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Chapter 1

Introduction

Programrners are often confronted with the problem of writing programs that need to manipulate
(create, access, modify, delete) permanent objects (data structures). By “permanent objects” we
mean objects that live longer than one invocation of a program. These objects must be stored in
the computer’s file system.

Generally the capabilities of file systems and the tools for manipulating file systems are primitive.
File systems present only the simplest of data types (e.g. one-dimensional array of characters). More
complex data structures can be built on top of these simple data types, but the implementation
time is significant. As a result, a programmer is not inclined to think that he is dealing with a
permanent object when he really is. He simply views his programs as reading a file, constructing
some transient data structures in main memory, reading or modifying those data structures, and
possibly rewriting the file that was read as the first step. The programmer is not encouraged to
view the disk file merely as a data structure in another guise. Often the format of the output of the
program is designed to be useful for human readers of that output in spite of the fact that the only
person who is likely to read it is the programmer himself while debugging his programs.

In this thesis we will be concerned with the issues of creating, modifying and administering per-
manent objects in T [44,46], a dialect of Scheme [52], which is in turn a dialect of Lisp [39]. The
goal of our work is to blur the distinction between permanent and non-permanent objects; i.e. to
make the writing of programs that manipulate permanent objects nearly as easy as the writing of
programs that manipulate non-permanent objects. We will describe the design and implementation
of a programming system that allows permanent objects to be accessed using primitives that are
analogous to the primitives used to access non-permanent objects. The system we will describe has
been built and used for non-trivial applications.

The work described in this thesis differs from previous work in permanent objects in that it supports
~a potentially very large set of objects of both small and large size, and it allows these objects to be
accessed by different users and application programs.

1.1 An example

Consider a user’s electronic mail box. Within a program that manipulates a mail box there is a mail
box data structure that might consist of a linked list of mail message objects. Each mail message
might consist of: a string containing the text of the message; some boolean flags indicating, for
example, whether the message has been read by the user; a pointer into the text of the message
where the message headers begin; and a pointer into the text of the message where the message
body begins.

The mail box is of interest to at least two programs: a mail user interface program that lets a user
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read and modify the contents of his mail box; and a mail delivery program that adds new, incoming
mail to the mail box. These programs may be invoked multiple times to manipulate the mail box.
The mail box exists independently of the programs that access it.

A typical implementation strategy taken by a programmer {e.g. as in OZ [19], a mail user interface
for the DECSYSTEM-20) who does not view a mail box as a permanent object is this: the mail
user interface reads in a text file that contains all the user’s messages. The program breaks the
file into individual messages. Depending on the conventions of the mail system, the messages may
be separated by some sequence of characters that are guaranteed not to appear in the text of a
message; or each message may be preceded by a text string of digits which when interpreted as an
integer specifies the length in bytes of the message that follows. Once broken up into individual
messages, the program allocates objects to hold the messages and links the messages together to
form the entire mail box data structure as described above. Perhaps the first line of each message
contains a string of ones and zeros indicating the values of the various message flags. This string
will have to be parsed into boolean values and stored in the appropriate slots in the message data
structure.

The user interface program manipulates the mail box object in response to user commands. When
the user exits the program, the program re-writes the text file to reflect the new state of the mail
box. This procedure consists of traversing the mail box data structure and writing its contents in
the format expected by all programs that manipulate the mail box file.

The most serious problem with this approach is the cost of parsing the file on program startup and
formatting the file on program termination, especially as the size of the mail box increases. Our
goal is to demonstrate that, given the right tools, the programmer can think of something like a
mail box as a permanent object and that as a result, programs that manipulate the object can be
simpler to write and more efficient in execution.

1.2 Traditional approaches

There are at least two traditional approaches for dealing with permanent objects. For studying
both these approaches, it will be convenient to think of the objects as having two representations:
internal and external. The internal representation is the format of the data structure when it resides
in main memory; the external representation is the format of the data structure when it resides in
stable storage (e.g. disk files in a conventional file system).

The first approach consists of writing an ad hoc set of subroutines that convert from the internal
representation to the external representation and set of routines that do the reverse conversion.
This approach is marginally better than the one taken to solve the mail box problem above.

The second approach is to interface the application program that needs to use permanent data
structures with an existing “database manager.” We use the term “database manager” in a very
general way to mean a set of programs or subroutines that have been designed to store and retrieve
data from a file system.

In cases where the internal representation is simple (e.g. a character string or a vector of inte-
gers), the temptation is great for a programmer to use the ad hoc solution. He says: “I don’t
want to get involved with the complexity of such-and-such database system. I'll just write my
strings/numbers/etc. out to a simple text file.” Unfortunately, this seductive reasoning results in
a program that is not only not as fast as it might be (due to the representation conversions), but
one that is also hard to modify and hard to extend. Having implemented one ad hoc solution, the
programmer is unlikely to want to implement another one {or modify the existing one) in order to
accomodate increased functionality. As a result, the functionality does not get implemented.

What are the arguments in favor of using an existing database manager? A clear advantage is that
much of the programmer’s work is already done for him by the database manager. The programmer
need not be concerned with the details of the file system. Most sophisticated database systems offer
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some degree of reliability in the face of hardware failure. Database managers take care of storage
allocation.

Unfortunately, interfacing to a database manager may introduce some problems. The program
interface to the database manager forms an “embedded language.” That is, the set of calls by
which the application program accesses data maintained by the database manager is a language of
its own. This language is built on top of the language in which the calls to the database manager
are written. As a result, the programmer is no longer programming using solely the primitives of
the base programming language. In fact, the primitives of the base programming language may
not even be applicable to the application’s data, which now resides in the world of the database
manager.

Thus, taking the database approach to solving the permanent object problem obliges the program-
mer to work in two languages: the base language and the database embedded language. Often this
complexity is great enough to dissuade the programmer of a medium-size application from using
the database manager.

Creating and using embedded systems is not always bad. In most large programming projects one
ends up constructing and using some sort of embedded language. Some languages support such
embedding better than others (e.g. Lisp systems generally have a powerful macro facility). Even
in languages that do not allow modification to their syntax, the subroutines that the programmer
defines for use by himself, but especially for use by other programmers working on the same project,
define the semantics of a language. When a programming project adopts a set of conventions and
interfaces that make up the specification of an embedded language, the comprehensibility of the
overall project increases; functionality can be expressed in terms of the embedded language instead
of in terms of the base language.

There is a key difference between embeddings such as the ones that go on all the time and the
embedding of a large database system. In the former case, the programmers in the project design
the embedded system themselves, to their own specifications. In the latter case, the embedded
language is typically not under the control of the project that uses the database. As a result,
the programmer may be forced to use an embedded language that is not at all appropriate to his
application.

A significant limitation of both the ad hoc and the database approach to storing permanent data
is that they are unable to deal with pointers. By “pointer” we mean the traditional programming
language construct that allows indirect reference to data. Since pointers are convenient tools for
the programmer, it is undesirable that they should be unavailable when storing permanent objects.

The limitations of the traditional approaches outlined above become clear when dealing with even
simple data structures. For example, Lisp has a primitive procedure called map that applies a
procedure to a linked list of objects. Lists are easy to create and map, and other procedures provide
a clean and convenient mechanism for accessing the data in the list. Use of lists in Lisp programs
is pervasive; use of lists in external representations is unusual.

If the linked list is maintained within the database manager, two problems can arise. The first
problem is that the database manager might not export references to the middle of a linked list.
That is, the database manager might export references to individual data items, but not to data
structures that it views as being internal to the database system. As a result, there is no reference
that can be passed as the procedural argument to map.

A second problem that can arise is that even if the application can obtain a reference, the list that
is constructed and maintained by the database manager might not be manipulatable by map (and
the elements of the list by the procedural argument to map) because of differences between the
representation maintained by the database manager and the representation expected by the Lisp
system. The cost of this representation conversion is unacéeptably high. In the permanent object
system we built, representation conversion is not necessary.

The goal of the work described in this thesis is to develop a system for managing permanent objects
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that is more general than the ad hoc methods but less cumbersome than the methods that require
" interfacing to a database system.

1.3 Distributed computation

A secondary goal of this thesis is to demonstrate how a system for supporting permanent objects
can aid in the development of distributed applications. By “distributed application® we mean an
application, parts of which run at diflerent times on different processors connected by a high speed
local network. Recently, much research has been concerned with the problem of being able to take
advantage of the newly available small processors (e.g. the Motorola 68000) configured in a network
in order to make applications run faster or more reliably. Much of this research has addressed
concurrency problems: if there are multiple processes running on multiple processors accessing the
same data (or replicated copies of the data), how do you coordinate their activity to insure the
integrity of the data?

Before one can address the issues in controlling concurrent access to data, it is first necessary to
consider the problems in simply accessing the data. The issue of making the data available to the
multiple processes has been discussed elsewhere, but not to the level of detail necessary to illuminate
the hard problems that arise in a real implementation.

Though distributed computing is not the main topic of our work, we designed our permanent
object system and built our implementation in a way that does not preclude the later introduction
of sophisticated concurrency control mechanisms. Our current implementation has rather course-
grained concurrency control. However, even this level of control is useful for distributed applications
where concurrency is low - i.e. where conflicting requests for access to data occur infrequently. For
example, the applications in our mail system example — the mail user interface and the mail deliverer
- are examples of applications that might be distributed among a number of processors. In this case
the expected degree of concurrency is low, and simple concurrency control techniques (e.g. waiting
for a file to become unlocked) are sufficient to solve the problem.

1.4 Applications

A permanent object system has many potential applications in addition to the mail system example
given above. We list some applications that deal with permanent data, describe existing implemen-
tations, and descibe how a general permanent object system could be used in an implementation.

o Compiler auxiliary files.

The T compiler produces a support file that contains all the macro and constant definitions in the
module being compiled. The support file can be referenced in other files so that when those files
are compiled, the information from the support file can be used to produce more efficient code.
Presently in T, support files are text files containing printed T expressions. The compiler must
read and parse the entire support file when it is referenced from the file being compiled. Using a
permanent object system, the data structures describing the macro and constants definitions could
be permanent objects and accessed more quickly. We could take this path further and replace source
text files themselves with permanent objects describing the program source.

o Text formatter database.

The Scribe document preparation system [47] uses a set of database files describing output devices,
document formats, and bibliographies. These files contain text string Scribe commands. When a
reference is made to a particular device, document format, or bibliography from a document being
formatted, Scribe must linearly scan one or more of the document text files. This scan can be
very expensive, especially in the case of large bibliographies. Using a permanent object system, the
database could be represented as a set of permanent objects and accessed more efficiently.
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» Registry of users.

The Unix [13] system for registering users is a text file containing one line for each user. Each
line contains (among other things) a user ID, password, and full name. Any applications that need
the information must read and parse the text file. Mechanisms to control concurrent access to the
registry would be useful but are non-existent, hence exposing the system to data corruption. The
file has a rigid format and the presence of programs that rely on the format makes it difficult to
extend the registry to hold new kinds of information about users. The rigidity is partially a result
of the ad hoc way the data is stored and accessed. Using a permanent object system, each user
could be represented as a permanent object and the entire registry as a permanent collection of
those objects. The objects could be designed to allow both extensibility of information about users
and concurrency down to the individual user level.

o On-line help systems.

The on-line help system used on the DECSYSTEM-20 at the Yale Department of Computer Science
consists of a text file (called the indez file) that contains a list of indices (words) and help file names.
Users query the system using an index and the system responds by offering to display the contents
of the help files associated with that index. Whenever the index file is modified (by a help system
administrator), a binary file must be produced (by running a special program that converts the
index text file text to an index binary file). The format of the text file is designed to simplify the
administrator’s job. The format of the binary file is designed to make the help system programs run
efficiently. Using a permanent object system, there would be no need to have two representations
(text and binary) of the index file. The index could be a permanent object that could be accessed
both by the help system programs in response to users’ queries and by help system administrators
to change the contents of the index.

All of these applications involve permanent, structured data that must be changed in a controlled
way. Many existing implementations of such applications use inefficient techniques (such as those
that require unnecessary parsing and formatting of data) or ungeneral mechanisms designed for
a single application. An efficient, general, and simple object management system will improve the
performance of such applications and encourage programmers to write more such useful applications.

1.5 Outline of the rest of the thesis

The focus of this thesis is a system we call OM, a system for managing permanent objects. We
designed and implemented a running version of OM. We also designed and implemented two sample
applications systems that run using the facilities provided by OM. :

Chapter 2 covers the problems associated with building a system that meets the goals described
above. Chapter 3 discusses the implementation of OM. Chapter 4 discusses how programmers write
application programs using OM; in this chapter we also describe the sample application programs
we built. Chapter 5 summarizes OM and discusses how well it solves the problems raised in chapter
2.
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Chapter 2

Problems

In this chapter, we outline some of the problems faced by a system that maintains permanent
objects. Our basic model for the computing environment in which permanent objects are maintained
is traditional: we assume 2 CPU with a fast main memory of limited size and a larger, slower disk
memory. Data is transferred back and forth between disk and main memory in relatively large units
(compared to the smallest units the CPU can deal with) and at a relatively slow rate (compared to
the rate at which the CPU can access main memory).

2.1 Permanent data

Many of the problems that arise from wanting to preserve objects result from the fact that since
objects can be manipulated only within main memory and since main memory can not hold all the
permanent objects, there needs to be a controlled, reliable mechanism for moving data in and out of
main memory. The experience gained in designing virtual memory and database systems is relevant
to the understanding and the solving of these problems. A permanent object system of the sort
we’ve outlined can use techniques from both virtual memory systems and database systems. Virtual
memory systems provide a model of how to refer to objects that are “not really there”. Database
systems offer examples of how to deal with the permanence issues.

We will discuss the follewing topics in permanent data:

o Integrity and atomicity
e Abstraction

o Storage control

o Sharing and concurrency
o Security

o Reliability

¢ Performance

In our discussion of these problems, we will be giving each problem only a short characterization.
The orientation will be very practical since we are interested in how they relate to the system we
have actually built. In designing this system we have tried to be practical so that the the system
could be actually built. Later, we will discuss how our system addresses these problems.

7
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2.1.1 Integrity and atomicity

By integrity we mean the functionality that insures that the permanently preserved data is not
corrupted. What are the major potential sources for such corruption?

The most obvious source of corruption is a machine crash. (In addition to actual machine crashes,
abnormal termination of individual processes or failure of pieces of hardware (e.g. disk or network
communication hardware) can cause problems similar to a crash.) Some of the permanent data
may have been in the main memory of the crashed machine. If the main memory copy of the data
contained changes that were not yet reflected in the copy of the data maintained in stable storage,
then applications that use the data could be in trouble.

For example, suppose some large data structure is being modified when a crash occurs and also
suppose that only part of the modified structure has been rewritten to stable storage before the
crash. Assume that parts of the data structure contain related information - e.g. a string of
characters and an integer indicating the length of the string. Suppose the part of the data structure
containing the integer length got written to stable storage but the part containing the characters of
the string did not. Then an application program that accesses that string might access too few or
too many characters. (In the latter case it would presumably see “garbage”.)

Another source of corruption is program error. In the course of application program debugging
(or later when some unforeseen bug arises in production use of the application) the application
might present some logically inconsistent pieces of data for permanent storage. The problem here
is in defining what “logically consistent” means. If the permanent data storage system is to reject
certain pieces of input then the consistency rules must be specified and be part of the system.
Unfortunately, the specification of the data consistency rules may be non-trivial (and a task in
which the programmer may be unwilling to engage). In addition, if the data storage system is to
be relatively simple, modular, and efficient, it may not be easy for it to maintain the set of rules for
a large set of applications.

The traditional approach to maintaining integrity of permanent data is to use techniques which
guarantee the atomicity of a set of changes to data. Atomicity is a property that implies that if
any of a set of changes are made (i.e. made to the permanent copy of the data in stable storage),
they all are made. If for some reason the system fails in the middle of a set of changes, the
system guarantees that it appears that none of the changes have been made. There are various
implementation techniques that can be employed to assure atomicity when requested. As will
become apparent later, these techniques are not easily applicable to the system we design. Thisisa
limitation of our current system, but since our goal is to gain experience with a real permanent object
maintainance system, we are willing to tolerate the potential for loss of integrity for experimental
purposes.

2.1.2 Abstraction

It should be the goal of any data storage system to provide some level of abstraction. For our
purposes, an abstraction is a mechanism that does two things:

e It translates logical references to data into physical references to the data itself.

o It hides details of the representation of the data (e.g. how many bits are allocated to what)
from the programmer.

By logical reference, we mean the name of a field in a structure or a key into a table mapping logical
references into physical references. “Physical reference” is a relative term. What we really mean is
“less logical reference”. That is, in a system that presents layers of abstraction, only the bottom
layer can be considered to be addressed by physical references (e.g. physical main memory address
or disk block address). Each software layer above the bottom layer uses references that are logical
with respect to references used in the layer below. If layer A is below layer B, a major function
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of layer A is to translate layer B’s logical references into layer A’s less logical (i.e. more physical)
references.

For example, at one layer, a reference might be a person’s last name represented as a string;
this reference might be passed to-a lower layer-that is supposed to-display information about the
referenced person; this lower layer in turn maintains a table mapping strings into integer object
identifiers. This layer might deal with references to objects other than people; i.e. it is a layer with
multiple immediate higher layers that all call the lower layer with strings as references. A still lower
layer maps the integer identifier into some disk address that indicates where the information about
the object resides. This layer too might have multiple immediate higher layers.

The overall problem of choosing the form of references and designing the translation mechanism is
critical in any data storage system; our approaches will be discussed later.

Another role of abstraction is to hide the representation and implementation of a data structure in
one part of a system from another part of the same system. The purpose of this sort of abstraction
is to (hopefully) allow changes to the representation or implementation to be made without having
to scour the entire system for places where a programmer has “cheated” by employing some piece
of information about the data structure which, by the “official” specification of the 1nterface with
which he is supposed to work, he is not entitled to employ.

For example, suppose some module of a system chooses to implement sets as linked lists; this module
exports subroutines that manipulate sets, but it does not “reveal” that sets are actually lists. If the
client of the module always uses the subroutines provided by the set module, the client is unaffected
if the set module is changed to represent sets as bit vectors. If, however, the client does rely on the
fact that sets are implemented as linked lists, he violates the set abstraction and hence when the
implementation of that abstraction changes, the client breaks.

2.1.3 Storage control

A system that maintains data permanently must deal with the issue of controlling the allocation
of storage occupied by the data. The system must be able to allocate blocks of storage of varying
sizes and it must be able to know when storage occupied by data has become “free” — available for
allocation to another piece of data.

The literature is full of techniques for allocating storage. (Knuth’s work [30] is a standard reference
for these techniques.} Some techniques require that data storage be explicity freed by the application
that owns the data occupying the storage. An alternative technique is garbage collection. Garbage
collection is a process that separates the space of objects into garbage and non-garbage. An object
is garbage if there is no way to obtain a reference to the object; otherwise the object is non-garbage.
The literature contains many descriptions of garbage collection techniques. (Cohen’s survey [15]
contains an excellent summary of these techniques.)

The main advantages of using a storage control policy that relies on garbage collection are:

o Allocation can typically be done very quickly.
o There is no dengling reference problem.

In a garbage collection based storage system, storage can be allocated out of a monolithic heap
(i.e. a storage pool with no internal structure). The state of the storage pool consists of an index
(called a heap pointer) into the heap. The allocation procedure consists simply of advancing the
heap pointer by the number of storage units requested by the caller and then returning the old heap
pointer to the caller. Such a procedure can be implemented in a few machine instructions and hence
can be open-coded, avoiding the cost of a procedure call to the allocation procedure.

In storage systems that are not based on garbage collection and hence rely on the explicit freeing of
storage, the dangling reference problem can arise. A dangling reference is a reference from one data
structure to another where the reference is to a piece of storage that has been previously explicitly
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freed. This is a problem since the freed storage may be reallocated to some new data structure and
the dangling reference would then refer to something other than it is supposed to. In a garbage
collection based system, since there is no explicit free operation, there is no way for a reference to be
dangling. The garbage collection procedure is defined in such a way that any reference to a object
ensures that the data object will not be freed.

However, there is a serious drawback to depending on garbage collection. While it at first appears
that allocation is cheap, to be fair one has to the factor in the cost of the garbage collection. Such
a factoring produces a more accurate cost of the allocation operation. Also, in traditional garbage
collectors, while the garbage collector is running, no other part of the program can run. If garbage
collection takes a long time and it occurs frequently enough, this time can be intolerable. However,
recent work in incremental and parallel garbage collecting strategies lessen some of the pain garbage
collection causes [11,18,1,26,27].

2.1.4 Sharing and concurrency

By the ability to share objects we mean that nothing about an object restricts it to being used by
one user, or one application program, or one process.

When we say a set of processes run concurrently, we mean that all the processes are active and
runnable over some period of time. By concurrent access to objects we mean access to objects by
concurrent processes. We will use the term concurrency to mean the measure of concurrent access to
objects. The degree of concurrency is determined by how many processes are competing for access
to a set of objects over how long a period of time. We say there is a high degree of concurrency if
a large number of processes want access to a similar set of objects over a short period of time. We
say there is a low degree of concurrency if a small number of processes want access to a similar set
of objects over a long period of time.

A systemn that supports sharing need not necessarily support a high degree of concurrency. Enabling
concurrency does require that the problems of sharing have been solved.

Let us first consider the problems related to sharing per se. The main problem here is that all
information about an object must be accessible from a reference to the object. No information
about the object can be encoded in procedures that are known only to some user or application
program. Also, the format of references to objects (section 2.2 discusses the issue of reference format
in detail) must not rely on a particular user’s or application’s context.

For concurrent sharing, let us first consider multiple processes sharing a single main memory. We
assume for reasons of correctness and efficiency that the system should allow just one copy of a
particular object in main memory no matter how many processes are sharing that object. The im-
plementation of sharing depends on the lower level memory architecture of the underlying operating
system. On operating systems that do not support virtual memory, the implementation is easy:
translate identical references from different processes to the same object into the same address in
physical memory where the object has been read.

Operating systems with virtual memory support come in two varieties: (1) ones in which all processes
run in the same virtual address space (which is larger than the amount of physical memory on the
machine); (2) ones in which each process runs in its own separate virtual address space. In case (1)
the implementation of sharing is the same as in a system without virtual memory.

In order to be able to implement the sharing of objects in case (2), the system must support
primitives that allow the manipulation of the process page map. That is, it must be possible to
arrange the page map of two processes so that references to some set of virtual addresses in one
process produce the same values as references to a possibly different set of addresses in another
process. Given these primitives, the system can arrange that there is one copy of the object in main
memory and that all references to it from all processes point to the single copy of the object.

Given the ability to manage processes state and main memory as described above, concurrent read
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access to objects presents no particular problems. The real problems of sharing arise when either
(1) one or more processes want to be able to modify, not just read the data; or (2) multiple processes
wishing to read or modify the data do not share a common main memory. The problem raised by case
(1) is mainly one of semantics. The problem raised by case (2) is in addition one of implementation
efficiency.

Assuming one is willing to accept sometimes unpredictable behavior, there is nothing preventing
the implementation of shared objects in a single main memory with one or more writers being
the same as the implementations of the read-only case described above. Changes can be made by
any process that has a reference to the object and those changes will be visible to other processes
with a reference to the object. For some limited set of applications, this laissez faire approach is
acceptable. For example, suppose the shared data consists of an integer that needs to be incremented
when a particular event occurs in any one of a number of processes. If the machine has an atomic
increment-memory instruction, then this implementation will work fine.

In general however, if there are to be writers coexisting with other writers or readers, there must be
synchronization in order to allow the predictable and correct modification of data structures. For an
example of how lack of synchronization can lead to problems, consider the following classic update
problem: suppose one process is traversing a list of objects representing a list of employees and
modifying the salary field of each employee based on some formula (say to account for inflation);
suppose also that at the same time another process is modifying a single employee’s salary to account
for a raise because the employee has been promoted. The two processes might clash in the following
way: suppose both processes (being unconstrained by any synchronization mechanism) fetch the
salary field for the employee being promoted. The first process computes the new salary and stores -
is back into the person objects; the second process nearly simultaneously computes the raise and
stores that new salary back. Instead of the employee ending up with an increase in salary due to
both inflation and promotion, he gets only one increase (ignoring this sort of interaction, there is the
issue of which increase computation should be done first, but that is not a synchronization concern).

