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SEMI-LINEAR DIFFERENCE SCHEMES

FOR SINGULAR PERTURBATION PROBLEMS IN ONE DIMENSION.

ABSTRACT
This paper presents a class of semi-linear numerical
differentiation formulas which is especially designed for functions with
steep gradients. Basing on these, we construct a semi-linear second
order differencq scheme for solving the two—point singular perturbation

problem

—eu'’ +p(x) u +qlx) u=£(x), w0 =ud) =0

The resulting discrete semi-linear system, AU = d + Q(U), is solved by a

(®) _ 44 o)), pt®

simple iteration: AU = a7d which is
convergent provided that the uniform mesh size h satisfies h ¢ “%ua €.
Moreover, with the same mesh size constraint it is shown that a second
order semi-linear scheme has one more order of precision than its
corresponding central difference scheme for small & and a first order
error estimate uush - ull°° < €, h is derived where the constant C, is
uniformly bounded for all e>0. For the same accuracy, the present
nonlinear scheme is much more efficient than the usual linear centered
difference scheme for singular problems. For a linear and a semi-linear

singular perturbation problems, numerical results agreeing with the

above analysis are included.
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1. Introduction

Numerical differential formulas play a very important role in
constructing difference schemes of differential equations. Usual
numerical differentiation formulas based on polynomial #pproximations
are derived for smooth functions without large derivatives, it is
possible for these formulas to lead to very poor results when the
functions are not smooth. There are usually two ways to avoid this
trouble: refine the mesh, or use higher order polynomial interpolation.

Sometimes they are called h-version and p—versionm, respectively.

The approach p;esented in this paper is quite different. The main
reason why the usual linear schemes lead to worse results for problems
with iarge derivatives, especially those with singularity, is that the
usual numerical differentiation formulas based on polynomial
approximation is not accurate enough in this case, e.g. an asymptotic
behavior near singularity is expomential . It seems hard to get high
precision numerical differentiation formula near singularity if we
restrict ourselves to use only piecewise polynomial approximations or
other linear functional space. Hence, in this paper, we try to look for
some new numerical differentiation formulas Beyond linear functional

space.

Thus, two questions arise. The first is how to find such kind of
numerical differentiation formulas. The second is how to use them to
construct difference scheme and how to solve the resulting discrete
non-linear system efficiently. Besides, we expect that the resulting
non-linear system should be ‘not too far', in some sense, from being
linear in order to simplify both the theoretical analysis and practical

computation. Therefore, the numerical differentiation formulas and the




resulting schemes, which we introduce below, are called semi-linear, or

in some sense they are required to be ’'weakly’ non—linear.

The above main idea is based on the author’'s previous work
([8]1-[10]). The purpose of this paper is to derive some of these
semi-linear numerical differentiation formulas (section 2) and to
construct the corresponding semi-linear difference schemes for a general
elliptic singular perturbation problem (section 4): —gu’'’'+pu’+qu={f,
u(0)=u(1)=0. The same problem is also used as a test problem in my
another paper [11] which extended the Ritz—Galerkin method from linear
subspaces to subsets. A similar study in two dimensional case will be
discussed in [12]. The main idea of our scheme is that we use different
difference schemes in different subdomains according to the size of the
discrete first divided difference; while it is large the scheme will
choose a semi-linear scheme automatically, otherwise the scheme is the
same as the usual linear scheme, for instance, the centered difference
scheme. It is shown that the semi-linear scheme has ome mo;e order of
precision than the conventional centered difference scheme for the
singular perturbation problem if hﬁZe/“pﬂa. where h is a uniform mesh
size in the ’'singular’ subdomain. In the larger 'regular’ subdomain the
mesh size can be used as larger as we desire. Moreover, for the same
accuracy the semi-linear scheme costs less CPU time than the linear
scheme, being a simple way to reduce the resulting semi-linear system to
an iteration with the corresponding linear system. The numerical tests

presented in section 5 match the above analysis very well.

For convenience, an analysis is given in section 3 for a simplified
~ model problem: —gu'’+u’'=0, u(0)=0,u(1)=1, which was discussed by many

authors, e.g. [11-[3].



2. 'Semi—linear’ numerical differentiation formulas

Let u(x) be a function defined in (a,b) with a large first
derivative. Without loss of generality, let us comsider u(x) is
monotonic in the interval, and suppose that u = Fx is one—to—omne mapping

such that x = F-lu.

Denote x_, = a < x, <z = b, and let G be defined as an indefinite

integral of F, i.e.
G6(x) = [ Fdx, (2.1)

By the Mean value theorem, there exist two points z_, and z,: X_y < z_,

< x < zy < xl, such that

-1 -1 -1 -1 -
[F "uy, Fu 16 u(z_,), [F "9y, F ud 6= ulz), (2.2)-

where [x1, x2]Y is a notation of divided difference. Now we look for an
approximate formula for the first derivative at the node X=X, based on

the formulas (2.2), as follows:

2

, - 1 -1 PR N |
u’ (xg) ([F "u,, F u,l G [F "u,, F v, 6). (2.3)

b B |
For the simplest case, take F as the identity mapping, and G(x) = x2/2,

then

u(x,)-u(x_,)
1 1 (2.4)

u'(xo) = -
S R |

Formula (2.3) is the same as the usual central difference formula based
on the quadratic interpolation. In this case, it is obvious that the
above numerical differential formula (2.3) is an extension of the usual

central difference formula.

Now we assume F to be an admissible one—to—one mapping such that G




can be obtained from (2.1) directly. For any such F, (2.3) defines a

numerical formula for the first derivative at the node x = x4

1

As an example, let F f= fr, where r is a real parameter. For

u(x) > 0 in (x_l, xl), from (2.3) and (2.1), the following approximation

formula is obtained

2r a 4z _ o 1+r e 4r _ o 1+r
0 0 -1

uw'(x,) = {— - } (2.5)
0 (1+r) (xy-x_,) ulr - T, L - n;lr

where u, = ulxy), vy = ulzx_4), v = u(x,).

(x

™

When r = %, x, = +x_;), the corresponding formula to (2.5) is

1

(u11/2 _ u;11’2 Y u11/2 . no1/2 + t1__11/2 ).  (2.6)

=

u'(xo) =

In general, we have the following error estimate:

Theorem 2.1: Let u, F ¢ Ck.l’1 ( x40 % ), where k=3 or 4, F’ln is a

A —————

one-to—one mapping, h = xy7X_; T X;7X4 then, the remainder of the

pumerical differentiation formula (2.3) equals to

1 -1 -1 -1 -1 _
i ( [F vy F nol G- [F L F u_1] G) = n‘(xo) +
2 2.-1
h d°F "u -1
—Lpuwr s w? ——dDHT 4 0(x5). 2.7
12 du 0

Proof:

Applying the Taylor expansion for G(y) upon z, one obtains
3 v 2 4 3 _(3)
G(y) - G(z) = (y-2)6'(z) + (y-z)” G (z)/2 + (y-2)° G "' (z) /3!
v =0t e @4+ oliz-2)°)

Hence

W(yy.¥-¥-1) =
1 = Y% Yo ~ V¥4



3 3
Yy, - Y_ (v,-v,)" - (y,-v_,)
_ 1G,,(yo) L o170 0 7-1
2 41

¢y + 0l(yy_ )

By means of rules for finding derivative function in implicit case, it

is easyly seen that

-1

-1 -1
W(F u,, F g, F u_l)
n’ d ) a%r -1
= hu'(x)) + — Pl v’ o) }'x=x
12 du 0
+ o8y, for k=3,4. (2.8)

Q' EQD.

