Recursively Generated Neural Networks

Eric Mjolsness, David H. Sharp, and Bradley K. Alpert !

Research Report YALEU/DCS/RR-549 |
June 1987]

Recursively Generated Neural Networks

Eric Mjolsness
Computer Science Department, Yale University

David H. Sharp
Theoretical Division, Los Alamos National Laboratory

Bradley K. Alpert

Computer Science Department, Yale University

Abstract

One difficulty with existing methods of learning neural networks is that the networks which
are learned often have no regular pattern. As a result, learning large networks requires a
prohibitively large search and the learned networks cannot be automatically generalized to
larger sizes. When a network to perform an algorithmic computation is to be learned, however,
regularity is possible and desirable. We introduce a method, the Recursive Learning Network
formalism, using the ideas of divide-and-conquer and superposition, to produce hierarchically
structured networks which scale automatically. Initial experiments using the formalism are
described.

Existing methods of learning neural networks suffer the difficulty (Rummelhart et al, 1986;
Lapedes and Farber, 1985) that the synaptic weights comprising a network which is learned may
be very irregular. Even when the network is to perform an algorithmic computation, it will usually
become encoded as extremely complex connections of neurons. Suppose for instance a network is
to learn to count the (maximal) sequences of contiguous 1’s in a binary input (“blob” counting).
There are some obvious ways to wire a network for this task, each of which is very regular and can
be generalized to any length input. When current learning methods are applied to this problem,
however, irregular, non-generalizable networks result (Denker, 1986).

Network irregularity presents two problems: first, a very large space of possible networks must
be searched to find the final network; second, the network cannot be automatically generalized to
larger networks.

Both of these problems can be prevented by requiring the network to be structured. We propose
a method, the Recursive Learning Network formalism, to produce hierarchically structured networks
which scale automatically. In this paper we describe the formalism and initial experiments in using
the formalism to learn simple networks.

Formalism

The formalism is founded on the principles of divide-and-conquer and superposition. The first
principle, divide-and-conquer, is fundamental in designing many types of algorithms, while the
second, superposition, has proven useful in neural network design. To illustrate how these principles
are embodied in the structured representation of networks, it is simplest to jump into an example.

Consider the following matrix which represents the connections of a simple chain of neurons:

()

O OO0 O0OO0O0
OO0 OoOROOOO
OO mOlOO0O0CO
o< OO0 O0OCOC

C OO0 0O0O O
OO0 OO0 O+
OO0 OO0~ O
oo oOoo0ojlo~ OO

\)

Here a 1 in position (,) denotes a connection from neuron % to neuron j. Thus the matrix represents
a chain of neurons in which the first is connected to the second, the second to the third, etc. The
matrix may be viewed as four quadrants such that the upper-left and lower-right resemble the entire
matrix, the upper-right contains a single 1 in its lower-left corner, and the lower-left quadrant is all
geroes. If a template is used to define the connection matrix, we may informally write

T T . 0 0 .
7’1=(0‘ 7::’),7'1_—_0, 7;:(7,2 0),7'2=1. @

To expand a matrix represented by template T;, each of the four quadrants is expanded, according
to the specified template. When a quadrant consists of just one element, the template’s starred or
“bottom” value is used. This notion of template may be generalized somewhat so that each quadrant
is expressed as a linear combination of templates with real-number weights.

A limitation of the scheme described so far is that we have assumed that a matrix is successively
divided in half horizontally and vertically, which restricts us to very regular 2* x 2* connection
matrices. This restriction is removed by adding the notion of a lineage tree, which specifies where
the divisions in the matrix rows and columns occur. In the special case above, the lineage tree
is a balanced binary tree, a member of the class of all balanced trees, which share the recursive
description B(n) = (B(n— 1), B(n— 1)) with base case B(0) = LEAF. (We use the notation (L, R)
to mean a tree with left subtree L and right subtree R.)

Consider as another example a class of Fibonacci trees, defined by F(n) = (F(n — 2), F(n — 1))
and F(1) = F(2) = LEAF. The first few trees of this class are shown in figure 1. In generating

AN

10 11 00 01 10 00
110 111 010 011 100 101 110
1110 1111

Figure 1: Fibonacci trees of size 1, 2, 3, 5, and 8, with leaf labels.

connection matrices of side length 1, 2, 3, 5, and 8, these trees may be used as lineage trees to label
the entries. Rows and columns are labelled independently, with the nt* row or column labelled with

the path to the n” leaf in the tree. Sizes 3 X 3 and 5 X 5 are given as examples

Too,00 Too,o1r Too,ro Too,110 Too,111

To,o To,0 Toa1 Toi,00 Toi,on Toiio Toizo Torau
Ti0,0 Tio,00 Tion Tw,00 Tiwoor Tioao Tiouzo Tioan
Ti10 Tii0 Tun Ti10,00 Tir001 Tito,10 Tiroa10 Tiro,111

