graduate fellowship.

Real-Time Sequence Transmission Problem

Da-Wei Wang Lenore D. Zuck
Department of Computer Science
Yale University

Abstract

In the sequence transmission problem one process, the transmitter, wishes to reliably com-
municate a sequence of data items (messages) to another process, the receiver. We study a
real-time version of the sequence transmission problem (RSTP) where the messages are taken
from a binary domain and we assume three constants, ¢, ¢2, and d, ¢; < ¢3 < d, such that each
process takes a step at least every ¢; and at most every cp units of time and each packet which
is sent is received within d time units. We define the effort of a solution to be the average time
1t takes the receiver to learn a message.

We study the effort of solution to RSTP as a function of the size of ¢1, ¢z, d, and k—the size
of the transmitter’s packet alphabet. We show tight bounds on the effort of solutions to RSTP
for both the r-passive case, where the receiver sends no packets, and the general case.

Keywords: reliable communication, real time, I/O automaton.

This work was supported in part by the National Science Foundation under grants CCR-8910289 and IRI-9015570
and by an IBM graduate fellowship.

1 INTRODUCTION 2

1 Introduction

One of the simplest and most basic problems of distributed computing is for one process, the
transmitter, to reliably communicate a finite sequence of data items (messages) to another process,
the receiver. We call this the sequence transmission problem (STP). Solving STP with a perfect
channel—one that preserves packet order and delivers each packet within a known amount of time—
is trivial: the transmitter simply sends each data item in turn. The receiver passively waits for
each packet and processes it when it arrives.

Real channels are not perfect. They may delay packets for arbitrary amounts of time, they may
deliver packets out of order, and they may lose, duplicate, or corrupt packets. The data link layer
([BSW69, Car, Zim80)) in a standard protocol model attempts to solve STP under a particular set
of assumptions about the underlying physical link layer (channel). Other common communication
protocols such as virtual circuits, file transfer, and electronic mail are often built on top of this
layer since the protocol designer does not then have to be concerned about the faultiness of the
physical channel.

Solutions to STP date back to the early work on communication protocols (cf. [BSW69, Ste76,
AUY79, AUWY82]). Much of this early work was concerned with optimizing the number of states
or the number of packets under various assumptions about the channel; for example, [AUY79,
AUWYB82] assume synchronous channels in which the loss of a packet can be detected by the
recipient at the next time step.

More recently, there have been extensive studies of STP, over asynchronous channels, with finite
packet alphabets. It was shown that STP can be solved for channels that reorder and delete packets
([AAF+91, TL90]), although the solution cannot be efficient ([WZ89, MS89, TL90]). It was also
shown that STP cannot be solved for channels that duplicate and reorder packets ([WZ89]). The
Alternating Bit protocol ((BSW69)) is a solution to the problem for channels that lose and duplicate
packets.

Most studies of STP assume that channels are “malicious”, i.e., that they can display arbitrary
faulty behavior. Hence, the impossibility results indicate that there are no reasonable solutions to
the problem if the channel’s faulty behavior is unrestricted. This, however, might not be the case
in many applications. We therefore ask whether STP is solvable for channels whose faulty behavior
is restricted. The work in [MS89] is the first step in this direction. There, it is assumed that the
channel’s faulty behavior is probabilistic, and it is shown that there are no efficient solutions to
STP if the channel can lose and reorder packets with some given probability.

Here we pursue another direction by making real-time assumptions about both asynchronicity
of the processes and the behavior of the channel. In particular, we follow [AL89, ADLS90] and
assume three constants, c;, 2, and d, ¢; < ¢; < d, such that each process takes a step at least
every c; and at most every c; units of time, and each packet which is sent on the channel is received
within d time units. We call this version of the problem RSTP.

We distinguish between two types of solutions to RSTP: r-passive solutions are those where the
receiver sends no packets, and active solutions are those in which the receiver sends some packets.
We define the effort of a solution to be the average time it takes the receiver to learn a message.

We first prove lower bound results on the effort of both r-active and passive solutions to RSTP
as a function of ¢;, ¢y, d, and k—the size of the transmitter’s packet alphabet. We next present a
family of r-passive and active solutions to RSTP, all dependent on k—the size of the transmitter’s

2 THEI1/0 AUTOMATA MODEL 3

packet alphabet. The effort of these solutions is only a constant factor worse than the corresponding
lower bound.

Our results are presented in the timed Input/Output automaton formalism introduced in
[MMT90], which extends the I/O automata model introduced in [LT87] and summarized in [LT89].
The formalism is used when presenting the programs run by the transmitter and the receiver, as
well as the channel, by I/O automata. A solution to RSTPis then the timed I/O automaton defined
by the composition of the I/O automata for both processes and the channel, with the appropriate
timing assumptions. We review the relevant parts of the timed I/O automata model in Section 2.

We would like to remark that, although our results are presented in the timed I/O automata
formalism, they hold for other models. We chose this formalism because it has been thoroughly
studied and used in many previous works on STP.

