We introduce a new class of methods for the Cauchy problem for ordinary differential
equations (ODEs). We begin by converting the original ODE into the corresponding
Picard equation and apply a deferred correction procedure in the integral formulation,
driven by either the explicit or the implicit Euler marching scheme. The approach
results in algorithms of essentially arbitrary order accuracy for both non-stiff and
stiff problems; their performance is illustrated with several numerical examples. For
non-stiff problems, the stability behavior of the obtained explicit schemes is very
satisfactory and algorithms with orders between 8 and 20 should be competitive with
the best existing ones. In our preliminary experiments with stiff problems, a simple
adaptive implementation of the method demonstrates performance comparable to
that of a state-of-the-art extrapolation code (at least, at moderate to high precision).
Deferred correction approach based on the Picard equation appears to be a promising
candidate for further investigation.
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Spectral Deferred Correction Methods for Ordinary
Differential Equations

1 Introduction

The construction of efficient, stable and high order methods for solving initial value problems
governed by systems of ordinary differential equations (ODEs) is, in many respects, a mature
subject [1, 2, 6, 9, 10, 13]. Existing methods for such problems can be classified, coarsely
speaking, into two groups. The first group consists of intrinsically high-order discretization
schemes (Runge-Kutta methods, linear multistep methods, etc.) and the second group con-
sists of methods based on accelerating the convergence of low-order schemes through the
use of Richardson extrapolation or deferred correction. For non-stiff problems, there exist
extremely effective discretizations of order up to twelve or so, at which point the stability
constraints imposed on the schemes become too severe. From that point on, most prac-
titioners recommend extrapolation. For stiff problems, the situation is considerably more
complicated. Implicit Runge-Kutta methods possess excellent stability properties, but are
very expensive when high order accuracy is required. Implicit multistep algorithms can have
very high order convergence, but tend to have relatively poor stability properties. Most
practitioners, therefore, recommend some form of Runge-Kutta (or backward differentia-
tion) method for orders up to five or so, and again turn to extrapolation when higher order
accuracy is needed. These extrapolation methods, while effective, are still expensive, since
they require computing a sequence of solutions on finer and finer grids. Although deferred
correction approaches also require computing a sequence of solutions, they are more efficient
in theory; the convergence rate can be made to increase more rapidly and the same underly-
ing grid is used on each sweep. Because of various numerical instabilities, however, their use
has generally been limited to the conversion of second-order accurate solutions into fourth
or sixth-order accurate ones.

In this paper, we present a new version of the deferred correction approach. It is based on
replacing the original ODE with the corresponding Picard integral equation and discretizing
the interval on which the ODE is to be solved into a composite Gauss-Legendre grid. We
then solve the integral equation approximately with either the explicit Euler method (for
non-stiff problems) or the implicit Euler method (for stiff problems) and correct the solution
to higher and higher order accuracy by solving a sequence of “error” equations on the same
grid with the same marching scheme. Because we use spectral integration [7, 8], we refer to
this class of methods as spectral deferred correction (SDC) methods. For non-stiff problems,
the approach results in algorithms of essentially arbitrary order accuracy. Moreover, as
can be seen in section 5.1 below, the stability behavior of the resulting schemes is very
satisfactory. Our preliminary tests indicate that the schemes with orders between 8 and 20
are roughly competitive with the best existing ones. Our principal goal, however, is the stiff




case, especially in the environment where high precision is required. Since our stiff schemes
are driven by the implicit Euler method, we do have to solve systems of (generally) non-linear
equations at each time step; unlike general implicit Runge-Kutta techniques, however, we
do not need to solve systems of equations whose dimensionality is greater than that of the
underlying ODE.

In certain respects, this paper should be viewed as an experimental one. While the
convergence rates of the techniques we present are easily proven, their stability properties
are established numerically. For orders up to 5, we have obtained schemes that are both
L-stable and A-stable. For orders up to 30, we have obtained schemes that are L-stable and
A(a)-stable, with o extremely close to 90° (see section 5.2 below). We have no analytical
reason to believe that A-stable schemes of order 6 or higher do not, in fact, exist.

To fix notation, we assume that the initial value problem to be solved is in the standard
form

') = F(t (1)) t € [a,b] (1)
pla) = ¢a, (2)

where ¢,,p(t) € C* and F : R x C* — C". Requiring that F € C*(R x C") is, of course,
sufficient to guarantee local existence and uniqueness of the problem (1), (2). Since we
are interested in high-order methods, however, we suppose throughout that F is sufficiently
smooth. Unless otherwise stated, we assume that the dimension of the system n = 1, since
it makes much of the discussion less cumbersome.

The structure of this paper is as follows. In section 2, we introduce several analytical and
numerical prerequisites, in section -3, we describe the classical deferred correction scheme
and the difficulties it encounters, and in section 4, we describe the new spectral deferred
correction approach. In section 5, we investigate the stability and accuracy properties of
a variety of SDC schemes and in section 7, we illustrate the performance of these schemes
with several examples. In section 8, we discuss possible extensions and generalizations of
the approach.