One obvious way to deal with this sort of concurrency problem is to make all requests for modifi-
cations go through a single process (often called a monitor) which is the only one that can actually
modify the object. This sort of solution has two problems. First, it limits concurrency — all modifi-
cation requests are forced to line up and be executed serially. This problem can be ameliorated by
having multiple modifier processes each of which is responsible for a disjoint set of objects. Unless
you have one process per object,! concurrency may still be limited. Another problem is that the cost
of modifications goes up tremendously; it is now much more expensive to modify than read data.
Some database systems are constructed in this fashion, and in fact both writes and reads go through
an intermediate process. Since we are designing a system that is supposed to make accessing and
modifying permanent objects as similar as possible to accessing and modifying transient objects, we
consider it unacceptable to have such an intermediate process.

An alternative traditional technique for dealing with concurrency is to use locks (such as sema-
phores). (There are many language constructs in existence and proposed for dealing with synchro-
nization, but they all ultimately rely on locks.) A lock controls what set of processes have what
kind of concurrent access to a piece of data. The lock can be specified to allow multiple readers
and no writers, or one reader/writer and no other readers, or multiple readers and writers (the
unconstrained case above). Since there is both time and space overhead to each lock, a single lock
may control more than one piece of data in order to reduce the overhead. The locking grenularity
says how small a set of objects need to be locked in reality in order to lock just one object. A
system with small granularity is one with the potential for high concurrency — since the number of
objects locked with one lock is low, the chances that other processes can work on other, unlocked
data is high. Conversely, large granularity can potentially limit concurrency. Thus, lock granularity
is traded off against potential concurrency.

Now let us consider the issue of concurrent sharing when the multiple processes do not share a

YHewitt [25] proposes such a system, but it is not clear how practical it is.
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common main memory. Note that in the case of shared main memory, the thing that enabled
sharing to be implemented easily is that the same processor using a single memory can implement a
memory reference relatively efficiently. While on virtual memory systems the cost of implementing a
memory reference is somewhat higher than on non-virtual memory systems, the cost is still tolerably
low. Trying to extend the “virtuality® of memory to non-shared physical memory is not likely to
result in acceptable performance. That is, one can imagine making the memory reference operation
work over a network of computers each with its own private memory. However, real implementations
of systems with such a facility have never been entirely successful. At best, the programmer has
been forced to be aware that some memory references (i.e. ones to local memory) are cheap, and
others (i.e. ones to another computer’s memory) are considerably more expensive.?

For the practical purposes of building an implementation on conventional machines, we chose to
disallow concurrent sharing from multiple processes using disjoint main memories. This is a limi-
tation, but not one that is impossible to live with because one can often divide a problem so that
the processes that need to access data concurrently can share main memory with each other. Also,
even when processes must run in disjoint memories, it is often possible to partition a data structure
so that parts that have no inter-dependencies can be manipulated in separate memories.

2.1.5 Security

For many applications it is important that a permanent data storage system provide security mech-
anisms. That is, it should provide a way of allowing some users to have one kind of access and other
users to have another kind of access. There are two issues to be addressed in this area: (1) What
is the granularity of the specification of the class of users? (2) What is the granularity of the data
to which a single security specification applies?

The issue of the granularity of the specification of the class of user basically comes down to this:
how many bits of specification do you want to allocate to identifying users? Ideally the specification
should allow different access to be specified for each distinguishable user. If there are a lot of users,
this will require a lot of bits. If this specification has to be duplicated for each object to be protected,
then this form of specification is unacceptable. If however multiple objects that are to be protected
identically can share the same protection specification, we are less likely to worry about the length of
the specification. The space of possible protections is large, but in practice the number of different
protections used is relatively small compared with the total number of objects being protected. The
situation is further helped if users can be characterized as being members of a class (say, systems
programmers) rather than individuals. Then the protection applicable to an entire class of users
can be expressed simply by referring to the class instead of to each individual user.

Intertwined with the issue of how protection is specified is the issue of how small a set of objects can
be protected by a single specification. Even if we use a scheme in which different objects can share
the same specification, we still need a way to express which specification we want. If we use, say, a
32 bit integer to identify which specification we want, it is unlikely that we would want to protect
sets of objects as small as or approaching 32 bits in length since if we did, the storage overhead of
the specification would be as large or nearly as large as the data itself. For practical purposes, it is
usually acceptable to allow the size of the set of data to be protected to be relatively large.

2.1.6 Reliability

Reliability is a measure of how long a system runs without failure. Researchers in the field have
made many suggestions about how programming projects can produce more reliable systems. It is
not clear what the practical implications of this research are however. For our purposes, we will
have to rely on our intuitions about reliability. For instance, we know that a system that spreads
one set of logically related objects over multiple disk drives is prone to reliability problems - as

2C.mmp [54] is an example of a system with this property.
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the number of mutually dependent pieces in a system increases, the chances that the failure of any
individual piece affecting the reliability of the system increases.

2.1.7 Performance

Performance is a measure of how fast a system runs and how much space it uses. If programmers
are to use permanent objects the way they use objects in a traditional programming environment
in which objects live only in main memory, the performance of routines that create and access
permanent objects must be similar to the performance of analogous routines in the traditional
environment. It is easy to let the cost of the operations in the permanent environment creep up. By
doing so, the permanent object system begins to look like a traditional file system as programmers
recognize the performance problems and use I/O techniques (like buffering) to improve performance.

2.2 Reference

Given the desire to maintain objects permanently, one needs a way to refer to those objects. The
object reference can be thought of as the object’s name. There are a number of questions that arise
in designing a reference mechanism:

e What is the form of the reference?

e What is the mechanism and cost of dereferencing (i.e. the procedure that obtains a piece of
an object given the object’s reference)?

e How many layers of reference does the system provide?
e How does the underlying hardware affect the choice of reference?
e What is the programmer’s and the user’s view of the reference?

The first thing to note is that an object reference is ultimately a string of bits. In this section we
will discuss the issues associated with choosing the format of that string and the mechanisms for
dereferencing given the bit string. :

2.2.1 A first cut

Permanent objects’ permanent home is on stable storage ~ a disk for instance. A natural first
approach to the problem of choosing the reference form is to say that an object reference is simply
the disk address at which the object begins. Suppose a disk address is simply an integer offset that
indicates how far from the beginning of the disk the object being referenced is. Dereferencing then
simply consists of reading the appropriate number of bytes from the disk into main memory where
the object can be manipulated by the CPU. Let us refer to this as the pure address strategy.

What are the problems with the pure address approach? One problem is that since it is reasonable
to assume that objects will tend to be larger than the interval between disk addresses, if our object
references are disk addresses, then we are wasting bits. This is because even when the disk is is
full of objects there will be disk addresses that don’t correspond to the starting position of some
object. Logically, these unused addresses represent bit patterns that could in principle be used as
object references. We are not proposing that this scheme be modified to use those addresses, only
that their existence implies that we are not getting full mileage out of the bits we have allocated
to the task of making up references. Thus, if we have an N bit references, we are typically going to
be able to make somewhat less that 2V object references. Ideally, we would like to be able to get
exactly 2V references.

Another problem with the pure address approach is that it makes it difficult to move objects around.
Objects might move around for several reasons: (1) garbage collection, (2) storage compaction
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(without garbage collection), and (3) “logical reasons”. By logical reasons we mean reasons that
are not real requirements of the system. For example, suppose the system consists of many disks
attached to many computers. Extend the notion of disk address so that the disks are arranged in
some order and each disk is assigned a subrange of the entire disk address space. An example of a
logical change is a user’s request to move his set of objects to a disk that is attached to his computer
instead of one attached to another computer. If we use the disk address scheme, then moving an
object requires that all references in other objects to the object being moved must be updated to
refer to the new address. In general, this is equivalent to garbage collection — the entire object space
may have to be swept to find all the references.

A refinement on the pure address approach that solves the above problems is to have a table that
maps references onto disk addresses. The reference assigned to an object is a key into the mapping
table. The problem of unused bit patterns goes away because the reference can be any one of the
bit patterns possible; the table is responsible for translating all valid bit patterns (i.e. patterns that
have been assigned by the mapping mechanism) into disk addresses. The problem of moving objects
also goes away. An object’s moving is transparent to the holder of a reference because the only
change that needs to be made is to the mapping table slot where the actual disk address appears.
Let us call this the mapped address approach.

Let’s look at this mapping mechanism in more detail. The obvious implementation is to have a
vector whose length is the total number of objects (and by extension, references) we wish to allow.
Dereferencing then simply consists of indexing into the vector at the position indicated by the
reference and returning the disk address found at that slot. This vector must be placed at some
known place on this disk. While simple, this approach obliges us to maintain a potentially large
table many of whose slots may be unused if all the possible references are not being used at any
given time. Each dereference requires that we read the disk potentially twice: once to read the disk
address from the vector and once to read the data located at that disk address.

We want dereferencing to be fast — dereferencing is in the inner loop of all processing of permanent
data. Slowing down dereferencing slows down everything. The mapping mechanism must be fast.
As an optimization we can keep a copy of the mapping data structure in main memory. This saves
us one of the disk accesses. Unfortunately, having the table in main memory makes us feel even
worse about the table’s size.

We could use a more sophisticated mapping mechanism like hash tables. One decides how big to
make a hash table based on the expected number of keys (i.e. references) one needs to map into
values (i.e. disk addresses). Thus, we can reduce the size of the table. However, the cost of looking
something up in a hash table is considerably greater than the direct lookup that is done in a vector.

Any kind of mapping scheme that requires large parts of the mapping data structure to reside in
main memory has two major problems. The first problem is one of reliability. We are keeping a data
structure that is critical to maintaining the consistency of the complete system in volatile storage;
if the system crashes, we’re in big trouble. To reduce the potential for disaster, we can periodically
copy the mapping data structure back to disk. Nevertheless, the risk remains.

A second problem with keeping the mapping data structure in main memory has to do with con-
currency. Multiple processors that do not share a common main memory do not have equal access
to the mapping data structure. It is likely that any mechanism that tries to simulate equal access
will have serious performance problems; one processor will run quickly while the others run slowly.

2.2.2 Dividing the world

The cause of both the storage overhead and concurrency problems noted above is ultimately that
the mapping mechanism is flat and unpartitioned. If we could break it up into smaller pieces then
(1) the amount of mapping data structure that needed to be resident at any time would be reduced,
and (2) multiple processors could run concurrently as long as they stayed in separate areas of the
map.
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Figure 2.1: Multiple table mapped address dereferencing

The traditional approach for breaking up a mapping mechanism is to divide the reference bit string
into multiple parts. This is a technique that is often applied in virtual memory systems. Each
substring of bits is a key into a table. All but the last substring are keys into tables that map bit
strings into table identifiers. The last table maps a key into a disk address. The first table is at
some “well known” location. Let us call this scheme the multiple table mapped address approach.

Dereferencing in this scheme consists of breaking up the reference into the separate bit strings and
then starting with the well known table, looking up each substring in successive tables (the location
of each table is the result of the previous lookup) until the last substring is used. The last substring,
instead of being an index into a table of table identifiers, is an index into a table of disk addresses.
At any given time, only one of the tables has to be in main memory. In practice, references are
broken up into just two or three pieces.

A problem with the multiple table approach is that even if all the tables happen to already be in
main memory, we have to make as many memory references as there are tables in the course of
just one full dereference operation. In virtual memory systems, this problem is partly helped by
introducing special hardware that stores the last few references that were dereferenced along with
the identifier of the final table used for each reference. Any future reference whose upper substrings
match an entry in the special hardware table can skip the process of looking through all the tables
and simply use the result saved in the special hardware table. This process is sometimes called
translation lookaside {or translation caching).

Let us now consider the issue of storage allocation in our simple disk address based object system.
How is the disk space managed so that allocation is fast? If we want to rely on garbage collection
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to reclaim free space, we can use the allocation mechanism described earlier — simply have a heap
pointer that indicates the boundary between used and unused disk space. Unfortunately, now
we have introduced a bottleneck analogous to the one introduced by our first simple mapping
mechanism. The problem now is allocation instead of dereferencing and the bottleneck is the heap
pointer (or in general whatever data structures are associated with the allocation process) instead
of the mapping table. All requests for storage have to go through the allocation data structure.

Just as we broke up the mapping mechanism, we will now break up the allocation mechanism. The
straightforward way to do this is to divide the entire storage pool into pieces and associate separate
allocation data structures with each piece. Let us call a piece of the entire storage pool a heap. In
fact, it will turn out to be convenient if we break up the storage pool along the same lines as the
broken up mapping mechanism. That is, the last table in the set of mapping tables will contain
disk addresses that are in just one of the areas of the disk (i.e. storage pool).

An advantage of the heap approach is that now instead of storing full, presumbly long, disk addresses
in the table, we can store just the offsets from the beginning of the heap on the disk; one entry
in the table contains the base address (a full disk address) of the heap covered by the table. In
addition to being small, another advantage of offsets is that they are position independent. That is,
if necessary, we can move a heap (say to another disk) without having to change anything except the
base address. Another advantage that we will go into detail on later is that if a few more changes
are made to the strategy, it will be possible to do partial garbage collections, i.e. garbage collection
of a heap rather than the entire storage pool. This means that one of the onerous aspects of garbage
collections ~ the long time to do garbage collection — can be somewhat ameliorated.

2.2.3 Dividing the world is not free

Note that as a result of the divisions in the reference and allocation structures, we have introduced
the problem that there will be some set of references that will not be used. How does this happen?
Without loss of generality, assume that the reference is divided into just two parts. The first part
is conceptually a reference to a heap; the second part is a reference to a particular object within
the heap. The maximum number of objects in a heap is fixed by the size of the second part of the
reference. We expect that the assignment of objects to heaps will not be random with respect to
the meaning of the objects — that for reasons that will be elaborated on later, programs and users
will place logically related objects in the same heap. .

Assuming this model of the use of heaps, it is possible that some heaps will contain more objects
than others. As a result, there will be heaps for which the second part of the reference is larger
than it needs to be. Unfortunately, in our reference scheme, the sizes of the parts of the reference
are fixed. (Through the use of clever encoding techniques it is possible to have a reference scheme
in which the size of the pieces of the reference can vary “by need”; we consider such techniques too
expensive for our purposes.) Thus, each lightly populated heap will result in a number of references
that are not used (and are not logically usable). Clearly, we need to pick the size of the pieces of the
reference to minimize this problem. But in doing the division, since we are using direct lookup and
not hashing, we are obliged to pick sizes of the parts of the reference that allows for the maximum
- not expected — number of objects per heap. Since we can assume that most heaps will not be
completely full, we will have unused references. This is the price we pay for introducing partitioning.

2.2.4 Reusability of references

While we didn’t explicitly state it, in both the pure address and the mapped address approach, we
have assumed that references can be reused. That is, if an object is deleted (i.e. discovered to be
unreferenced after garbage collection), we can reuse the reference to refer to some newly created
object. In the pure address strategy, this simply means that we can put some new object in a place
where some old object lived and that the disk address of that place (the reference to the old object)



Managing Permanent Objects 17

now becomes a reference to the new object. In the mapped address strategy, it means that we can
reuse the slot in the mapping data structure that held the translation between the reference and
the old object’s disk address to hold the translation between between the reference and some new
object’s disk address; we return the reference.to the -old object to the allocator of the new object.

An alternate approach to reusing references is (obviously) to not reuse references. Each time a new
object is made a new reference (one that has never referred to any object) is made up. The approach
is called the unigque identifier (or simply UID) approach. A

The first question that arises in the UID approach is “how do you generate UIDs?” One traditional
approach is to use a clock; a clock is a continuous source of unique numbers. The second question
is “how many objects will ever be created?” This question needs to be answered in order to decide
how many bits long the reference should be. Note that in the case of non-UID systems, the size
of the reference is determined by how many objects can exists at any snstant, not how many will
ever exist. In either case, experience tells us that we should overestimate. Choosing too small a
reference is something to avoid because running out of references is a fixed barrier; when it happens,
your system falls apart. Choosing too large a reference has the cost that you can waste space (and
hardware) allocating bits that you never use. There is no simple answer to the problem. One thing
is for sure though — a UID system needs more bits for a reference than does a non-UID system.

An advantage to the UID approach is that objects can be explicitly deleted (i.e. freed) without
having to worry about dangling references. To be more precise, dangling references are still a
problem, but they are a problem that will be detected. As noted earlier, in a non-UID system,
explicit freeing leaves open the possibility that the reference will be reassigned to a new object and
that dangling references (i.e. references to the old object that are now references to the new object)
will be dereferenced producing meaningless results. In a UID system however, when the object is
freed, the reference is marked as being invalid, and dereferencing it will cause an error that can be
detected by the storage system.

The disadvantage of a UID system is that the cost of dereferencing is high. The data structure
that maps the UID into a disk address will have to be complicated (e.g. a hash table). There is
no natural way to divide the reference as was done above. (One can imagine dividing the reference
and having multiple mapping tables, but doing so would not produce the desired benefits.)

2.3 Types and Code

By code we mean the programming language procedures that implement the abstractions discussed
in section 2.1.2. It must be possible to get from a reference to an object to the code that implements
abstractions on the object. We call the characteristic of an object that determines what code should
be used to implement abstractions on the object, the object’s type.

In a traditional programming language like Pascal, it is not necessary for the representation of an
object to contain an indication of the type of the object. This is because all variables have types and
an object is the value of a variable or the value of some field of an aggregrate whose type is known.
In T (like all Lisps), variables do not have types. Thus, the type of an object must be explicitly
associated with the object itself. The obvious mechanism for doing this is to allocate some space in
the object to hold a type sdentifier. Optimizations of this scheme will be discussed in section 3.2.1.

Given that type IDs are kept in objects, we need a mechanism that takes a type ID and returns
a procedure that takes some operation that is to be performed on an object and implements the
operation on the object. This procedure is the handler mentioned in section 8.1. Ideally, code in our
world of permanent objects would be a permanent object itself. Thus the result of the mechanism
just described could simply be a reference to a handler object. In fact, if code can be represented
as a permanent object, the type ID could simply be a reference to the handler object.

One reason for wanting the type ID to be something other than a reference to a code object is that
we can assume that there will probably be more objects than types of objects. As a result, the
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number of bits needed to hold a reference is larger than the number of bits needed to hold a type.
Since every object will have a type ID embedded in it, we would like to minimize the size of the
type ID. Another reason for having a layer of indirection between type IDs and code objects is that
it permits a level of abstraction. Types can be thought of independent from their implementations.
Implementations can be changed without having to modify all the objects that contain the type ID.

If we introduce a layer of indirection between type IDs and code, we must keep a global table that
maps type IDs onto code objects. In order to avoid making this table a bottleneck in the system,
each process would presumably keep a local cache of the map. (Note: this solution works only as
long as the handler corresponding to a given type ID never changes.)

Another issue about types and code that needs to be addressed is how to deal with type redefinition.
Suppose we create a type, create some objects of that type, and then want to modify the behavior
of objects of that type (i.e. how those objects respond to operations). Do we want to modify the
behavior of existing objects of that type, or only objects created after the type is modified? Also,
what if the type definition wants a different number of slots assigned to objects of that type? There
are cases when one wants old objects to “see” the new type definition ~ for instance when one is
fixing a bug in some method. There are cases when one wants them not to see the new definition. In
this case, one might be inclined to call the change an introduction of a new type, not a redefinition
of an existing type. But this would be hiding the relationship between objects of the old type and
objects of the new type. Suppose a bug is fixed in a method ~ one would want the bug fixed in both
the old and the new handler (type definition).

2.4 Previous Work

Many other researchers have worked on systems that tried to solve some of the problems discussed
in this chapter, We will briefly discuss some of that work.

2.4.1 Capability systems

The term capability system [20] is usually applied to a system that is specially designed to keep
track of references to objects. Levy’s masters thesis [35] contains an excellent summary of these
systems. In capability systems, access to data is controlled by the fact that a process can refer only
to objects for which it has capabilities. A capability is essentially a high-level machine address. The
only way to obtain a field of an object is with a machine instruction (or kernel call on machines
that do not have capability-based hardware) that takes a capability and an offset into the object.
Unlike other systerus it is not possible for unprivileged processes to create capabilities from other
data types. Part of creating a process is the assigning an initial set of capabilities to the process.
The process can then pass those capabilities onto processes that it invokes.

2.4.2 Hydra

The Hydra operating system for the C.mmp multiprocessor |54,16] has been an influential model for
researchers interested in capability systems. The underlying hardware (which consists of PDP-11s)
is not capability-oriented. However, Hydra supports capability-based references to objects. This
functionality is supplied by machine instructions that trap to the kernel which then authenticates
the reference and does the requested operation.

2.4.3 IBM System 38

While they have long had an attraction to researchers capability systems have not become common
in the real world. The IBM System 38 is one of the few commercial systems based on the capability



Managing Permanent Objects 19

model. The System 38 hardware is capability-oriented. In spite of the fact that is has an object-
oriented model - the system presents a one-level object store which eliminates the distinction between
objects in main memory and objects stored on the disk — the System 38 does not provide anything
other than a traditional programming environment (COBOI and RPG-II).

2.4.4 Intel iIAPX 432

Intel’s iAPX 432 microprocessor and associated operating system, iMAX 432 [29,41] is a recent
commercial entry into the world of capability systems. The 432 system is also object-oriented, but
unlike the System 38, the 432 makes apparent to the programmer the distinction between active
and passive objects. Passive objects are referred to using 80 bit UIDs. Active objects are referred
to using 24 bit 432 access descriptors.

The 432 is not in widespread use and the status of the iIMAX project is unclear.

The recent trend in computer architecture design has been toward machines with a considerably
simpler model [43]. The firmware that supports capability systems is extensive. As a result, it is
hard to debug and hard to optimize.

2.4.5 Smalltalk

Smalltalk [31,22] is a language, operating system, and programming environment. The only suc-
cessful Smalltalk implementations have been on microcoded personal workstations.3

Smalltalk is the canonical object-oriented environment. The Smalltalk language introduced many
of the concepts and much of the terminology of object-oriented programming.

2.4.6 Eden

The Eden project [32,2,3,4] is a project attempting to build a distributed computing environment
around object-oriented principles. Eden objects are relatively expensive and heavy-weight and hence
are used to represent a collection of data. In Eden, objects are active entities. When an operation
is applied to an object, a process corresponding to the object (not to the invoker of the object) is
activated to run the object’s method for the operation. Part of the Eden project is the development
of a programming language, EPL, based on Concurrent Euclid. The purpose of EPL is to allow
Eden objects to be coded conveniently. Using EPL, active Eden objects can have multiple threads
of control.

Originally, the Eden project expected to run on the Intel 432 microprocessor. However, the present
Eden prototype is running on multiple VAXes connected via a local Ethernet.

2.4.7 Object-oriented machines

There have been several proposals from MIT for “object-oriented machines”. The machines bear a
resemblance to capability machines in that the hardware is specifically designed for keeping track
of references. None of the proposed machines have been built.

Bishop [14] describes ORSLA, a system with a very large linear, paged address space. All processes
run within the same address space. Object references are virtual addresses, not UIDs. The address
size is proposed to be somewhere between 40 and 50 bits (the minimal addressable unit is a 64 bit
word). As an optimization, a reference contains some object size and type information in addition

8The recent implementation of Smalltalk on the SMI SUN 68000-based workstation [17] apparently approaches the
performance of the better microcoded implementation; it is not clear if this implementation will succeed in making
Smalltalk more widely used for large applications.
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to the virtual address of the object. Thus, the size of an ORSLA reference is between 58 and 81
bits. »

Bishop’s main idea is a scheme for partitioning the address space into areas and allowing areas to be
garbage collected independently. The area scheme depends on inter-area references going through
tnter-arca links so that the garbage collector can determine the root set for the collection of a single
area. The proposed hardware would make inter-area links transparent to the programmer.

Luniewski [38] describes AESOP, an object based personal computer. AESOP incorporates some of
the ideas of ORSLA. In addition, Luniewski investigated some of the programming language issues
involved with working on the proposed architecture. He adopted the CLU language model [36].