2 The I/O Automata Model

The results in this paper are presented in the I/O automata formalism. We note that the ideas
in the paper are not dependent on this formalism. The I/O automata model was first defined in
[LT87]. See [LT87, LT89] for a complete description of the model. Here, we provide a brief summary
of those parts of the model used in this paper. The timed I/O automata model was introduced and
studied in [MMT90]. Again, we provide only a brief summary of the parts relevant to our work.

2.1 I/O Automata

We assume a universal set of actions which describe the activities that occur during a computation.
We refer to a particular occurrence of an action as an event.

I/0 automata are state machines whose state to state transitions are caused by actions. Actions
can be internal actions, which have no effect on the environment, or external actions, which describe
interactions with the environment. In describing these interactions, it is helpful to classify the
actions involving the automaton as “input” or “output” actions. Input actions originate in the
environment and are imposed by the environment on the automaton, whereas output actions are
generated by the automaton and imposed by it on the environment. In addition, I/O automata
have states and steps (i.e., transitions). Formally, an I/0 automaton A (which we often call simply
an automaton) is described by:

1. Three mutually disjoint sets of actions: in(A), out(A), and int(A). We denote acts(A) =
in(A) U out(A) U int(A), and loc(A) = int(A) U out(A), i.e., acts(A) is the set of A’s actions,
and loc(A) is the set of A’s local actions, namely, the actions that A controls.

2. A set states(A) and a set start(A) C states(A) of A’s start states.

3. A transition relation, steps(A) C states(A) x acts(A) x states(A), that is input enabled, i.e.,
for every input action 7 and state s, there exists some state s’ such that (s,m,8") € steps(A).
(In general, an action 7 is enabled from a state s if for some &, (s,m,8') € steps(A).)

4. A fairness condition, fair(A), described as a partition on A’s local actions with countably
many equivalence classes.

2 THEI/O AUTOMATA MODEL 4

The automaton A is deterministic if for every state s € states(A), (1) for every action 7 €
acts(A) there is at most one state s’ € states(A) such that (s,r,s’) € steps(A), and (2) at most
one local action 7 is enabled from s.

An ezecution a of A is a (possibly infinite) sequence of the form:

So = 81 e T
where so is an initial state of A, and for every ¢ > 0, (si,7it+1,8i+1) is a transition of A. If o is
finite then it terminates in a state. The execution « is fair if one of the following holds:

1. « is finite and no local action is enabled from the final state of a.

2. o is infinite, and for every set of local actions L € fair(A), either actions from L are taken
infinitely many times in a (i.e., for infinitely many ¢’s, m; € L), or actions from L are disabled
infinitely many times in « (i.e., for infinitely many i’s, no action of L is enabled from s;).

Let B be some set and let B’ be some subset of B. For every sequence a over B, we denote by
a|B’ the restriction of a on B’, that is, the sequence obtained from a when all non-B’ elements
are deleted.

The behavior of an execution a of A (and more generally, of any sequence of actions and states
of A), beh(a), is defined to be the sequence a|in(A) U out(A). A fair behavior of an automaton A
is any sequence of the form beh(a), where a is a fair execution of A.

Let A and B be I/O automata. We say that A and B are composable if the only mutual actions
are input of one and output of the other, or input of both. If A and B are composable, their
composition, written as A o B, is an automaton C such that:

1. C’s output and internal actions are the union of the output and internal actions respectively
of A and B, and C’s input actions are the union of A’s and B’s input actions that are not

C’s output actions (i.e., in(C) = in(A) U in(B) — (out(A) U out(B))).

2. C’s state set is the Cartesian product of its component state sets, i.e., states(C) = states(A)x
states(B), and C’s initial state set is the Cartesian product of its components’ initial state
sets.

3. C’s transitions are such that only the components to which the action belongs are affected,
i.e., ((s4,sB),m,(s4,sg)) € steps(C) iff:

(s4,7,s) € steps(A) and sp = sig if 7 € acts(A) — acts(B),
s4 = 8/ and (sp,m,sy) € steps(B) if # € acts(B) — acts(A),and
(sa,m,8!) € steps(A) and (sg,,s) € steps(B) if © € acts(A) N acts(B).

B

4. The fairness condition of C, fair(C) = fair(A) U fair(B). (In other words, actions are in the
same class in C’s partition exactly if they are in the same class in either A’s or B’s partition.)
Note that this is a partition of loc(C) since A and B do not have any locally controlled actions
in common.

3 MULTISETS AND RELATED DEFINITIONS 5

Let o be an execution of C. Then a defines an execution of A obtained by deleting from o
every occurrence of —— s for actions 7 ¢ acts(A), and replacing every remaining state in o with
its A component. We denote the resulting execution by a|A. Similarly, o defines an execution of
B denoted by o|B. Note that « is a fair execution of C iff @|A and a|B are fair executions of A
and B respectively.