Ti11,00 Thizor Tiizge Tunazo Tiagin

Matrix entry labels determine which templates apply. Before presentmg an example, we mtroduce
one more definition: if the occupant of the upper-right quadrant of T; is T2, then we say Do 1=1
Here the subscripts refer to the quadrant row and column and the superscripts refer to the containing
and contained templates. As an example, if the 5 X 5 connection matrix is specified by template
T2 and the 5-leaf lineage tree, then Tp1,01 = Téf?m =3 Dg:f,Tl(g where ¢ ranges over all possible
templa.tes. Here a superscript on a T denotes the template being expanded. Advancing one more
step, T1 1= 2; Dy 3 \T;. In each step the most significant bit of the row and column labels is

removed, until in the ﬁnal step the template base values are used. Again, Df,:b denotes the weight
of template d inside template c in the quadrant with coordinates (a,b). For templates T; and T3
above, Dé:(l) =1, Dé: =1, D1 1= D2 2 =1, and Da » = 0 otherwise.

The case in which the row and column labels of a matrix entry are different lengths has not
been treated. What then is the value of T119,017 We pad the shorter label on the right with a new
symbol, 2, until the lengths are equal, and extend the templates with the symbols D% '2 a.nd Dg’:,

*

where a and b take the values 0, 1. To simplify the notation, we may further define D2 2 = 5,

D"’ =0for: # j, and Te(fe) = 1, where ¢ is the empty string. Then adding a 2 to the longer label
a.nd padding the shorter label to the same length with 2’s, we have T110,01 = T110,012 = T1102,0122-
Using this convention, in general we have

T®) — Z D T0) (2)
J

Tor1.--Tn,C0C1..-Cn 70,60 1.--Tn,C1..-Cn "

In the equation, 5 ranges over the set of templates, ror;...r, is the (extended) row label, and cocy...cn
the (extended) column label. This equation may be rewritten with the recursion expanded, so

TS comoesein = 2 Doy 2 DI 22 DI (3)
Jo N Jn

In this form it is evident that the connection matrix is a generalization of a tensor product, the added
generality coming from the summations. This equation is fundamental in defining the meaning of
the templates and lineage trees. Through the recursive application of the templates as prescribed
by the lineage tree, the formalism embodies the principle of divide-and-conquer. The summation
makes it possible for several networks to be superimposed, a technique generally useful in network
design.

The Recursive Learning Network formalism has great expressive power. It allows networks to
contain arbitrary interconnections, including cycles. Among the networks which have been concisely
expressed using the formalism are an n-dimensional cyclical grid of neurons and a feedforward base-
2 to base-3 conversion network. The algebraic form for the connection matrix entries will permit
conjugate gradient minimization of an objective function.

Experiments

We have begun to explore the learning of networks expressible with the formalism. We are par-
ticularly interested in producing networks to perform an algorithmic computation by training the

templates on small-size inputs and then testing them on larger inputs. This approach is possible
since a set of templates and a recursively-described class of lineage trees together describe a class
of networks. Training on the small-size inputs is supervised through an objective function (energy
function) to be minimized. Although conjugate gradient minimization is a potential search method,
we have experimented with simulated annealing. In our procedure, a random change made to the
templates is always accepted if it results in a decrease in energy; with an energy increase, it is
accepted with probability

Pr(accept | AE > 0) = ¢~ 2E/T (4)
where T is the temperature, according to the method presented by Kirkpatrick et al (1983). The
temperature is varied as the simulation progresses, starting at a high value, where most changes are
accepted, then slowly decreasing to a low value, where most accepted changes are very slight.

The particular task to be learned is a continuous coding task: given an input of length n consisting
of 0’s and exactly one 1, transform it to an output of length 2logn such that when two inputs are
geometrically close, their outputs are close in Hamming distance; likewise, if two outputs are close
in Hamming distance the corresponding inputs should be close in geometric distance. We have tried
both continuous- and discrete-valued neurons for this problem. The energy function in both versions

is given as 2
1 i—g|° 1
8= S [[52] - smgmtranmins e ©
where
dHamming (O,‘, 0.1') = Z (o’.“ - o,-a)2 (6)
a

where o ranges over the code positions, and p is a parameter of the task (0 < p < 1). Thus the
goal is a sort of gray code. A more complete description of the task is found in Mjolsness and
Sharp (1986). The task is significant because it is one of a class of conversions from sparse to dense
representations which preserve information. In this case, an acceptable dense representation will
also be noise resistant, so that a small error in the representation produces only a small change to
the value represented.