2 Analytical and Numerical Preliminaries

In this section, we summarize several well-known facts from numerical analysis. First, sup-
pose that we are solving the problem (1), (2) numerically on the interval [a, 8], obtaining an
approximate solution &(b). The two critical characteristics of such a scheme with which we
are concerned here are its order of accuracy and its (stiff) stability. A numerical method is
said to be of order of accuracy or order k if, for any sufficiently smooth F', there exists a real
constant K > 0 such that

16(8) — (B)ll < K - (b~ a)**. (3)
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The suitability of a numerical method for stiff problems is generally analyzed by applying it
to the equation

O'(t) = A-o(t) t€0,1]
e(0) = 1, (4)
The amplification factor, Am(A), for A € C is defined by the formula
Am(3) = §(1). ®)
If, for a given value of A,
| Am(}) [<1, (6)

then the numerical method is said to be stable for that value of A. If a method is stable for
all A in the left-half plane (Re(A) < 0), then the method is said to be A-stable. A method
is said to be A(a)-stable if it is stable for all A such that 7 — a < arg()) < 7 + @. Thus,
A-stability is equivalent to A(a)-stability with @ = 90°. Finally, a method is said to be
L-stable if

Re(,l\l)T—oo Am(A) = 0. )

2.1 The Picard Integral Equation

Integrating equations (1) and (2) with respect to ¢, we obtain the equivalent Picard equation

olt) = @+ [ F(r,0(r)ir (8)

Suppose now that we have obtained an approximate solution ¢°(¢) to (8). A measure of the
quality of the approximation is given by the residual function

(t) = pat [ Flo,e%s))ds — 9°(0). (9)

We define the error 6(t) by
8(t) = o(t) — ©°(2). (10)
Substituting (10) back into (8), we obtain

Pt +8(t) = put [ Flos, o)+ 8(6)ds, &y

or, after some algebraic manipulation,
t
8() = [ 1F(s,6°(s) + 8(5)) = Fls,¢%(s))]ds +(2). (12)
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Letting the function G : R x € — C be given by
G(t,6) = F(t,°(t) + 8(t)) — F(t, ¢°(2)), » (13)
we can rewrite (12) in the form
t
6(t) - | Gls,6(s))ds = e(t) (19

which is a Picard-type integral equation like (8).

2.2 Euler Methods for the Picard Equation

Suppose that to,11,22, -+, tm, tm41 is a refinement of the interval [a, b] with

o = a, (15)
tm+1 = b, (16)
o<ty <ty -+ <tpm<tmy1- (17)

Then, the explicit Euler (or forward Euler) method for the solution of the ODE (1) or the
integral equation (8) is given by the formula

Piy1 = @i+ hi - F(ti, 0:) (18)

hi =tit1 — &, (19)

for:=0,1,---,m. The implicit (or backward) Euler scheme for the solution of (1) is given
by the formula

Pit1 = @i + hi - Ftip1, pig1)- (20)
Similarly, the explicit Euler method for the solution of (14) is given by
biv1 = & + hi - G(ti, &) + (e(tin) — e(t:)), (21)
and the implicit Euler scheme for the solution of (14) by
biyr = 6i + hi - G(tiya, 6it1) + (e(tina) — e(t:)). (22)

Definition 2.1 Given the function G : R x C — C defined in (13) and the vector of data
e = {e(t1),e(t2), - - e(tm)} € C™, we define the map Cegp : C1(R x €) x C™ — C™ by

Cexp(G7 E) = 6)

where 6 = (61,62, -+, 6m) is the vector of corrections produced by the scheme (21). Similarly,
we define the map Cipmp : CY(R x €C) x €™ — C™ by

Cimp(G,€) = 6,
where § = (61,62, -+, 6m) is the vector of corrections produced by the scheme (22).
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A full description of the marching schemes corresponding to Cezp and Cimy requires that
we specify how the values £(¢;) are actually computed. For this, we will require stable and
high-order accurate methods for interpolation and integration.

2.3 Spectral Integration, Differentiation, and Interpolation

Given a natural number m, we will denote by ry,rs,- -+, 7, the m Gauss-Legendre nodes
on the interval [—1,1] (see, for example, [17]). For an interval [a,b] € R, we will denote by

81,82, ", Sm the m Gaussian nodes on the interval [a, b], given by the formula
b—a b+a
i = T . 2
s 5T + 5 (23)

Suppose now that t,,1,, - ¢, is a strictly increasing sequence of points in R, and that
with each point #; is associated a function value ¢;. Let ¢ = (¢1,@2,...,%m). Then, for any
point ¢ € R, we will denote by L™ : C* x R — C the usual Lagrange interpolant defined by
the formula

L™ (1) =§c.~(t)-<ﬂi, (20)

where the functions ¢;(t) are given by
a(t)=]I
J#i
Definition 2.2 Let F : R — C and let the vector f = {f1, f2,"** fm} be defined by the

formula

t—t;
ti—t;

(25)

fi=F(t). (26)
Ife={e1,e2, " ,em} is defined by
d m
€ = EL (f,tz), (27)
then the linear mapping D™ : C™ — C™ for which
e = D™(f) (28)
will be referred to as the differentiation matriz. If g = {go,g1, ", gm} is defined by
—fywtﬁ 29
| gi= [ L7(f,1) dt, (29)
then the linear mapping S™ : C™ — C™ for which
g=5"(f) (30)

will be referred to as the integration matriz.




If the function F is a polynomial of degree m — 1, and the vector f is defined as in (26),
then

F(t) = L™(f,1), (31)

and the operators D™ and S™ are exact.

Remark 2.1 The formulae (28) and (30) are not numerically stable, unless the points
t1,%2,- - -tn are chosen with some care; using equispaced nodes, for example, leads to the
well-known Runge phenomenon. On the other hand, with a suitable choice of nodes, the
operators defined in (28) and (30) become extremely effective numerical tools. The most
popular choices are the Chebychev and Gauss-Legendre nodes, for which the matrices D™,
S™ are usually referred to as spectral differentiation and spectral integration matrices, respec-
tively. We refer the reader to [7, 8, 17] for a detailed discussion of their numerical properties.
Here, we simply observe that spectral integration is an extremely useful tool; the maximum
eigenvalue of S™ is bounded, and its minimum eigenvalue is of the order O(1/m?). Spec-
tral differentiation, while widely used, is somewhat limited by the fact that the maximum
eigenvalue of D™ is of the order O(m?), which renders the operator ill-conditioned.