2.2 Timed I/O Automata

In order to reason about time in I/O automata model, we assign “times” to events appearing in
executions of automata. The “times” we assign are real nonnegative numbers. The assignment is
such that if event 7; proceeds event 3, then the time assigned to 7, is not greater than the time
assigned to 73, and if an execution is infinite, then the times assigned to its actions grow with no
bounds. Formally, a timing t for an ezecution n = sg, a1, s1,as,... is a mapping from 7’s events to
R* (non-negative reals), such that the first event in 7 is mapped to 0, ¢ is monotonically increasing,
and if 7 is infinite then ¢ grows to infinity. Formally, we require the following;:

1. If 7 is the first event in 7, then #(7) = 0.
2. For every two events, m; and 73 in 7, if 71 precedes 75, then t(m) < t(mz).

3. For every interval [t1,1;] where t;,t; € R*, t(7) € [t1,1;] for at most finitely many events
in 7. .

Given an automaton A, an execution 7 of A, and a timing ¢ for 7, we denote by 7° the pair (7, 1)
and term it timed ezecution. A timing property P for an I/O automaton A is a subset of the set of
A’s timed executions. A timed automaton (A, P) consists of an an I/O automaton A and a timing
property P for A. Let o be a sequence over acts(A). A timing t for o is defined in the obvious
way, and the pair (o,t) is denoted by ot and termed timed sequence. We define timed behaviors
similarly.

Let A and B be I/O automata, and suppose that C = A o B. Every timed execution 7! of
C induces a timed execution on both A and B, which we denote by n*|A and 7n!|B respectively.
Similarly, if 5* is a timed behavior of C, 8! then defines timed behaviors B'|A and BB of A and
B respectively.

3 Multisets and Related Definitions

Let U be a finite set. A multiset over a universe U is a function Q:U — N. For every element
u € U, we define mult(u,Q) = Q(u), which denotes the number of occurrences of » in Q. For two
multisets) and @’ over the same universe U, we say that Q" is a submultiset of Q, written Q' C Q,
if mult(u, Q') < mult(u, Q) for every u € U. The empty multiset is denoted by 0, is the multiset
which has 0 occurences each element, that is, mult(u, @) = 0 for every u € U.

For every multiset ¢ over U and every u € U, QU{u} is the multiset Q’ such that mult(u, Q') =
mult(u, Q) + 1 and mult(v', Q") = mult(v',Q) for all v’ # u.

4 REAL-TIME SEQUENCE TRANSMISSION PROBLEM 6

For every k,n > 1, let multiz(n) denote the set of multisets of size n over {0,...,k — 1}. Note

that b1
. n+k—
[multig(n)| = (k1)

We denote |multiz(n)| by pr(n). Define
Ck(n) = Z/"’k(j)’
J=1

that is, (x(n) is the number of multisets over a universe of size k that contain n elements or less.
Note that, since pui(j) < ur(j + 1) for every j > 1, (k(n) < nur(n).

For every k > 2 and n > 1, let toseq(n): multir(n) — {0,...,k — 1}™ be such that for every
multiset P € multix(n), toseqi(n)(P) is a “linearization” of P, i.e., a sequnece that contains, for
every 0 < j < k, mult(j, P) occurences of j. Let tomultir(n): {0, 1}1°8kx (™)l — multiz(n) be
some one-to-one function that maps every binary sequence z of length |log(ui(n))] to a multiset
Pe multik(n).

4 Real-Time Sequence Transmission Problem

In the sequence transmission problem (STP) there are two processors, the transmitter and the re-
ceiver, which communicate over a bidirectional communication link (the channel). The transmitter
t has some finite sequence of messages X, taken from some finite domain M , which it tries to
transmit to the receiver r. r must write these messages onto an output tape Y. We require that for
all X, at any time, Y is a prefix of X, and if the channel satisfies appropriate fairness conditions,
then every message in the sequence X is eventually written by r.

We consider here a real-time version of STP, where the channel can delay messages up to d
time units, and both t and r take steps within at least ¢; and at most cz time units. We restrict
discussion to cases where |[M| =2 and 0 < ¢; < ¢; < d. Without loss of generality, we assume that
M = {0,1}, and keep M, ¢, c3, and d fixed for the duration of the paper. We denote the real-time
version of the sequence transmission problem RSTP.

Both the transmitter and the receiver are represented by I/O automata, A; and A,. A; and
A; communicate by sending packets to one another through the channel. In particular, t sends
r packets from some alphabet P of packets, and r sends t packets from some alphabet P't of
packets. We assume that for every p € P, send(p) € out(A4;) and recv(p) € in(A,). Similarly, for
every p € P't, send(p) € out(A,) and recv(p) € in(At). The receiver writes the messages it learns,
and we therefore assume that for every m € M, write(m) € out(4,). In addition, each process can
have internal actions, and we assume that the actions set of the processes are mutually disjoint.