Snyder [49] describes another object-oriented system based on CLU. His thesis discusses some of
the lower level hardware issues associated with such a system. Also, Snyder proposed the use of
reference counts instead of garbage collection to allow storage to be reclaimed.

2.4.8 APL

The APL workspace [21] is one of the earliest examples of a mechanism that supports permanent
structured objects. Early APLs provided only a mechanism for copying objects from one user’s
workspace into another. Modern APL systems provide mechanisms for also sharing values among
workspaces.

249 POMS

The Persistent Object Management System (POMS) [7,8,9,10,42] is a project that has extended
ALGOL to deal with permanent objects. The underlying permanent storage mechanism is the
Chunk Management System (CMS). CMS provides a database-like interface for POMS. On first
reference to a permanent object POMS requests the image of the object from CMS; POMS deals
with a copy of the object and the changes made by the program using POMS is not made permanent
until the program commits the changes at which point the image of the object is copied back into
CMS.

2.5 The Smalltalk - Hydra spectrum

In looking at the various systems that have adopted the object-oriented model, one can see a range
of concerns to be addressed. Smalltalk and Hydra are at opposite ends of several spectra:

Smalltalk Hydra
object size small large
number of objects large very large
cost of dereference small large
language integration good bad
objects sharable? no yes

2.5.1 Object size

All object-oriented systems are designed to support well a particular range of object sizes. Ideally,
a system should support a range of sizes from just a few bytes to thousands and millions of bytes.
In practice, it is difficult to support such a range. One finds that a system discourages the use of
small objects by introducing a fairly large storage overhead per object. For instance, if the system
imposes a 16 byte overhead per object, it is unlikely that programmers will create many objects of
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16 bytes or less —~ programmers will tend to combine several logically related small objects into one
larger object to minimize the overhead. This obscuring of logical objects reduces the usefulness of
the system. In fact, if the per-object penalty is large enough, one tends to view objects the same
way one views files in a traditional operating system.

Smalltalk is oriented toward dealing with small objects — every piece of data in Smalltalk is an
object; the Smalltalk implementors’ experience has shown that average object size is only about 20
bytes [22]. The per-object overhead is 8 bytes (4 bytes in the object and 4 bytes in the object table).
The largest object is 128K bytes (large, but probably not large enough for all applications).

Hydra is oriented toward dealing with somewhat larger objects than Smalltalk. The per-object
overhead for an active object is 56 bytes; the per-object overhead for a passive object is 32 bytes.
Almes [1] points out that these overheads can in principle be reduced to 32 and 16 bytes respectively.

2.5.2 Number of objects

Another design aspect of object-oriented systems is the number of objects that can exist at the same
time. Traditional Smalltalk implementations use 16 bit object references and hence can support 32K
objects. The reason this number isn’t 64K is because Smalltalk implementations typically encode
integers in the range —2!%.. + 218 — 1 in the object reference itself; one of the bits in the reference
is taken to mean “I am a small integer, not a real reference®.

Some more recent Smalltalk implementations have used 82 bit references {12], but it is not clear
that they are designed so that they can actually support 232 objects. LOOM [28,51] is an experi-
mental system for extending the Smalltalk object space by introducing a secondary object memory;
the Smalltalk interpreter automatically moves objects between primary and secondary memory.
References to objects in secondary memory are 82 bits long.

As opposed to Smalltalk, Hydra was designed to support a large user community that would work
on C.mmp. As a result, Hydra was designed to support a larger number of objects than Smalltalk.
Hydra uses a 64 bit object reference which is composed of a 60 bit field which contains the value of
a 1 microsecond clock at the time of the object’s creation, and a 4 bit processor ID. The increased
per-object storage overhead of Hydra as compared to Smalltalk is in part due to the larger reference
size,

2.5.3 Sharing of objects

Another area in which Hydra comes out ahead of Smalltalk is in the area of sharing. Again, since
Hydra was designed to be a multi-user environment, it needed to support the sharing of objects
among users. In Smalltalk, each user works in his own object space and there is no (attractive)
mechanism for sharing Smalltalk objects among different Smalltalk users.

2.5.4 Cost of dereferencing

In Smalltalk, all objects are entered in an object table (OT). A reference to a Smalltalk object is
an index into the OT. The OT entry for an object contains the memory address of the object,
a reference count, and other miscellaneous information. Obtaining a field of an object requires a
memory reference to the OT in addition to the memory reference to obtain the field itself. The
size of the OT is fixed and the entire OT must be in main memory. For Smalltalks with 16 bit
references, each entry in the OT is 32 bits long. Thus the total size of the OT is 128K bytes.

In Hydra, an object can be either passive or active. An object is activated automatically when
a field of the object is request. Hydra uses UIDs as object references and hashing as part of the
dereference mechanism. A data structure called the active GST keeps track of all active objects
(i.e. objects in main memory). A data structure called the passive GST keeps track of all passive
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objects (i.e. objects on disk). Obtaining a field of an object requires a hashed lookup in the active
GST; if the object is found there then the main memory address of the object is extracted from
the active GST entry and used to pick of the field of the object. If the object is not in the active
GST, the object is activated (which requires reference to the passive GST) and then the procedure
proceeds as it does for an active object. This process of obtaining a piece of a Hydra object is
handled by operating system code and is initiated by a user process by executing a kernel call — a
special machine instruction that is trapped by the Hydra operating system.

Hydra’s reference mechanism is clearly more expensive than Smalltalk’s. The kernel call in Hydra
can be used to copy out large pieces of an object into a process’s local memory; evidentally this
feature is used to minimize the number of kernel calls necessary to obtain an object’s state. The
expense of dereferencing encourages programmers to make large objects whose contents can be
retrieved with one kernel call.

2.5.5 Language integration

From our point of view, the most serious deficiency of Hydra is the evident lack of an environment for
programmer’s to design and build systerns based on object-oriented principles. From the descriptions
of Hydra, it is not at all clear how one actually programs on it. Smalltalk, on the other hand, is
the ultimate in object-oriented programming environments. The language and the environment are
complete integrated. Tools are provided for inspecting the object space.

2.5.6 Summary

The point of our Smalltalk/Hydra comparison is not to show that one or the other is better.
Rather, the point is to show how two systems which are both “object-oriented” can turn out so
differently as a result of different goals. Smalltalk’s implementors were interested in making a single-
user programming environment to exploit the concepts of object-oriented programming. Hydra's
implementors were interested in making a multi-user, reliable, multi-processor operating system
based on object-oriented principles.

In our system we have tried to find a mid-point in the spectrum of possibilities that characterize the
differences between Hydra and Smalltalk. It would be fair to say however, that we started at the
Smalltalk end of the spectrum and tried to generalize to a system that has some of the properties of
Hydra. The Eden project is an example of a project that started at the Hydra end of the spectrum
and attempted to support the programming ease and efficiency of Smalltalk.

2.6 Message passing instead of object moving

An essentially different line of research that is concerned with sharing of data concerns the support
for message passing* in a programming system. This research has proposed the introduction of
programming language primitives that send data to and receive data from other processes. In
the systems discussed above, data is manipulated simply by dereferencing a pointer to the data.
Multiple processes can access the data; there is no explicit moving of data among the processes
wanting to access the data. This sort of access to data seems natural and does not require novel
programming language constructs. However, access to the data is unconstrained - synchronization
is not part of the model. The message passing approach can be viewed as an attempt to allow the
synchronization of processes’s access to data.

4N.B. In Smalitalk and other languages with similar goals, this term is often used to mean something like “generic
procedure call® but this is not the sense we intend here.
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Extensions to CLU have been proposed to allow message passing. [23,24,50]. More recently, the
Argus project [37] has introduced the notion of guardian as the repository for shared data; commu-
nication with guardians is implemented via the lower-level message passing mechanism.

2.7 Summary and approach of this work

The framework in which we have designed and built our system for maintaining permanent objects
includes the following assumptions:

o The system runs on conventional hardware.
e The system runs within a conventional operating system.

o Application programs that use the system are written in an extended conventional language.

All our assumptions, but especially these three, result from our desire to build a system in which
we could experiment with programming in a permanent object system. Requiring that we build
hardware or operating system software or design a new programming language would have increased
the scope of the project beyond our ability. Given the alternatives of a less than ideal system
with which we could actually experiment or a perfect system that would at best be only partially
implemented, we chose the less than ideal system. In addition, from a purely experimental point
of view, we wished to demonstrate that the implementation of these concepts does not absolutely
require sophisticated new languages, hardware, or operating system software.

o The entire space of objects can be naturally divided into subspaces (heaps) of objects.

That we assume that the space of objects can be naturally divided means that there will be some
set of applications for which our system will not be useful. For instance, if the object space consists
of a large highly connected graph of objects of the same type, there may be no natural way to divide
that space. Note however, that if the undividable space is small enough so that the application’s
objects can fit within the largest possible heap, the application can use our system.

o The system does not provide complete transparency for the application programmer.

A system that provides complete transparency does not require that the programmer know the
pattern of inter-heap references, or what kinds of objects reside in what heaps, or in what heap the
next object should be allocated. In our system, the programmer does have to know these things.
We hope that experience with using a system like ours can help in designing a practical system in
which complete transparency s possible.

o The system does not provide high reliability in the face of hardware or communications failure.

This assumption is related in part to the first two assumptions. Given that we were unwilling to
build hardware or operating systems, it is difficult to improve the reliability of our system beyond
the level provided by conventional hardware and software. The gross reliability of our system is
as good as the conventional system on which it is built. This level is good enough for people who
use the conventional system, so it is reasonable to believe that it will suffice at least for our initial
implementation. In the long term, higher reliability is probably required since in a system of the
sort we built, the loss of a very small amount of data can potentially lead to disasterous results.

e The system does not provide mechanisms for a high degree of concurrency.

We are interested in supporting the sharing of objects by multiple processes. Secondarily, we are
interested in allowing as much concurrency as is possible using conventional techniques {locking,
busy waiting). We believe that our system supports the solution to problems that have a low degree
of concurrency. The system does not support concurrency among processes running in separate
physical memories.
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o The system supports only fairly coarse protection.

If a system is to provide access to permanent objects that is nearly as fast as access to transient
objects, it seems that it must rely on special hardware to allow protection down to the level of
individual objects. :



Chapter 3

Implementation

In this chapter we will discuss the design and implementation of OM, our system for supporting
permanent objects. We will be concentrating on the lowest levels of the system.

3.1 The object model

The model of data that we will use in this thesis is typically called object-ortented. This model has
been popularized by Smalltalk. Since the term has different meanings to different people, we will
briefly describe what it means to us.

The entities in object-oriented system are (not surprisingly) objects. An object is a piece of contigu-
ous storage. Atomic objects have pre-defined storage layout. Non-atomic objects are divided into
equal-sized slots; each slot contains a reference to some object. Integers and strings are examples of
atomic objects. A vector is an example of a non-atomic object.

An important concept in the object-oriented view is the notion of reference. Objects do not contain
objects, they contain references to objects. Thus, two different objects can refer to the same object.
Two references are said to be sdentical if they refer to the very same object. Two objects are said
to be eguivalent if there is no way to tell them apart. That is, any procedure applied to one object
yields the same result as the same procedure applied to the other object. Two references can be
non-identical yet refer to equivalent objects.

Objects can be mutable or not. An object is mutable if the storage occupied by the object can be
modified. Integers are immutable objects. Strings and vectors can be mutable. A mutation to an
object is sometimes called a side-cffect.

Computation occurs by invoking operations on objects. (An operation is the same as a Smalltalk
message.) When an operation is invoked we say the object responds to the operation by executing
some code. We call the code that implements the response a method. We call a collection of
methods a handler. The type of an object is defined by its handler. This is an operational view of
types. Operations are generic; i.e. they can be applied to any object. However, an object does not
necessary handle every operation. An error occurs if an operation is applied to an object that does
not handle that operation. The entire process from operation invocation to method execution is
called operation dispatch.

The object model just described is essentially that of T. Much of the terminology we use is T’s.
One reason for using this model is that it is T’s model and our system will be running within T
and used by programmer’s familiar with T°s model. Another reason we use this model is that it is
simple — objects can be accessed in a uniform way.

25
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3.2 The Environment

The environment in which we implemented OM consists of the T programming language and the
Apollo DOMAIN computing environment. When we began the project, we were fully aware of the
fact that by trying to work within an existing environment, we would have to compromise on what
functionality we would be able to support. OM does not provide the complete transparency and
ease of use that many unbuilt systems have proposed.

A clear advantage of working with existing tools is that we were able to more quickly address the
issues in which we were interested: What is it like to program a large system where all data is
stored as permanent objects? Can such a system be made efficient? Another advantage in not
being language designers is that our end product is not a system that is unfamiliar to a ready user
community — a community already familiar with T is more likely to use a language that is much
like T than they are a totally new language. Finally, it is unproven that a permanent object system
actually requires a special purpose language, hardware, or operating system. We wanted to see how
sophisticated a system could be built within a relatively traditional environment.

3.2.1 The T programming language

T is a dialect of Scheme, which in turn is a dialect of Lisp. Scheme differs from Lisp mainly in the
fact that variables are consistently lexically scoped. In this respect, Scheme is more like traditional
Algol-like languages than are traditional Lisp implementations. The latter support dynamic scoping;
i.e. the value of a variable is determined by the contents of the control stack, not the lexical position
of the variable.

Scheme supports procedures as “first-class objects®. That is, procedures are legitimate objects
(like strings, vectors, and pairs! that can be bound to variables and passed as arguments to other
procedures. Procedure objects are created by the LAMBDA special form?. Procedure objects are also
known as closures because when a LAMBDA form is executed, it returns a procedure object that is
closed over the lexical environment of the LAMBDA form. That is, when the procedure object is called
and the body of the procedure is executed, references to variables that are free with respect to the
LAMBDA form but that are in the lexical scope of the LAMBDA form yield the values the variables had
at the time the procedure object was created.

T is essentially a practical realization of Scheme. Before T, there were no practical Scheme imple-
mentations in widespread use.

Like many Lisps, T runs in an interactive environment. This environment contains a T interpreter
that allows the debugging and incremental redefinition of procedures. The T compiler takes source
files and produces object modules that can be loaded into the T interactive environment for execu-
tion.

T, like all Lisps, is a language of reference. That is, the values of variables are references to objects,
not objects per se. Different variables can refer to the same object. Objects can contain references
to other objects. Procedures return references to objects. In general, objects are allocated in heap

storage. T uses a copying garbage collector to reclaim storage occupied by objects that are no longer
reachable. '

T references are 32 bits long. The low 3 bits of the reference are used as a type code. The type
code is used to determine the type of the object being referred to. For instance, if the type code
is 5, then the object at the address specified by the reference is an adjacent pair of references - an
8 byte T pair. The high 29 bits of the reference is a virtual address in quads (8 byte chunks), not
bytes. Figure 3.1 shows the format of a T reference. Note that a quad address left justified in a 32

1Lisp’s traditional cons cell is called a “pair” in T.

2 Special form is the traditional Lisp term for syntax in the language that is used to denote something other than a
call on a procedure.
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Figure 8.1: T reference format

bit word is a byte address (i.e. if the low 3 bits of a reference are masked to zeros, a valid machine
address results).

Let us briefly examine how this sort of type code scheme works. In T, choosing a granularity’® of
8, the low three bits of the machine address of an object are always zero. Hence in a T reference
these three bits can be used to store the type code; this requires that before using a T reference as
a machine address, the low three bits must be cleared. If the type code of a reference is known (or
can be assumed), then the clearing of the type code can typically be done in the same instruction
that fetches a field of the object: the displacement field of the instruction is simply decremented to
account for the increment that the type code will cause. In T, as in most Lisps, the machine code
produced for primitive procedures such as CAR assumes that its argument is a pair and hence it can
assume the type code is a particular value.

Given fixed word and type code field sizes, the total number of unique references is also fixed. As the
minimum object size is decreased, the total number of usable references decreases (assuming some
objects are larger than the minimum object size). Thus, in effect, as the granularity decreases, the
total number of objects that can exist at a time decreases. As the minumum object size is increased,
if there are a number of objects that are logically smaller than the minimum object size, the total
amount of wasted space increases.

T uses a granularity of 8 because Lisps traditionally make heavy use of objects that contain exactly
two references.

Since T needs to support more than 8 types of objects, one of the 8 possible type codes is used to
mean “the type of the object is encoded in the first cell (4 byte quantity) of the object”. This type
code is called the eztend type code. The first cell of an extend-type object is called the object’s
template pointer. Objects represented in this way are called eztends.

In principle, all type information could be encoded in templates and no type code in the reference
would be needed. However, there are two reasons for type codes. First, they allow certain objects to
be represented without the extra storage of a template pointer; e.g. without type codes in references,
cons cells would have to be 8 cells long instead of 2. The second reason for putting the type code in
the reference is to speed up the process of determining whether a reference is to an object of one of
the frequently used types. For example, given a reference to an object, one can determine whether
the object is a pair simply by looking at the reference - the contents of the object itself need not be
examined. :

T supports the style of object-oriented programming described in section 3.1. Recall that the first
step in operation dispatch is to get from a reference to an object to the handler associated with the
object. The way this is implemented in T is as follows (we make some minor simplifications): if
the reference’s type code is not extend, then the handler is obtained from a fixed vector of handler
procedures; the vector is indexed by type code. If the reference’s type code is extend, then object’s
template pointer is taken to be the reference to the object’s handler procedure. Once the handler

3By granularity we mean the smallest unit of allocation ~ i.e how small objects can be.
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is obtained, T calls it, passing the operation being invoked as an argument the handler returns the
method associated with the operation. T then calls the method.

T application programmers are not aware of the machinery of operation dispatch described above.
The OBJECT special form allows programmers to allocate objects and specify how the objects are
to respond to operations. Handlers are part of the T implementation and are not visible to pro-
grammers. Operation invocations are syntactically identical to procedure calls. In T source code,
procedure calls are expressed as a list whose head is an expression that yields a procedure object
and whose tail is a list of arguments to the procedure. The only difference between this and the
syntax of operation invocation is that the head must yield an operation object. The first argument
to the invocation is the object to which the operation is applied. Operations are defined using
DEFINE-DPERATION which has a syntax similar to DEFINE, the procedure definition special form.
The body (code) of the DEFINE-OPERATION is called the default method — the code that is to be
executed in case the operation is applied to an object that does not handle the operation. If the
body is empty, then when the operation is applied to an object that does not handle the operation,
an error is signalled.

As an space optimization, certain objects are not represented in heap storage. These objects are said
to be represented immediately. Immediate objects are represented within a reference. References
with certain type codes are taken to be immediate objects. For example, if a reference has type code
0, then the high 29 bits of the reference are taken to be an integer in the range —228.,4228 —1; T calls
such integers Fiznums. Immediate representations are important because one wants to minimize
the allocation of heap storage that will become garbage quickly. For instance, if Fixnums were not
represented immediately, then the + procedure would have to allocate space in the heap to hold its
result. If this result was not saved, but only passed to another procedure, as in (* 2 (+ 3 4)),
then the result of + becomes garbage, resulting in the heap’s filling up quickly.

3.2.2 The Apollo DOMAIN computing environment

The computing environment in which we developed OM is the Apollo DOMAIN [5,6,33,34]. DO-
MAIN is an integrated environment of high performance personal nodes* attached by a high speed
(12M bit/sec) local ring network. The present Apollo hardware uses a Motorola MC68000 or
MC68010 microprocessor [40]. The 68000 instruction set is traditional and memory is byte ad-
dressed. A node typically has from about IM to 2M bytes of private main memory; it is not
possible to share main memory among multiple nodes. Each user node has a high resolution bitmap
display; Apollo makes server nodes that do not have displays but which can be accessed from other
nodes on the ring. The DOMAIN software supports multiple processes on a single node; each pro-
cess runs in its own virtual address space. We discuss below those feature of the DOMAIN system
that are relevant to our work (we make some minor simplifications for ease of presentation).

The DOMAIN virtual memory architecture presents a virtual address space that is in principle 224
(16M) bytes long; part of that space is reserved by the operating system and the amount available
to user code is about 8M bytes (it is expected that later Apollo hardware will support a larger
virtual address space as true 32 bit microprocessors become available).

The process virtual address space is divided into 1K byte pages. For a page to be usable it must be
mapped to a disk file. By page’s being “mapped” we mean that it corresponds to a page in a disk
file. A memory reference by a machine instruction to a virtual address in the mapped page yields
a piece of the disk file page. Depositing a value into a virtual address modifies the contents of the
file. The pager is responsible for optimizing updates of main and disk memories.

Parts of the address space are made usable by issuing a mep system call. The call takes a file identifier
(discussed below), an offset into the file, a length to be mapped, and some locking information
(discussed below). The call returns the virtual address at which the file is mapped. In general, the
process has no control in selecting to which part of the address space a file is mapped. Execution

4Apolio uses the term node instead of worketation and so shall we.
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of machine instructions that refer to parts of the virtual address space that are not mapped result
in hardware exceptions. The smallest amount of virtual address space that can be mapped is 32K
bytes; the amount mapped is always rounded up to the nearest 32K byte quantity. The unmap
system is used to remove association between the address space and some file. -

Multiple processes running on the same node can concurrently map the same part of the same file.
In general, the files may be mapped to different places in each process’s virtual address space. Both
processes see any changes made by the other. Multiple processes running on different nodes can
map the same file for read access only. While the lowest levels of Aegis allow multiple processes
on different nodes to map the same file for write access, the results of modifications to the file are
undefined. This sort of access to files is not officially supported by Apollo.

It is possible to map a segment of a file where the segment is longer than the current length of the
file. As references are made to parts of the address space that correspond to parts of the file that
do not exist, disk space is allocated and associated with the appropriate part of the file. Disk space
is not allocated unless and until the reference is made.

The DOMAIN operating system, Aegis, does not present any traditional 1/O system calls like read
or write. The only I/O is done by the pager. User I/O is provided via a user-state subroutine
library. This library is implemented using the mapping primitives.

One aspect of the DOMAIN system that makes it unique among commercial workstations is that
any file on any disk attached to any node in the local network can be transparently accessed by
any process on any node. By “transparent® we mean that the accessing process does not need to
consider whether or not the file is on the disk attached to the node on which the process is running.

Files are identified by a 64-bit unique identifier (UID). File UIDs are unique across all Apollo nodes.
(The UID has the creating node’s hardware node number embedded in it.) The home node of a file
is the node whose disk contains-the file. The map primitive takes the UID of a file to map. The file
referred to by the UID can be local or remote (i.e. on the same node as the process executing the
map call or not).

The call to map results in no disk I/O. Pages of the mapped file are page faulted on demand from
the home node of the file. The first reference to a mapped page will cause a page fault. At that
point the pager either reads the file from the local disk, or sends a page-in request to the home node
of the mapped file. In the latter case, the pager must figure out what the file’s home node is based
on the file’s UID. To do this, presently the DOMAIN system allocates 20 bits of the UID to be the
node ID of the home node of the file. This means that a file can not be moved between nodes (a
file can be copied between nodes and the original copy can be deleted, but the copy will have a new
UID which contains the node number of the node to which the file was copied).

Aegis provides a set of system calls for naming files. These calls allow users to specify text path
names of files (path names are like Unix file names [48]). The purpose of the naming system is to
translate path names into UIDs. The naming system contains directories (which are represented
as files) that translate path names into UIDs. No information about files per se (e.g. file length,
location of file on disk) is stored in the naming system. The naming system could logically be
implemented outside of Aegis (modulo a few details).

Aegis also provides a simple file locking mechanism. For our purposes, it suffices to say that one can
control how many processes have write access to a file at the same time. This control is exercised
at the time a file is mapped.

3.3 Introduction to the implementation issues

3.3.1 OM within T

How should the permanent object system be related to T? We see two different approaches to this
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question. The first approach is to think of T as the implementation vehicle for the system. In this
approach the programmer is lifted up from T and works consistently in a permanent object world
presented by the system. The T programming language might be modified in some ways to better
handle the system’s facilities and concepts.

The second approach to setting the relationship between T and the permanent object system is to
think of the system as a set of utility procedures that are available to the T programmer. The user of
OM still programs in T; he calls system procedures procedures to copy T objects into the permanent
object space and back. The language modifications are only those that can be implemented with
T’s syntax modification tools (macros). The programmer has to be aware of when he’s dealing with
a permanent object and when he is dealing with a transient object.