Corollary 1. If the mapping F satisfies the relation

sz-lu .

1
S (2t + w? e (2.9)
dx 2 du X=X
du 0

then, the formula (2.3) has an error of third or fourth order fpr k=3

or 4, respectively.

Corollary 2. If k = 2, the error estimate is of the second order,
and the second term in the right side of (2.7) is evaluated at a point §
€ (x_l.xl).

The dominant term of the truncation error of formula (2.5) is
2

h d u,2
— E—{Zu" + (r—l)-———}lx=x
12 ¢ - ¢ ()}

This leads to a fourth order numerical differentiation formula if r is
so chosen that the above term vanishes. For instance, r can be chosen

as

| , or (2.10)



u u .

=1+ 2( = - =L (2.11)
? [
bl L |

Both (2.10) and (2.11) are implicit and they can not be used directly
for numerical differentiation. However, they are useful in comstructing
a high order difference scheme for differential equations , even for

partial differential equatioms.

The limiting case of (2.5) in which r tends zero is very
interesting for solving singular perturbation problems. The
corresponding formula with remainder term becomes

u(xl)-u(xo) _ n(x0)~u(x_1)

— 1
u‘(xo) =i { }
2 Log(u(xl)/u(xo)) Log(u(xo)/u(x_l))
h 2
-—Lwr -t o) (2.12)
x u - x=x

12 0
It follows from Theorem 2.1 that'the formula (2.5) is fourth order if
the function u(x) satisfies the non—linear second order differential

equation
2uu’’ - (l—r)u'2 = bu, where b = coastant. (2.13)

One particular solution of (2.13) is the 'parabolic’ function

2/(1-r)

u(x) = (ex +d ) (2.14)

where ¢, d are constants. This means that the 'logarithmic type'
numerical differentiation formula (2.12), specifically designed for
solutions with large derivative, is also good for smooth functions, such

as parabolic function.

Similarly, we can derive numerical differentiation formulas for
higher derivatives. For instance, there is an analogue of Theorem 2.1

for second derivatives.



Theorem 2.2: If u,F ¢ C4(x_1,x1), h = x,-x_; = x,7x,, and Flu is

one—to—one mapping in the interval, then

2

w't(xg) = — ([Flu;, Flugl 6+ [F 'ug, Fru_;1 G- 2up)
2 2.-1°
u'0 dF "u —1u -1 2
- = /) Tl + oY) (2.15)
3 du 0

where G is defined by (2.1) and u'o is given by (2.3).

The proof of Theorem 2.4 follws the proof of Theorem 2.1, using the
Taylor expansion and differentiation of implicit functioms. (2.15) is
an extension of the second order central differemnce scheme, and the

latter is only a particular case of F = I.
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3. Model problem analysis

In order to give a detailed analysis, in this sectiom our attention
is devoted to the following model problem which is similar to those
discussed by various authors cf. Christie, Mitchell (1978), Zienkiewicz

and others (1978), Barrett, Morton (1980). Consider

Lu = -eu'’ +u' =0 in (0,1), u(0) =0, u(1) =1. (3.1)

with solution ( Figure 1)

x/e
e -1 ‘

u(x) = 5 (3.2)
e -1

" Let xj =jh(j=0,1,...,N; h =1/N), using the convenfional

central difference for the first and second derivatives in (3.1) leads

to the following difference equation
o —(asd S 0 1¢
thhj = (a+§)ﬂhj_1 +2a0", + (5 a)Uhj+1 0, 1<i<N-1. (3.3)
with U%) = 0 and vh =1, where a = § .

The exact solution of the difference equation (3.3) is given by

p(md -1
Uh. = where p = %;%%%. (3.4)
3 opm)” -1

In order to preserve the increasing monotonic property of the solution

(3.2), it is reasonable to demand

a>=>, i.e. h < 2. (3.5)

=

Let Eh. = u(x,) - Uh.. E
J J J

=3

= Max Ehj. From (3.2), (3.4) and (3.5), for

small ¢, we have an asymptotic estimate for small h,

Eb _ xex/e - el/e 4+ ¢(1+x)/e(1-y)
12¢ e2/8 42 — (3.6)
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. h _ h _
with E 0" E N 0, and
h2
h h _ h 1 -2 o
0 ¢ E i < E N-1 - E 12a 1232. v (3.7)

Thus, the error will be of zero order if h is the same order as €.
Hence, in this case the difference scheme can’t converge for small e,
unless the mesh size h is excessively small. Meanwhile, (3.7) shows
that the maximum error always occurs at the last interior mesh point.
The difficulty comes from the fact that the scheme (3.3) yields a bad
approximate solution near the layer boundary at the righthand end point.
As a matter of fact, substituting the exact solution (3.2) of (3.1) into

(3.3) yields

Tr U, = - i(uj+1-2uj+gj_1) + % (uj+1-nj_1)
w2 (4) 4 12 (3) 4
= h{ —s[n"j+-ﬁ-n j+0(h )] +u'j+-6-—u + 0(h’)}
_n (@ (3) 5, .8 (3 5
= 1zl-eu j+2n j}+0(h)—-ﬁn j+0(h). (3.8)
where the equation (3.1) is used and
x/e
13u® (x) =-——7e————. (3.9)
1 3

Thus, the local truncation error near x=1 is only of zero order if g is

the same order of h.

Therefore, it is why we need to look for a scheme with better
approximation near the layer boundary. To construct such a scheme we

try to use the results described in last section.

From (3.2), we observe that

x/€ x/e_l
@ - ° ¢ w? :

u' (3) R
e — — = (X){ 1 4
(elle-l)es' dz v " (exle_1)2
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clearly both terms of the above formulas are very large with the same
sign near the layer boundary, but their difference is very small for
small ¢ if x is close to the right end, in fact

2

. - -
( )( ) - %— 2o 3e /e as x —> 1.
x u

Hence, if we could find a scheme of (3.1) such that the dominant

coefficient u(a) in the truncation error formula (3.8) could be instead
3),., 4 v? . o

by u " (x) - oo it would greatly reduce the approximation error

near the layer boundary. Therefore, it reminds us to adopt the

'logarithmic type’ numerical differential formula (2.12) near layer

boundary.