Remark 2.2 It is easy to see that the matrices S™, D™ are dense for any distribution of
points #;,s, - - tm. Since applying a dense m X m matrix to a vector requires m? operations,
the procedure can become quite expensive. When ty,t,,- -1, are Chebychev nodes on
the interval [a, ], however, the Fast Fourier Transform (FFT) can be used to apply the
matrices S™, D™ to arbitrary vectors using O(m logm) operations. For more general point
distributions, a somewhat less efficient O(m log m) scheme for the application of the matrices
S™ and D™ to arbitrary vectors can be found in [4]. In the present paper, we will be using
relatively short sequences (m ~ 16), so that the cost of applying S™ and D™ to arbitrary
vectors will not be a major issue.

In section 6, we will need one more numerical tool. Let 1,7y, -+, 7, denote the Gauss-
Legendre nodes on the interval [—1,1]. We then define the m x m matrix V™ by the formula

Vii = Piaa(ri), (32)
where P; denotes the Legendre polynomial of order j. Note that V™ maps the vector
(@1,..., ) into the vector (f1, f2,- - ., fm), Where

fi = Z aij_l (7‘,‘).
Jj=1

The matrix V™ is non-singular [7] and we will denote its inverse by

W = (ymy, (33)
Given a polynomial @ of degree m — 1, it is clear that the matrix W™ maps the values of Q
at the nodes ry,7s,- -+, 7, into the coefficients of its Legendre expansion.
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3 Classical Deferred Correction

Suppose now that we define a grid on the interval [a, ] with (m + 1) equispaced nodes t;
given by .
ti=a+1i-h t=0,...,m, (34)

where b = (b — a)/m is the step size and that we wish to solve the ordinary differential
equation (1), (2) on this grid. A kth order accurate method will yield an approximate
solution 7 = (91,...,7m) With

mi = p(t:) + O(h*) . (35)

This defines the unique mth order polynomial L™(7,t) which interpolates the discrete ap-
proximate solution values 7; at the designated grid points ¢;. We can then define an error
function

6(t) = (t) — L™(n, 1) (36)
which clearly satisfies the differential equation
! / d m
50 = &)~ L")
d
= f(5,60)+ L(1,8) = £ L™(1,%) (37)
6(0) = 0. (38)

We can now solve this equation for the error function by the same kth order method as used
- for the original problem. In other words, we generate a sequence of values

T~ (5(t,') 1= 1, ey M, (39)
on the same grid as used previously. It is well-known that the “corrected” approximation
ni+mxyl) i=1,---,m (40)

is of (2k)* order accuracy [3, 5, 14, 15, 16, 19].

Iterated deferred correction proceeds by computing a new polynomial interpolant to the
updated approximate grid values (%;,7; + =;), defining a new error function, and solving a
new correction equation of the same form as (37) above.

Algorithm: Deferred Correction

Comment [Compute initial approximation]

Using a k** order method, compute an approximate solution (PEOI ~ ¢(t;)
at the grid points ¢;, 7 = 1,...,m on the interval [0, T.

7




Comment [Compute successive corrections.]

doj=1,...,J
1) Compute the interpolating polynomial L™ (pli=1], ¢).
2) Define the error function 6(2) = ¢(t) — L™(l~1,1).

3) Form the error equation §'(t) = f(t,6(t) + L™(oV~1,1)) - %Lm((p[j"ll,t)
with 6(0) = 0.

Comment [Note that the values of the derivative &L™(oli=1,t) at the grid points are contained
in the vector D™li~1 where D™ is the differentiation matrix.

4) Using a k% order method, compute an approximate solution 7; ~ &(%;)
at the grid points ¢; on the interval [0, T].

5) Define a new approximate solution cpy] = (p? -1l + ;.

enddo

At the end of this procedure, the error is of the order
O(RUHkY | (41)

Of course, this process can only be repeated so long as L™(¢l, ) and %Lm(cpm,t) are
sufficiently accurate. The usual estimate of the order of accuracy obtained with iterated
deferred correction is [3]

O(hmin[(J+1)-k,m]) ) (42)

There are two independent factors which prevent the use of large m, and which have
prevented large numbers of iterations from being used in practice. The first problem relates
to the instability of approximation at equispaced nodes; as mentioned earlier, the procedure
is numerically ill-conditioned (the Runge phenomenon). The second problem is that the
procedure involves numerical differentiation in the construction of the new right-hand side for
each error equation. Differentiation introduces subtle instabilities which prevent the effective
use of large m (for related phenomena, see [11, 18]). The difficulty of interpolation is easily
eliminated through the use of Legendre polynomials. The need for numerical differentiation
is eliminated by using the Picard equation as our starting point.




4 Spectral Deferred Correction schemes

Suppose now that we are given an approximate solution ¢[” on the interval [a, ). We have
already described the error equation (14) which arises from the Picard formulation of the
original ordinary differential equation, and it remains only to complete our description of
the discretization process.

In the remainder of this paper, we will use the grid s;,...,8m, corresponding to the
standard Gauss-Legendre nodes on [a,b]. ¢V will be used to denote the jth approximate
solution

‘P[j] = (So[iﬂ, ‘ng]7 e 7‘P1[37;]) = (p(s1),9(82),- - -, (8m)) 5
? will be used to denote the m-vector (¢a,@a,- - -,¢a), and F(pl) will be used to denote

the vector ‘ ‘
(F(s1, ‘Pm(sl))’ F (s, ‘Pb]('s?))’ oo F(sm, (pm(sm))).