The second approach is clearly less desirable, but it is much easier to implement. Another advantage
of the second approach is that it does not require one to be a language designer. We believe that
one should decide what a language that is designed to deal with permanent objects should look like
only after one sees the ways in which standard languages are inadequate. In OM, we adopted the
second approach. The result was acceptable, but less than ideal in ways we will summarize later.

OM is written entirely in T. However, OM was written with a detailed understanding of how T is
implemented. We present the OM implementation with respect to the T language and operating
environment. The details we discuss are in general not apparent to the programmer who wants to
use OM. When we use a phrase like “To T, feature is ...” or “In the OM implementation, feature is

...” we are describing how some aspect of OM is implemented, not how it appears to the programmer

who uses OM.

3.3.2 Reference

Our first concern is the form of an OM reference — a reference to a permanent object. Just as
all T (i.e. non-OM) procedures take T references to T objects as arguments, OM procedures take
OM references to OM objects as arguments. Note that to T, OM references are objects of some
user-defined data type. But to the programmer using OM, OM references are (not surprisingly)
references to OM objects.

To create OM references within T we could use the standard T mechanism for introducing new
types of objects. Unfortunately, this mechanism is expensive — all objects of user-defined types are
represented in the heap. It is unacceptable for OM references to be represented in the heap. If they
were, all procedures that return OM references would need to allocate storage simply to return the
OM reference. (We are not talking about allocating space for the OM object itself.)

Fortunately, one of T’s 8 type codes is unused by T. With virtually no modifications to the imple-
mentation of T, we can use this type code for OM references. Using this type code, OM references
can be represented immediately. Whatever format we choose for the reference, it must fit in the
upper 29 bits of a T reference.

Are 29 bits enough for an OM reference? If we were able to use all 2%° references, it might be.
However, we intend to use the divided mapped address reference design discussed in section 2.2.2.
As noted in section 2.2.3 this means that we expect that we can not use all the possible references.
Suppose we divide the reference roughly in half — say 14 bits of heap identifier and 15 bits of within-
heap reference. This allows 16K heap identifiers and 32K references per heap, assuming we maintain
a 32K entry table that translates the in-heap reference to an actual byte offset within the heap.

Let us consider a modification to the multiple table mapped address scheme. Instead of treating
the least significant part of the reference as an index into a table of byte offsets, it can be the byte
offset itself. The advantage of this scheme is that we save one table lookup (memory reference) for
each dereference. If we are dividing the reference into just two pieces, this savings is significant -
we have just one table lookup instead of two. The disadvantage is that we partially re-introduced
the problems associated with the pure address strategy: the inability to easily move objects and the
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underuse of all possible reference bit strings. However, lacking translation lookaside hardware, we
are willing to pay this price. As we will show, these problems can be reduced somewhat.

If we use this modified version of the multiple table mapped address scheme, 14 bits of in-heap
reference does not look so attractive: the maximum heap size would be just 16K addressing units
(presumably bytes) — clearly not large enough. If we expand the in-heap reference, we must reduce
the heap identifier part of the reference, thus reducing the total number of heaps. If we want to
have heap identifiers be unique for all time (to allow heaps to be manually deleted), this limitation
is unacceptable.

We conclude that given the properties we want of our object system, 29 bits is not enough for
an object reference. Before pursuing a remedy to this problem, let us first consider some of the
properties of data structures.

3.3.3 The structure of data structures

Data structures are directed graphs of objects. In practice, the graphs representing data structures
are not arbitrary. One sees trees, lists, vectors, DAGs, etc., and connections between graphs of these
types to form larger graphs. As a result, often a large data structure has natural points of division.
For example, if a data structure is a list of trees, then the graph is naturally partitionable at the
connection points between the trees. Note that this is a static property of a data structure.

Graphs of data structures may also be partitioned based on their dynamic properties. For instance,
some vertices may be examined more frequently than others. There may be locality of reference
among the vertices; i.e. a graph might be partitioned into subgraphs whose vertices are accessed
around the same time.

In building a permanent object storage system, one can ignore the partitionability of data structures.
That is, if the system provides references that allow an object to refer to any other object then it
can certainly implement any data structure. However, such a system is overly general. In general
it is not necessary for an object to contain a reference to any other object in the world; it need only
refer to some smaller world of objects.

Providing the general functionality is expensive: in a system of reference, like Lisp, the size of
objects other than atoms® is proportional to the size of the reference. Thus, we want to make the
size of a reference as small as possible since doing so will reduce the amount of space required to
represent an object. Of course, if we make the size of a reference too small, we make it impossible
to refer to an adequately large number of objects.

3.3.4 Local and non-local references

How do we take advantage of the locality of reference among objects in a data structure while still
allowing references among arbitrary sets of objects? Our solution is to allow two kinds of references:
local and non-local. Local references are used to refer to “nearby” and logically related objects:
objects in the same heap as the source of the reference. Non-local references can be used to refer
to any object. Local references are smaller than non-local references. There are two dereference
mechanisms, one for local references and one for non-local references.

There is a problem with having objects connected by different kinds of references: when a program is
traversing a data structure, following references, it needs to know what kinds of reference the object
currently being examined contains so that (1) it can extract the appropriate number of bits from the
object, and (2) it can apply the appropriate dereference mechanism. Recall that our original model
of the implementation of an object (see section 3.1) is that an object is a vector of equal-sized slots
containing references to other objects. In a straightforward implementation, if there are different
size references, the slots of an object have to be variable size and the object has to have a descriptor

3The Lisp term for objects that do not contain references to other objects.
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Figure 3.2: Three objects in two heaps

of some sort that allows procedures that want to extract slots from object to tell where each slot
begins and which kind of reference it contains. This implementation would increase the cost of
accessing slots in objects by an unacceptable amount.

A slightly different implementation approach that supports two kinds of references has the non-local
references stored outside the object. An object has fixed size slots, but in addition to being able to
contain a reference to a local object, a slot can contain a reference to a non-local reference. Any
object slot that needs to contain a non-local reference instead contains a reference to a non-local
reference. This reference to a non-local reference can be simply a local reference. Such a local
reference can be distinguished from a local reference to a local object by reserving a bit for just
that purpose. This bit can be either in the local reference or in the storage pointed to by the local
reference. We will discuss this in detail later.

In summary, all objects that reside in the same heap can refer among themselves using local refer-
ences. The slots in an object are the size of a local reference. For an object in one heap to refer to
an object in another heap, it must go through an intermediate non-local reference. We assume that
inter-heap references are infrequent. Another way of saying this is that objects that are part of one
data structure or partition of a data structure are in a single heap.

Figure 8.2 diagrams three objects in two heaps. Object A (which has 5 slots) contains a reference
to object B (which has 2 slots). Both objects A and B are in heap 1. Object A also contains a
reference to object C (which has 3 slots). Note that object C is in heap 2. Thus, for object A to
refer to object C, there must be a non-local-reference (labelled X in the diagram).

The nice property of this approach is that it is cheap in terms of both time (i.e. time to follow
a reference) and space (i.e. space occupied by a reference) to connect two objects that are in the
same heap. Thus, we are optimizing the kind of activity we expect to occur most frequently: local
traversal and local reference. By local traversal we mean the following of references between objects
within the same partition; programs tend to localize their traversal to a partition of a data structure
(this is similar to the locality of reference argument in virtual memory systems). By local reference
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we mean reference between two objects within the same partition; an object within a partition most
frequently needs to contain a reference to another object within the same partition.

An important property of local references is that they are meaningful only in the context of some
heap. That is, in order to know what a local reference refers to, one has to know with what heap
the local reference is associated. The simple and obvious rule here is that a local reference is always
associated with the heap from which the local reference was itself extracted. Local references are
not created out of thin air. All local references come from inside of objects that reside in some
heap or are returned by a primitive that creates new objects. In the latter case, the heap is known
because it was supplied by the caller to the creation primitive. In the former case whoever did the
extraction must have known what heap he was extracting from and can associate the extracted local
reference with that same heap. The only question is how one gets the first reference from the first
heap. We will address this question later.

We use the term RPointer to mean “local reference”. RPointers are byte offsets from the base of
the heap in which the object being referred to resides. (The “R” in “RPointer” comes from the fact
that RPointers are Relative to the base of a heap.) We use T’s spare type code to indicate an object
of the T type OM RPointer. RPointers are represented immediately in the 29 upper bits of the T
reference.

We can now re-address the issue of the size of reference. A 29 bit RPointer allows heaps up to more
than 500M bytes; objects can be up to this length. This certainly seems like enough for the near
future.

3.3.5 RPointers within T

It is important to understand that to T there is nothing special about RPointers ~ they are simply
29 bit objects. OM mimics T’s implementation of types: the low 3 bits of the RPointer form a type
code which indicates the type of the OM object referred to by the RPointer. The meanings of the
OM type codes (i.e. what type code means what type) is different from the meanings of the T type
codes.

Figure 3.3 shows the format of an RPointer within a T reference.

3.3.6 Object code

In the present implementation of OM, object code can not reside in OM heaps. All code is loaded
into the transient heap. The reason for this limitation is that the nature of an object module
produced by the T compiler requires that when it is loaded into a process, portions of the module
must have process virtual address written into the representation of the module in memory. We can
not allow such process-dependent information in OM heaps.
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The structure of object code is complex and intertwined with the T compiler. When compiling a
module the T compiler produces an object module that contains a pure, position-independent code
section and an impure data section. The pure code refers through the data section to get at values
of variables in other modules. (Since T doesn’t have special “function cells” but rather uses the
normal variable binding mechanism to store procedure values, the looking up of values of variables
in other modules is common.) When a module gets loaded, the part of the data section that is
used this way by the code gets filled in to contain references to all the non-local variables that are
referred to by the code in the module. Hence, the data section becomes impure.

3.4 Heaps

3.4.1 Heaps in plain T

T allocates objects using a simple heap allocation system. At startup it allocates two large pieces
of the process virtual address space. We call these pieces the transtents heaps. Since Aegis does not
support the traditional concept of swap space (i.e. pieces of the disk that are dedicated to backing
process pages that are not part of a disk file) T obtains these pieces of address space by mapping
two temporary files into the process virtual address space. These files are deleted when T exits.

Only one transient heap is active at a time. A heap pointer held in a hardware register is initialized
to hold the virtual address of the beginning of the active transient heap. When a procedure wants
some storage to hold an object, it simply increases the heap pointer by the amount of storage it
wants (rounded up to the nearest multiple of 8 bytes) and uses the old value of the heap pointer
as the reference to the new object. When the heap pointer reaches the end of the active transient
heap (i.e. when there is not enough room in the active transient heap to allocate an object) a GC
Jflip occurs: the inactive heap becomes the active heap and a copying garbage collector is invoked to
copy all the reachable objects from the previous active heap into the current active heap. The set
of reachable objects is determined by recursively following all references from the root set of objects

known a priori by the garbage collector and all references from variables on the program execution
stack.

3.4.2 OM Heaps

Since OM runs within an existing operating system that has its own ideas about using the disk, we
have to work within the operating system’s filesystem. This is not too much of a problem ~ we can
simply embed our system within a single large file. However, if we expect to work in a multi-user,
multi-application environment it probably makes more sense if we use one file per heap. This allows
individual users or applications to use normal file system primitives to copy, delete, backup, protect,
and if necessary examine the contents of heaps he controls. If all the objects resided in one large
file our system would have to duplicate these tools. We can consider each heap file as a separate
disk and the system can function along the lines discussed earlier about a multi-disk system.

OM’s basic extension to T is the introduction of support for multiple simultaneously active heaps.
OM provides primitives for creating objects in these heaps. These primitives take an argument that
identifies the heap in which the object is to be created. OM also provides primitives for accessing
slots within objects. These primitives take both an argument that identifies the heap in which the
object resides and an RPointer argument which identifies the particular object within the heap.

An OM heap is mapped into the process virtual address space when objects in the heap need to
be referenced. The process of mapping is not very cheap; it requires no disk I/O until a reference
is made, but the map call is a system call (requiring a context switch) and the manipulation of
the memory translation hardware by Aegis is expensive compared with the cost of doing a single
memory reference. However, we assume that once a heap is mapped that many references to objects
within the heap will be made. We believe that the way to measure the performance of a system



Managing Permanent Objects 35

such as ours is to measure the average cost of a reference. If the number of references per mapping
operation is high, than the average cost of a reference is not substantially affected by the cost of
the mapping operation.

OM heaps are position independent: An OM heap is-a collection of OM: objects that refer to each
other using RPointers. Recall that RPointers are offsets from the base of the heap. This allows heaps
to be placed at any position in the virtual address space without having to relocate the contents of
the heap.

There are two reasons for wanting to avoid relocation to account for the position that a heap is
mapped at. First, the cost of activating a heap (i.e. the steps required before the objects of interest
in a heap can be examined) would be intolerably high. Worse yet, the cost would be proportional to
the number of objects in the heap, not the number of objects one needs to examine (“on demand”
relocation seems overly complex). The second problem is that if the heap’s contents are relocated,
then the heap can not be used simultaneously by multiple processes running on the same node. This
is because the processes can not guarantee that the heap would be mapped into the same part of
the virtual address space for all processes wanting to access the heap.

3.4.3 Naming OM heaps

The primitives that activate and deactivate heaps must have a way of referring to heaps. As we
said earlier, heaps are stored in DOMAIN files, one heap per file. There are three possible ways of
naming heaps:

1. Use DOMAIN path names (variable length strings).
2. Use DOMAIN file UIDs (64 bit integers).
3. Make up our own naming scheme.

Approach (1) is the obvious approach — users are already accustomed to dealing with DOMAIN
path names. The DOMAIN naming system allows files to be organized hierarchically; related heaps
could have similar names. The drawback to using path names is that they are long and not of
fixed length; this increases the overhead required for manipulating them. As we will see later, heap
names need to be embedded inside OM data structures and will be manipulated fairly frequently.
Also, using path names means that the heap activation time includes the time it takes to turn a
path name into a file UID.

Approach (2) solves the overhead problems and saves the pathname to UID conversion. However,
UIDs are elements of a flat name space. The DOMAIN user interface is designed to deal with path
names, not UIDs. For a prototype system such as the one we built, we want to make it convenient

to deal with failures using tools in the surrounding environment. Using UIDs would have made this
difficult.

We adopted approach (3). Our naming scheme uses 29 bit heap unique identifiers called HIDs.
Being fixed length and small, HIDs are easy to manipulate. HIDs are assigned by OM which keeps
a global word that holds the number of the next HID to assign. We assume that heaps are created
relatively infrequently so that having a single global word won’t be a serious bottleneck.

OM maintains a permanent global table translating HIDs into DOMAIN path names. When a
HID is presented to the heap activation primitive, the HID is translated into a DOMAIN path
name which is in turn translated into a UID of a file which is then mapped. (The translation table
also can translate file names into HIDs; this feature is useful for debugging.) There is no reason
that the HID translation table couldn’t convert HIDs into UIDs except for the prototyping problems
mentioned above. If OM were to be made into a production system, we would have the table contain
a HID to UID translation.

The global table is itself represented as a OM object ~ a permanent hash table. The HID and path
name of the heap holding the table object are known a priori. This heap is called the HID heap.
The HID heap is also the place where the “next HID to use” counter is kept.
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The HID-to-path-name translation table is a potential bottleneck. One way in which we reduce this
problem is by having processes that are using OM keep a cache of translations that have already
been requested. (The cache can implemented as a hash table kept in each process’s address space.)
Once a HID has been translated in one process, future translations of the same HID do not need
to consult the global table. This is possible since HIDs are unique and never reassigned to refer to
some other heap.

Another way to avoid the bottleneck of a global HID translation table is to have multiple tables.
This can be implemented by dividing the HID into pieces in a way analogous to the scheme for
dividing object references. In our prototype system the OM user can specify the path name of the
HID heap so he can run his own private world of heaps and permanent objects; he can thus reduce
the number of processes contending for access to the HID heap. In the prototype system each
isolated application area — i.e. a set of application programs that do not need to refer to objects in
another set of application programs ~ has its own HID heap. This is not a restriction of the current
system; rather it is a suggested mode of operation that seems prudent while aspects of the system
are still under development.

3.4.4 Active heaps

When a heap is activated, the heap can be characterized as a virtual address in a process and a
length (i.e. the amount of space the heap occupies in the address space). We refer to the starting
virtual address of an active heap as an RHeapB. The RHeapB of an active heap is all that is needed
to dereference RPointers into the heap: the RHeapB is added to the RPointer to form a virtual
address of a particular object.

It turns out that it is necessary to associate some additional information with an active heap. An
object of a type called RHeap holds all the information associated with an active heap. RHeap
objects contain: :

e The RHeapB of the heap.
o The number of bytes mapped.
e The HID of the heap.

e The activation count of the heap for this process.

The heap activation primitive returns an RHeap record. All the OM primitive procedures for
manipulating OM objects take an RHeap argument.

The purpose of the RHeapB field is clear. The reason for the byte count field is that the DOMAIN
unmap primitive requires the length to unmap — there is no way to tell the Aegis to unmap as much
as was mapped. Storing the HID of the active heap allows quick conversions from a reference for
an active heap to the HID of the heap.

The idea behind the activation count is to optimize multiple invocations of the activate primitive
on the same HID. Such multiple invocations do not result in the heap being mapped multiple times.
(Aegis allows this, but it is clearly a waste of address space.} Rather all activations of a heap other
than the first activation simply increment the activation count and return the previously allocated
RHeap object for that heap. A table translating HIDs into RHeaps allows this; only one RHeap
object is ever created in a process for a single heap. This table is part of the process context - it
resides in the transient heap. Deactivating a heap decrements the heap activation count. When the
activation count drops to zero, the heap is unmapped.

Encapsulating RHeapBs in RHeaps allows a heap to be moved around the process virtual address
space simply by changing the RHeapB slot of the RHeap associated with the heap. This sort of
motion is necessary because the heap is mapped for a particular size, and when it needs to grow
beyond the size for which it was mapped, it must be unmapped and then remapped, and there is
no guarantee that the heap will be mapped into the same spot.
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One price for embedding RHeapBs in RHeaps is that it adds one extra memory reference (and
probably one extra machine instruction) to the dereference procedure: given an RPointer and an
RHeap, the RHeapB must first be extracted from the RHeap before an object’s virtual address can
be calculated. The cost of the memory reference is not a great concern since the DOMAIN hardware
has a memory cache; we can safely assume that for multiple dereferences into a single heap, the
RHeapB of the that heap will be in the cache.

The issue of managing the process virtual address space is one which we have not pursued extensively.
We rely on the Aegis mapping primitive to determine where to map heaps. Its allocation strategy
appears to be adequate for our purposes. One optimization we could easily make is to not actually
unmap a heap just because its activation count has dropped to zero. We could keep it mapped until
the address space became full and some heap that isn’t already mapped is activated. At that point
we could unmap the inactive heaps using some LRU strategy. This optimization will sometimes
eliminate the cost of the mapping and unmapping operations. One reason we haven’t adopted the
optimization is because (1) it hasn’t proved necessary, and (2) it raises some concurrency problems:
if a process on one node wants to activate a heap that is inactive but still mapped into a process
on another node, it will be unable to do so.

Another possibly useful address space management technique is to unmap heaps that are still active,
but which do not appear to be being accessed. Such a heap could be unmapped and the RHeapB slot
of the Rheap for the heap could be modified so that references through it would cause an addressing
error. The error could be trapped by OM and the heap re-mapped. This technique would be useful
if a process needed to have multiple large heaps simultaneously active. This is especially true in
the present DOMAIN 24 bit addressing environment. With an address space of 4G byte (32 bit
address), it is not clearly as important. )

345 OMheapsin T

OM uses some knowledge about the internals of T in order to make OM heaps accessible to T
procedures. To T, RHeapBs appear to be T extends; i.e. references to RHeapBs are extend-type
references. With the T type field masked to zeros, an RHeapB reference is the starting address
of a mapped heap. Note that this address is outside of the transient heap and hence, from T’s
perspective, the RHeapB reference is invalid. (For a reference to be valid to T, when viewed as an
address, the reference must be to a part of the address space where the current transient heap is
mapped.) Fortunately, the invalidity doesn’t matter. The only potential serious source of problem
might be the T garbage collector. However, when the garbage collector encounters an apparently
invalid pointer, it simply copies the pointer to the new transient heap and does not follow it.

Another small problem is that T expects to see a template pointer in the first cell of an extend.
Clearly it is not possible to embed a T template pointer into an OM heap - it would violate the
process context and position independence properties of the heap. But not filling in the template
pointer slot causes no problems unless an operation is applied to the RHeapB reference; in no other
case does T refer to the template pointer slot.

Since OM heaps appear to T to be extends, a cell from an OM heap can be accessed using EXTEND=
ELT, the T primitive for accessing a cell in an extend. The lowest level OM procedures use EXTEND-
ELT.

3.4.6 Summary of heap features
Having described the implementation properties of heaps, let us review why the heap approach
makes sense.

Heaps are position independent. Since heaps never contain any machine addresses, heaps can be
mapped into any part of a process’s virtual address space without any relocation being required.
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Relocation is undesirable because it is time-consuming and makes it impossible to share the heap
between multiple processes.

Heaps take advantage of clustering properties in configurations of objects (i.e. data structures).

Heaps take advantage of DOMAIN paging facilities. Only those disk pages of heaps that contain
objects that are actually referenced are transferred from the disk into main memory. This transfer
is the responsibility of the Aegis paging system.

3.5 Intra-heap references

OM extends T with a set of procedures that take RPointers and RHeaps as arguments. These
procedures fall into two general categories: gllocators and accessors.

An allocator creates a new OM object. An OM object is a contiguous piece of an OM heap. The
slots of the object can contain immediate values or references to other OM objects. An allocator
takes at least two arguments — the heap in which the object is to be allocated, and the type of the
new object. An allocator may take additional arguments which specify things like the initial values
of parts of the object. In terms of the OM implementation, an allocator takes at least one RHeap
argument and returns an RPointer. In terms of the OM interface that the programmer sees, the
allocator returns an OM object.

An accessor retrieves or modifies a slot in an OM object. In terms of the OM implementation, an
accessor takes at least one RHeap argument and one RPointer argument and returns an RPointer.
In terms of the OM programmer interface, an accessor takes an OM object and returns an OM
object.

An RPointer and an RHeap argument taken together form one logical argument that refers to one
object. Thus, for simplicity we will sometimes say that such procedures take “RPointer/RHeap
arguments”. Also, we say that some pair of variables R/H refer to an object if R is a variable
whose value is an RPointer to an object in a heap that is referred to by H. Since we are describing
the OM implementation, we tend to say that a procedure takes an RPointer/RHeap and returns an
RPointer. However it is important to note that RPointers are an artifact of the OM implementation.
The programmer who uses OM thinks of the procedure as taking or returning an OM object.

3.5.1 Active objects

Note that accessors and allocators manipulate only objects in active heaps. We call such objects
active objects. There are no primitives that take an RPointer and, say, a HID to identify a particular
object. Access to an object in this way would be very inefficient. Each access would have to insure
that the heap referred to by the HID is active. If it is active, the associated RHeap would have
to be located; if it is not active, the heap would have to be activated. But would the heap be
deactivated after the access is complete? Clearly activating and deactivating around each access
is too expensive. The set of active heaps might be treated like pages in a virtual memory system.
Heaps would be activated and deactivated based on some usage pattern.

One might argue that we have brought this expense on ourselves. That is, by introducing the
notion of heaps we have also introduced the inefficiency of having to activate and deactivate heaps.
However, in any system that deals with disk storage these problems will arise. In the ideal world
accessing the disk would be as fast as accessing main memory and the disk could be treated as an
enormous flat address space. Access to an object would be implemented as a direct fetch of the
object’s representation from the disk. In the real world, data must be transferred from the disk
to main memory in large chunks if access is to be efficient. Viewed in this way, heap activation is
simply the preparation for bulk disk data transfer. No system can avoid this kind of preparation.

In short, we feel that the complexity of managing heap activation is better left to a higher level



Managing Permanent Objects 39

of the system. The higher levels, having a notion about the logical behavior of a program, will be
able to better guess when a heap should be activated and deactivated. At the low level of primitive
accessors and allocators, activation is explicit and only active heaps can be manipulated.