Thus, the difference scheme (3.3) is changed now as follows:

LhUh3 = —(a + -)Uh + ZaU + (— - a)Uh g for 2§ <N+ 1

h o (a4} i -
Ut = —Gaepth )+ 200t 4 Gratt, - et u“j, L

for N+1 < 2j < 2N ' (3.10)
where
QU,_,,U.,0., ) = T B T Ul LI
130 2 Log(D(x,,,)/U(x,))
U(x,)-0(x,_,) J J
d d } : (3.11)
Log(U(xj)/U(xj_l)) :

. h _ h _ -
with U 0= 0 and U N= 1, a

B,

The local truncation error of the scheme becomes

3 _
3 if 2j <N+1

Hlb‘
[
[
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%; - %; E?Hj if N+1<2j<2N
or
x/e
YOI if 2j < N+1
1zh"3rrh5 = { (3.13)
ex/e . ‘
m if N+1<2j<2N

where x = jh,

Denote the two right hand sides of (3.13) by Rl(x) and R2(x),

respectively. Let

x/e_,,2
R2(x) e1/e_1 :

Since

J1/(2e)_,

1/e

D’ (x)>0, D(0)=0, D(1)=¢'/®-1, D) = 1,

—
e1/(23)+1
the solution of the equation D(x) = 1 is equal to

*

=1 -2/e
x =3¢ e(e

) + O(e

-1/(28)—%e_1/6 )

Then the ratio function R1(x)/R2(x) increases from zero to a very large
number in the interval [0, 1], and the asymptotic solution of Rl(x) =
R2(x) is equal to % + o(e), for small ¢. This is reasonable to choose %
as the separate point of the two different scheme in (3.10). and now

the maximum local truncated error of (3.10) is given by

1/(2¢)
3 2 e 3
h h h h h™ -1/(2¢) -3
Tr = Max Tr ; 12R2(1/2) 1283(e1/(28)_1)2 12° €

It is worth to note that there is a striking contrast between the

truncation errors for the revised scheme (3.10) and the original linear
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scheme (3.3). In the linear scheme (3.3) the maximum truncation error
has no power of the mesh size h. But the truncation error of the revised
scheme (3.10) has an h2 term with a coefficient which tends to 0 as ¢
does. Naturally, we expect the revised scheme (3.10), which we will call
a semi-linear scheme based on the numerical differentiation formula in
section 2, to give much better numerical results for the Model equation

(3.1) than (3.3) does.

However, the first important question arisen is how to solve the

semi-linear system (3.10). Denote the resulting system by
AU = 4 + QU) (3.15)

where A and d coincide with the corresponding linear scheme, and the

non-linear term Q(U) arises from using the semi-linear scheme for x > %.

Let
| 2a -(a-1/2) |
| —(a+1/2) 22  -(a-1/2) |
An=l |
| e e e e e e e |
| —(a+1/2) 2a  —(a-1/2) |
| -(a+1/2) 2a |
n—-1
D = Det(A ), B = —=, then
n n n
D
n
D = 2aD - (az—l)D D =1, D, = 2a
n n-1 4’%p-2" Y0 " 1 ’
1
By = 2 » By =0.
2a-(a"-1/4)8 _,
VWhen a 1 Bp=lim B = > and
<2 n a+l/2’
L¢p,  -p <@ -p )
2a = "n+l n - atl/2 "n n-1°"
1
27 {B,<B=1imp = _1 (3.17)

..1 .
The inverse matrix A ~ can be easily found:



A=Wt ),
1,]
where o T, . = { (a+1/2)¥p_ p /D
i,] j=1"n-i n

(a-1/2)37%p, b /n_

i-1"n-j

Ve need to introduce the following Lemmas:

Lemma 3.1: For a 2 % -
Moverover
a_li,j 2 a_li,j—l if 1 > j
£ a‘li’j_1 if i < j
1AM, ¢ RV < T -

Suppose that a,b, and c are positive, let

atb _ b - a
2 Log(b/a)’

r(apb) =

Q(a»b’C) = r(bnc) - r(anb)

if i)j

if i<j

, A 1 is a positive matrix given by (3.18).

16

(3.18)

(3.19)

(3.20)

(3.21)

then
2Q 1 ; (b - a)/b
Q=3 =3 *— 3
& 0a Log(b/a)  {Log(b/a)}
Q1 1 (¢ = b)/c
Q=% 2" * 3
¢ Log(c/b) {Log(c/b)}
2 1 (b - a)/a 1 (¢ -~ b)/b
% =3 = - 3t s 3
9  1og(b/a)  {Log(b/a)}® Logle/b)  {Loglc/b)}
The term i%;%;%:) is a Generalized Mean defined by Jiachang Sun [9]

between the arithmetic Means and Geometric Means of a and b:

Lemma

_—

‘W

22: If a,b > 0, then

(ab)1/2 ¢ a - ¢ 8tb
SEtars) < 5

(3.22)
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where the equality holds if and only if a=b.

In fact, integrating t from O to 1 on the both sides of the following

inequalities: al tbt ¢ (1+t)a + tb, it leads to the righthand of

(3.22), and the lefthand can be obtained by

rle t=1/2 4 o f01/2 (@ t-1/2 (b t-1/23 40 ) 1.

o &) )

Corollary. For a,b > 0

atb _ a - b b 1/2 1/2,2
—-a s

2~ TLog(a/b) i (3.23)

0 € r(a,b) =

There exist a series of inequalities for the function Q and its

derivatives, based on (3.22).

Lemma 3.3: If a,b, and ¢ are positive, then

J1/2_,1/2)2 1/2_,1/2)2

(i) - i (b < Q(a,b,c) £ 5 2 (c

(ii) If c2b2a>0 and bzgac, then Q(a,b,c) > 0 with '=' iff ¢ = a.

; 1 (by1/4 _ __GQ 12 _ gy, ;

(iii) 0 ¢ 3 {(a) 1} 2 (b 1), if bYa>0
1 b,1/2 aQ b,1/2

-3 1= <5 < (1 @ INg 0, if a0,

a-d b)1/2y ¢ 2« 2 a9, if b0

L3

8Q

—— (——1) a 5 < ; ((%)1/4—1)5 0, if bYc>0.

Now we look for an estimate of “AfIJ(Q(U))“. where J(Q) is the Jacobi
matrix of Q. First, we prove a very interesting relationship for the

scheme (3.10)

{J(a(w)) u}j = {Q(u)}j. if j < N-1. (3.24)

Usually, (3.24) is only true for Q(u) = Au, where A is a matrix, it
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shows again that the semi-linear term Q(u) is really not far from
linear. In fact, from (3.11) and (3.21), {J(Q(w)) n}j =0 if j < n,

where n = [N/2]. And for n < j < N-1

_9Q aQ 2Q
{J(Q(u)) u} + 7—u, + 77/ u,
uJ -1 J 1 3nj j 3nj +1 j+1
} Bi417%-1 { n(xJ+1)-n(xj) _ n(x ) u(xJ_l) ) = 0t
2 Log(n(xy,))/ulx)))  Log(ulx;)/ulx; 4))  *
Hence
*
J(Q(u)) u = {0,...,0,Qn.....QN_2.Q N-ll'
where
Q = Tia1/2 T Tj-1/2°
. n1+nJ -1 _ u.j - nj—l ’
j-1/2 2 Log(u, /uj )
9
=0¢; - "1 LS (3.25)
duy