The residual function ¢(t) defined in (9) will be approximated by the vector (V) defined
by '

o(pll) = S™F(pM) - Ul + 77, (43)
Observe that (43) is obtained from (9) by replacing exact integration with spectral inte-

gration. We may now proceed with the construct of high order schemes for both stiff and
nonstiff ODEs.

Algorithm: Spectral Deferred Correction

Comment [Compute initial approximation]

For nonstiff/stiff problems, use the forward/backward Euler method to compute an approximate

solution cpEO] ~ ¢(s;) at the grid points sy,..., Sy, on the interval [a, b].

Comment [Compute successive corrections.]

doj=1,...,J
1) Compute the approximate residual function a(¢pl/—1l).
2a) For nonstiff problems, compute Ul = C.zp(G, o(l"1)) as in section 2.2.
2b) For stiff problems, compute 6! = C;np (G, 0(li~1)) as in section 2.2.
3) Update the approximate solution ¢l = ©li=1] 4 6l

enddo




Definition 4.1 For nonstiff problems, the numerical method outlined in the preceding algo-
rithm using m nodes and J correction steps will be denoted by EuEzp’. The approzimate
solution U] generated by the scheme will be denoted by EuEzpl (F,¢,). For stiff problems,
the numerical method outlined in the preceding algorithm using m nodes and J correction
steps will be denoted by Eulmp;,. The approzimate solution pV] generated by the scheme
will be denoted by Eulmpl (F,,).

As in the classical deferred correction case, it is straightforward to obtain the following
result [3].

Theorem 4.1 For any sufficiently smooth function F : Rx C — C and any natural numbers
m, k, each of the approzimations EuEzpy (F,¢,) and Eulmpl (F,¢,) converge to the ezact
solution (¢(s1),--.,¢(sm)) with order of accuracy min(m,J + 1).

Remark 4.1 An apparent drawback of the schemes EuEzp;, and Eulmp;, as tools for the
solution of the initial value problem (1), (2) on the interval [a, 3] is the fact that the nodes
81,...,8m lie inside the interval, so that no solution is generated at the endpoint 5. This
problem is easily remedied by using the interpolating polynomial to obtain

¢ = L™(EuEzpy,(F, ¢.),b). (44)

If the solution is desired at an arbitrary point ¢ in the interval [a, ] we again use the
Lagrange interpolant L™(EuEzp] (F,¢,),t).

Remark 4.2 (Systems of ODEs) When considering systems of ODEs, one simply per-
forms the interpolation and integration operations componentwise. The function evaluation
and/or inversion which is required at each step of (21) or (22) is obviously more complicated,
but has no effect on the overall structure of the schemes EuEzp] and Eulmp..

Remark 4.3 In the stiff case, a general implementation of (22) will involve the solution of
a nonlinear equation (or, more generally, a system of nonlinear equations). Normally, this is
done using some form of Newton’s method (see, for example, [12]). One is then confronted
with numerous issues such as the choice of the initial approximation, error control, iteration
count, and the frequency with which the Jacobian of G is recomputed and inverted. In
the context of (22), most of these issues are simple (except when evaluating the initial
approximation o%). Indeed, since the correction § is expected to be small, 0 can be chosen
as the initial approximation, only one iteration of the Newton procedure is required at each
step, and the recomputation and inversion of the Jacobian can be bypassed once the accuracy
of the approximation is of the order /g, where ¢ is the desired accuracy of the computation.
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4.1 Behavior at Large | A | and Extrapolation

While the methods EuEzp), and Eulmp?, tend to be quite satisfactory for non-stiff and
mildly stiff problems, for strongly stiff problems we will need an additional modification. We
start with the following obvious theorem.

Theorem 4.2 For any pair of natural numbers m, J, the amplification factor Am()) asso-
ciated with the scheme Eulmp? is a rational function of . Furthermore, there ezists a real
number p(m,J) such that

l/\lli_rgo Am(X) = p(m, J). (45)

For all combinations m, J we have tested, u(m,J) < 1, making them acceptable for stiff
problems. We have not encountered any combinations m, J for which the scheme Eulmp,
is L-stable, though some are A(a)-stable with fairly large a. Fortunately, the above theorem
provides a mechanism for combining two different schemes with different m, J to obtain L-
stable schemes; for reasons the authors do not completely understand, the resulting schemes
also tend to have much improved A(a) - stability.

Corollary 4.3 Suppose that my, j1,m2, j2 are four positive integer numbers such that u(my, j1) #
p(ma, j2), and EuCombil?2  is the scheme for the solution of the problem (1), (2) defined
by the formula

i : : 46
1,m2 p(ma, j1) — p(ms, ja) 40

Then EuCombi:2,  is L-stable.

Remark 4.4 We have not carried out a systematic investigation of the properties of spec-
tral deferred correction schemes based on Gauss-Radau or Gauss-Lobatto discretization,
which includes one or both endpoints. We have, however, experimented with Chebychev
discretization in this context, and obtained results very similar to those reported in this
paper. The highest order EuComb scheme which we found to be A-stable scheme appears
to be 3, whereas with Gaussian nodes, EuCombgzg is A-stable and has order 5. We have no
analytical results explaining this difference, and for most practical purposes, Gaussian-based
and Chebychev-based schemes are very similar. Because of this difference, we conjecture
that there may exist nodes which lead to A-stable schemes of order higher than 5.