3.5.2 An example: OM pairs

Let us consider an OM pair (also known as a “cons cell”). OM pairs are 8 bytes long ~ enough for
2 slots. The procedure !CONS creates a new OM pair and initializes the pair’s slots. 1CONS takes
three arguments: the RHeap of the heap in which the pair is to be allocated, the initial contents of
the first slot (called the car), and the initial contents of the second slot (called the edr).

Let us look at what 1CONS must do. First, it must allocate space from the heap. For every builtin
OM type, there is a procedure that allocates an object of that type and does nothing to the contents
of the object. For OM pairs, this procedure is called !PAIR-ALLOC:

(DEFINE (!CONS P1 P2 HEAP)

(LET ((RP (!PAIR-ALLOC HEAP)))
(SET (IPAIR-CAR RP HEAP) P1)
(SET (IPAIR-CDR RP HEAP) P2)
RP))

ICONS calls PAIR-ALLOC and then uses the OM pair accessors to initialize the contents of the the
pair. 1PAIR-ALLOC uses one of a set of low-level procedures that manipulate heap contents directly
and are not accessible to the user of OM. One of these procedures is called REEAP-ALLDC.

(DEFINE (IPAIR-ALLOC HEAP)
(MAKE-RPOINTER (RHEAP-ALLOC HEAP 2) %¥%!PAIR-TAG))

RHEAP-ALLOC takes an RHeap argument and a number of cells to allocate and returns an integer
offset into the heap. MAKE-RPOINTER is a primitive that creates an RPointer (immediate) object
from an integer offset and an integer value for the RPointer tag field.

Before allocating space, REEAP~ALLOC must insure that there is room in the heap. Two questions
that must be answered before allocation can happen:

1. Can the size of the heap be extended without extending past the amount for which the heap
is currently mapped?

2. If the answer to (1) is no, should the heap be extended or garbage collected?

Every OM heap has a heap pointer at a fixed, known location within the heap. The heap pointer
is used just like the the T transient heap pointer. When a heap is activated, it is mapped for its
current size. {Determining the current length of a heap does not require mapping the first page of
the heap for the sole purpose of extracting the heap length field from the heap. This is because the
length can be obtained from the file length maintained by Aegis.) As we said earlier, the actual
amount of address space mapped is the next highest multiple of 32K bytes. Thus, the heap pointer
can typically advance some before the heap needs to be remapped for a larger size.

The process of remapping for larger sizes continues as the heap expands until the heap grows to a
specified size. This size is called the heep mez which, like the heap pointer, is at a fixed, known
location within the heap. The heap max is a settable parameter for a heap. When the size of a heap
reaches the heap max for that heap, the garbage collector is invoked to reduce the size of the heap
(we will discuss garbage collection later). It is up to the application programmer to divide his data
in such a way that heap sizes do not grow in an unbounded way (i.e. that when a heap reaches its
heap max that it is not because the heap is full of non-garbage).

To describe RHEAP~ALLOC’s behavior concretely: it compares the the heap pointer plus the allocation
request to the length for which the heap is mapped. If there is room, the heap pointer is simply
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incremented. If there is not room but the heap’s size is less than the heap max, the heap is remapped
for a larger size. (While remapping is expensive relative to the cost of incrementing the heap pointer,
remapping happens infrequently compared to the number of times the heap pointer is incremented.)
If the heap max is reached, the garbage collector is invoked.

'PAIR-CAR and !PAIR-CDR are the primitive accessors for OM pairs; they access a pair’s car and
cdr slots, respectively. In the context of the SET special form, these accessors modify the contents
of a pair. Let us consider {PAIR-CDR in detail {{PAIR-CAR works analogously). !PAIR-CDR takes an
RPointer and RHeap argument and calls RPOINTER-EXANINE.

(DEFINE (!PAIR-CDR P HEAP)
(RPOINTER-EXAMINE P HEAP 1))

The RPOINTER-... procedures are part of the OM implementation and are not available to appli-
cation programmers. All OM objects are accessed using these procedures. RPOINTER-EXAMINE takes
an RPointer, an RHeap, and a cell index, computes the total offset from the base of the heap, and
calls REEAP-EXAMINE.

(DEFINE (RPOINTER-EXAMINE RP H I)
(RHEAP-EXANINE H (+ I (RPOINTER-CADDRESS RP))))

RHEAP-EXAMINE is a procedure that takes an RHeapB and an integer cell index and returns the
contents of the specified cell of the heap. RPOINTER-CADDRESS extracts the cell number part of an
RPointer. REEAP-EXANINE is just another name for EXTEND-ELT, the T procedure for accessing an
element of an extend (recall that heaps look like extends to T).

All the procedures mentioned in the preceding paragraph are integrable ® so that there is no pro-
cedure call overhead. OM contains no explicit machine language instructions. It relies solely on T
primitives and the T compiler.

The T compiler compiles CAR into 2 68000 instructions (3.8 usec on a 10mHz 68000). The T compiler
compiles IPAIR-CAR into 14 instructions (14.4 usec). A T compiler that was somewhat smarter,
but still had no built-in knowledge about OM procedures could reduce that to 7 instructions (11.4
psec), 3 of which were simply shifts on registers (i.e. had no memory operand). There is an ongoing
effort by the implementors of T to produce a new T compiler that can produce substantially better
code than the current T compiler [45], and we expect that the new compiler will be able to produce
the 7 instruction version.

3.5.3 Arguments to OM procedures

OM’s procedures for manipulating OM objects are modelled after T's procedures for manipulating
T objects. The major difference between OM’s and T’s procedures is that OM procedures take one
additional argument for each argument that refers to an object in a heap. This extra argument is
an RHeap. Some OM procedures take several RPointer arguments and only one RHeap argument.
These procedures assume that all the arguments refer to objects in a single heap — the one specified by
the RHeap argument. Some OM procedures take one RHeap argument for each RPointer argument.

The fact that OM procedures require these extra arguments make them somewhat inconvenient for
the application programmer. We will pursue this issue in the next chapter.

3.6 OM types: Introduction

As in the T type system, some OM types are identified with type codes and others with the extend
mechanism. The following types have reserved type codes:

6T's term for procedures whose bodies are substituted inline at the call position.
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e Pair

e String

o Text

e Null

o Extend
e Type ID

e Non-local reference

One type code is presently unused.

3.6.1 Non-extends

We have already discussed pairs. One additional item about pairs is that they are often chained
together by their edrs to form a list of pairs.

Character strings are implemented in two parts. An object of the text type is a fixed length vector
of characters with a length at the front. An object of the string type is a reference to an object of
the text type plus an index and a length which select a portion of the text object.

The null type is a set containing exactly one object — null. Null’s major function is to mark the end
of a list: the cdr of the last pair in a list of pairs contains null.

In addition to these types, all T objects that are represented immediately (e.g. fixnums and charac-
ters) are valid OM objects. T objects that are not represented immediately can not be OM objects
because their representation is part of the transient heap.

3.6.2 Extends and type identifiers

The extend type is not really a type at all but a flag that tells OM that the type of the object being
referred to (called the eztend) is determined by the contents of the first slot of the extend. In T,
this slot contains a reference to the handler, the object code object that implements operations on
objects containing that reference. In both T and OM extends are used to represent all objects of
user-defined type. Since OM can not store object code in heaps, we need some way of indirectly
referring to an object’s handler. Even if we could store object code in heaps, we might still want
this level of indirection.

We have already explained why it is difficult to include object code in OM heaps and why we have
decided that all object code resides in the transient heap. However, it is not possible to refer to an
object in the transient heap from an object in an OM heap. The contents of the transient heap are
specific to a single process. If we were to put a reference to a transient heap object into an OM
heap, the OM heap would not be free of dependencies upon a particular process. Thus, we can not
make the first slot of an extend pointer to object code that resides in the transient heap. Since
extends reside inside heaps and the object code that supports extends reside outside heaps, it is
necessary to have a mechanism for finding something outside a heap from something inside a heap.
This mechanism must rely on some data structure that is not tied to a process’s context.

OM has objects of type type identifier for identifying the type of an object without reference to
an object in the transient heap. Type IDs are represented immediately in the upper 26 bits of
RPointers. Type IDs are simply integers in the range [0..22 — 1]. Each type ID identifies some
type — ultimately some piece of code that implements operations on objects of the type. Unlike T’s
template pointers (which can be considered a type ID of sorts since template pointers define how
objects respond to operations), type IDs are: (1) not direct pointers to object code, and (2) are
presented to the application programmer. A type ID is an indirection mechanism that allows the
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specification of an extend’s type to be separate from the object code that implements operation on
the object. Type IDs are stored in the first cell of OM extends.

Extend types come in two varieties: primitive and user-defined. Primitive extend types are extend
types about which OM has built-in knowledge. Vectors are examples of primitive extends (i.e.
objects of some primitive extend type). The essential property of primitive extend types is that
their type ID is fixed and known by OM. The handlers for primitive extends are built in to OM.
We will discuss user-defined types later. '

3.7 Inter-heap references

The previous two sections have dealt with the issues of objects within a single heap. This section
deals with the mechanisms that allow objects to refer across heaps.

3.7.1 Non-local references and garbage collection

An OM object can be completely identified by identifying the heap in which the object resides and
the particular object within the heap. As discussed in section 3.4.3, heaps are named with heap
identifiers —~ HIDs. Given a HID, we can identify an object within the heap named by that HID with
an RPointer. Thus, it seems that a HID, RPointer pair can be the non-local reference discussed in
section 3.3.4.

However, this scheme is not adequate since it makes the independent garbage collection of heaps
impossible. Independent garbage collection requires that it is possible to identify all the objects
that are referred to by other objects. In general, non-local references to an object appear outside
the heap that contains the object. Thus, given the present scheme, in order to garbage collect a
single heap, all heaps must be examined to see if they contain non-local references to objects in the
heap being garbage collected. Scanning all the heaps to find references into the heap being garbage
collected would be nearly as expensive as garbage collecting all the heaps and as a result we could
not consider the garbage collector as capable of garbage collecting heaps independently.

To garbage collect heaps independently it is not necessary to know where the non-local references
to objects in the heap being garbage collected are, only that such non-local references exist and
to what they refer. At garbage collection time, knowing that the non-local references exist need
not require finding all the non-local references as long as every time such a reference is formed,
that fact is recorded some place easily accessible to the garbage collector. That is, that when a
non-local reference is formed, an entry is made in a special part of the heap containing the object
being referred to. We call this part of the heap the heap indez.

The heap index is a vector of RPointers to all the objects inside the heap that are referred to by
non-local references outside the heap. The size of a heap’s index is fixed at the time the heap is
created. We call the process of adding an RPointer to the heap index ezporting. A reference count
is associated with each RPointer in the index. The reference count indicates how many non-local
references are using that element in the index. If the reference count for an element is zero then the
element is considered to be free — it can be used the next time an RPointer needs to be exported.

Garbage collecting a heap consists simply of following all the references leading from objects in the
heap index. All objects found by this procedure are copied into a new heap. Once all the objects
are copied, the old heap can be deleted. Note that the entry in the HID heap (translating HIDs to
DOMALIN file names or file UIDs) must be updated to reflect the fact that the heap is backed by a
new file. We will discuss more of the details of garbage collection in the next section.

The heap index allows the non-garbage in a heap to be identified. However, a problem still remains:
in general, after garbage collection the offsets of the non-garbage objects have changed. Thus any
non-Jocal references in other heaps will be wrong. To solve this problem in the present non-local
reference scheme requires that the garbage collector can find and fix all the non-local references to
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Ge( Heap );
begin
NewBeap := NakeHeap();

for I := | to SizeOHeapIndex( NewHeap ) do
SetHeapIndexSlot( NewHeap,
I,
GcOne( HeapIndexSlot( Heap, I ), NewHeap )
); ‘

Deleteleap( NewHeap );
end;

GcOne( Obj, Heap );
begin
if Atomic( Obj ) then
NewObj := CopyAtom( Obj, Heap )
else begin
NewObj := MNakeObj( SizeOfObject( Obj ), Heap );

for I := 1 to SizeOfObject( Obj ) do

SetObjSlot( NewDbj, I, GcOne( ObjSlot( Obj, i ) J);
end; '

return NewObj;
end;

Figure 3.4: Sketch of the garbage collector

the heap being garbage collected. However, if we modify the format of non-local references, we can
avoid the problem.

Let us change the format of non-local references to contain a HID and a heap indez offset, rather
than a HID and an RPointer. A heap index offset is an integer that identifies a particular element
of a heap index. We call these non-local references LPointers (the “L” is for “long®). As a part
of garbage collection, the index is copied from the old heap to the new heap, all the elements of
the index being modified to contain the new positions of objects referenced from the index. Since
LPointers refer to objects indirectly through the heap index, and because the garbage collector has
insured that the elements of the index refer to the same objects they did before garbage collection,
the LPointers do not need to be modified.

Figure 3.4 contains a sketch of the garbage collector. The garbage collector performs a tree walk of
all the objects in the heap. The heap index is the root of the tree. When an atom (leaf) is reached,
its contents are simply copied into the new heap. For an internal node, a node is created in the new
heap. The new node’s slots are filled with the values of recursively applying the garbage collector
to all the old node’s slots.

Note that for the purposes of the above sketch, LPosnters are atoms. That is, the garbage collector
tree walk does not follow LPointers to objects in other heaps. The point of our scheme is to allow
heaps to be garbage collected independently, not to garbage collect all heaps at once.

How is the heap index maintained? So far all we’ve said is that when a LPointer is formed, an
entry is made in the heap index; the entry contains an RPointer to the object which the LPointer is
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to identify. What happens when the object that refers to the LPointer becomes garbage? At that
point, the LPointer becomes garbage. When all the LPointers that name a particular heap index
element become garbage, then the object referred to by the RPointer in the heap index elements
becomes garbage too. Garbage collection as we’ve described it doesn’t do anything about garbage
LPointers and there is no mechanism for deallocating elements of the heap index.

Our goal is to free elements of the heap index when all the LPointers that are using an element
becomes garbage. To do this we modify the garbage collector so that after all the non-garbage
has been copied from the old heap to the new heap, all the garbage LPointers in the old heap are
examined. For each garbage LPointer, the reference count of the index element of the heap referred
to by the LPointer is decremented by one. When the count reaches zero, the space occupied by the
object that is no longer referred to by any LPointers is not reclaimed - the space is reclaimed only
when the heap containing that object is itself garbage collected. At that time since the object is
no longer referred to from the index, the object will not be copied into the new heap and the space
is thus reclaimed (assuming the object that is not referenced from the index is also not referenced
from some non-garbage object in the heap).

To be able to traverse all the garbage LPointers at the end of garbage collection, it must be possible
to find all the LPointers in a heap. This can be achieved by maintaining a linked list of LPointers
whose root is at some fixed place in the heap. Traditional garbage collection techniques require one
to be able to determine whether an object has been copied out already. Thus, at the end of garbage
collection, this list can be traversed and any LPointers that have not been copied to the new heap
are garbage and the procedure described above can be applied to them.

Note that the above scheme does not handle circular references across heaps. For example, if object
A in heap 1 contains a reference to an LPointer to object B in heap 2, and object B contains a
reference to an LPointer to object A, then even if there are no other references to objects A and B,
then the space occupied by A and B will never be reclaimed by the garbage collector. In general,
only by garbage collecting a set of heaps at once can the circularly linked garbage objects in that
set of heaps be found and removed.

3.7.2 LPointers in detail

LPointers must be large enough to contain a HID and an offset into a heap index. Ideally, LPointers
would be represented as T immediate values the way RPointers are. Unfortunately, T does not
have any more spare type codes. However, it is worth examining the packing of LPointers into T
references since in the long run T’s reference format might change to allow more immediate types.

Are 32 bits enough to hold a HID and an offset into a heap index? First we need to decide whether
HIDs are to be unique for all time. Unique HIDs allow HIDs to be explicitly deleted. If HIDs are
unique, reference from LPointers to the contents of a deleted heap can be detected because we are
guaranteed that the HID will not have been reassigned to another heap. While we argued against
using UIDs for object references because of performance problems, since the frequency at which
HIDs have to be “dereferenced” is less than the frequency at which object references have to be
dereferenced, we choose to use UIDs for HIDs because of explicit deletion capability.

Having decided to use unique HIDs, we must be fairly generous in allocating bits for HIDs. It is
not unusual for a moderate size timesharing system to have more than 32K files (requiring 15 bits)
at a single instant. Over the lifetime of a system, the total number of files created can be presumed
to be much larger. The ideal way to generate UIDs is to allocate them consecutively as they are
needed. However, this requires access to a central piece of data that holds the next UID to assign.
To avoid this centralization, UID generation schemes typically embed a processor ID in the UID
and let each processor pick its own local part of the UID. Since the size of the processor ID is fixed
and determined by how many processors are expected to ever exist, this generally increases the
number of bits that must be allocated to the whole UID. Also, since it is desirable that UIDs are
in fact reliably unique, UID generation schemes typically use a monotonically increasing hardware
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clock as part of the UID. Since the resolution of the clock must be small enough to allow two UIDs
generated back-to-back to be unique, the number of bits assigned to the clock-based part of the UID
is typically large. DOMAIN file UIDs are generated using essentially the scheme described above
and are 64 bits in length.

Even if we were fairly miserly in our allocation of bits to HIDs, it seems unlikely that we could be
miserly enough so as to be able to pack both a HID and a heap index offset into less than 32 bits.

In choosing the format of LPointers, once we decide that LPointers can not be made to fit within
a normal sized (i.e. local) reference, our options are less constrained: the format of LPointers
can be chosen to be what seems logically correct, not simply what can be packed into a small
place. However, this freedom has a price. T (and OM) procedures pass and return fixed-size
references; there is no provision for passing and returing aggregates (objects with non-immediate
representations). Thus, all aggregates must be allocated in the heap. Heap allocation is not free —
the more heap allocated objects there are, the more expensive garbage collection becomes.

We chose LPointers to be 2 cells (8 bytes) long. The first cell contains a HID and the second contains
the heap index offset. Since the heap allocation granularity is 8 bytes, it would not have made sense
to have a more compact LPointer. There can no doubt that one cell is sufficient to hold the index
offset. Given our model of the use of heaps — that data structures are partitioned so that most of
the references are between objects in the same heap - 232 incoming references is certainly sufficient.

That 4 bytes are sufficient to hold a HID is more open to question. It is certainly enough given
OM’s present scheme for generating HIDs — consecutively and based on a central count held in
the HID heap - but we do not expect that this scheme would be used in a production version of
OM because of the problems discussed above. Other systems, like the DOMAIN, that use UIDs
generally are more liberal in their allocation of bits to UIDs. OM’s design does not preclude the use
of larger HIDs. In the current implementation of OM, as an aid to debugging, both the index offset
and the HID are represented as T Fixnums, thus reducing the number of incoming LPointers and
the number of heaps to 228, There is no reason why these values could not be full 32-bit integers.

LPointers are a type of OM object. They can be manipulated by OM procedures that are available
to the OM programmer. Note that this makes LPointers different from RPointers, which are an
artifact of the OM tmplementation and in principle are of no more business to the OM programmer
than are addresses to the T programmer.

Figure 3.5 diagrams a slot of an object that contains a reference to an object in another heap.

3.7.3 Making LPointers

LPointers are made with the !EXPORT-RPOINTER procedure. This procedure takes an RPointer/-
RHeap to specify some object to be exported. It also takes another RHeap argument to specify
in what heap the LPointer is to be allocated. The procedure returns (an RPointer to) a newly
allocated LPointer,

(DEFINE (!EXPORT-RPOINTER RP HEAP TD-REAP)
(LET ((ELT (RHEAP-ALLOC-INDEX-ELT RP HEAP)))
(IF (NOT ELT) :
(ERROR *can’t allocate index element"))
(MAKE- !LPOINTER TO-HEAP (RHEAP-HID HEAP) ELT)))

{EXPORT-RPOINTER uses the RHeap primitive REEAP-ALLOC-INDEX~ELT to allocate and initialize a
slot in a heap index. REEAP-ALLOC-INDEX-ELT returns the integer offset of the slot in the index.
MAKE-!LPOINTER allocates an LPointer in the heap specified by the first argument and initializes
the two slots of the LPointer to the second and third arguments respectively. The newly created

LPointer is added to the TO-HEAP’s list of LPointers contained within TO-BEAP. Note that we take
advantage of the fact that we store the HID in the RHeap structure (RHEAP-HID extracts the HID

field from the RHeap structure).
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Figure 3.5: An inter-heap reference

In the current version of OM, REHEAP-ALLOC-INDEX~ELT is not terribly smart. It simply scans the
heap index looking for an element whose reference count is zero. The process of finding a free index
element could certainly be optimized. For example, we could link together all the free entries.

The procedure !EXPORT-RPOINTER-WITH~-EXISTING-INDEX-ELT is similar to EXPORT-RPOINTER ex-
cept that it requires the RPointer passed to it already be present in the heap indez. If the RPointer

is found in the index, the appropriate reference count is increased by one and the index offset is used

in the newly created LPointer. If the RPointer is not found in the index, the procedure behaves just

like YEXPORT-RPOINTER. The idea behind 'EXPORT~RPOINTER-WITH-EXISTING-INDEX-ELT is that it
is desirable that multiple LPointers to the same object share the same index element. That way

the size of the index can be minimized. If an application program knows that an object it is ex-
porting is not already in the index, it can use 1EXPORT-RPOINTER which does not require the index

to be scanned (assuming the optimized version of RHEAP-ALLOC~-INDEX-ELT. Otherwise it must use
YEXPORT-RPOINTER-WITH-EXISTING-INDEX-ELT

Recall that in our initial discussion of non-local reference in section 3.3.4 we pointed out that it
would be necessary to have a bit to distinguish local references to local objects from local references
to non-local references. It should now be clear that this bit becomes available simply by virtue of
our type tag scheme. One of the RPointer type codes is used to indicate a reference to an LPointer.

3.7.4 Dereferencing LPointers

OM’s primitive procedures manipulate active objects. The procedures take one or more RPoint-
er/RHeap arguments to indicate what objects are to be manipulated. LPointers can refer to any
object, active or not. Thus, in general, given an LPointer to an object, it is first necessary activate
the object. This conversion results in an RPointer/RHeap that refers to the now-active object and
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can be used to manipulate the object.

The procedure |LPOINTER-CONTENTS takes an RPointer/RHeap to an LPointer (recall that LPointers
are themselves OM objects) and returns an RPointer to the object referred to by the LPointer.
Note that the returned RPointer can be interpreted only in the context of the-heap identified in the
LPointer.

LPOINTER-CONTENTS is defined as:

(DEFINE (ILPOINTER-CONTENTS LP HEAP)
(REEAP-INDEX-ELT-VALUE (HID->RHEAP (ILPOINTER-HID LP EEAP))
('LPOINTER-INDEX LP HEAP)))

Let us examine it in some detail. {LPOINTER-INDEX and !{LPOINTER-HID are the accessors for
LPointer objects. 'LPOINTER-EID returns the HID field of an LPointer; LPOINTER-INDEX returns
the index offset field of an LPointer. '

HID->RHEAP takes a HID and, if the heap named by the HID is active, returns the RHeap for the
active heap; if the named heap is not active, the procedure returns false. Note that before calling
{LPOINTER-CONTENTS the heap referenced by the LPointer argument to !LPOINTER-CONTENTS must
have been activated; e.g. by executing:

(ACTIVATE-HEAP (!LPOINTER-RID LP HEAP))

REEAP-INDEX~ELT-VALUE returns the RPointer at the specified offset into the specified active heap’s
index. .
Suppose a variable contains (an RPointer to) an LPointer to a pair. The following procedure returns
the edr of the pair:

(DEFINE (!PAIR-CAR-VIA-LPOINTER LP HEAP)
('PAIR-CDR (!LPOINTER-CONTENTS LP HEAP) _
(ACTIVATE-HEAP (!LPOINTER-HID LP HEAP))))

3.7.5 Comparison with Bishop’s ORSLA

Bishop’s thesis [14] describes ORSLA, a system that is in some ways similar to ours. ORSLA
depends on special hardware; neither the hardware or software was actually built. ORSLA has
areas which correspond to OM heaps. ORSLA has only one kind of reference. However, to enable
the independent garbage collection of areas, all references between areas go through inter-area links
(IALs). IALs are special objects understood by the hardware. The hardware makes a reference to
an IAL appear to be to the object to which the IAL refers. JALs are similar to OM’s LPointers
except that JIALs contain actual object references, not something like LPointer’s offset into a table
of object references.