Using the above results, we derive an upper bound of a norm of the

matrix AfIJ(Q(u)). A straightforward computation yields

= {A J(Q(u))n}i e N1 RN.N-l
N-1
< -1 -1 -1 |
2 {e”, .-, . ). _ -ae ", T _ (3.26)
jent1 i, j i, j=1 ""j-1/2 i,n" n-1/2
for n { i { N-1, where
.. 0y
R Rl 2 7 S
Or
N-1
-1 3 -1 -1
c.=a . + > {e"., . -a". . }r. -
i i, N-1 RN,N—I =i+l i, j-1 i,j "Ti-1/2
% { a-l - a_l Ir - a—l T
= i,j i, j-1 "“j-1/2 i,n" n-1/2°
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Suppose nj > 0, oy = 1, using (3.23) and (3.19) leads to

-1 -1

¢ N1 Bwr T T g, S
-1 -1 _ -1
o, {a i N1 RN.N—l + rM(a i @ i,N—1)° (3.27)
where 1) = Max rj~1/2’
R - e A o S
»N-1 2’
2 Loguy_, (LognN;l)
and
u,_ 3/4
1 1 1 . 1/4
—a ST E0g) SRy N S . T O
Hence, (a + ':L)-1 2 a~1 > a_l because of (3.18), and the
’ 2 = i, i i, N1 ] * !

inequality (3.27) implies

1 1
- (ru + 4) £ (a + 2) o, < Tye
From (3.23), 0 ¢ Ty < % if 0<nj$1. Finally, we obtain an upper bound
HA Tl = sup A "T(Q(u)ull { ==, . (3.28)
“n"=1 4(a+1/2)

Therefore, the following two Theorems are resulted:

Theorem 3.4: The mapping

P(u) = A1 Q) (3.29)
is contractive if
=841
a =g 2 3 (3.30)

vwhere the matrix A and the vector Q(u) are defined in (3.15). 1In

another word, P(u) has unique fixed point in this case.

Theorem 3.5: When h  2e, the semilinear 'scheme (3.10) has unique
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solution, and it can be solved by the following ’'simple’ iteration

av @ - 4 (3.31)

(k)

AT = 4 + q(u¥D

k> 1.

Furthermore, from (3.4), Uoj is a monotocally increasing sequence

of j and Q(Uo) is nonnegative. In fact

. N - . N P *
Q(pJ+1-'1‘,pJ"1.pJ 1"1) = Q(pj-'.l;pJoPJ 1) + Q

1

where Ql'B = (p.+ } -

Logp 1 ogl(pd™1-1)/(p3-1)1

1

j=1,, 1

) - - : —
Logp | ogl(pI-1)7(p372-1)1

(p3-p }.

From Lemma 3.3 (ii), @(pd " 1,pd,p3™1) > 0, and since p > 1

Logl(p3*1-1)/(pI-1)1 ~ Logp - p~ 23*1),

1/2_-1/2,2
p !~

P )
Tosp > 0.

-(j+1), _ (

Q" ~ B~ (-p by D

j
- (p-1
Logp (p-1)p }

By induction, it can be proved that, for this Model problem (3.1}, Ukj
in the iteration (3.31) preserve the monotonically increasing with j for
each k. Hence, when k tends «, the monotonically increasing property

still remain true, i.e.,

Uj £ Uj+1' j=20,1,2,...

Now we consider the convergence in another meaning: the convegence of
the solution Uh of the nonlinear difference equations (3.10) to the
exact solution u of the differential equation (3.1). In matrix form
(3.1) with the local truncation error formula (3.12) or (3.13) can be

expressed as

Au=4d+ Qu) + Ir(u). ; (3.32)
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Subtracting (3.15) from (3.32) yields the error equation:
A - TY = Q@) - ) + Tr(a). (3.33)
When h < 2, Afl exists, the above formula is equivalent to
w- 0= A e - ) + Al Tr(w). (3.34)

According to the Lemma 3.4, for h < 2¢, Ale(u) is a contraction mapping

in the maximum norm, hence, from (3.28)
-1 3
I @) - e, < 7z, e - UV,
Applying Lemma 3.1 and (3.13), we obtained

3 -1 yp,71 2
o = 0, < (1= gq75, 1 MMl < o n

where the constant

= Lo U2 3 (L6435, (3.35)

Therefore, we have proved the following main result of this section :

Theorem 3.6: The solution of the semi-linear scheme (3.10) converges
to the exact solution of the singularly perturbation boundary value
problem (3.1). The rate of convergence in the maximum norm is of second

order. Moreover,
Hot - all_ < ca®, if h< 2e. (3.36)

where the coefficient C defined in (3.35) is uniformly bounded for all e

and C tends to zero as & does.

Note that the restricted mesh condition h < 2ge, caused by

introducing the semi-linear scheme, is only used in the steeper gradient
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interval x > 1/2. Hence, it is possible to restrict the mesh condition
only in the interval . As a matter of fact, in block matrix form, the
scheme (3.10) can be written as
,|A11A12=|Vl lol | o

| I 1 =] |+
|A21 AzzllUl lal | au,w |

Let h1 and h be two different uniform mesh sizes used in the
intervals x < 1/2 and x> 1/2, respectively, and
a=2%, 4 =£&
B "1 h1
Applying Gaussian elimination of matrix form, the above system can be

reduced to

~

AU =d+ Q(U.—Au'lAlzm (3.37)

where

"~

= (o .1, a¥l/2
Apg=lay;)iayy=a 2 ¥ 0 H72

*
LY = o5 if (i,j) # (1,1).

Hence, when a ) 2y, i.e., B hl' the Lemma 3.1 still holds, the above

conclusion can be improved further by the next assertion.
Theorem 3.7: If
h { min ( b, 22 ) (3.38)

then the iterative procedure (3.31) comverges for the system (3.37) and

the error estimate (3.36) is still valid.
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4, Linear second order two—point boundary layer problems

Consider a general linear second order singular perturbation

problem
Lu=-¢g u'' + p(x) u' + q(xf uv = f(x), in [0,1]
u(0) = u(1) =0 (4.1)

where ¢ is a small positive parameter and p(x),q(x) and f(x) are

sufficiently smooth that their second derivatives are uniformly bounded
v : *

for all x in [0,1] and for all ¢ > 0, besides, p(x) 2 p >0, q(x) 2 0

and q(x) - p'(x)/2 > & > 0 on [0,1]. Let
' 2
Lhﬂhj (a+pj/2)Uhj_1 + (2a+q;h )Uhj + (p,/2 c)nhj_l. (4.2)

The interval [0,1] is divided into two snﬁintervals ¢ [0,1] = Ir'+ Is’
where Ir is called a regular subinterval over which the first derivative
of u(x) is bounded by a control number ph. and Is defines a singular

subinterval over which u’(x) may be very large.