4.2 Composite Schemes and Stability issues

When considering a general purpose solver for the initial value problem (1), (2) on the
interval [a, b], it is rarely reasonable to use a single global mesh. Thus, we assume that the
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interval [a, b] is subdivided into a collection of subintervals [a;, b;], such that a;y; = b;, and
apply one of the schemes EuEzp, Eulmp or EuComb (with a reasonably small m) on each.
Such an algorithm is very similar to a Runge-Kutta method; it is essentially a single-step
algorithm with limited storage requirements, it is easy to implement adaptively, and its
stability properties are not obivous a priori. It turns out that for non-stiff problems, EuEzp
works extremely well for a variety of combinations of the parameters m, J. For stiff problems,
schemes of the EuEzp type are obviously useless, since they are driven by the explicit Euler
method. Schemes based on Eulmp result in acceptable methods for certain choices of m, J.
Unfortunately, for larger values of m,J, the stability properties of Eulmp’ deteriorate
rapidly. Finally, schemes based on EuComb result in acceptable stability properties for
many values of my, j1, ms,js. All such methods are L-stable, and many combinations of
m1, Mg, J1,j2 Tesult in nearly A-stable schemes (see section 5.3 below). While no general
analysis of such methods has been carried out, our experiments appear to indicate that
there exist schemes of this type that are of arbitrarily high order and are A(a)-stable with
a extremely close to 90°.

5 Stability and Accuracy Properties of Selected Schemes

We have implemented the schemes EuExzp, Eulmp, and EuComb in FORTRAN, and we
have conducted a number of numerical experiments with the resulting codes in order to
elucidate their performance. The following terminology is used in this section. The stability
region associated with a numerical scheme for the solution of the equation (4) is defined to
be the subset of the complex plane € consisting of all A such that on the interval [0, 1], the
amplification factor define in (5) satisfies Am()) < 1. For a given € > 0, the accuracy region
associated with a numerical scheme is defined to be the subset of C consisting of all A such
that, when the scheme is applied to the equation (4) on the interval [0, 1],

| 3(8) - o(b) |< e. (47)

Since both @(b) and ¢(b) are analytic functions of ), it follows from the maximum principle
that both the stability and accuracy regions have well-defined boundaries.

5.1 Stability and Accuracy Properties of FuEzp schemes

We first compute the boundaries of the stability and accuracy regions for the schemes
EuEzpj, for several choices of the parameters m and J (Figures 1 — 4). It should be noted
that the stability regions are compact; in other words, they are stable inside the boundaries
marked Am(}) = 1. Several observations can be made from these figures and from the more
detailed numerical experiments we have performed.
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1. In all cases, the stability condition is dominated by the accuracy condition. In other
words, whenever Re()A) < 0 and the scheme achieves a reasonable accuracy, the scheme is
stable.

2. The sizes of both the stability and accuracy regions grow with the order of the scheme;
when ) is purely imaginary, the scheme of order 20 requires about 20 nodes per wavelength
to achieve 11 - digit precision.

Remark 5.1 The Euler method is obviously not the most efficient solver to which the
deferred correction approach can be applied. We have experimented, for example, with
explicit Adams methods of orders up to 6, and have obtained improvements of up to a factor
of three in terms of the number of function evaluations required.

5.2 Stability and Accuracy Properties of Fulmp schemes

For a number of combinations m, J, we have numerically constructed the boundaries of the
stability and accuracy regions for the schemes Eulmp;, (Figures 5 — 12). The regions of
stability of these schemes extend to infinity; in other words, they are stable outside the
boundaries marked Am(A) = 1. It is worth noting that, in most cases, the regions of insta-
bility are very much larger than the regions of accuracy. Thus, for each scheme we present
two figures. The first is on a relatively coarse scale, depicting the stability region. The
second is on a much finer scale, depicting the accuracy regions for two selected accuracies;
in the latter case, the boundary of the stability region is virtually indistinguishable from the
imaginary axis. Each of the figures carries a legend, specifying detailed stability characteris-
tics of the scheme (all of the schemes Eulmp; are A(a)-stable, and the legends specify the
approximate values of o, obtained numerically). None of the schemes Eulmp;, are L-stable;
the legends specify the value of y for each of the schemes (see (45)).
Several observations can be made from the figures 5 - 12.

1. There exist Eulmp;, schemes that are A-stable of order up to four (such as Eulmp3).
The scheme Fulmp] is A(a)-stable with o > 89.5°%; for most practical purposes, such
a scheme can be viewed as A-stable. For higher orders, the A - stability properties of
Eulmp;, deteriorate rapidly (see Figures 9-12).

2. None of the schemes Eulmp;, are L-stable. However, in all cases we have studied, p
is less than 1/2; while L - stability (corresponding to u = 0) is very desirable, p < 1/2
guarantees a rate of decay that is sufficient in many cases.

3. The accuracy regions for all methods we have tested are very satisfactory, for both real
and complex A. It is easy to see, for example, from Figure 8 that Eulmp} (a scheme
of order 6) requires about 18 nodes per wavelength to obtain 3 digits; the number
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increases to about 40 nodes per wavelength to obtain 5 digits, indicating the need for
a higher order scheme. Such schemes are discussed in the following subsection.

5.3 Stability and Accuracy Properties for FuComb schemes

For a number of combinations m1,my, j1, j2, we constructed numerically the boundaries of
the stability and accuracy regions for the schemes EuCombit?2  (Figures 13—24). As in the
case of the EuComb schemes, the stability regions of these schemes extend to infinity; they
are stable outside the boundaries marked Am(\) = 1. As for the simpler Eulmp schemes,
the regions of instability are generally very much larger than the regions of accuracy. Thus,
we again present two figures for each case. The first is on a relatively coarse scale, depicting
the stability region. The second is on a much finer scale, depicting the accuracy regions for
two selected accuracies; in the latter case, the boundary of the stability region is virtually
indistinguishable from the imaginary axis. Each of the figures carries a legend, specifying
detailed stability characteristics of the scheme. All of the EuComb), schemes are A(a)-
stable, and the legends specify the approximate values of @, obtained numerically. Since all
of the schemes EuComb;, are L-stable (see Theorem 4.3), we do not specify the value of U
for each of the schemes.