Given a packet alphabet P (in this paper, P is always Pt U P, a channel over P is an
1/0 automaton C(P), where in(C(P)) = {send(p) : p € P}, out(C(P)) = {recv(p) : p € P}, and
C(P)’s fair executions consist of all the sequences over acts(C(P)) for which there exists a bijection
between send events and recv events, such that no packet is received before it is sent!. Note that

!See [AAF*91] for a proof that C(P) exists for every P.

4 REAL-TIME SEQUENCE TRANSMISSION PROBLEM 7

in every fair execution of C(P), every send(p) event has a unique corresponding recv(p) event and
vice versa. When P is clear from the context, we denote C(P) by C.

The definition of RSTP includes two assumptions about timing, the first is concerned with
relative timing of A,’s and At’s steps, and the second is concerned with delivery time of packets.
The first clearly has to do with the composition Ay o At, the second has to do with the C’s timed
behaviors.

Let Ay and At be automata as described above. Assume that A = AtoA, and that P = PtrypPrt,
We define (A, Ar) to be the set of A’s timed executions in which the difference of timing between
every two consecutive local (output or internal) events of each of component automaton is at least
c1 and at most c3. Similarly, we define A(C(P)) to be the set of C(P)’s timed executions where
* the difference of timing between every send event and its corresponding recv event is at most d.

Let Ay, At, A, and P be as above. For every execution 7 of A, let X(7) denote the input
sequence of 7. Similarly, let Y'(7) denote the sequence of messages written in 7, i.e., if n|{write(m) :
m € M} = write(m;),write(ms), ..., then Y(n) = my,ma,.... Let good(A) denote the set of
A’s timed executions that satisfy both timing assumptions, that it, good(A) consists of the timed
executions 7* of (A, X(At, Ar)) such that 7¥|C is a timed behavior of (C(P), A(C(P))). We say
that the pair (A, Ar) solve RSTP if for every 7 € good(A), Y (n) = X(n).

We refer to general solutions to RSTP as active solutions. Solutions where A; sends no packets
(P = 0) are termed r-passive.

For every timed execution 7* in good(A), let last-send(7*) denote the last send event in 7¢. The
effort of A, denoted eff{A4), is defined by:

suplim max{t(last-send(n*)) : n* € good(A(n))}

n—oo n

where good(A(n)) is the set of timed sequences 7' in good(A) such that | X ()| = n. The numerator
is the time it takes the transmitter to transmit the input sequence in “good” executions, and
dividing it by n results in the average time it takes the transmitter to transmit a single message
in “good” executions. We then choose the maximal such time among all “good” executions whose
input is of length n, and eff(S) is defined as the suplim of these as n approaches infinity.

We end this section with an example of a solution, (A§, A%}, to RSTP. A{ and Ap are presented
in Figure 1. Obviously, (A, AY) is an r-passive solution to ESTP. We assume that P = P = M,
and that the input sequence is given by z;,...,z,.

The execution of A proceeds in rounds, in each Af transmits a single input element (the input
elements are transmitted in sequence). To transmit an input m, A{ performs a single send(m)
action. It then waits idly for d/c; steps. A has two loca! counters, ¢ that points to the next
message to be sent, and j that counts the 1dle steps. Initially both counters are 0. A{ has one
internal action, waitt, used to enforce At to wait d/c; step ir between transmission of consecutlve
messages.

Ay, following every recv(p) «ction, performs a write(p) action. Since I/O automata do not
allow actions (e.g., write(m)) to be the effects of other actions (e.g., recv(m)), A has to store the
messages it learns and write them when possible. To this end, Af has an array y;,... in which
it stores the messages it receiver. It also has two local counters, ¢ (initially 0) that counts the
number of messages received, and k (initially 1) that counts the number of messages written. A,
has one local action, idler: since A, is required to take local actions at least every cg time units, it

4 REAL-TIME SEQUENCE TRANSMISSION PROBLEM 8

must have some local action enabled when no packet arrives and there are no messages to write.
Consequently, the precondition of idle, is true only when A; has nothing else to do, and idle, has
no effect.
Remark: The assumption that c; < d, guarantees that AY has to store only two messages. We
chose the unbounded array for sake of simplicity.

The fairness partition of (A, A?) has all the local actions in one class.

Transmitter Receiver
send(p): recv(p):
precondition: effect:
j=0and p=az; i:=1t+1
effect: Yii=p
ji=1
write(m):
waity: precondition:
precondition: k<iand m =y
0<j<d/a effect:
effect: k:=k+1
Jji=7+1 idle:
ifj=d/e precondition:
then t: =141 k>1
j:=0

Figure 1: A Simple r-passive solution to RSTP

To see why the protocol presented in Figure 1 indeed solves RSTP, observe that once A sends
a packet, it sends no other packet until it performs d/c; — 1 idle steps, or, alternatively, packets
are sent no less than ¢;d/c; = d time units apart. Since packets can be delayed at most d units of
time, if follows that packets are delivered in the order they are sent. Hence, A® writes messages in
the order they are sent. Let A% = A o AZ. It is easy to see that

eflA%) = 2.
C1

The term d/c; denote the maximal number of steps a process can take in d units of time and
occurs frequently in our discussions. We therefore find it convenient to denote it by §;. Similarly,
the term d/c; denotes the minimal number of steps a process can take in d units of time, and we
denote it by 6.