U, .-0._ '
Def ine pj—li-l---—l—1 = ¢, Similar to (ref[3.10]), in this case the
2h

semi—-linear scheme becomes

hfjh if lel < b,

h . h
B Sj“’hj.y Uhj. Uhj+1) if Izl > n
where
gj(uj+1.uj,uj_1) = Pj(’(“j+1’“j‘°) - r(uj,uj_l;c)).

atb b - a

r(a,b;c) = r(atc,b+c) = 2~ Log((ct0)/(eva))’ (4.4)
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and ¢ is a parameter to be chosen. The purpose of introducing ¢ is
two—fold. First, to make the scheme to be well defined; second, to lead

to a better approximation.

Now the corresponding matrix A in (3.15) becomes

, 2a+hq1 —(a—p1/2) %
| -(a+p2/2) 2a+hq2 -(a-p1/2) |
An = ' o L] o e ° . . L] L] L3 o . ° . |
I ° L] . L] ° - L . o e ° - o Ll l
: -(a+pN_2/2) 2a+th_2 _(a-PN%Z/Z) {
| —(a+pN’1/2) 2a+th_1 |
Denote the determinant of the first j and the last N-i principal
determinant by Dj and Di.N—l' respectively,
-1 Dyv1,n-
ﬁ = -3.1__. B‘ - —J._.’.__l R
n D j.-N-1 D .
n ij—l
then
p__ P
D = (2a+hg)D __ - (a--2L)a+2)p ,
n n n-1 n-2
2 2
D0 =1, D1 = 2a + hqi.
1
By = ' .
2a+thq - (a-pn?I/Z)(a+pn/2;Bn_1 .
D},N—l (2a + hqj)Dj+1.N—1 .(a 2 )(a + " )Dj+2,N—1’
DN.hFl =1, DN-I,N—I = 2a + th_l. (4.6)
1
£ T /£)<a+ /2)B '
93 7 870y Pj+1/ % P41, 81
Lemma 4.1: Assume that
(i) a=2E223 10 (4.7)
h+<2 ® *

. 1, .
(ii) qj 2 2h(pj+1 pj-l)‘ for all j, (4.8)
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then
B { i for all n < N-1.
n '»a+pn+1/2
1
Bo,n1 < 73 - for all n < N-1. (4.9)

Remark: As a discrete form of an inequality q(x) 2 p'(x), (4.8) is a

sufficient condition of an elliptic form for the equation (4.1).

Proof:
The first inequality (4.9) is trivial for n=1. By induction,

suppose (4.9) holds for n-1, then from (4.6) with the condition (4.8)

-1

1 . -1 _
B, £ {2a + 5(Pn+1 - P4 - (a-pn_1/2)} = {a + pn+1,2} .

The second part of (4.9) can be proved in the same manner.

Definition: f real n x n matrix A = ( a,

) with a, .<0 for all i#j is
i,j i, ] ]

called a G-matrix if A > > 0 and

-1 -1

. j 2 a i, j-1 if i 2 j {

-1

a7y g AEd ] (4.10)

Remark: A is a G-matrix means that Afl is a good disciete Green's

function in the machanical sense.

Theorem 4.2: The matrix A defined in (4.5) is a G-matrix if (4.7) and

(4.8) hold.

Proof:

In fact, ﬁe have

i-1 P .

k+1 -1
TT (a+—) D, if i > j
k=j 2 i+1,N-1 D
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-1 D.__1
a ij = { Di+1.hF1 ;l—- if i =3 (4.11)
. N-1
it Py i o
k:? (a - ;—) Dj+1.N—1 ;——— if i < j.
* N-1
Hence, in the case of i > j
-1
4, D,y 1 -
-1 = - } L+
i, -1 (a+pJ./2)Dj__2 (a+pj/2)ﬁj_1
and in the case of i ¢ j
-1
D, 1
e i1 > > 1. Q.E.D.

Definition: In a real n—dimensional space R® a mapping Q(x) is called
semi-~linear, denoted by Q ¢ SLn. if Qe C1 and there exists a constant K

. such that
(J(Q(x)i(xﬂ()lj = Q(x), for 1 < j < m. : (4.12)
where J(Q) is the Jacobi matrix of Q.

In particular, any linear mapping Ax is semi-linear for every square
matrix A when K=0. Hence, the semi-linear mapping defined by the above

definition is an extension of the linear transformation.

It is obvious that SL® forms a linmear space, i.e, if both Q(x) and
P(x) are semi-linear, and a,b are constants, then aP(x)+bQ(x) is also
semi-linear. Furthermore, if a and b are constant vectors with a=(aj),

b=(bj), then the mapping (aij(x) + ijj(x)) is also semi-linear.

As an example,

e B

Log((o+x 1)/ (o+x )

R(x) = (R.(x)), R.(x) =
J J
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is semi—-linear, because

oR, oR,

——1x. + ——1——1. = R,.

ox J ix j+l J
i j+1

Moreover, setting a shift transformation Vj = Uh5 + ¢ (1 {j<N1), in

matrix form the system (4.2) becomes
&
AVv=4d + QV)

where A is defined in (4.5), Qj =0 or pj(r(V5+1.Vj) - r(V,-V, .)),

i1
depending upon whether jeIr or jeIs, respectively. Since R(x) is

semi—-linear, we have
{J(Q(V))V]j = {Q(V)}j. if j < N-1. (4.13)

Theorem 4.3: For given gj(x) defined in (4.4) and uOEnNEO. the mapping

a(x) = (gj(x)) is semi-linear.

Since

o. = (A @VIV), = =p_ ,a} -

i i N-1% i, 81 BN, N1

Nil {VP 0—1 - D a°1 Ir -p a-l r

j=a b I P -1 i,j-1 "Tj-1/2 n i,n n-1/2
where

or
- - N-1/2
T3-1/2 ’(_Vj'vj—1" Bw1 % Tn1/2 * . .

it is easily seen that if the condition (3.30) is changed to (4.7) , the
Theorem 3.4 will remain true when p’20. Therefore, we obtained an

extension of Theorems 3.4 and 3.5:
Theorem 4.4: Suppose

, . .
p'(x) > 0, and q; 2 ii(pj+1 pj-l)’ for all j, (4.14)
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then the mapping P(V)EAle(V) is contractive if (4.7) holds.

WVhen p’(x) is negative somewhere, the derivation of conditions for the
mapping P(V)ﬁAle(V) to be contractive is little more complicated. Imn

this case, set
> o= YT+ YT,

where the two terms on the righthand side denotes a positive parts and a
non—-positive part, respectively. Suppose 0(V5$1, since OgerxM. from

the Theorem 4.2

jé,g Pj“- i pj—la-li,j—l Yeian * P® 4, a%a-1/2
< zylp o i,i pna.li,n) T P,0 11,nrn—1/2 *
,é: Byg0™ a7 B T
< rMu'li’i{ p. + j§n+: (pj_1 pj) }.
ﬂencq
—a, < % + 57;%;;:;72) j§n+I (pj_l-pj).

In the same manner of the derivation in the last section, we obtain the

following result.