- Several observations can be made from Figures 13 — 24.

1. There exist A-stable Eulmp;, schemes of order up to five (such as EuCombg:g). For
all orders we have tested (up to 30 or so), there exist A(a)-stable schemes with «

very close to 90°. EuCombg:g, for example, has order 12 (see Theorem 4.1), and

is A(a)-stable with a > 89.99°. EuCombyys has order 19 and is A(a)-stable with
a > 89.996°. On the other hand, we are not able to predict reliably which of the
schemes will have good stability properties, and which will not, until such properties are
established numerically. FuC omb%gj}g, for example, has & > 89.99°, while EuC ombgﬁg
has 89.01° < o < 89.02°. At the other extreme is the scheme EuCombg:g, with a
disastrous o < 56° (Figure 21). As a general rule, we have observed that the schemes
EuCombji72  tend to have poor stability properties whenever m; +ms is even. This is,
of course, mostly a curiosity, since good schemes of various orders are easily available.

2. The accuracy regions for all methods we tested are very satisfactory, for both real and
complex A. It is easy to see from Figure 24, for example, that the nineteenth order
scheme EuCombégﬁg requires about 18 nodes per wavelength to obtain 10 digits.

6 Adaptive Implementation

In practical applications involving the numerical solution of ODEs, issues such as adaptive
marching, accuracy control, etc. play an important role. Since the schemes of this paper
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are essentially of the single-step variety, most issues arising in their adaptive implementation
are relatively simple. It is also worth keeping in mind that accuracy control is much simpler
when the underlying solver has high convergence order.

We have implemented fully adaptive versions of the schemes EuEzp, Eulmp, EuComb.
In this section, we describe some of the technical details of the implementation, while the
following section describes some of the numerical experiments we have performed. We will
be discussing these issues using FuEzp as our model; the other two schemes (Eulmp and
EuComb) encounter identical problems, which are handled in a similar manner.

6.1 Accuracy control

Given an initial value problem (1), (2) on the interval [a, b], an approximate solution
EuEzp! (F, ¢,), and a positive ¢, we would like to determine whether

| EvEzp),(F,¢.) — ¢ <. (48)

Obviously, this cannot be done with complete reliability; the purpose of all existing tech-
niques is to make the determination with very high probability, at an acceptable cost. Fortu-
nately, the internal structure of the method EuEzp], provides us with a number of conditions
which can be checked. Taken together, the conditions listed below have been completely re-
liable in our experience.

1. We verify that the correction process has converged to the precision €. In other words,
we require that the norm of the vector 6 (see (21)), obtained during the last correction,
be less than e. This does not guarantee (48); it does indicate that the correction scheme
is internally consistent to precision e.

2. The approximate solution EuEzpY, (F,p,) is obtained at Gaussian nodes on the interval
[a,b]. We apply the operator W™ to EuEzp. (F,.), obtaining the m coeficients of its
Legendre expansion (see (33)). If the discretization of EuEzp] (F,,) is sufficiently
fine, the last several coefficients of the Legendre expansion must be small. In our
implementation, we demand that the last two coeflicients be smaller than e.

3. Yet another test we perform attempts to verify simultaneously that both the correction
process and the discretization have converged to precision €. Once EuEzp! (F,¢,)
has been evaluated, we obtain the value of the approximate solution at the point b
via interpolation (see Observation 4.1). We apply the interpolation process to both
EuEzpl (F,¢,) and EuEzp] '(F,¢,), and demand that the difference be less that .

4. In extreme cases, the solution of the ODE can be so underresolved as to become
unstable; the usual result is exponential overflow. To guard against this condition,
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we check the size of the solution at every step of the Euler process; if the solution is
sufficiently large (we have arbitrarily set the threshold to 10%°) the point of view is
taken that the problem is underresolved.

6.2 Step-length control

Our approach here is completely standard. We start with a more or less arbitrary step-size,
and attempt to apply the scheme EuEzpy,. If the resulting precision is insufficient (according
to the criteria (a) - (d) above), the step-length is halved, and the process repeated. If the
precision is satisfactory, the steplength is unchanged. If the precision is satisfactory two
steps in a row, the step-length is doubled.

6.3 Linearly implicit implementation

In order to reduce the number of function evaluations, a common practice in most extrapo-
lation codes is to use a “linearly implicit” formulation of the marching scheme [10]. For the
ordinary differential equation

PO =Fltet)  telad (49)
with an approximate solution ¢o(t), we let ¢ = g + 6 and write (49) in the form
@t +8(8) = Ft,00lt) + 8(2))
or t
6(t) = [ F(r,00(r) + ())dr — go(t). (50)
But for small §, we have

F(t,p0(t) +8(2)) = F(t,00(t)) + Joo (£) 8(2) + O(l18]|%),

where Jy,(t) denotes the Jacobian of F with respect to its second argument at the point
(t,0(t)). Substituting this expression into (50), we get

t t
60) = [ o) 6(m)dr + [ F(r,00(r))dr — oo(t). (51)
We can then use the backward Euler method to drive a deferred correction process applied

to (51). Our linearly implict code performs up to six steps of deferred correction on this
equation, after which the approximate solution ¢ is updated according to

po(t) := po(t) + 6(2).
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Table 1: Performance of low, moderate, and high order spectral deferred correction methods
for non-stiff problems. The first column indicates the requested precision and the remaining
columns list the number of function calls required by the corresponding scheme.