5 LOWER BOUNDS ON EFFORT OF RSTP SOLUTIONS 9

5 Lower Bounds on Effort of RSTP Solutions

For sake of clarity, we consider only solutions (At, Ar) to RSTP where both At and A, are deter-
ministic. All the results reported in this paper apply to nondeterministic processes as well.

5.1 The r-passive case

Consider an r-passive solution (At,Ar) to RSTP, and let A = At o A,. Assume that P =
{0,...,k =1}, k > 2. Fix At, A, and A for the duration of this section.

Since (At, Ar) is r-passive, in(At) = 0, so that At’s actions depend only on the input sequence.
Since At is deterministic, it follows that the input sequence determines At’s actions. Hence, there
exists some function f; that maps input sequences to sequence of actions, such that for every input
sequence X € M*, for every execution 7 of At such that X(n) = X, n|acts(4) = fr(X).

Let X be some input sequence, and assume fi(X) = aj,az,.... Consider now “fast” timed
executions of A, namely, ones in which At is scheduled every ¢; time units. In such executions,
the packets that are sent in any consecutive §; actions may be received in any order before the
next action (following the é; actions) is taken. We next divide ft(X) to intervals of §; actions, and
consider the multisets of packets sent in each interval. Consequently, we define a function P (X)
from N to multisets over P! such that for every ¢ > 1, P(X)[4] is the multiset of packets sent in
gy (i=1)41s ¢« + +s Abyie

Obviously, if there exists some number, say £, such that in any timed execution 7 € good(A)
whose input is X, last-send(n?) occurs at or before the (£6;)*" local action of At in %t, then the
only “meaningful” information of P'(X) is contained in P (X)[1],..., Pt*(X)[£]. Such an £(X)
is defined, for every input sequence X, by:

[max{|1“7tl : 0t € good(A) and X () = X}]
6 ’

7t = 7* |loc(At) where 7} denotes 7%, truncated after the last send event (last-send(n?)).
Define an equivalence relation =~ on M* by

£(X1) = €(X2) and PY(X;)[i] = P¥(X3)[i] for every i < £(X;)
The next lemma establishes that X; ~ X, iff X; = X,.
Lemma 5.1 For every X;, X2 € M*, if X; = X, then X; = X,.

Proof: We show, by contradiction, that if X; & X3 and X; # X;, then there exist two good exe-
cutions 7 and 7%, whose input sequences are X; and X respectively, such that the receiver cannot
tell these two executions apart. Consequently, it writes the same messages in both executions,
contradicting the assumption that X; # Xo.

The two timed executions, 7} and 7}, are constructed by letting both At and A, take steps every
¢y units of time, starting at 0, and guaranteeing that A, received the same packet, at the same
time, in both executions. This is possible since X; ~ X, and the packets sent in §; consecutive
steps of At can be grouped and delivered in the same order and at the same time in both 7¢ and

5.

5 LOWER BOUNDS ON EFFORT OF RSTP SOLUTIONS 10

It therefore follows that n%|Ar = n%|Ar. Consequently, Y(71) = Y (n;). Since both executions
are in good(A), Y(m) = X; and Y(n2) = X,. Hence, X; = X;, contradicting the assumption that
X; # X,. |

Let n > 0 and consider the set of input sequences whose length is n, denoted by X™. Since
|M| = 2, |X"| = 2". Define £(n) to be max{f(X): X € X"}. There are at most (;(&;) different
multisets over P that contain & or less packets. From Lemma 5.1 it follows that for every X;
and X, in X", PY(X,)[i] # P (X3)[i] for at least one i < £(n). It therefore follows that

(Ce(61)) > 2n.
Consequently,
Un) > —— .
log((k(61))
The following lemma establishes a lower bound on A’s effort:

Lemma 5.2

6261
PA) 2 foete

Proof: Fix some n > 0. Recall that for every timed execution in good(A) whose input is in X",
At goes through no more than £(n) intervals of é; steps before it performs the last send event. Each
such interval takes at most c26; units of time, hence,

max{T(n') : n* € good(A(n))} > (€(n) - 1)é1cz,

where good(A(n)) denotes the set of timed executions in good(A) whose input sequence is of length
n. It therefore follows that

ef(4) = lim 2T : 7' € good(A(n))

n—0c0 n

lim ((n) — 1brez

n—o00 n
. néc;
lim —o1¢2
w0 Tog(Cx(61))n
61 C2
o [|
log(¢k(61))

From the discussion above we derive:

v

v

Theorem 5.3 Let (At, Ar) be an r-passive solution to RSTP, then

6261 — __251__
eff(Ato Ar) > Tog(Cr(61)) Q(log(uk(lsl))).