Each area has two distinguished lists: a list of all IALs inside the area, and a list of all IALs outside
the area that refer to objects inside the area. The first list contains outgeing IALs and the second
list contains #ncoming IALs (these terms are with respect to a particular area). Since every IAL is
both inside some area and pointing into some other area, every IAL is on two lists. The root of the
ORSLA garbage collection of an area is the list of incoming IALs.

Since ORSLA has a single form of reference, it is conceivable that IALs could be placed in the area of
the object to which the IAL refers instead of the area of the object that contains the reference to the
JAL. However, as Bishop notes, this would make it impossible to garbage collect areas independently
since when the IAL moved as a result of its being in a heap that was being garbage collected, the
reference to the IAL from the object in the other heap could not be fixed.

Note that in OM, the analog of an IAL is the combination of an LPointer and an element of a heap
index. That is, in a sense we have a two-piece IAL, half of which is in the source of the non-local
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reference and half of which is in the target of the non-local reference. Only the latter half is relevent
to the garbage collector. That this piece of information is in the heap being garbage collected,
rather than in some other heap, is important. It means that the locality of reference of the garbage
collector is improved — it doesn’t have to touch all the heaps in which non-local references to the
heap being garbage collected reside. In the ORSLA garbage collector, the roots of the garbage
collector are spread throughout many heaps, all of which have to be touched.

OM does have a locality of reference problem though: at the end of the garbage collection, if
there are garbage LPointers, the indexes of the various heaps referred to by the LPointers will
have to be modified. Thus, the degree of non-locality of reference in OM garbage collection is
proportional to the number of garbage outbound non-local references. The degree of non-locality
of reference in ORSLA garbage collection is proportional to the number of non-garbage inbound
non-local references. Which system’s garbage collector has the better behavior (i.e. minimizes
the amount of non-locality of reference) can be determined only experimentally. Note that OM’s
garbage collection procedure is amenable to techniques for increasing locality. For example, the
heap indexes might be stored separately from the heaps themselves. Multiple indexes might be
packed together to increase the locality of reference.

3.8 Concurrent access to heaps

If we want the data structures stored in heaps to be accessible by multiple processes running
concurrently, we need to examine what techniques need to be used to assure the integrity of the
data.

In this section we will consider the case of multiple processes running within a single physical main
memory (i.e. on a single DOMAIN node) trying to concurrently access a heap. OM does not allow a
single heap to be accessed by multiple processes that are not sharing a single physical main memory.
This is because the OM implementation uses the Aegis file mapping primitives and these primitives
do not support that sort of concurrent access. )

3.8.1 Controlling concurrency

The correct manipulation of certain parts of a heap requires that a single process have exclusive
access to the heap while the manipulation is happening. Advancing the heap pointer is an example
of such a manipulation. The allocation mechanism must be able to get the current value of the heap
pointer and then increment it atomically. Similarly, the heap index must be accessed in a way that
insures that two processes do not obtain the same index element as a result of exporting an RPointer.
These concurrency problems are not limited to the parts of the heap that are examined and modified
by only the OM implementation. In general, application programs that can run concurrently on the
same heap need to control access to objects in the heap.

Aegis has two mechanisms for controlling concurrent access to data: file locking and eventcounts.

File locking allows a process to map a file in a way that restricts the way other processes can map
the file. For example, a process can map a file for read /write access and lock the file so that other
processes can have read but not write access to the file. File locking provides fairly coarsely grained
control of concurrency. The lock is set when the file is mapped; the success of the mapping operation
is determined by what locks are already set at the time the operation is executed. Thus, using the
locking mechanism requires the process to re-map the heap file before and after each operation,
or set of operations that need to be atomic. Aegis does not have a mechanism for automatically
blocking a process that attempts to map a file in a way that is not allowed by the existing locks.
Thus, the process would have to “busy wait”, re-trying the map operation periodically. Clearly,
this overhead would be unacceptably high for operations like advancing the heap pointer.
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However, file locking ts appropriate when the lock will be held for a relatively long period of time and
the expected concurrency is low. For example, in a mail system, there is a possibility for concurrency
in the accesses made by the program that adds to mail to a mail box and the program that reads
the mail box. Each program can map and lock the heap for the duration of some logical operation.
For the former it would be during the operations that constitute adding the new message; for the
latter it would be during an operation like displaying the headers of all the messages in a mail box.
These durations are long compared to the duration of the operation of advancing the heap pointer.
If there is contention for the heap, it is acceptable for the programs to busy wait, trying to map
every second or so. The user won’t notice and the program won’t be wasting CPU cycles too much.

Eventcounts allow processes to synchronize at a finer level and with less overhead than with file
locking. Eventcounts are equivalent in power with semaphores. All processes accessing the same
part of a heap must agree to obey the semaphore associated with that part of the heap. In the
case of application related data, the semaphore can be referenced from the object whose contents
are to be accessed concurrently. The Aegis eventcount primitives allow a process to block until the
eventcount indicates that the process has exclusive access to the object.

The problem with eventcounts is that they introduce overhead. The overhead is in the cost of the
check of the eventcount before the data can be accessed. (This check is a system call to Aegis.) In
cases where it is appropriate, the file locking approach has less overhead because no checks need to
be made before each access.

A special case that we expect OM needs to deal with is concurrency on oaly the OM-internal
parts of the heap (e.g. the heap pointer and index) and not on an application’s object inside the
heap. Since the access patterns to these internal data structures are well known, it is reasonable
that concurrency control be implemented using the hardware “test-and-set” instruction and busy
waiting since we know that the process will never have to wait too long. Ideally, the busy wait loop
should include a call to the operating system suggesting that it select another process to run’. As
opposed the the eventcount approach, in this approach the operating system call happens only if
the resource is locked. Thus, with a resource that is almost always unlocked (e.g. the heap pointer),
the test-and-set approach is much cheaper than the eventcount approach.

3.8.2 Garbage collection

The OM heap garbage collection procedure we've described is correct omly if no processes are
manipulating a heap when the garbage collector begins processing that heap. If the garbage collector
can be invoked asynchronously (e.g. in the middle of an object allocation primitive) then it is possible
that the only reference (RPointer) to an object is in a variable on a process’s execution stack (or in
a register). Since the garbage collector traces objects only from the heap index, an object referred
to from only the stack will be discarded. Also, in general, RPointers on the stack to objects that
are not discarded will be incorrect after the garbage collection because the garbage collector may
have moved the objects.

Traditional garbage collectors solve the problem of references from the stack by putting those ref-
erences in the root set at the start of the collection. Unfortunately, we can not easily use this
technique because it is not possible to tell what heap an RPointer on the stack refers to. Without
knowing the heap associated with these RPointer, the garbage collector can not trace through the
RPointers on the stack.

There is no easy solution to this problem. The current implementation of OM simply does not
allow the garbage collector to be invoked asynchronously. This restriction is severe but does not
make the current implementation unusable. Not being able to garbage collect asynchronously is a
problem only if applications are creating garbage rapidly. If garbage is not being created rapidly,
the rate at which the heap needs to be garbage collected is low. If each run of an application does
not create a lot of garbage, it is a reasonable restriction that the garbage collector can be invoked

7Unfortunately Aegis does not supply the necessary functionality to do this, but it would not be difficult to add.
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only between (and not during) runs of the application. Our view is that OM heaps are used for
archival storage, not intermediate results that quickly become garbage. Such intermediate results
should be allocated in the transient heap.

If we want to support asynchonous invocation of the garbage collector, we must make it possible for .
the collector to determine the heap associated with every RPointer on the stack. For each RPointer
in a stack frame (resulting from one procedure activation) there must be an RHeap that is associated
with that RPointer and that RHeap must be in the same stack frame as the RPointer. This could
fail to be the case only if some procedure took an RPointer argument but no RHeap argument. But
no such procedures exist because such procedures could not do any useful operation. Since a single
frame can contain many RPointers and RHeaps, the problem for the garbage collector is to pair up
the RPointers with the RHeaps.

With sufficient knowledge about the way the compiler lays out stack frames and by requiring every
RPointer argument to be followed by an RHeap argument (or by adding some declarative syntax
that achieves the same effect) it would be possible to write a garbage collector which could deduce
the RPointer/RHeap pairings on the stack and hence be able to trace references to OM objects from
the stack.

3.9 Heap structure in detail

Figure 3.6 shows the actual format of a heap. The part above the dashed line represents the transient
heap. H is some variable whose value is (a reference to) an RHeap structure which describes some
active heap. The last slot of the RHeap structure is an RHeapB which to T appears to be a pointer
to an extend that is outside the transient heap. The section of the figure below the dashed line is a
part of the same process’s address space into which some heap is mapped.

Note that the RHeapB from the RHeap is actually a pointer to the fourth cell of the heap. This is
because T’s convention for extend references is that the reference points to the first data cell of the
extend - i.e. the slot following the T template pointer. To T, heaps appears as vector-type extends.
A vector-type extend is an extend that has a length cell before the template pointer. Vector-type
extends are used to implement Lisp’s traditional vector of references. Vector-type extends are also
used to implement byte vectors and bit vectors. During the debugging of OM, we were able to set
the template pointer slot of the heap to point to the byte vector template in the transient heap.
This enabled us to use the T standard byte vector primitives for examining the heap.

The heap has two major sections: the header and the data sections. The header contains:

Heap pointer: The cell number (i.e. offset from the base of the heap) of the first free cell in the
heap.

Maz heap potnter: The maximum value the heap pointer should be allowed to reach. When RHEAP-
ALLOC notices that the heap pointer has reached this value, the garbage collector is invoked.

Head of LPointer list: The head of the list of LPointers contained within this heap.
Size of tndez: Maximum number of elements in the heap index.

Indez elements: Vector of RPointers and reference counts.

Data cells: Section in which OM objects are allocated.

The heap pointer is initialized to the cell number of the first data cell. RHEAP-ALLOC uses and
increments the heap pointer. Note that the offset part of an RPointer is the offset from the base
of the heap, not the offset from the beginning of the data cell section. If the offset were from the
beginning of the data cell section then the RPointer dereference procedure would need to contain an
additional addition operation to account for the size of the heap header. Since this size is a function
of the heap index size, which is not constant for all heaps, the dereference procedure would have to
get the heap index length from the heap, adding another memory reference to the procedure.
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Figure 3.6: Heap format
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Figure 3.7: Index element format

The size of the heap index is fixed at the time a heap is created. An alternative approach would be
to allocate the index within the data cell section and to maintain a pointer from the heap header to
the current heap index. With this approach, when the index fills up, a new copy could be allocated
and the pointer from the header could be adjusted. This approach is slightly more complicated and
introduces yet another layer of indirection that must be followed at LPointer dereference time. For
these reasons, the current OM implementation simply uses a fixed length vector in the heap header.
The elements of the vector alternate between RPointers and reference counts as shown in figure 3.7.

3.10 OM'Types: More details

3.10.1 Getting code into T

Before discussing the issue of user-defined types in OM, we must briefly examine the environment
in which we expect programmers to work. We are not attempting to build a single-language,
integrated program editing, debugging, and production-use environment like Smalltalk. (Such an
environment would be nice to have, but is outside the scope of this work.) Programmers will write
their programs using a conventional text editor and have another context consisting of a T interactive
system augmented by OM. The text editor may be embedded within the same process as the T
system or may be in a separate process but in either case, the maintenance of the programmer’s
code is outside the scope of T and OM.

T source code in text files must be compiled before it can be incorporated into a T environment.
By “incorporation” we mean a process that makes user procedures and definitions available within
a T environment.

T has two compilers: the standard compiler, which produces tree-oriented intermediate code that
can be executed by an interpreter that is present in the T environment, and T'C, which produces
native machine instructions (that can be executed by the real processor). TC is much slower than
the standard compiler. However, the compiled code produced by TC executes much more quickly
than the compiled code produced by the standard compiler. TC produces its result into a file
(called an object file) of machine instructions which can then be read into the T environment. The
standard compiler dispenses with the object file and produces the intermediate code directly into
the T environment. It is not possible to save the output of this compiler®, but it runs so fast that it

ENote that this is a good example of a situation in which a permanent object system would be very useful — the
compiled code could be saved as a permanent object
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is acceptable to have the programmer’s source code compiled each time it needs to be incorporated
into a T environment.?

The T interactive environment communicates with the user via a “read, compile, interpret, print”
loop that reads a T source string, compiles it into intermediate code, interpretively executes the
intermediate code, and prints the results and then repeats the cycle. The “compile, interpret” step
is sometimes called evaluation and the loop is called the “read, eval, print loop” (or REPL for short).

The LOAD procedure takes a file name argument and incorporates the contents of the file. If the file
is an object file, the binary loader is invoked. Otherwise, the contents of the file is incorporated by
applying the REPL to the file.

3.10.2 User-defined types

User-defined extend types are created using the DEFINE-}0OBJECT-TYPE special form. This form
defines a type and an associated set of methods for objects of that type. The syntax and behavior
of DEFINE-!0BJECT-TYPE is related to T°s OBJECT form, so we will examine the latter first.

The OBJECT form is both declarative and procedural. It declares a set of handled operations and
associated methods, and allocates an object that responds to the declared set of operations in the
specified way. The syntax of OBJECT is: '

(OBJECT call-part method-part)

The call-part can be ignored for our purposes. The method-part is a list of method clause. The
syntax of a method clause is:

(method-head method-body)
Where a method-head looks like:
(operation argl ... argn)

operation is an expression (typically just a variable) whose value is an operation. The argi are
- the arguments to the operation. Within the method~body - the code that implements the method
— the argi are bound to the values in the operation invocation. The first argument is always the
object to which the operation is being applied; this argument is called the self argument. If the
method wants to apply another operation to the object, it applies the operation to the value of the
self argument.

Execution of an OBJECT special form yields (a reference to) a mew object. The new object is
closed over the lexical environment in which the OBJECT form appears. Method bodies can contain
references to variables that are lexically apparent from but defined outside the OBJECT form. When
a handled operation is applied to the result of the OBJECT special form, the appropriate method is
selected from the object’s method-part and is executed; references to closed-over variables in the
method yield the values those variables had at the time the object was created.

How does the behavior of DBJECT map onto our model of objects as a vector of slots containing
references to other objects? The OBJECT special form does not say anything about slots. Note
however, the implementation of the “closing over” procedure requires that space be allocated to
hold the values of closed-over variables at the time the closure is created. This space, plus a
reference to an object that contains the methods, is the object. Thus, the closed-over variables are
the slots in the object.

Consider the following piece of code:

®Most Lisp systems call something like the standard compiler a reader, and something like TC a compder. In fact, in
T, most users are not aware that there is a standard compiler that is converting their source code into intermediate
code; they think that T is simply interpreting their source code.
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(DEFINE FOO
(LANBDA (X Y 2)
(OBJECT NIL
((ONE-OP SELF N)
(+NXY)
((ANOTHER-OP SELF N)
(CAR 2)))))

This code assigns a procedure of three arguments to the variable FO0. The procedure returns an
object that handles two operations called ONE-OP and ANOTBER-OP. The object is closed over the
variables X, Y, and Z which are the arguments to the procedure.

Note that each execution of the 0BJECT form yields a new, distinct object:

(SET A (FOO 1 2 °*(THIS IS A LIST))
(SET B (FOO 10 20 °(ALPHA BETA GAMMA))

(ONE-OP A B) => (+ 5 XY) => (+512) = 8
(ONE-OP B 6) => (+ 6 X Y) => (+ 6§ 10 20) => 35

The representation of the object that is the value of A is something like:

A ===> ¢mereccna- +

| %==-=|--==> Object code for ONE-OP and ANOTHER-OP
tommmmcen +

X:] emee]oem=> 1
temecnen— +

Yol weees|ee=-> 2
e +

2:] %----|-=--> (THIS IS A LIST)
tecmcomn— +

The traditional term (from Smalltalk) for variables that are available to the method clauses is
tnstance varsables. Instance variables are the names of the slots of an object. The values of instance
variables are what make one instance of an object created by the 0BJECT special form different from
another instance of an object created by the same OBJECT form.

Smalltalk and Lisp Machine Lisp [58] support object-oriented programming facilities similar to T’s.
One way in which their facilities differ from T’s is that in Smalltalk and LM Lisp there are separate
primitives for declaring types of object and creating an object of a particular type. Also, in the
declarative form the instance variables are declared explicitly and are not determined by the context
surrounding the declaration. The number of instance variables that are declared determines the size
of objects.

Taking after Smalltalk and LM Lisp, OM has a declarative mechanism for introducing new object
types. The reason we adopted this approach is that we feel that it is required in a permanent
object system. The goal of T’s object-oriented support is to allow object types to be unnamed and
implicitly created; T object type definitions are dependent on context (i.e. the context surrounding
the OBJECT form). Our goals are different.

As a programmer debugs procedures, he edits, compiles, and re-incorporates all or parts of files.
He may destroy his T process and start a new one and incorporate his procedures into it. In T,
the incorporation (not the execution) of a procedure that contains an OBJECT form constitutes the
“definition of 2 new type. We do not believe that this is the appropriate way to introduce new types
into a permanent object system.

Creating a type in a permanent object system is a serious thing: the system is obliged to retain all
the information related to the type for as long as objects of that type exist. In our system, since we
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can not store object code in heaps, this retention means the writing of an external file that describes
the type {(more on this later). Thus, it seems undesirable that types are created essentially as a
side-effect like in T.

It must be possible to modify-the methods that make up a type. This means it must be possible
to refer to a type — that the type have a name. In T, it is not possible to incorporate a revision of
an existing OBJECT form. In fact, there is no way to refer to an existing OBJECT form: it is buried
within an opaque compiled object. In OM, types have text names and a programmer can get all
the information about type simply by knowing the type’s name.

The essence of the problem of user-defined types in our system is that code that implements types
must be treated differently from ordinary user code. OM need not and does not keep track of all user
procedures that are incorporated into a running T/OM environment. But OM must keep track of
code and other information that applies to type definitions, regardless of whether those definitions
apply to types that are being used in any active T/OM environment.

DEFINE-{0BJECT-TYPE is the OM special form for introducing new types. The syntax of DEFINE-
10BJECT-TYPE is:

(DEFINE-10BJECT-TYPE type-name
options
instance-variables
method-clauses)

type-name is the name of the new type. options is a list containing certain options about whether
the instance variables are accessible outside the method-clauses. instance-variables are the
names of the slots of the object. metbod-clauses is similar to the method clauses of OBJECT.

Operations applicable to OM objects are created using !DEFINE-OPERATION which is analogous to
T’s DEFINE~-OPERATION.

All information about OM types is stored in a special heap called the type heap. OM has special
knowledge about this heap in much the same way that it does about the HID heap discussed earlier.
The type heap contains several things:

e The next type ID to assign.

e A table translating type names to type IDs.

e A table translating type IDs into type names.

e A table translating type IDs into type source file names. '
e A table translating type IDs into lengths.

We will explain how this information is maintained by explaining the behavior of DEFINE-}0BJECT-
TYPE. The execution of a DEFINE~ | 0BJECT-TYPE form causes a new OM object type to be created. A
new type ID is generated by reference to the type heap. A slightly modified version of the DEFINE-
10BJECT-TYPE form is written to a new file {called a type source file) whose name is entered into
the table translating type IDs into type source file names in the type heap. This file is owned by
the OM system, not the user. The name and 1D of the type is entered into the type-name-to-type
ID translation table and the type-ID-to-type-name translation table. The type ID and type length
(number of slots) is entered into the type-ID-to-length translation table.

When the DEFINE- |OBJECT-TYPE form is compiled, the method clauses are not compiled. When the
result of compiling the DEFINE~10BJECT-TYPE form is executed, it is manipulating method clause
source code, not object code. Thus, incorporating a source file containing a DEFINE-{0BJECT-TYPE
form does not result in the compilation of method clauses. This aspect of OM types will become
clearer as we describe operation dispatch in OM.
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3.10.3 OM operation dispatch

Operation dispatch is the process of invoking an object’s method in response to an operation being
applied to the object. In OM, operation dispatch happens when an OM operation is applied to an
OM object. The operation invocation is syntactically identical to a procedure call, except that the
head of the form must evaluate to an operation object instead of a procedure object. The first two
arguments to the operation must specify the object to which the operation is to be applied. These
two arguments must be an RPointer and an RHeap.

Operation dispatch begins by extracting the type ID from the first slot of the object to which
the operation is being applied. This type ID is looked up in a per-process table (residing in the
transient heap) that translates type IDs into active types. An active type is one whose handler
has been incorporated into the transient heap. If the type ID is found in the table, the associated
handler is invoked. The handler is simply a procedure that compares the operation object being
invoked against all the operation objects listed in the the DEFINE-!0BJECT-TYPE for the type ID. If
the operation is handled by the type, the associated method is invoked. Otherwise, if the operation

has a default method, it is applied. Otherwise, an error is raised since the operation can not be
handled.

If the type ID is not found in the per-process active type table, the operation dispatch mechanism
translates the type ID into a type source file name by referring to the type heap. The type source
file is then compiled by the standard compiler, incorporated into the T/OM environment, and a
handler is constructed. If a version of the type source file that has been compiled by TC exists, that
compiled version will be incorporated instead of invoking the standard compiler. The type ID and
handler are entered into the active type table and operation dispatch proceeds as described above.

3.10.4 Type redefinition

In any permanent object system, suppose a programmer has defined a type and then creates some
objects of that type. Now suppose that the programmer wants to modify the type. Does he want
to modify the behavior of existing objects of that type or does he want only objects created after
the change to have their behavior based on the modified type and to have old objects retain their
old behavior? If the former, what sorts of changes to a type are compatible with existing objects?
If the latter, in what sense, if any, are the unchanged and changed types the same type?

There are cases where type definitions need to be modified without creating 2 new type. Fixing
bugs is one example: if a change to a type definition is the fixing of a bug in the definition, old
objects will probably want their behavior modified to the new, less buggy behavior.

There are cases where the changing of a type definition must be treated carefully. For example,
suppose the new definition specifies a larger number of instance variables. If the new definition is
applied to old objects, an error will occur when the slot that doesn’t exist in old objects is referenced.
One might be tempted to say that the new definition with a larger number of instance variables is
creating a new type. This attitude is not entirely adequate though. The old type and new type
might have much in common. By forcing them to be different types, we are causing whatever
similarity the two types have to be lost. For example, methods in the new type that don’t refer to
the new instance variables might be identical to methods in the old type. If a bug is found in such
a method, the fix should be applied to both the old and new type.

Conventional databases have had to deal with problems similar to those described above. The
traditional solution is to force the user to dump his data and then reload it using the new type
(schema). This is essentially a result of the fact that database systems typically use highly compact
and optimized data structures to represent data. Such representations are not easy to change
dynamically.

We do not yet know how to solve the problem of type redefinition. The Smalltalk and LM Lisp object
type systems essentially do not deal with the problem in full generality. The underlying structure
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of our system allows both existing types to be modified and new types to be created. Presently
DEFINE-10BJECT-TYPE always creates a new type (i.e. type ID). Once created, an object’s behavior
is not changed by subsequent executions of DEFINE-{ 0BJECT-TYPE. However, since this form specifies
the type name, it would be trivial to make it optionally modify the behavior of an existing type ID
to which the type name translates. All that is required is that instead of adding an entry to the
tables in the type heap that take a type ID as a key, that those tables be updated to reflect the new
definition.

To deal with the case where a new type needs to be generated (e.g. when the number of instance
variables has changed) we would like to consider the new type to be a new generation of an existing
type. For some purposes different generations of the same type will be considered different types,
but for other purposes they might be considered the same type. For example, the two types would
be considered different by the operation dispatch mechanism. However, if an object type definition
editor were to be included as part of T/OM, the two types might be considered to be same for the
purpose of method modification.
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Chapter 4
Programmer interface

The previous chapter dealt with the low-level implementation issues in OM. We now address the
issues related to how programmers actually use OM. The major topics of this section are the syntactic
tools the programmer uses and semantic issues the programmer must deal with. At the end of this
chapter we describe two sample uses of OM.