Precision | EuEzp; | EuEzp} | EuEzp}}
10°3 70 44 93
10— 287 176 135
10712 — 2574 310

7 Numerical Experiments

We illustrate the performance of spectral deferred correction methods with two examples.
The first is the system of three ordinary differential equations satisfied by the Jacobian
elliptic functions sn, cn, dn:

sn'(t) = ecn(t)-dn(t)
en'(t) = —sn(t)-dn(t)
dn'(t) = —p-sn(t)-cn(t)

with 4 = 0.5 on the interval [0,1] with initial data sn(0) = 0, en(0) = 1, dn(0) = 1. This
is a common model for nonstiff problems. As can be seen from the results in Table 1, the
order of accuracy of the method should increase with the desired precision to obtain optimal
performance.

Our second example is the Van der Pol oscillator, a well-known stiff system of two equa-
tions:

n(t) = va(t)
vo(t) = (1 =92(t) 9a(t) — 3a(2)) /e

with y1(0) = 2, y2(0) = 0. We choose € = 10~° and solve on the interval [0,1]. For the
sake of comparison, we tested our codes against one of the best-performing codes for this
problem - the high order extrapolation code SEULIM, due to Deuflhard, Nowak and Poehle
[10]. Our results are collected in Tables 2-4.

A number of observations can be made from these tables.

1. The code SEULIM requires noticeable fewer function evaluations than the Eulmp

schemes at any requested precision. SEULIM also requires fewer function evaluations
than the linearly implicit deferred correction code.
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Table 2: Performance of the extrapolation code SEULIM on the Van der Pol oscillator
problem. The first column indicates the requested precision, the second column indicates
the number of function evaluations, the third column lists the computed solution component
y1(1) and the fourth column lists the computed solution component y2(1).

Precision | F. calls y1(1) y2(1)
107! 166 | -1.79765618619 | 0.000017424290
1072 250 | -2.00019319529 | 0.000060543984
1073 751 1.98059515302 | -0.033130626096
10~ 1197 | 1.70727095158 | -0.885933089211
10— 1872 | 1.70633329346 | -0.892323342916
10-8 2622 | 1.70618445916 | -0.892674570523
1077 3870 | 1.70616982299 | -0.892804713111
10-8 5476 | 1.70616796672 | -0.892809443466
10-° 6531 | 1.70616775897 | -0.892809533238
10-10 10490 | 1.70616773572 | -0.892809663387
10~ 21547 | 1.70616773312 | -0.892809699177
10-12 86899 | 1.70616773227 | -0.892809700614

Table 3: Performance of the spectral deferred correction code Eulmp on the Van der Pol os-
cillator problem. The first four columns correspond to those in Table 2. The last two columns
show the number of points n used on each subinterval (the maximal order of accuracy) and
the maximal number of corrections ncorr actually used by the code.

Precision | F. calls y1(1) y2(1) n | ncorr
10-1 3462 | 1.70645342840 | -0.892494581060 | 6 )
1072 5340 | 1.70642671028 | -0.892530184336 | 8 4
10-3 6754 | 1.70615323588 | -0.892825220721 | 8 4
10— 11920 | 1.70616745993 | -0.892809992650 | 16 8

10-° 17880 | 1.70616771499 | -0.892809719348 | 22 | 12
10— 20576 | 1.70616773089 | -0.892809702550 | 22 | 12
10-7 21852 | 1.70616773187 | -0.892809701498 | 22 | 12
10-8 23366 | 1.70616773221 | -0.892809701142 | 22 | 12
10-° 29798 | 1.70616773217 | -0.892809701012 | 22 | 12
10-1° 96562 | 1.70616773217 | -0.892809701047 | 22 | 12
10~ 128362 | 1.70616773217 | -0.892809701031 | 22 | 12
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Table 4: Performance of the linearly implicit spectral deferred correction code on the Van
der Pol oscillator problem. The columns correspond to those in Table 3.

Precision | F. calls y1(1) y2(1) n | ncorr
107! 1976 | 1.70756400695 | -0.891306260408 | 6 )
1072 2587 | 1.70629621863 | -0.892672011388 | 8 4
1073 3112 | 1.70618777664 | -0.892788115757 | 8 4
10~* 4203 | 1.70616787726 | -0.892809527001 | 16 | 8
10-° 4839 | 1.70616773785 | -0.892809694425 | 22 | 12
108 5644 | 1.70616773478 | -0.892809697543 | 22 | 12
1077 5887 | 1.70616773216 | -0.892809699781 | 22 | 12
10-8 7817 | 1.70616773207 | -0.892809701150 | 22 | 12
10~° 13885 | 1.70616773217 | -0.892809700662 | 22 | 12
1010 28857 | 1.70616773217 | -0.892809700900 | 22 | 12
1071 54528 | 1.70616773217 | -0.892809701003 | 30 | 20

2. If actual accuracies are compared, rather than requested precision, a slightly different
picture begins to emerge. The deferred correction scheme achieves about eight digits of
accuracy at a requested tolerance of 10~°, using 4,839 function calls. SEULIM, on the
other hand, acheives eight digits of accuracy at a requested tolerance of 1071°, using
10,490 function calls. This is not intended to disparage SEULIM’s performance. Our
implementation simply has very strict (perhaps excessive) error control. If CPU times
were compared, SEULIM would be the clear winner.

8 Conclusions

We believe that deferred correction methods based on an integral equation formulation of
the ordinary differential equation are promising candidates for further investigation. They
have excellent stability properties, are easy to implement, and require only a good low-
order solver to drive the process. Our preliminary experiments, using a primitive adaptive
implementation, compare favorably with a state-of-the-art extrapolation code at moderate
to high precision.

19




References

[1] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1995.

[2] J. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta
and General Linear Methods, Wiley, 1987.

[3] K. Bohmer, H.J. Stetter, eds., Defect Correction Methods, Theory and Applications,
Springer-Verlag, Wien-New York, 1984.