5 LOWER BOUNDS ON EFFORT OF RSTP SOLUTIONS 11

5.2 The active case

Consider an active solution (A, Ar) to RSTP, and let A = At o A;. Fix A, Ar, and A for the
duration of this section. Unlike the r-passive case where every execution 7 of A, 7|At uniquely
depends on X (7), in the active case 1|A¢ also depends on packets sent by A,. However, for every
X € M*, we can define some unique timed execution in good(A) whose input is X:

Let € > 0 be arbitrarily small. Define two sequences of intervals over the real nonnegative line,
to, 1, ... such that for every i > 0, t; = [i(d —€), (i +1)(d —€)), and {;, . . . such that for every i > 1,
t; = [i(d — €),i(d — €) + €). The intervals are illustrated Figure 5.2.

i1 t2
to fl {2
T X \ i) X
l N] N] A
0 d—e¢ d 2(d—¢€) 2d—¢ 3(d-¢)

Figure 2: Dividing the real line into intervals

For every X € M*, let n(X) be the (unique) timed sequence in good(A) whose timed events
satisfy all the following:

1. For every i > 0, every message sent during ?; is received during #;,;.

2. For every i > 1, the packets received during #; are received uniformally time-wise, that is, if &
packets are received during t;, then they are received ¢/k time units apart, the first received at
i(d—e€). Also, for every j = 1,...,k—1, no j-packets is received in #; before all (7 —1)-packets
have been received.

3. Both At and Ay take steps every c; units of time, starting at time 0.

Similarly to the r-passive case, for every X € M*, define a function PY(X) from N to multisets
over PY such that for every i > 0, Pt(X)[i] is the multiset of packets sent during ¢; in 9%(X). Let
£(X) be such that last-send(n*(X)) occurs during te(x)-

Define an equivalence relation ~ on M* by:

X1~ X3 iff £(X1) = £(X2) and P (X})[i] = PY(X,)[i] for every i < £(X;)
Similarly to Lemma 5.1, we have:
Lemma 5.4 For every X1,X; € M*, if X; ~ X, then X; = X,.

Proof: The proof is similar to this of Lemma 5.1. |

Since in each 7*(X) the transmitter takes a step every cz units of time, the maximum number
of packets that can be sent during any ¢; is §; = (d — €)/c;. A simple combinatorial argument
establjshes that there are Ck(gz) different multisets over a universe of size k that contain no more
than §; elements. Using a counting argument, similar to the one used in the proof of Lemma 5.2,
we get:

6 SOLUTIONS TO RSTP 12

Lemma 5.5
d

B2 G

Since € is arbitrarily small,

eff(A) = (d/ log(Ck(62))) = Q(d/ log(Ci(42)))-
_ The discussion above is summarized in:

Theorem 5.6 Let (At, Ar) be an r-active solution to RSTP, then
d d

Ato Ar) = Q| —F——) = Q ————).

M 40 = orerayy) = gty

6 Solutions to RSTP

As shown in Section 5, the effort of a solution to RSTP depends on the size of t’s packets alphabet:
the larger P is, the least effort the solution requires. Assume that we are given some k£ > 2. Our
goal is to find a solution to RSTP with P = {0,...,k — 1} whose effort is optimal.

6.1 An r-passive Solution to RSTP

Consider A* = (Ag, A7) of Section 4. The effort of A* can be reduced if the transmitter sends
the messages in a somewhat more compact form. In particular, the transmitter can encode several
messages together and transmit them in é; consecutive packets before waiting §; steps for their safe
reception. For every k > 2, we present an r-passive solution (Af (k), Arﬂ(k)) to RSTP with |PY| =k,
where t uses (toseq,(61) o tomultix(61)) to encode sequences of consecutive [log(ux(6;))] messages
into k-ary sequences of length 6;, which it transmits in 6, steps.

For simplicity, assume that |X| = 0 (mod |log(uk(61%))]).

The execution of Af %) then proceeds in rounds, each consists of 26; steps in which Af ®) sends
61 packets containing 6; consecutive elements of X, followed by &; idle steps, to ensure safe delivery
of the previously sent §; packets. The receiver waits for the arrival of §; packets, decodes them
using toseq;(6;), and writes them.

Protocol (Af (k),A}B (k)), which is based on the above ideas, is presented in Figure 3. Since the
encoding/decoding parts are straightforward but tedious, they are omitted. Instead, we assume
that Af(k) is given X, and that A? *) has only to write the elements of X.

The code for Af () uses three local variables, i, initially 1, is the index of the next X value to
be sent, c, initially 0, counts steps in each round: when A sends packets, ¢ goes from 0 to 6;, when
Af (k) waits, ¢ goes from 6; to 24;. Af *) has one internal action, waity whose role is just like that
of waitt in Ag.