4.1 Simple syntactic tools |

T, like most Lisps, has a mechanism for modifying the syntax of the language. This mechanism is
called a macro. OM defines some macros to make programming using OM more convenient and less
prone to error.

¥ITH-ACTIVE-HEAP is a macro that controls heap activation. The underlying activation control
primitives, ACTIVATE-HEAP and DEACTIVATE-HEAP are inconvenient and if not used correctly can
lead to heaps not being properly deactivated. For example, in:

(DEFINE (FOD HID)
(LET ((HEAP (ACTIVATE-HEAP EID)))

(DEACTIVATE-HEAP HID)))

if an error occurs within the %...”, and the stack is unwound to top-level, DEACTIVATE-HEAP will not
be called, and the heap will be left active. To avoid this potential problem, the procedure should
be written:

(DEFINE (FOD HID)
(UNWIND-PROTECT
(LET ((HEAP (ACTIVATE-HEAP HID)))

(DEACTIVATE-HEAP HID)))

UNWIND-PROTECT is a T special form that insures that its second form (the call to DEACTIVATE-HEAP
in this case) will be executed.

By using WITH-ACTIVE-HEAP, the above can be simplified to:

(DEFINE (FOD HID)
(WITH-ACTIVE-BEAP HEAP HID

»
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Which expands into a definition which is identical to the UNWIND-PROTECT version above.

{WITH-LPOINTER is a more sophisticated macro that controls the activation of heaps based on
LPointers. Recall that objects referred to by LPointers can not be examined until the LPointer
is converted to an RPointer/RHeap that refers to an object in an active heap. !WITH-LPOINTER
simplifies the writing of code that does the conversion. For example, consider a procedure that takes
an RPointer/RHeap to an LPointer: '

(DEFINE (FOO LP LP-HEAP)
(!WITHE-LPOINTER ((V LP LP-HEAP))
({PAIR-CDR VIR VIH)))

The first part (called the specification) of the IWITE-LPOINTER form specifies the LPointers that
will be used within the second part (called the body) of the 1WITH-LPOINTER form. The LPointer
specification is a list of triples (the example above has only one triple). The first element of the
triple is a pseudo-variable that will be described shortly. The second and third elements of the triple
are a reference (RPointer/RHeap) to the LPointer being used.

Just before the body of the IWITH-LPOINTER is executed, all the heaps named by the LPointers in
the specification are activated. After the body is executed, all these heaps are deactivated. (The
macro uses ACTIVATE-HEAP and DEACTIVATE-BEAP so dynamically nested 1¥ITH-LPOINTERs actually
simply manipulate the heap activation count.)

The pseudo-variables are used to refer to the RPointer/RHeap pairs that result from converting the
LPointer reference into a reference to an active object. Within the body of the 1WITH-LPOINTER,
two variables are introduced; one is bound to an RPointer that refers to the object referred to by
the LPointer and the other is bound to the RHeap that results from activating the heap referred to
by the LPointer. The names of these variable are constructed from the name of the pseudo-variable.
For pseudo-variable var, the variable var!R can be used to refer to the RPointer, and the variable
var!E can be used to refer to the RHeap.

Also, every occurence of the pseudo-variable itself is replaced by two variables that are bound to the
RPointer/RHeap that refers to the object referred to by the original LPointer. Thus, the example
above could be rewritten:

(DEFINE (FOO LP LP-HEAP)
(YWITH-LPOINTER ((V LP LP-HEAP))
('PAIR-CDR V)))

4.2 Programming with two kinds of references

The previous chapter described the primitives for derefencing RPointer and LPointers. However, it
did not address the question of how a program is to know which dereference mechanism should be
applied to a particular reference. Should the decision about how the reference should be derefenced
be made dynamically or statically? For example, given the expression:

(1PAIR-CAR R H)

should 'PAIR-CAR (statically) assume that R/H refers to an OM pair, or should it (dynamically) see
if R/H refers to an LPointer that needs to be dereferenced to reach the pair?

Another issue related to having two kinds of references is the kind of reference returned as the value
of a procedure. Given the nature of our implementation environment, a procedure always actually
returns an RPointer. But is it an RPointer to the object being returned, or is it an RPointer to an
LPointer to the object being returned?
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4.2.1 The dynamic approach

The dynamic approach requires that the primitive that extracts an RPointer from an object look
at the type of the RPointer. If the type tag indicates that the type is LPointer, the primitive could
then invoke the dereference mechanism on the LPointer. Accessors that retrieve a slot in an object
have to check to see if the type of their argument is LPointer. Recall that all such accessors call
RPOINTER-EXAMINE to get the contents of a slot. We could rewrite RPROINTER-EXANINE to be:

(DEFINE (RPOINTER-EXAMINE RP HEAP I)
(COND ((LPOINTER? RP)
({WITH-LPOINTER ((P RP HEAP)) ;%*x Deref. LPointer
(RPDINTER-EXAMINE P!R P!H I)))
(T
(RHEAP-EXAMINE HEAP (+ I (RPOINTER-CADDRESS RP))))))

This generality comes only at the price of increasing the cost of the dereference mechanism: every
time an RPointer is extracted from an object, the RPointer must be examined to see if it refers to
an LPointer.?

The dynamic approach also requires that accessors that modify a slot in an object have to check to
see if the reference being stored is to an object in another heap. We could rewrite RPOINTER-DEPOSIT
(the procedure used by all accessors that modify slots in objects) to be:

(DEFINE (RPOINTER-DEPOSIT RP1 HEAP1 I RP2 HEAP2)
(cOND ((NOT (= HEAP1 HEAP2))

(RPOINTER-DEPOSIT
RP1 HEAP1
I
(JEXPORT-RPOINTER RP2 HEAP2 HEAP1) BEAP1))

(T

(RHEAP-DEPOSIT EEAP1 (+ I (RPOINTER-CADDRESS RP)) 0BJ)))))

In addition to the cost in time, there is a cost due to increased code size. RPOINTER-EXANINE is
expanded in line. The addition of the LPOINTER? test will increase the size of the expansion. To
save space, the code to dereference the LPointer can be left out of the in line expansion; only the
test and a call to a procedure to do the LPointer dereference will be included. (In the case where
the RPointer points to an LPointer, the cost of an extra procedure call is not significant since the
LPointer dereference is expensive anyway.) However even with the LPointer dereference moved to
a subroutine, the size of the compiled RPOINTER-EXANINE will increase by about 1/3 (recall from
section 3.5.2 that the original sequence is about 8 instructions; the LPointer test and subroutine
call will be at least 3 instructions). The size of the expanded RPOINTER-DEPOSIT will increase also.

Besides the time and space efficiency problems with the dynamic approach, there is a logical problem:
the RPointer returned after automatically dereferencing an LPointer (in RPOINTER-EXANINE) will
be to an object in heap diflerent from the object from which contained the RPointer to the LPointer.
The returned RPointer is useless to the procedure that called the accessor since the procedure does

not have a handle on the heap that contains the object the returned RPointer refers to. One obvious
way to get around this problem is to make RPOINTER-EXANINE return an LPointer in case it has
dynamically dereferenced an LPointer:

(DEFINE (RPOINTER-EXAMINE RP HEAP I)
(coND ((LPOINTER? RP)
(!¥ITH-LPOINTER ((P RP HEAP2))

1if we had the option of building hardware we would argue that this test could be performed in parallel with the
RHEAP-EXAMINE; but we're not so we won't.
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Figure 4.1: An LPointer to two pairs

(|EXPORT-RPOINTER (RPOINTER-EXAMINE P! I) HEAP)))
(T
(RHEAP-EXANINE HEAP (+ I (RPOINTER-CADDRESS RP))))))

However, this solution is unsatisfactory. Assume P!R/P!H refers to an LPointer in heap A that refers
to a pair in heap B and assume that the ‘car of that pair is also a pair. Figure 4.1 shows how the
pairs are arranged. To retrieve the cdr of the second pair, using the dynamic approach, we could
write:

(LET ((X (!PAIR-CDR (!PAIR-CAR PIR P!H) P!H)))
e :

Since PIR/P!H refers to an LPointer, the LPointer will be dynamically dereferenced by 1PAIR-CAR.
The value returned by IPAIR-CAR will be a newly allocated LPointer (in heap A) to the object
referred to from the car of the first pair. When |PAIR-CDR is applied to the LPointer returned by
{PAIR-CAR, the LPointer will be dynamically dereferenced.

Simply to follow this car-edr chain, we allocated a LPointer and did an LPointer dereference. The
LPointer becomes garbage as soon as the {PAIR-CDR is executed.

4.2.2 The static approach

Instead of automatically dereferencing and creating LPointers, we can leave it up to the programmer
to specify where LPointers are and where LPointers need to be created as part of the programming
process (i.e. statically). The static approach is predicated on the fact that the structure of an
application’s objects — i.e. which objects are in which heaps and where the inter-heap references are
- is fixed. OM is a system designed to deal with applications whose data structures are fixed in this
way.

To use the static approach, the programmer must adopt a certain style of programming. The goal
of the style is to minimize (and hopefully reduce to zero) the amount of storage (especially garbage)
that is allocated by procedures that do not create logically new objects. That is, we don’t want
procedures to allocate storage simply to return results that in principle do not require storage to be
allocated. In particular, we want to avoid allocating LPointers when it is not necessary to do so.

If the structure of an application’s data is fixed, the need for the generality of the dynamic approach
is reduced. For example, it is not necessary for accessors to dynamically check to see if a reference
is through an LPointer if it is possible to statically assert that the reference is never through an
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LPointer. In case the programmer can’t assume where the LPointers are, he can insert the check
for LPointers himself (or simply introduce a layer of procedures that do the check and dispatch
accordingly). In this case, the system is no more or less efficient than the dynamic approach. In all
other cases however, the dereference mechanism is cheaper.

Another aspect of the static approach is that LPointers are explicitly created. Note however that
LPointers will not need to be created in all the cases in which the dynamic approach would have
created them. For example, using the static approach, following the car-cdr chain described above
would be written as:

(!WITH-LPOINTER ((Q P!R P!H))
(LET ((X (YPAIR-CDR (!PAIR-CAR Q!R Q!H) Q!'H)))
D))

Note that we are assuming the original RPOINTER-EXANINE — the one that does not automatically
dereference and create LPointers.

Within the body of the {WITH-LPOINTER, Q1R/Q!E refers to the first pair in heap B. The 1PAIR-CAR
returns an RPointer to the object referenced by the first pair’s car — the second pair in heap B. The
IPAIR-CDR returns an RPointer to the object referenced by the second pair’s cdr. Note that we can
use Q!H as the second argument to 'PAIR-CDR because we know that the second pair is in the same
heap as the first pair (which is identified by Q!R/Q!H).

Unlike in the dynamic approach, the above expression does not cause a gratuitous LPointer to
be created and then dereferenced. The general case of which the expression is an example is the
successive application of procedures to an object:

(F1 (F2 ... (Fo PIR PIH) ... PIE) PIH)

where PIR/P1H is a reference to an LPointer and the return values of the Fi are objects in the same
heap as the object referred to by that LPointer. In the dynamic approach, since P!R/P!H refers to
an LPointer, an LPointer will be allocated for each intermediate object, and this LPointer will be
dereferenced right away by the next procedure application. The static approach avoids this cost by
making the programmer explicitly specify (via !WITH-LPOINTER) that a piece of code should run
“within a particular heap” and that intermediate results should not have an LPointer aliocated to
refer to them.

In the static approach, since LPointers are never automatically allocated, it is also up to the pro-
grammer to explicitly specify calls to JEXPORT-RPOINTER. Which procedures allocate and return
LPointers is a convention determined and followed by the programmer. His procedures fall into one
of two classes: those that work within a single heap and return RPointers to their results, and those
that span heaps (by dereferencing LPointers) and return LPointers to their results. Procedures in
the latter class will have the form:

(DEFINE (G Q'R Q!H)
(t¥ITH-LPOINTER ((P QIR Q!H))
('EXPORT-RPOINTER (F1 (F2 ... (Fa PIR PIH) ... PI!H) P!H)
P!H
QtH)))

Procedures like G take an LPointer to some object, dereference the LPointer, apply a set of procedures
to objects within the same heap as the object referred to by the LPointer, and then return an
LPointer (in the same heap as the original LPointer) to the return value of G.
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4.3 A pre-processor

The fact that an OM procedure that takes a reference to an OM object takes two arguments to pass
the reference is a nuisance to the programmer. The two arguments logically identify a single object.
Normally a programmer uses one argument to identify a single object.

The pre-processing approach takes advantage of the fact that there is a great degree of regularity
in the way RPointers and RHeaps are passed among procedures. Note that all OM procedures that
take an RPointer and RHeap return an RPointer that refers to an object that is the same heap
as the RPointer argument. With some small syntactic modifications to T, the programmer can
be relieved of the chore of specifying both the RPointer and RHeap argument. A pre-processor
can automatically turn the programmer’s one argument version of the code into the two argument
version that the OM primitives expect.

The basic idea of the syntactic modification is that the programmer will declare all variables that
hold a reference to an OM object. For example:

(DEFINE (P (ONVAR A) B (OMVAR C))
(IF (27)
(+ (Q A) B)
c))

This defines a procedure P that takes three arguments, the first and last of which are references to
OM objects. A pre-processor takes the definition and transforms it into the two-argument style:

(DEFINE (P A!R A!H B C!R CIH)
(IF (27)
(+ (Q AIR Al) B)
CIR))

var!R and var!H are substituted for all occurences of var. However, if var appears in return position,
just var!R is substituted for var.

The pre-processor is not general yet. The transformation above relies on the fact that § returns
an integer, not an OM object, and that the result of Q is being passed to a procedure that takes
integers, not OM objects. What if Q returned an OM object (i.e. an RPointer) and instead of +
receiving the result, the procedure being called expects an OM object as its first argument? That
is:

(DEFINE (P (ONVAR A) B (OMVAR C))
(IF (z7)
(R (Q 4) B)
©))

(DEFINE (R (OMVAR X) Y)
(IF Y
X
Y))

Note that R is really a procedure of three arguments: the X argument gets expanded into two
arguments by the pre-processor. Thus, when P calls R it needs to supply the RHeap argument that
goes with the RPointer returned by Q.

In general, a call form A that:

1. Invokes a procedure that returns an RPointer, and

2. Appears in the argument position of some other call form B that takes an OM object in that
position,

must have an RHeap inserted after call form A:
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The * marks the point of insertion.

For the pre-processor to do this insertion, it must know something about the procedure being
invoked. In particular, for a procedure Q, it must know the RHeap that is to be associated with
the RPointer that Q returns. Fortunately, this is generally a static property of the procedure. The
RHeap of the returned RPointer is the same as the RHeap of one of the objects passed to the
procedure. Thus, we can augment the definition of Q with a declaration of what argument’s RHeap
is the RHeap of the returned RPointer:

(DEFINE (Q (OMVAR M)) (RETURN-RHEAP N)
)

This says that Q returns an OM object identified by the RPointer returned by Q and the RHeap
associated with Q’s first argument, M. This is enough information so that the pre-processor can
transform the definition of P into:

_ (DEFINE (P A!R AlH B C!R C!H)
(IF (27
(R (Q AR A!H) AlE B)
CIR))

The AIRHEAP in the call to R is inserted based on the fact that the definition of Q says that the
RHeap of the result of Q is the same as the RHeap of Q’s first argument.

If the RETURN-RHEAP clause is omitted, the pre-processor assumes that the procedure returns a
non-OM object (e.g. an integer).

While it appears that the pre-processor can automatically generate RHeap arguments for many
cases, the programmer is still responsible for knowing when a data structure crosses a heap bound-
ary. Doesn’t the programmer have to mention an RHeap explicitly at this point? The answer
is “no” because of the pre-processor in combination with the 'WITH-LPOINTER macro enables the
programmer to forget about the RHeap argument even in this case.

Consider the following simple example of a procedure that deals with data in multiple heaps. Sup-
pose a procedure P is passed a list of LPointers. Each LPointer is a reference to a vector of integers
in another heap. Suppose we want P to sum up all the integers in all the heap. We could write P as
follows:

(DEFINE (P (OMVAR L))
(COND ((INULL? L)

0)

(ELSE

(+ ('WITH-LPOINTER ((VEC (!PAIR-CAR L)))

(LOOP (INITIAL (SUM 0))
(INCR I FRON O TO (- ()VECTOR-LENGTH VEC) 1))
(DO (SET SUM (+ SUM ()VECTOR-ELT VEC I))))
(RESULT SUM)))
(P (YPAIR-CDR L))
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Note:

INULL? is a primitive procedure that takes an RPointer/RHeap and returns true if the RPointer is
to the null object.

IPAIR-CDR is a primitive procedure that takes an RPointer/RHeap to an OM pair and returns the
cdr of the pair. 1PAIR-CDR is declared to the pre-processor to return an RPointer that is
in the same heap as the argument to 1PAIR-CDR. Thus, in the recursive call to P inside the
definition of P, the RHeap associated with L (i.e. the second real argument to P) will be
inserted after the call to !PAIR-CDR.

1VECTOR-LENGTH is a primitive procedure that takes an RPointer/RHeap to an OM vector and
returns an integer.

'VECTOR-ELT is a primitive procedure that takes an RPointer/RHeap to an OM vector and an
integer offset into the vector, and returns the RPointer at the specified offset. |VECTOR-ELT
is declared to the pre-processor to return an RPointer that is in the same heap as the first
argument to !VECTOR-ELT. However, in this example since the call to }VECTOR-ELT appears
inside a call to a non-OM procedure (i.e. +), the RHeap is not inserted.

Note that the one clause in the specification part of the !¥WITH-LPOINTER has just two elements:
the pseudo-variable VEC and the expression (!PAIR-CAR L). Since like !PAIR-CDR, !PAIR-CAR is
declared to the pre-processor to return an object in the same heap as its argument, the specification
clause will be filled out to be the full triple, the last element being the RHeap that was passed to P.

While we have not actually implemented the pre-processor described above, we do not believe
that the implementation would be all that difficult. The main inconvenience to the progammer
introduced by the pre-processor is one that is found in any system of declarations: declaration must
precede reference. Lisp systems are typically more flexible, allowing references to procedure that
have not yet been defined. However, this flexibility is possible only when “compiling® the reference
does not require any information that appears in the definition. The pre-processor docs require such
information, and hence the definition must precede the reference. We believe that this is not too
onerous a task for the programmer.

4.4 The mixed object environment

OM runs within a2 T environment. Programs that use OM can create normal T objects (in the
transient heap) and OM objects (in a permanent heap).

OM provides primitives for copying objects between the transient and a permanent heap, and
between permanent heaps. These primitives are not general structure traversers. That is, they do
not take a reference to an object of arbitrary type and copy that object and all objects reachable
from that object into another heap. In general, with a large graph of objects (data structures), finer
control is required; when copying a data structure, objects will need to be allocated in different
heaps. No simple, single copying primitive could handle all possibilities of where objects are to
be allocated. Thus, OM provides primitives that copy atoms (including LPointers) between heaps.
More sophisticated copying procedures can be built out of the primitives.

Being able to allocate objects in the transient heap and then later copy them into a permanent heap
can be useful. This is because it allows one to write procedures that allocate new objects without
regard to what heap the objects should be allocated in. This may be a convenient programming
style for certain applications. In such applications, at a certain level of abstraction all procedures
that allocate new objects always do so in the transient heap; at the next higher level of abstraction,
the objects are copied into the appropriate permanent heap.

Another advantage of being able to copy transient objects into a permanent heap is that it allows
allocation to be a bit more reckless. In programs that allocate objects but in which it is not statically
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possible to know which of the allocated objects will be permanent, if all the object are allocated in
a permanent heap, some would be garbage. These garbage objects are costly in terms of garbage
collection time (a program that generates a lot of garbage causes the garbage collector to be invoked
more frequently). If, however, the objects are always allocated in the transient heap and then the
ones that are to be permanent are copied into a permanent heap and the amount of garbage is
not too great, the garbage is “free”. A program that creates a certain amount of garbage in the
transient heap can do so0 with no time penalty if it doesn’t allocate so much that the garbage collector
is invoked on the transient heap before the process exits. Since the transient heap ¢s transient, all
its contents are by definition garbage when the process exits; garbage collection on that heap is
implemented simply by deleting the entire heap. Thus, no garbage collection time penalty (other
than the time required to delete the heap file) is incurred.

There is some clumsiness that results from writing program that deal with both OM objects and
T objects. In the current implementation of OM, there is no easy way to avoid this. In another
implementation of OM we expect we would simply dispense with T objects altogether and have a
unique OM transient heap associated with each process. This heap would be like any other OM heap
except that the maximum size of its heap index would be zero — i.e. there could be no references
from other OM heaps into this heap. Thus, when the process exits, the heap can be deleted. This
strategy would eliminate the clumsiness of dealing with the T transient heap without sacrificing the
advantages associated with that heap as described above.

4.5 Finding the first reference

In order to manipulate an object, a program must have 3 variable whose value is a reference to
the object. But when a program starts, the values of all its variables are undefined. How does a
program go from having no references to having some references?

Programs do not operate in a vacuum. Programs are started because people want them started. Peo-
ple give arguments to programs. If the programs are to manipulate permanent state, the arguments
must indirectly identify objects (if they did not name objects, the program could not conceivably
manipulate state). However, these identifications are not OM references, but something more high
level — something that is meaningful to a person, e.g. the string name of a “mailbox” or a number.
The problem is to transform the kinds of arguments people give into references to objects.

There are two general questions involved here. First, what are the set of objects that are known a

priori by the system? Second, what are the mechanisms for finding other objects from the known
objects?

4.5.1 File systems

Traditional computer file systems provide a model for dealing with problem of finding objects given
only a small set of known objects and some logical identification of the desired object. The objects
in a traditional file system are directories and files. The known object is typically a “root directory”
that is in some known place on the disk. The file system has a mechanism for finding a file given
the string name of a file and the root directory.

Filesystem directories are a simple mechanism for converting high level references into lower level
references. However, they have the two main properties in which we are interested. First, they have
a piece of information that is known a priori. Second, they contain system maintained functions
and data structures that convert high level references into lower level references.

4.5.2 File systems as a model for OM naming

One strategy for giving high level names to OM objects is to implement our own hierarchical naming
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system. We define an object that is known a priori by OM -~ a directory object — that maps string
names onto LPointers. A directory object is any object that responds to the DirectoryLookup
operation (that takes a string) by returning an LPointer. The result of the lookup could be a
reference to yet another directory object, or to a leaf in the directory tree. In this way, an object
can be completely named with a list of strings. Looking up an object given a list of strings simply
requires traversing the tree of directory objects starting at the root directory object and returning
the LPointer that was the result of the last lookup.

Note that the above system is more flexible than a tradition filesystem naming system. A directory
object is free to implement DirectoryLookup in any way it chooses. The obvious approach would be
for the object to simply maintain a hash table mapping strings onto LPointers. However, it could do
more sophisticated things. The object might treat certain strings in a special way. For example, we
could make a directory object that when presented with a person’s name yielded a person’s mailbox
object. However, this same object when presented with the string “MyMailBox” would yield the
mailbox object associated with the person that owns the process executing the operation.

4.5.3 A general naming strategy

Note that this hierarchical naming system need not be the only way to support high level names.
Different applications can implement different systems. OM does not commit applications to a
particular naming system. All that OM itself must supply is a top level to all the naming systems
-~ i.e. a single directory that maps naming system names onto neming system objects: an entry
point into a data structure that can be used by procedures that want to translate high level names
to object references. The hierarchical naming system that takes a list of strings and produces an
LPointer is simply one naming system in the top level. This naming system can be entered in
the top level under some well known name (e.g. “TreeNames”); the value of this entry is the root
directory object for the naming tree.

4.5.4 Naming in the current implementation

The current implementation of OM does not include the general top level naming system name
table described above. Since OM is running on top a conventional file system that has a hierarchical
naming system, we took advantage of that naming system. The DOMAIN naming system lets us
name heaps. However, we still need to identify a particular object in the heap.