[4] A. Dutt, M. Gu, V. Rokhlin, Fast Algorithms for Polynomial Interpolation, Integration,
and Differentiation SIAM J. Num. Anal. 33, 1689-1711 (1996).

[5] R. Frank and C. Ueberhuber, Iterated Deferrred Correction for the Efficient Solution of
Stiff Systems of Ordinary Differential Equations, BIT 17 (1977), 146-159.

[6] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, New Jersey, 1971.

[7] D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods, SIAM, Philadelphia,
1977.

[8] L. Greengard, Spectral Integration and Two-Point Boundary Value Problems, SIAM J.
Num. Anal. 28, 1071-1080 (1991).

[9] E. Hairer, S. P. Norsett and G. Wanner, Solving Ordinary Differential Equations I,
Non-Stiff Problems, Springer Verlag, Berlin, 1987.

[10] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Springer, 1996.
[11] D. J. Higham and L. N. Trefethen, Stiffness of ODEs BIT, 33, 285-303 (1993).

[12] Arieh Iserles, A First Course in the Numerical Analysis of Differential Equations, Cam-
bridge University Press, 1996.

[13] J. D. Lambert, Numerical Methods for Ordinary Differential Equations, Wiley, 1991.

[14] B. Lindberg, Error Estimation and Iterative Improvement for Discretization Algorithms,
BIT, 20, 486-500 (1980).

[15] V. Pereyra, Iterated Deferred Correction for Nonlinear Boundary Value Problems, Nu-
mer. Math. 11, 111-125 (1968).

20




[16] R. D. Skeel, A Theoretical Framework for Proving Accuracy Results for Deferred Cor-
rection, SIAM J. Numer. Anal. 19, 171-196 (1981).

[17] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis Springer, 1992.

[18] L. N. Trefethen and M. R. Trummer, An Instability Phenomenon in Spectral Methods,
SIAM J. Numer. Anal. 24, 1008 - 1023 (1987).

[19] P. E. Zadunaisky, On the Estimation of Errors Propagated in the Numerical Integration
of Ordinary Differential Equations, Numer. Math. 27, 21-40 (1976).

21




Am(A) =1

e=10E -2

et

s

D

Am(A) =1

o

-3.0 -1.5 0.0 1.5 -6 -4 -2 0
Figure 1: Figure 2:
Stability and accuracy regions for Stability and accuracy regions for
EuEzp3 EuEzp}]
Am(A) =1 Am(A) =1

N\

m
. | ~

P

-12

Figure 3:

Stability and accuracy regions for

EuEzpi3,

4 -18

Figure 4:

EuEzpi?

e=10E ~11
-12 -6 0

Stability and accuracy regions for




Am(A) =1

20 L

10 L

-10 L

-20 [

0 8 16 24

Figure 5:
Stability and accuracy regions for
FEulmpd; p ~ —.3913, a = 90°

Am(A) =1

N\

30 L

=30 L

Figure 7:
Stability and accuracy regions for
Eulmpd; p ~ —.3101, o ~ 89.979°

Am(A) =1

Figure 6:
Detail of stability and accuracy
regions for Eulmp}

Figure 8:
Detail of stability and accuracy
regions for Eulmpd




200 | /

-200 L

0 200 400

Figure 9:
Stability and accuracy regions for
Eulmpll; u ~ 0.1369, a ~ 76.8°

200 L

-200 L

-10 L

200 400

Figure 11:
Stability and accuracy regions for
Eulmpll; p ~ —0.3030, o ~ 77.5°

Am(A) =1

12 L

Figure 10:
Detail of stability and accuracy
regions for Eulmpll

Am(A) =1

10 L

Figure 12:
Detail of stability and accuracy
regions for Eulmpld




20

10

-10 L

80

40

-40

-80

Am(A) =1

e=10E -6

0 10 20 30

Figure 13:
Stability and accuracy regions for
EuC’ombgzg; a = 90°

Am(A) =1

e=10E -7

[¢] 40 80 120 160

Figure 15:
Stability and accuracy regions for
EuCombg:g; a = 89.9914°

Am(A) =1

Figure 14:

Detail of stability and accuracy
regions for EuCombé:é

Am(A) =1

12
e=1.0F —

%7

e=10E -5

-6 -4 -2 0

Figure 16:

2

Detail of stability and accuracy

regions for EuComb;3'j;

12,12




Am(A) =1

100 L

50

-50

[ 40 80 120 160 200

Figure 17:
Stability and accuracy regions for
EuCombi31s; o ~ 89.994°

Am(A) =1

SN

/
100 L

e=10E -7

N

-100 L ‘ e=10E -9
\
\\/
0 . 80 ' 160l 240
Figure 19:

Stability and accuracy regions for
EuCombigg; o ~ 89.014°

100 L

-100 L

\<>

Am(A) =1

/

e=10E -6

e=10E —4

Figure 18:
Detail of stability and accuracy

regions for EuC ombigﬁg

Am(\) =1

/

e=10E -7

(@]

e=10E -5

o
W

-8 -4

Figure 20:

Detail of stability and accuracy

: 6
regions for EuC ombi7:ig



80

40

-40

200 L

100 L

-100 L

-200 L

Am(A) =1

] 30 60 920

Figure 21:
Stability and accuracy regions for
EuCombS:g; o = 55.786°

Am(A) =1

Figure 23:
Stability and accuracy regions for
EuCombyge; @ ~ 89.9969°

1.0 L

-1.0 L

20 L

10 L

-10 L

Am(A) =1

D

e=10E -7

\

e=10E -5

Figure 22:
Detail of stability and accuracy
regions for EuCombg:g

Am(A) =1
e=10E -7
e=10E -5
4.1
-12 -8 -4 0

Figure 24:

Detail of stability and accuracy

regions for EuC ombég:}g