Af ®) uses i, initially 0, to count the X values received, 91,... to store these values, and k,
initially 1, to count the values written. It also uses a multiset A, initially empty, to store the

packets it receives in each round. A,ﬁ *) has one internal action, idle;, which is just like that of idle,
in A?.

6 SOLUTIONS TO RSTP

13

Transmitter Receiver
send(p): recv(p):
precondition: effect:
i<|X]and 0 < c< 6 A:=AU{p}
and p = &; If |A| = 6
effect: then (§it1,...,Jits,) := toseqy(61)(4)
1:=14+1 1:=1+4+ 6
c:i=c+1 A:=0
waity: idle:
precondition: precondition:
b <ec< 28 k>
effect:
c:=c+ 1(mod2é6,) write(m):
precondition:
k<iand m = g
effect:
ki=k+1

Figure 3: An r-passive solution to RSTP

Lemma 6.1 For every k > 2, (Af(k),A'rG(k)) is an r-passive solution to RSTP with |PY| = k.

Proof: We show, by induction on [, that in every timed execution 7* of (At'6 (k), A,ﬁ(k)), for every
l < |X(n)| such that I = 1 (mod 6y), (1) eventually the precondition of waity is true and then
Af (k) 4 equals | > §;, and (2) if the precondition of wait; is true with the transmitter’s i equals
to I, then eventually Af(k) sets s,y .-y Yi—1 10 E1—g,y.. ., 11,

(1) follows immediately from the code. We show only the base case of (2) and leave the inductive
step to the reader. The precondition of wait; becomes true only after Af) sends 61 packets. All
of these packets are received by time t + d, where ¢ denotes the time A’ta *) sends the last among
those §; packets. After Af *) sends the 61 packets, it sends nothing until it takes additional 6, steps
where it sends no packets, or, equivalently, Af *) sends no packet during (¢,¢ + d]. Consequently,

by t +d, A}e) receives exactly the é; packets Atﬁ *) sent before the precondition of wait; became
true. The claim trivially follows. |

Let A%%) be AP(®) 6 4P®) Lot 5t be a timed execution in good(AP(*)) and assume that | X (n)| =
n. 0 can be divided to n/|log(6; + 1) blocks, each containing 26; steps of Af *) Since each step

6 SOLUTIONS TO RSTP 14

takes at most ¢, time units, it follows that

t(last-send(n?)) < 261¢2.

[log(kk(61))]
Consequently,
ef(ABK)y < 26201
TA™D < gt

6.2 An Active Solution to RSTP

The active protocol is similar to the r-passive protocol?. The differences are that in the active proto-
col §; replaces 6; of the r-passive protocol, and that in the active protocol the receiver acknowledges
each packet received. Consequently, The transmitter, after sending 6, values of X, waits until it
receives 6, acknowledgements, denotes by ack packets, before sending the next é; values of X.

Protocol (Az(k), A}Y(k)), which is based on the above ideas, is presented in Figure 4. As in Figure
3, we assume that Az(k) is given X, and that A7) has only to write the elements of X.

In addition to the local variables that Af (k) uses, Az(k) uses a, initially 0, to count the number of
ack packets received in each round. In addition to the local variables that A}B(k) uses, A?(k) uses 7,
initially 0, to count the number of of unacknowledged packets, so that at any time, 0 < j < |4] < é,.
Note that A}Y(k) has, in addition to all the write output actions, also a send(ack) output action, and
Az(k) has a recv(ack) input action.

Similarly to Lemma 6.1, we can prove:

Lemma 6.2 (Az(k),A;'(k)) is a solution to RSTP.

Let A7) = Az(k) o AT®. Consider any execution 7' in good(A*(¥)). Let ¢’ be such that in nt,
the transmitter sends the first packet in some block of 6, values of X at time t'. Obviously, the
transmitter’s first packet arrives to the receiver by time #'+d, the receiver sends an ack to the packet
by time t' + d 4 ¢;, and the ack packet arrives to the transmitter by time ¢’ + 2d + c,. It therefore
follows that the transmitter’s 65" packet is sent by time ¢’ + 65co = ' + d, and is acknowledged by
time ¢’ + 3d + ¢z. By this time, the transmitter can start sending the next X block. Hence, each
block of &, values of X, which corresponds to a block of [log(px(62))] values of X, is transmitted
in at most 3d + ¢, units of time. It therefore follows that:

) 3d + ¢
)< Tog(an(&aP)]

Note that eff{ A#(*)) and ef{ A7(¥)) are asympotically optimal according to the results of Section
5.