Theorem 4.5: The conclution in Theorem 4.4 still holds even if the

condition p’20 is removed provided that the iequality (4.7) is changed

to
lipll N-1
a ) Max{ ——, 235 ' (p, .=p.) - p.}. (4.15)
= 2 j=n =1 %3 2°N

In order to get an error estimatation, using (3.34), it is omly

need to-find a bound for "A,_lTr(u)n°° when the mapping is contractive.
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This reduces the error estimates to estimate the bound of the truncation
error. Substituting the exact solution u in the scheme (4.3) yields

3

— h_
Lhuj = hfj + 12{ eun

(4) (3)

+2pn }

g’
if j e Ir' and

L u, = hf. - .(u. »0.,0, ) + Tr.(u),
i %5-17" %41 j

hj j
3 2
Tr; = %{—Sn(4)+2pu(3)‘p(‘g—+;)'} L (4.16)

if j ¢ Is’ where 0<&,n<1.

It has been noted that the exact solution has a factorization which
consists of two parts : ome is regular, another is singnlar (see Hom

Honde[5], Lemma 1), hence

u(x) = y{W(x) + Z(x)}

-p(1)(1-x)/e -p(1)/e

W(x) = ¢ - x - (1-x)e (4.17)

where vy = 1lim lim eu’(x)/p(1) is a constant bounded uniformly for all
e—>0 x—>1
0<e<1, and

e“ﬂ(l'f)/‘} (4.18)

Izl <c Izl g ¢ 1zl ¢ cad
*
C is a constant independent of £, and O0<B<p .

Set ¢ in (4.4) equal to y which can be also obtained in computing
process. Because the singularity of the exact solution u(x) is only
near x=1, the width of the boundary layer in which u(x) has large
derivatives is less than k times &, where k is a constant no matter how
small ¢ is, this implies that we can take Is = (1-ke,1), and on [0,1-ke]

u(x) and its first fourth derivatives are uniformly bounded. Hence we
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only need to consider the maximum error within the boundary layer. From

(4.17), when b < ellpll /2, in the interval I_

(4) (3) p1)’
-gu + pu = ¢f -—3———[p(x)-p(1)]e

-p(1)(1-x)/e _

ezt 4 pZ(s) ] =0 %),

2
e 28 1 - a2
u preeiy “*c{u (n+c) - u'”}
2
2 p(1)
.. -p(1)(1-x)/e ve1r.—P(1)(1-x)/e
P H-—-——ez e +Z']le +Z+ ¢l
- [Eélle’P(l)(l—x)/e + 214
2
= -E_.;_; e"P(l) (1"!)/82:1) [2:1) (z+1) - 2] + .
e - B2 L p (D Umx)e W), 2 P s gy
b ctu ute € € °ee
Since u(1)=0, Z(1)= -1, so
2 2
’ - -u-'-:- = -1 ’ - E..:... = -2
u'’ pres o(h 7), {u'’ c+n}' o(h 7). (4.19)

Substituting into (4.16) yields

max|Tr(x)| = O(h).
I

s

However, for the usual linear central difference scheme the
corresponding truncation error is O(ho). Hence, introducing the
semi—linear scheme gives &ne more order of precision for the maximum
local truncation error. Considering that the width of the boundary

layer Is is only ke, the number of knots using the semi-linear scheme is

always less than a constant if the ratio % remains a constant. Hence
A 10l = o(n) (4.20)

Since the error system
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A(a-TY = Q@ - AU + Tr(a),
SO
s - o < 1A @@-aw™)ill + A el
e - 0™ < € 1 - 1A 5@l 37 A e (0l
it IA”trc@eenll e - o < 1.

Therefore, we have extended the error estimate Theorem 3.6 for the

general problem (4.1).

Theorem 4.6: The solution of the semi-linear scheme (4.3) converges to
the exact solution of the singular perturbation problem (4.1) as h tends
zero if the (4.8) holds. Moreover, if the ratio of h to € is less than
a constant, as given in (4.7) or (4.15), according to the condition of

Theorems 4.4 and 4.5 respectively, then there exist an error estimation

such that
h
o' -all_ < cn, (4.21)
where the coefficient C is uniformly bounded for all e>0.

Using the same block'matrix technique described in the last section, the
mesh constrain (4.7) or (4.15) can be limited only in the interval Is‘

In the regular interval, a larger mesh step can be allowed.
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5, Computational results

In this section, three numerical examples are presented to show the
effect of the semi-linear scheme. Only uniform mesh sizes are used
throughout this section. The emphasis is on the comparison among the
semi—linear scheme, the corresponding linear centered difference scheme,

and an 'Upwind method’ described by Christie and el. in [3].
EXAMPLE 1. —— Model Prob;em
Lu =-gu'’ + u’" =0 in ( 0,1 )
u(0) =0, u(l) =1 (3.1)

Numerical results for the model problem (3.1) are tablated‘in Table l—é,
and a comparison of three different methods is given for ¢ = 1/60 and h
= 1/40 in the sense of the pointwise error. For the linear centered
differénce scheme, there is a relative error of 36% at the last interior
mesh point x = 0.975. The ’Upwind Symmetric Quadratics Method’' has a
relative error 1,2% at the same point. The advantage of the semi-linear
scheme is clear. Three or seven digits can be improved for an iteration
error of 0.1D-3 or 0.1D-8, respectively. Fo¥ a given accuracy, the
required CPU time using the semi-linear scheme is twice less than using

the usuval linear scheme.

For the same &, Table 2 describes the convergence rate. If the
given admissible error is 0.5D—4, the semi-linear scheme requires a mesh
size h approximately 1/30, while the linear scheme requires a mesh size

1/2000. The total CPU time between these two schemes differed by a
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factor of 2 to 3. If we consider the error of the first derivative, the
difference between the two schemes is even greater because we use a
semi-linear differentiation formula to match the semi—-linear scheme

(3.10) in order to get the discrete first steep derivative.

The influence of the the convergence of the semi-linear
discrization is presented in Table 3, depending upon the ratio of e to
h. Weiconsider three cases: h/e = 2, 3/2, and 1. According to Theorem
3.2, the iteration converges if h/e { 2. These numerical results
satisfy the theory. The iteration is also convergent for h = 2,
however, this is not recommended because the rate of convergence is too

slow. For a practical choice of h/e = 1.5, a higher precision seems

with obtainable less CPU time.