If the goal of the search were to minimize solely the task energy function, there would be no
assurance that the succinctness possible with the templates would be achieved. In addition to the
task energy, there should be an energy associated with the complexity of the templates found. We
define the parsimony energy to be

P= > iz 7

a,b,c,

where M is the number of templates. The summand is intended as a continuous version of the
function which is zero at 0 and one elsewhere, hence penalizes non-zero template entries. Adding the
parsimony energy to the task energy increases the likelihood that the templates will be appropriate
for inputs larger than those present in the training set.

Equipped with this combined energy function, the search routine is given all inputs of lengths
4, 8, 16, and 32. In addition, for these early experiments, a class of lineage trees is also supplied.
The ntP lineage tree provides for 2" input neurons and 2n output neurons and no interneurons. The
inputs tree is balanced and the outputs tree is nearly balanced, adding new leaves from left to right.
The recursion describing this class of trees is A(n) = (B(n), Ci2n)), where B(n) is defined above,
and C(n) = (C(k),C(n — k)), where k = max{2llo8an]=1 n — 2lloganl} with C(1) = LEAF. (The
definition of a simpler class of nearly balanced trees could have been C(n) = (C([n/2]),C(|n/2])),
with C(1) = LEAF.)

After the search terminates, the discovered templates are used to produce solutions for inputs of
size 64 and 128. The performance of the searches for the discrete-valued neuron case is summarized
in the graphs of figure 2.

Search Results 18 Scaling Results
3 .

- Size 64/
Size 32

With Templates

-~

Size 128/ ——»
Size 32

0.4 Al

Figure 2: The left graph compares the solutions obtained by a search using the templates to one
without them, by comparing the resulting energies. In the right graph, the templates show their
value by scaling the solutions to larger input sizes, on which no training occurred.

The first graph shows a comparison of the result for size 32 using templates with that employing
a simple hillclimbing procedure. Both lines represent the average results from three searches for
each value of p. It is apparent that the hillclimbing procedure finds somewhat better solutions as
measured by the energy function (though the solutions are irregular networks which have no larger-
size analogs). We feel this reflects a shortcoming of the current search procedure, rather than trouble
with the formalism, because we are able ourselves to describe better solutions succinctly within the
formalism.

The second graph shows how well the template solutions scale up to sizes 64 and 128, by com-
paring the energies for those sizes with the energies for size 32. For most values of the problem
parameter p, energies on the larger sizes are approximately equal or less than those for size 32. This
demonstrates that although optimal solutions were not found, the solutions scale well to handle
larger inputs than were in the training set.

The results from the continuous-valued neuron case were less consistent. Many of the solutions
obtained were of low quality, but occasionally there were favorable surprises. For p = 1, we know
the optimal code to take the form of a triangle, when the codes for increasing inputs are placed in
sequence. For n = 32, this pattern would look something like

k%

ok 3k sk 3k Xk k

ok 3k e ok 3 e ok ke

ok ok sk 3k 3 3k ok ok ok ok %k %k

sk 3 e sk 3 e ke ok e 3k sk sk sk ok Sk

3k 2k ok ok ok 3k ske ok 3k ok 3k 3 ke ok ok ok sk ok

2k ok ok ok 3k ok ok 3k 3k 3k 3k 3k ok ok ok ok ko 3k %k 3k

ke ok ok ok ok ok ok ok 3k 3k 3k ok 3k 3k ke k sk ok ok ok 3k ok ok ok

ok ok ok 3k ok ok sk ok e ok ok ok e ok ok ok sk ke ke ok ok ok sk ok ok ok k-

sk 3k ok 3k 3k 3k ok 3k o b ke e 3 ok ok ok ok 3k 3k ok ok ok ok ok sk ok ok ok k

where a code bit of 1 is shown as * and 0 as a blank. The difficulty in general is that 2logn does
not evenly divide n, so the triangle will have a jagged edge. One code actually found (twice), along
with the output side of the lineage tree, looked like this:

ok ok ok ok ok sk sk ok ok ok 3k 3k ok ok ok ok ok sk sk 3k e e Sk ok ok ok ok 3k 3k ok ke ke
sk sk ole 3k 2k ok ok 2l ok 3k 2k ok ok ok ke ok 2k e ok ok ok ok ok 3k ok ok ke 3k ok Sk
ale ok ok ok ok 3k sk 3k ke ke ok ok ok sk ok 3k Sk ke e ke ok ke ke sk sk sk ok ok
3k 3k 3 3 3k 3k ok ok ok sk ok sk ok 3 ok ke ok ok ok ok ok 3k 3k 3k ok ok
ke ok ok ok ok ok ke ok
ke ok e 3k 2k ok ok ok 3k o ok ok
ok 2k ok ok ok ok ok ok ok sk sk sk sk ok ok ok
K sk ok ok sk ok 3k ok 3k ok e e ke ok sk sk ok ok 3k ok
ke ok sk ok sk Sk ok ok 3k 3k 3k ok ok ok ok ok ok ok 3k 3k sk sk ok %k
2k ok ok ok ok ok ok ok 3k 3k o 3k 3k ok ok ok ok ok ok ok ok 3k ok ok ok ske sk sk
Energy: 0.00557

Complementing the bits in one row does not alter the code quality, so this code is close to optimal.
Observe that in the solution found, each output leaf at the greatest depth produced an “increment”
of 2 and each output leaf at the next depth produced an increment of 4, or twice as much. This
procedure always produces increments which sum to n = 2*. A look at the code produced by the
same templates for n = 64 confirms the pattern:

seokokok
ke 3 e sk ok e ok ke
ke ok 3k 3k 3k ok ok sk 3k ok ok ok
4 2k sk ok sk ok ok ok 3k 3 e o e ok ok ok
sk sk sk o ok sk 3k ke 3k e ok ok s ok ok e sk ok dk ok
3k 3k 3k sk 3k 3k 3k ok 3 ok ok ok ok ok 3k ok sk e ok ok ok ok ok ok
ke ok sk ok 3k ok ok ok 3k 3 3k e e ok ok ok ok sk 3k e e ke ke ok ok sk ke k
. ok 3k 3k sk ok ok sk ok ok sk 3 ok ok ok ok ok 3k 2k 2k ok ok sk ok ke sk ok ok ok ok ke k k-
sk e 3k o ke sk e ok e ke ok e ok ok e ke 3k ke ok ke sk ke ke ok
sk ok 3k e ok ok ok ok ok Sk ok 3k ke ok ok ok
3k ok ok 3k sk 3k 3k K

Energy: 0.00604

The templates corresponding to the codes above are quite simple. Expressed in the augmented
informal notation used above, they are:

T Ti+Ta O T 0 0
Ti=|-Tn+T i 0 |, Ta=|3Ti+3T T O (®)
-Ti -7 11T, 0 0 6T,

In the search, four templates were available; only the first and fourth were used. This solution scales
up indefinitely, with pretty good results. We were encouraged that this solution could be found
and feel that an improved search procedure would be better at finding such solutions consistently.
Apparently the simulated annealing search requires a very slow annealing schedule to work properly,
slower than was practical for us. In its place we propose a search which uses simulated annealing
for just the combinatorial problem of determining which template entries should be non-zero, com-
bined with conjugate gradient minimization over the templates with specified non-zero entries. This
method would also allow the discontinuous parsimony function to be used.

Summary

We introduced the Recursive Learning Network formalism to provide a language for succinctly
representing connection matrices. It is based on the ideas of divide-and-conquer and superposition
and has the benefit that elaborate, yet regular, connection matrices are represented with only a few
parameters. This simplicity reduces the search necessary to construct networks of moderate size
and makes possible automatic scaling to larger sizes. In initial experiments using the formalism to
construct networks for the continuous coding problem, some quite good solutions were found for the
case where the optimum is known and these scale very nicely. The consistency of solutions found
could be improved, though, with a search procedure combining simulated annealing with conjugate
gradient minimization. We are quite optimistic that with this better search procedure, the Recursive
Learning Network formalism will enable the discovery of quality solutions that continue to scale well,
a goal which has not be achieved by methods lacking structured representations.

Bibliography
Denker, John, in talk presented at Institute for Theoretical Physics, Santa Barbara, California,
December, 1986

Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,” Science,
vol. 220, p. 671, May 13, 1983

Lapedes, Alan, and Robert Farber, “Programming a Massively Parallel, Computation Universal
System: Static Behavior,” Los Alamos National Laboratory, LAUR 86-1179, 1986

Mjolsness, Eric, and David H. Sharp, “A Preliminary Analysis of Recursively Generated Networks,”
in Neural Networks for Computing, John Denker, editor; American Institute for Physics, 1986.

Rummelhart, D. E., G. E. Hinton, and R. J. Williams, “Learning Internal Representations by Error
Propagation,” in Parallel Distributed Processing: Ezplorations in the Microstructure of Cognition
(Volume I), MIT Press, 1986