2The protocol described here is due to an idea of Richard Beigel

e Ak

7 CONCLUSIONS AND FUTURE WORK

15

Transmitter Receiver
send(p): recv(p):
precondition: effect:
i < |X|and ¢ < & and p = &; Ji=j+1
effect: A= Au{p}
i:=i+1 IfIA!=62
c:=c+1 then (fiy1,...,Jits,) := toseqy(62)(A)
7 = i + 62
recv(ack): A:=0
effect:
a:=a+1 send(ack):
if @ = 8, then precondition:
a:=0 37>0
c:=0 effect:
ji=3-1
idlet:
precondition: idler:
c= 6 precondition:
’ k>iand j =0
write(m):
precondition:
k<iand m =
effect:
k=k+1

Figure 4: An active solution to RSTP

7 Conclusions and Future Work

In this paper we study RSTP, a real-time version of STP, where we assume three constants,
¢1 < ¢ < d such that each process takes step at least every ¢; and at most ¢, units of time,
and each packet is delivered up to d units of time after it is sent. We present a notion of effort,
which intuitively is the average length of time it takes the receiver to learn a single message. We
then investigate the effortof solutions to RSTP as a function of c1, ¢2, d and k—the size of the
transmitter’s packet alphabet. We distinguish between r-passive solutions where the receiver sends
no packets, and general (active) solutions.

In particular, we show that the effort of every r-passive solution to RSTP is Q(6c,/ log(pk(61)),
where 6; = d/c; and pg(6;) is the number of multisets of 6, elements over a universe of k elements.
We also show, for every k, an r-passive solution to RSTP whose effort is O(b1¢2/log(pk(61))) where

REFERENCES 16

the transmitter’s alphabet is of size k.

Similarly, we show that the effort of every active solution to RSTP is Q(d/ log(ux(62)), where
63 = d/cy and pr(62) is the number of multisets of §; elements over a universe of k elements. We
also show, for every k, an active solution to RSTP whose effort is O(d/log(uk(62))) where the
tranmistter’s alphabet is of size k (and the receiver’s alphabet consists of a single packet).

There are many other ways to impose real-time restrictions on the system. For example, we can
replace d by two constants, d; < dy, that determine the time range in which a packet is delivered,
or we can assume that each process is associated with its own ¢; and c,, within whose range it
takes steps. It would be interesting to see whether our results can be generalized to other such
real-time systems.

Acknowledgement:

"We would like to thank David Greenberg and Mike Fischer for helpful discussions, Richard Beigel
for suggesting an active protocol, Stan Eisenstat for pointing out to us that our “lim” should have
been “suplim”, and Drew McDermott for suggesting “effort” instead of “efficiency”.

References

[AAF*91] Y. Afek, H. Attiya, A. Fekete, M. J. Fischer, N.A. Lynch Y. Mansour, D. Wang, and
L. D. Zuck. Reliable communication over unreliable channels. Manuscript, 1991.

[ADLS90] H. Attiya, C. Dwork, N. A. Lynch, and Larry Stockmeyer. Bounds on the time to reach
agreement in the presence of timing uncertainty. Manuscript, October 1990.

[AL89] H. Attiyaand N. A. Lynch. Time bounds for real-time process control in the presence of
timing uncertainty. In Proc. 10th IEEE Real-Time Systems Symposium, pages 268-284,
1989. To appear in Information and Computation.

[AUWYS82] A. V. Aho, J. D. Ullman, A. D. Wyner, and M. Yannakakis. Bounds on the size and
transmission rate of communication protocols. Comp. & Maths. with Appls., 8(3):205-
214, 1982. This is a later version of [AUY79).

[AUY79] A. V. Aho, J. D. Ullman, and M. Yannakakis. Modeling communication protocols
by automata. In Proc. 20th IEEE Symp. on Foundations of Computer Science, pages
267-273, 1979.

[BSW69] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex
transmission over half-duplex links. Communications of the ACM, 12(5):260-261, May
1969.

[Car] D. E. Carlson. Bit-oriented data link control. In P. E. Green, editor, Computer Network
Architecture and Protocols. Plenum New York.

[LT87] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. In Proc. 6th ACM Symp. on Principles of Distributed Computing, pages
137-151, August 1987.

REFERENCES 17

[LT89]
[MMT90]

[MS89]

[Ste76]
[TL90]

[WZ89)

[Zim80)

N. Lynch and M. Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3):219-246, September 1989.

M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. Manuscript,
August 1990.

Y. Mansour and B. Schieber. The intractability of bounded protocols for non-FIFQ
channels. In Proc. 8th ACM Symp. on Principles of Distributed Computing, pages
59-72, August 1989.

M. V. Stenning. A data transfer protocol. Computer Networks, 1:99-110, 1976.

Ewan Tempero and Richard E. Ladner. Tight bounds for weakly bounded protocols. In
Proc. 9th ACM Symp. on Principles of Distributed Computing, pages 205-218, August
1990.

Da-Wei Wang and Lenore D. Zuck. Tight bounds for the sequence transmission prob-
lem. In Proc. 8th ACM Symp. on Principles of Distributed Computing, pages 73-83,
August 1989.

H. Zimmermann. OSI reference model—the ISO model of architecture for open systems
interconnection. IEEE Transactions on Communication, COM-28:425-432, April 1980.