Hence, to get the same accuracy, one can solve a small semi-linear
systems instead of the originmal large'lin@ar system. However, the error
in the two schemes behaves differently. For the linear scheme, when the
ratio e/h is constant, the error is also constant independent of the
size of ¢. For the semi-linear scheme the error converges to zero as ¢

does. The examples to follow will show the same phenomenon.
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Table 1.
(e =1/60, h = 1/40 )
x | Theoretical Linear Semi-linear Upwind
: solution scheme ei = 0.1-3 ei = 0.1-8 method
0.800 | 0.000006144 0.000000173 0.000006141  0.000006144 -
0.850 | 0.000123410 0.000008500 0.000123447 0.000123410 -
0.875 | 0.000553084 0.000059499 0.000553305 0.000553085 -
0.900 | 0.002478752 0.000416493 0.002477749 0.002478752 0.0026
0.925 | 0.011108997 0.002915452: 0.011110675 0.011108997 0.0115
0.950 | 0.049787068 0.020408163 0.049785741 0.049787068 0.0510
- 0.975 | 0.223130160 0.142857143 0.223130576 0.223130160 0.2258
1.000 | 1.0 1.0 1.0 1.0 1.0
Max error of u -0.8027-01 0.1679-5 0.2044-9 0.27-2
Location of max error 0.975 0.925 0.875 0.975
Max error of u' 0.56+1 0.95-4 0.11-7 -
Number of iterationms 1. 12 22 1
CPU TIME (seconds) 0.07 0.15 0.26 -
Remark: ei —— the admissible error for iterations of the semi-linear scheme.
Table 2
(e =1/60, ei(SL1) = 0.1-4, ei(SL2) = 0.1-8 )
| 1/n 20 30 40 60 640 1920
In
Max | L -0.25+0 -0.14+0  -0.80-1 -0.35-1  -0.27-3 -0.30-4
errorl SL1 -0.46+1 0.54-5 0.17-5 -0.35-6 -0.37-9 -0.51-12
of u | SL2 =-0.46+1 0.32-9 0.20-9 -0.51-10 0.46-12 0.46+16
Max | L 0.70+1 0.66+41  0.56+1 0.39+1 0.80-1 -0.25-1
errorl =0.10+4 0.31-3 0.95-4 -0,21-4 -0.13-6 0.50-9
of u'l sSL2 -0.10+4 0.19-7 0.11-7 -0,28-8 0.16-9 0.51-13
cey | L 0.01 0.02 0.07 0.08 0.46 1.30
| sL1  0.93:(100) 0.51 (35) 0.15 (12) 0.16 (7) 0.90 (3) 2,78 (3)
TIME | SL2 0.93.(100) 0.74 (71) 0:28 (22) 0.24 (12) 1.10 (4) 3.21 (4)

Remark. 1. The number in the bracket is the number of iteratioms required to
reduce the error to be less than the admissible range ei.
2, Max u' = 60. ) '



Table 3-1 h/e = 2
| 17 | 10 20 60 100
| ei | o0.1-4 0.1-4 0.1-8 0.1-12
Error | L | < -0.14+0 >
of u | SL | -0.45+0 -0.96-4 0.32-9 0.20-12
Error | L | o0.11+41 0.22+1 0.66+1 0.11+2
of u' | SL |  o0.45+1 -0.20-2 0.19-7 0.18-10
.ceu L | 0.01 0.01 0.03 0.11
TIME | sL | 0.21 0.35 0.70 1.76
| | (100) (100) (71) (100)

38

Remark. 1. The number in the bracket is the number of iterations required to
reduce the error to be less than the admissible range ei.

Table 3-2 h/e = 3/2
| 17¢ | 15 30 60 90
| ei | o0.1-4 0.1-4 0.1-8 0.1-12
Error | L I < -0.80-1 >
of u | SL | -0.23-3 0.15-5 0.20-9 0.28-13
Error | L |  o0.14+1 0.28+1 0.56+1 0.84+1
of u' | SL | -0.39-2 0.43-4 0.11~7 0.24-11
cey | L | 0.01 0.01 0.03 0.11
TIME | SL | 0.03 0.07 0.25 0.70
I (12) (12) (22) ( 30)
Table 3-3 h/e =
| 17¢ | 5 10 20 60 100
| ei | o0.1-4 0.1-4 0.1-4 0.1-8 0.1-12
Error | L | < -0.35-1 >
of u | sL | -0.49-2 -0.92-3 -0.64-5 -0.51-10 -0.69-14
Error | L | o0.32+0 0.64+0 0.13+1 0.38+1 0.64+1
of u' | SL |  0.33-1 -0.11-1 -0.15-3 -0.28-8 -0.59-12
cey | L | 0.01 0.01: 0.02 0.06 0.21
"TIME | SL | 0.01 0.02 0.05 0.23 0.71
| Il (1) (17) (7) (12) (17)
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Figure 2
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1.0E+02
1.0E+01
1.0E+00
1.0E-01
1.0E-02
1.0E-03
1.0E-04

1.0E-05 |

1.0E-06
1.0E-07
'1.0E-08
1.0E-08
- 1.0E-10
1.0E-11
1.0E-12
1.0E-13
1.0E-14

TABLE 3-2.
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Figure 3
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EXAMPLE 2. A linear singular perturbation problem with constant

coefficients
Lu= - ¢gu'’ + u' + (1+e)u = £(x), ‘in ( 0,1 )

u(0) = u(1) =0 (4.1)

-(1+e)/e -1

where f(x) = (1+¢)(a-b)x — ea — b, a =1 + e b=14+ e, with

exact solution

- e-(1+s)(1-x)/e +e% - g+ (a-b)x

u(x)

It is not difficulty to find that the coefficient y in (4.17) here is
equal to 1 without knowing the exact solution in advance. Hence, we

assign the constant ¢ = 1 using the semi-linear scheme (4.2).

The result listed in Table 4 shows that iteratioms con&erge
monotonically if the ratio h/é £ 2 and that the calculated results agree
well with th; theoritical analysis. For the same mesh size, required
CPU time using semi-linear scheme is little more than using the usual
linear scheme ( about 10% to 20% for small & ), but more than ome
significant digit is obtained. More small ¢ is contained, more
advantage the semi-linear scheme has. Therefore, with the same
accuracy, using semi-linear scheme, an large linear system arisen from
the linear scheme is replaced by a smaller semi-limear system. For
instance, when £=0.01, the maximum error using the semilinear scheme
with N=60 (after 13 iteratioms) is less 50% than of the usual linear
scheme with N=200, meanwhile the ratio of CPU time is 0.27 : 1.12(sec.).
Vhen £=0.001 , the maximum error using the semilinear scheme with N=600
i; less ten times than of the usual linear scheme with N=2000, and the

ratio of CPU time is 3.22 : 7.87(sec.).
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Table 4-1 e = 0.1 ei = 1,0-5

]
h=1/N | x Max(Er(u)) Max(Er(u')) CPU NE
5 | L 0.800 0.1935D+00 0.1247D+01 0.01 1
| sL 0.800 0.1935D+00 0.1247D+01 0.01 2
6 | L 0.833 0.1474D+00 0.1163D+01 0.01: 1
| sL 0.833 0.4765D-01 0.8202D-01 0.03 10
10 | L 0.900 0.6548D-01 0.7837D+00 0.01 1
| sL 0.800 0.2255D-01 -0.2642D+00 0.08 7
20 | L 0.950 0.1974D-01 0.3247D+00 0.02 1
| sL 0.850. 0.6793D-02 -0.1112D+00 0.04 4
40: | L 0.975 0.5493D-02 0.1057D+00 0.05 1
| sL 0.850 0.1499D-02 -0.3305D-01 0.10 4

Remark. 1. NE is the number of iterations required to
reduce the error to be less than the admissible range ei.
Table 4-2 e =0,01, ei=1.0-5