In early versions of OM we allowed procedures to treat the heap index as a record with named fields.
The names were artifacts of the source code and were not stored in the heap itself. This system
is analogous to records in Algol-like languages: a program refers to a field of record by name, but
when the program is compiled, the names disappear and the field is identified simply by its offset
from the beginning of the record. In OM, elements of the index could be given symbolic names;
these names could be used in conjunction with an RHeap to obtain an element of the index. The
symbolically named elements of the index were excluded from the pool of index elements that are
assigned as a result of EXPORT-RPOINTER. Using this record-like scheme a first reference could be
obtained simply by activating a heap (using its path name) and referring to one of the symbolically
declared heap index elements.

The problem with the scheme as we implemented it was that there was no way to be sure that a
symbolic name was not being used to retrieve and element from the index of a heap that was not of
the right “type” (i.e. that the particular elements of the heap index were not reserved for references
by the particular set of symbolic names). The problem is analogous to one that would arise if in
Pascal a field name from any record type could be used after a name of a variable whose type was
any record type. E.g. in:

type rl = record
a: integer;
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b: integer;
end;

type r2 = record

x: char;
y: integer;
end;
var
vi: ri;
v2: r2;
begin
vi.y :=0;
end

the reference to vi.y is invalid. But in the system we implemented in OM, this sort of illegal
reference would go undetected. The cause of the problem is that heaps are not typed. However, if
we associated a type code with each set of symbolic index element names and we stored this type
code in all heaps for which we wanted to allow index elements to be referred to symbolically, then
references through symbolic element names could be dynamically checked to see if they were being
applied to the right type of heap.

Instead of implementing this typing system, we abandoned the record-like approach to the heap
index. OM already has a type system and there is no point in introducing another one.

The current OM naming systems consists of a facility that allows the programmer to identify one
distinguished object per heap. The distinguished object mechanism is a way of specifying and
obtaining a known object within a heap. A heap’s distinguished object can be obtained simply by
having the heap’s HID. The OM primitive DISTINGUISHED-REFERENCE takes an RHeap (gotten by
- activating a heap) and returns an RPointer to the heap’s distinguished object. When used in the
context of the SET special form, DISTINGUISHED-REFERENCE can be used to set a heap’s distinguished
object. In this context, the program must supply an RPointer to the primitive.

Before the distinguished object mechanism can be used it is necessary to get the HID of some
heap. In the current naming system implementation, HIDs can be obtained using the OM primitive
FILE-NANE-HEID. This primitive takes a DOMAIN path name and produces the HID of the heap
that has that path name. Using DISTINGUISHED-REFERENCE and FILE-NAME-EID it is possible to
get a reference to a known object. Thus, DOMAIN path names are the logical names of the known
OM object.

4.6 Sample applications

To see how usable the design and implementation of OM is, we built two sample applications that
use OM. These applications are representative of the kinds of applications OM is designed to handle.

4.6.1 OM/UMail

UMail is a display-oriented electronic mail user interface program that runs on the DOMAIN system.
UMail lets users send messages and receive and store messages in mail boxes. UMail does not use
OM; OM/UMail does. In UMail mail boxes are stored in simple text files. When UMail starts, it
reads and parses the text file into an internal data structure. When UMail exits, it rewrites the
text file if the contents of the internal representation of the mail box changed. The cost of the parse
and rewrite steps is barely tolerable for moderately large (50-100 message) mail boxes. Electronic
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bulletin boards, a sub-class of mail boxes, are general larger and using UMail to examine them is
virtually impossible. This was one of the reasons that made us to want to make an OM version of
UMail.

In UMail, the internal representation of a mail box is a “mail box object”. This object handles
certain operations; e.g SelectMsg, AddMsg, DeleteMsg, EzpungeDeletedMsgs. The local state of a
mail box consists of a list of “message objects”. A message object handles the operations: InitMsg
and Print. The local state of a message object includes: the text of the message, pointers to
various interesting headers in the text; internal times representing the date the message was sent
and delivered; and flags (e.g. “message to be deleted”).

The changes necessary to turn UMail into OM/UMail were relatively straightforward, if tedious
(lacking the pre-processor). The conversion went far enough to demonstrate that we could maintain
the OM versions of the mail box and message objects. An entire mail box object, with all the
messages it references, is kept in a single heap. One heap contains exactly one mail box. The first
reference is obtained by constructing the DOMAIN path name of the heap file from the logical
(abstract) name of the mail box (e.g. a bulletin board or user name), activating the heap, and
following the heap’s distinguished reference, which refers to the mail box object.

OM/UMail did not replace UMail as the production mail user interface. We stopped working on
OM/UMail as it became apparent that we could learn more about how well OM works from designing
and implementing an application from scratch, rather than converting an existing application.

4.6.2 Naming server

The second sample application to use OM is a naming database manager (NDBM). We use the terms
“database” and “database manager” in a very general sense ~ as terms that mean “a collection of
permanent, structured data” and “a set of programs that manipulate that data®.

The motivation for the NDBM project was to replace the DBM available on a DECSYSTEM-20 in
the Yale Computer Science Department. The data held in the DEC-20 database includes:

e Personal information. E.g. people’s home address and phone number, user IDs, electronic
mailing addresses.

e Host (computer) information. E.g. host nicknames, network addresses.

e Mailing list information. Members, maintainers and descriptive information about electronic
mailing lists.

The DEC-20 DBM is written in Lisp. The permanent, external representation of the database is a
single, large text file containing the printed representation of a single, large Lisp list. When the DBM
starts, it reads and parses the file into a Lisp list, the internal representation of the database. The
time to read and write the database is very long. The data is not simultaneously sharable among
several processes. Access to the data is by a network server process that handles one transaction
at at time from other processes. The user interface to the database manager is one of these other
processes.

The DEC-20 DBM uses the relational model. However, the generality of the relational approach
was never exploited. One reason for this is that the generality was not needed. Another reason is
because the DBM implementation is not very sophisticated, and the time to execute the relational
operations is quite high.

The implementation of NDBM is in no way based on the DEC-20 DBM. However, the NDBM is
designed to hold the same data as the DEC-20 DBM.

In designing the NDBM we viewed the task as a permanent data structure problem, rather than
as a traditional database design problem. The database is relatively small (several hundred people,
several hundred hosts, a hundred mailing lists) and we were not interested in applying sophisticated
database technology.
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In thinking about the problem of storing the kinds of data we needed to store, we developed a way
of thinking about stucturing data in general, rather than structuring the particular data at hand.
As a result, the NDBM is a more a DBM framework than an actual DBM. It is a framework in the
sense that it defines a set of operations and their semantics; but does not supply the implementation
of the operations. It does not specify any properties of the data to be stored in the database. An
instance of @ framework is a set of objects that behave in the way specified by the framework.

The framework defines two sets of types of objects: item and descriptor. A type is in the set of item
types if it responds to the operations defined on item types. Item types are analogous to record
types in a conventional database. Item objects — i.e. objects whose type is an item type ~ are like
records in a traditional database. The local state of an item object contains information about the
entity being described by the object.

For example, an instance of the framework might have a type called Person which is in the set of
item types. Each person in the instance is represented by a single object whose type is Person. A
Person object presumably contains strings containing a person’s home address, phone number, etc.

Item objects can also contain references to other item objects. E.g. a MatlingList object can have a
list of Person and MailingList objects.

A type is in the set of descriptor types if it responds to the operations defined on descriptor types.
Descriptor types are used to create and organize item objects. Every descriptor type has exactly
one associated item type. Descriptor objects ~ i.e. objects whose type is a descriptor type - are
like database schemas in a traditional database. The local state of a descriptor object presumably
contains data structures that allow individual items to be stored and retrieved. We say that a .
descriptor object covers a set of item objects. A descriptor object covers an item object if it is
possible to obtain a reference to the item object by applying the lookup operation to the descriptor
object.

Descriptor types must handle operations like:

Item Type: Return the item type associated with the descriptor type.
Newltem: Create and return a new item; add the item to the descriptor index (lookup table).
LookupItem: Given a key (e.g. a string), return the item object associated with that key.

Walkltems: Apply a procedure (passed as an argument) to all the items that the descriptor object
covers.

Show: Produces a printed representation of all the items the descriptor object covers.
Item types must handle operations like:

Descriptor Type: Return the descriptor type associated with the item type.
Show: Produce a printed representation of the item object’s contents.

In any instance of a framework, both item and descriptor types are free to handle additional op-
erations. For item types, it is expected that they will handle all sorts of operations peculiar to
the instance. E.g. an instance containing the Person item type described above would presumably
handle an operation to retrieve a Person object’s home address string.

The framework imposes a convention on how objects in an instance should be spread out across
heaps. The convention is that there is exactly one heap per item type in the instance. All the objects
of the same item type reside in a single heap. The descriptor object that covers the item object
resides in the same heap. There is one additional heap, called the master heap, that contains only
one object: a vector of all the descriptor objects in the instance. The master heap’s distinguished
reference points to this vector.

We implemented an instance of the framework that is designed to hold the kinds of data in the
DEC-20 database. We then moved virtually all the contents of the DEC-20 database into the
instance of the framework. The instance has eight type: four descriptor types and four item types.
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The four item types are: Person, Host, MeilingList, and UserID; the four descriptor types are:
PersonDesc, HostDesc, MailingListDesc, and UserIDDesc The descriptor types support translation
between string keys (e.g. a person’s name) and references to item objects by using hash tables that
are part of the local state of the descriptor objects. Descriptor types also support operations that
allow modifications to be made to item objects interactively.

When a user invokes a procedure to view or modify some piece of the database, one or more heaps
may be activated. The heaps are activated for exclusive use — for the duration of the activation, no
other process can access the same part of the database. This may seem like a serious restriction,
but considering that users were quite able to live with the strictly one-at-a-time access offered
by the DEC-20 DBMS, the restriction is actually not too serious. In NDBM, multiple processes
can simultaneously access parts of the database as long as the parts are in different heaps. More
concurrency could be accomodated by using one of the techniques discussed earlier. However, given
the nature of the access patterns (infrequent and short), the current scheme seems satisfactory.

4.7 A more ambitious scheme

In this section we describe a scheme for making the application programmer’s task considerably
easier than it is in the current OM implementation. This scheme involves using special compiler
optimization techniques to make certain apparently expensive operations free.

4.7.1 Active References

At the application level, let us replace the concepts of RPointers and RHeaps with a single concept:
aclive reference (ARef). At the OM implementation level, an ARef is a T object (i.e. not an OM
object). ARefs never reside in OM heaps. An ARef is an aggregate - its representation is not
immediate, it resides in the transient heap.

An ARef contains an RPointer and an RHeap - but this of no concern to the programmer. We say
that an ARef contains an RPointer and RHeap so that we can describe the ARef approach in terms
of primitives we have already discussed. These primitives will no longer be used by the programmer.

ARefs are like LPointers in that they completely specify some OM object. ARefs are active in

the sense that they apply only to some particular active heap. An ARef is meaningful only in the
context of a particular process.

We can introduce a layer of abstraction that uses ARefs instead of RPointers and RHeaps. For
example:

(DEFINE (AREF-EXAMINE AREF I)
(MAKE-AREF (RPOINTER-EXAMINE (AREF-RPOINTER AREF)
(AREF-RHEAP AREF)
I)
(AREF-RHEAP AREF)))

Where MAKE-AREF takes an RPointer and an RHeap and makes (i.e. allocates in the transient heap)
an ARef. AREF-RPOINTER extracts an ARef’s RPointer and AREF-RHEAP extracts an ARef’s RHeap.
Thus, AREF-EXAMINE takes an ARef and an offset into an object and returns an ARef to the object
referenced from the Ith slot of the object referenced by AREF.

IPAIR-CAR can be defined in terms of AREF-EXAMINE instead of RPOINTER-EXAMINE.

(DEFINE (!PAIR~CAR OBJ)
(AREF-EXAMINE OBJ 0)
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This new 1PAIR-CAR now looks more like T’s ordinary CAR than the old IPAIR-CAR does because
the new one takes just one argument. Thus we have solved the two argument problem without
resorting to a pre-processor.

We need to define AREF-DEPOSIT to serve the same function for ARefs that RPOINTER-DEPOSIT
serves for RPointers:

(DEFINE (AREF-DEPOSIT AREF1 I AREF2)
(RPOINTER-DEPOSIT (AREF-RPOINTER AREF1)
(AREF-RHEAP AREF1)
1
(AREF-RPOINTER AREF2)
(AREF-RHEAP AREF2)))

This procedure sets the Ith slot of the object referred to by AREF1 to be the object referred to by
AREF2.

But there is a price for the ARef approach. One price is in the extra layer of indirection it introduces.
But more importantly it is expensive in terms of storage in the transient heap. To simply extract a
field (e.g. the car) of an object (e.g. an OM pair) requires an ARef to be allocated in the transient
heap. The cost of this is unacceptably high. But there is a way to avoid the cost.

4.7.2 A smart compiler

Consider the normal T expression:

(LET ((X (CONS expression-1 expression-2)))
(+ (CAR X) (CDR X)))

It seems clear that since the cons cell constructed in this expression is never passed to a procedure
that might store away a reference to the cell, a clever compiler that knows the meanings of the
procedures CONS, CAR, and CDR could transform the above expression into:

(LET ((X~CAR expression-1)
(X-CDR expression-2)
(+ X~CAR X-CDR))

applying a procedure similar to reduction in strength.

Now consider the expression:
('PAIR-CAR (!PAIR-CAR OBJ))

The inner 1PAIR-CAR allocates and returns an ARef. This ARef is passed to the outer 1PAIR-CAR
and then becomes garbage (since IPAIR-CAR will not store the ARef in any object). Based on the
definition of tPAIR-CAR, we can rewrite the above expression as:

(LET ((P (AREF-EXANINE OBJ 0)))
(AREF-EXAMINE P 0))

Based on the definition of AREF-EXAMINE, we can rewrite the above expression as:
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(LET ((P (MAKE-AREF (RPOINTER-EXAMINE (AREF-RPOINTER OBJ)
(AREF~RHEAP OBJ)
0)
(AREF-RHEAP 0BJ))))
(MAKE-AREF (RPOINTER-EXAMINE (AREF-RPOINTER P)
(AREF-RHEAP P)
0)
(AREF-RHEAP P)))

Using the compiler technique described above, since the ARef held in P is not saved away, we know
that we can safely eliminate the first MAKE-AREF, resulting in:

(LET ((P-RPOINTER (RPOINTER-EXAMINE (AREF-RPOINTER OBJ)
(AREF-RHEAP OBJ)
0))
(P-RHEAP (AREF-RHEAP OBJ)))
(MAKE-AREF (RPOINTER-EXAMINE P-RPOINTER
P-HEAP
0)
P-HEAP))

Now we have allocated only one ARef instead of two. If the original expression is embedded in
(say) another !PAIR-CAR, still only one ARef will be allocated as both inner MAKE-AREFs will be
eliminated.

If we implement the proposed compiler technique, we can re-introduce the automatic dereferencing
of LPointers described in section 4.2.1. Now however, instead of automatically creating an LPointer
to return, we create an ARef. We redefine AREF-EXANINE to check for an ARef’s pointing to an
LPointer:

(DEFINE (AREF-EXAMINE AREF I)
(LET ((RP (AREF-RPOINTER AREF))
(H (AREF-RHEAP AREF)))
(IF (LPOINTER? RP)
(WITH-LPOINTER ((P RP H))
(MAKE-AREF (RPOINTER-EXAMINE PIR PIH I) PIK))
(MAKE-AREF (RPOINTER-EXAMINE RP E I) H))))

To make AREF-DEPOSIT do the right thing in case the two ARefs it is passed refers to objects that
are not in the same heap, it must be defined to create an LPointer that case:

(DEFINE (AREF-DEPOSIT AREF1 I AREF2)
(LET ((RP1 (AREF-RPOINTER AREF1))
(H1 (AREF-RHEAP AREF1))
(RP2 (AREF-RPOINTER AREF2))
(H2 (AREF-RHEAP AREF2)))
(COND ((= H1 H2)
(RPOINTER-DEPOSIT RP1 H1 I RP2 H2))

(T
(RPOINTER-DEPOSIT
RP1 R1

I

(AREF->LPOINTER AREF2 H1) H1)))))

(DEFINE (AREF->LPOINTER AREF H)
(YEXPORT-RPOINTER (AREF-RPOINTER AREF) (AREF-RHEAP AREF) H))
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If the heap of the target object (AREF1) is the same as the heap of the source object (AREF2) -
the object a reference to which is being deposited — then the slot in the object is simply set to the
RPointer to the source object. Alternatively, if the source and target objects are not in the same
heap, an LPointer must be created in the target object’s heap; the LPointer must point to the source
object. AREF-LPOINTER) is simply a procedure that allocates an LPointer to the same object that
the ARefs refers to. Note that we can’t simply store the ARef in the target object’s heap because
an ARef is not a process-context independent quantity (because it contains an RHeap) and it does
not refer through the heap index.

4.7.3 Active references and heap activation

We can further extend the ARef scheme to make the activation of heaps transparent to the pro-
grammer. The general idea is to automically control what heaps are mapped into the process virtual
address space. When an object in a heap needs to be examined, the heap has to be activated. If
there is room in the virtual address space, the heap is simply mapped. If there is not room, then
some already mapped heap must be “bumped” - i.e. forcibly unmapped to make room for another
heap.

Recall that the RHeap data structure contains a HID and an RHeapB. The RHeapB is the active
heap’s base address in the process virtual address space. Suppose that when a heap is bumped, we
set the RHeapB field of the RHeap to be null. Since only one RHeap structure is allocated for a
single active heap, all the ARefs will refer to a heap via a single RHeap structure. Thus, we can
modify AREF-EXAMINE (and similarly AREF-DEPOSIT) to be:

(DEFINE (AREF-EXAMINE AREF I)
(LET ((RP (AREF-RPOINTER AREF))

(H (AREF-RHEAP AREF)))

(IF (NULL? (RHEAP-BASE H))
(REACTIVATE-EEAP H))

(IF (LPOINTER? RP)
({WITH-LPOINTER ((P RP H))

(MAKE-AREF (RPOINTER-EXANINE PIR PIH I) P!E))

(MAKE-AREF (RPOINTER-EXANINE RP E I) H))))

REACTIVATE-HEAP simply remaps the heap indentified by the RHeap’s HID field and updates the
RHeap structure’s RHeapB field to contain the address at which the heap is remapped. Note
that REACTIVATE-HEAP takes an RHeap, while ACTIVATE-HEAP takes a HID. The only times that
ACTIVATE-HEAP would be called is in the case of an LPointer being dereferenced (i.e. as a result of
executing |WITH-LPOINTER expression in AREF~EXAMINE), or in some “first reference” case.

ACTIVATE~HEAP needs to be modified to check the amount of free virtual address space, and deacti-
vating heaps if necessary to make room. Ideally, heaps should be deactivated using a “least recently
used” (LRU) strategy. Supporting LRU would require exporting some page reference information
from Aegis. Alternatively, a simple active heap FIFO might be sufficient to manage the address
space. This is an area for future research.

4.7.4 Object allocation

It is still the responsibility of the programmer to decide in what heap an object should be placed.
The allocation procedures still take an argument specifying in what heap the new object should be
created. There is not a “right® or “wrong” place to put an object. Rather there are more or less
optimal places. The optimal placement of an object is one that minimizes the number of LPointers
to the object. That is, in general, an object should be place in the heap that contains the most
references to the object. Placing an object in a sub-optimal place will not cause a program to behave
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incorrectly; it will simply increase the execution time of the program and the amount of heap space
used.

4.7.5 Benefits and costs

The ARef approach is not in conflict with the approach of storing objects in multiple heaps and
having two kinds of references. However, the ARef approach simplifies the application programmer’s
job since it relieves him of the chores of:

¢ Following the RPointer/RHeap argument convention,
e Managing LPointers, and

e Activating and deactivating heaps.

The pre-processor approach eliminates only the first of these chores. But even in that chore, it
imposes more work on the programmer than does the ARef approach.

The ARef approach has two main costs. First it requires a sophisticated compiler that applies the
optimization discussed above. The compiler must reliably detect the cases that can be optimized.
If it fails to detect a case, an unnecessary ARef will be allocated. If the case is in the middle of
2 loop, many unnecessary ARefs may be allocated. The investigation of the compiler techniques
involved here are beyond the scope of this work.

Note that the cost of the sophisticated compiler is in both compiler development and compiler
execution time. The former cost is paid just once, but it is high enough that we were not willing
to pay it for this project. The latter cost is the increased execution time incurred by the logic that
detects the optimization we have described. However, this cost can be reduced by not applying
the optimization on versions of the procedures that are in the debugging phase. Once debugging is
complete, the expensive compilation can be performed - once.

Another cost of the ARef approach is that the cost of the accessors goes up. AREF-EXAMINE has two
more tests — one to see if an ARef refers to an LPointer, and one to insure that the heap is active
~ than RPOINTER-EXAMINE. This cost is in both code size and execution time. Given the size of the
definition of AREF-EXAMINE, we are unwilling expand it inline at each occurrence of an accessor. The
alternative is to use a procedure call. If we do this, the cost of the ARef approach is only execution
time. Note that compared with other existing object-based systems (e.g. Smalltalk and Hydra), the
cost of accessing a slot in an object is still fairly cheap.
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Conclusion

5.1 Reviewing the problems and their solutions in OM

In chapter 2 we described the problems that arise in a system that needs to store data permanently.
We will now review the problems discussed there and how OM addresses them.

5.1.1 Integrity and atomicity

OM guarantees the integrity of data against logical program error by presenting a consistent pro-
grammer interface. This interface insures that programs can access data in heaps only using the
primitives that insure integrity.

OM does not address the problems that result from hardware errors or disasterous software errors
(e.g. system crashes). Thus, the potential for loss of data integrity is present if such errors occur.
We feel that this limitation does not make OM unusable since users already deal with this sort of
loss of data due to such errors.

OM does not support atomic operations. However, we see the current OM system as a vehicle on
which systems that support atomic operations can be built.

5.1.2 Abstraction
OM supports abstract access to data using the object-oriented programming model and the type sys-

tem we described. This allows programmers to ignore issues of disk and file formatting. Application
programs access data using operations that are logical and abstract.

5.1.3 Storage control

Storage is controlled in OM using the heap model and garbage collection. The time required to
allocate a piece of storage (excluding garbage collection overhead) is small. Heaps can be garbage
collected independently making the use of garbage collected storage feasible. The heap model

seems to be a natural one for the class of application programs whose data structures are naturally
partitionable.

5.1.4 Sharing and concurrency

In OM, objects can be shared among users and applications that use the interface presented by OM.
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Since heaps are based on DOMAIN files which are page-faulted on demand, only those objects that
need to be accessed are ever read into main memory.

OM supports concurrency as well as the DOMAIN system does. That is, application programs can
use the DOMAIN synchronization primitives to control concurrent access. For highly concurrent
processes, we suspect that these primitives are too expensive,

5.1.5 Security

OM uses the DOMAIN access control primitives to insure security at the heap level. Access to
individual objects can not be controlled. For the kinds of applications we have in mind for OM (e.g.
the ones we described as sample uses of OM) this restriction is not a serious problem.

5.1.6 Reliability

OM does not address issues of reliability.

5.1.7 Performance

In the design and implementation of OM, we have stressed performance over reliability and availabil-
ity. We built a system that makes accessing permanent objects nearly as cheap as non-permanent
objects. In using OM, programmers do not need to use special techniques (e.g. buffering) to increase
performance.

5.1.8 Reference

OM has two kinds of references: local (RPointers) and non-local (LPointers). Local references are
small and fast to dereference. Non-local references are larger and more expensive than local refer-
ences. OM’s local references are smaller and cheaper than the references used in many permanent
object systems. The combination of RPointers and LPointers allow programs to be as efficient as in
conventional programming systems in which all the objects are in a single (relatively small) address
space, while supporting a very large number of permanent objects.

Having two kinds of references creates some problems for the programmer. We outlined several
techniques for making the fact that there are two kinds of references nearly transparent without
giving up the advantages of the two reference scheme.

5.2 Design Philosophy

We approached the problem of a permanent object storage system with a very practical orientation.
We used existing hardware and operating system software. We based the programming environment
on an existing progamming language. While this limited what our system could do, it enabled us
to build a real system in which we could build real application programs.
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