: |
h=1/N | x Max(Er(u)) Max(Er(u')) CPU NE
s0 | L 0.980 0.1595D+00 0.1116D+02 0.15 1
| sL 0.960 0.7958D-02 -0.1829D+01 0.40 24
60 | L 0.983 0.1230D+00 0.1020D+02 0.18 1
| sL 0.967 0.6016D-02 -0.1543D+01 0.27 13
100 | L 0.990 0.5561D-01 0.6581D+01 0.29 1
| sL 0.970 0.2872D-02 -0,6184D+00 0.43 7
200 | L 0.995 0.1688D-01 0.2624D+01 0.57 1
| sL 0.970 0.6339D-03 -0.1742D+00 0.69 4
400 | L 0.998 0.4705D-02 0.8364D+00 1.12 1
| sL 0.970 0.1681D-03 -0.5743D-01 1.36 4
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Table 4-3 e = 0,001, ei = 1,0-5
| \

h=1/N | x Max(Er(u)) Max(Er(w'’)) CPU NE

500 | L 0.998 0.1568D+00 0.1102D+03 2.05 1

| sL 0.992 -0.1981D-02 -0.2046D+01 3.42 24

600 | L 0.998 0.1210D+00 0.1006D+03 2.47 1

| sL 0.995 0.9313D-03 -0.2414D+01 3.22 14

1000 | L 0.999 0.5475D-01 0.6459D+02 3.93 1

| sL 0.995 0.2977D-03 ~0.8986D+00 5.16° 7

1200 | L 0.999 0.4045D-01 0.5219D+02 4,71 1

| sL 0.995 0.2150D-03 ~0.6389D+00 5.58 6

2000 | L 0.999 0.1663D-01 0.2565D+02 7.87 1

I sL 0.996 0.9066D-04 -0.2710D+00 9.00 4

40



FUNCTIBN ERRBR

41

Figure 4

TABLE 4-3 EPS=0.001  1/H=500-2000
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Figure 5
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EXAMPLE 3. A semi-linear singular perturbation problem
Lu= - gu'’ + u' + (1+g)u = f(x,uw), in ( 0,1 )

u(0) = u(1) =0 (5.1)

with the same solution as Example 2, where

[
f(z,u) =a-b - (1+e)fe X - u +

. -1,
wt+a-(a-b)x—e

1 e2(1+e)(1—x)/8

,(1+s)/e' b=i+e L,c =

a=l+e

This example shows the advantage of using SL— scheme over L-scheme
more than example 2, because both schemes have to be solved by iteration
for this semi-linear problem, and in this case SL—scheme requires less

CPU time than in L-scheme for the same mesh size.

Two different results of two semi-linear schemes.are listed in
Table 5. SL1 scheme is described in section 4. SL2 scheme comes from a
Semi-linear Galerkin method [Jiachang Sun, 11]. Using the same simple
iterative procedure for the same size h, SL2 seems need less number of
iterations required to reduce the error to be less than the same
admissible range than SL1, but SL2 costs a little more CPU time to
compute its coefficients. At any rate, the advantage of both
semi-linear schemes over the linear scheme is clear. The stronger the
singularity of the solution of the differential equation, the more the

advantage.



Table 5-1 e =0.1, ei=1.0-5
|
h=1/N | x Max(Er(u)) Max(Er(u’)) CPU NE
6 | L 0.833 0.1413D+00 0.1163D+01 0.25 100
| sL2 0.667 0.1913D-01 0.1468D+00 0.16 11
10 | L 0.900 0.1111D+00 0.7837D+00 0.43 100
| sL 0.900 0.2463D-01 -0.2786D+00 . 0.60 100
| sL2 0.800 0.1715D-01 0.2356D+00 0.17 13.
20 | L 0.950 0.2517D-01 . 0.3247D+00 0.86° 100
| sL 0.900 0.1110D-01 -0.1286D+00 1.12 100
| sL2 0.850: 0.5012D-02 -0.9715D-01 0.32 13
40: | L 0.975 0.6984D-02 0.1057D+00 0.30 14
| sL 0.900 0.2445D-02 -0.4427D-01 0.35 14
| sL2 0.825 0.1004D-02 -0.2500D~-01 0.70 13
so | L 0.987 0.1812D-02 0.3023D-01 0.63 14
| sL 0.900 0.6265D-03 -0.1872D-01 0.73 14
| sL2 0.837 0.2561D-03 -0.7389D-02 1.33 13
Table 5-2 e = 0,01, ei = 1,0-5
|
h=1/N | x Max(Er(u)) Max(Er(u’)) CPU NE
so | L 0.980 0.1391D+00  0,1116D+02 4.33 100
| sL1 0.960 -0.8372D-02 -0.1886D+01 4,72 100
| sL2 0.960 0.7927D-02 -0.1662D+01 11.67 100
60 | L 0.983 0.1255D+00 0.1020D+02 7.37 100
I sL2 0.967 0.5378D-02 -0.1375D+01 1.47 10
100 | L 0.990 0.5766D-01 0.6581D+01 1.08 10
| su1 0.970 0.3158D-02 -0.6582D+00 1.11 9
| sL2 0.960 0.2617D-02 -0.5572D+00 2.20: 9
200 | L 0.995 0.1733D-01 0.2624D+01 2.05 9
| sL1 ‘0.975 0.6970D-03 -0.1894D+00 2.14 9
| sL2 0.965 0.5763D-03 -0.1500D+00 4.44 9
400 | L 0.998 0.4812D-02 0.8364D+00 4,13 9
| sL1 0.973 0.1845D-03 -0.6287D-01 4.51 9
| sL2 0.968 0.1536D-03 -0.4842D-01 8.86 9
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Table 5-3 e = 0,001, ei=1.0-5

! |
h=1/N | x Max(Er(u)) Maxz(Er(u')) CPU NE
500 | L 0.998 0.2943D-01 0.1102D+03 58,29 100
| s11 0.994 0.1020D-02 -0.3495D+01 59,29 100

| sL2 0.994 0.1129D-02 -0.3240D+01 153,63 100

600 | L 0.998 0.1211D+00 0.1006D+03 71.83 100
| sL2 0.995 0.9154D-03 -0.2334D+01 23.22 11

1000 | L 0.999 0.5494D-01 0.6459D+02 14.16 9
1 su1 0.995 0.3019D-03 ~-0.9171D+00 14.05 9

| sL2 0.995 0.2907D-03 -0.8533D+00 28.66 9

2000 | L 0.999 0.1667D-01 0.2565D+02 27.56 9
| sL1 0.996 0.9201D-04 -0.2771D+00 27.70 9

| sL2 0.995 0.8845D-04 -0,2594D+00 57.68 9
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FUNCTION ERR@R

Figure 8
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TABLE 5-3 EPS=0.001 SEMILINEARR EQUARTIBN
.06000 : : — : , .
.04000 - .
1
.02000 | \\\\\\\\;
. 000002 e : L e
500. 875. 1250, 1625, 2000.

[Yry

2
3

1/H

LINEAR SCHEME FUNCTIBN ERRER
SEMILINEAR DIFFERENCE SCHEME
SEMILINEAR GALERKIN METHBD



CPU SECBNDS

49

Figure 9
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