
Yale University
Department of Computer Science

Robustness of Path-Vector Protocols without
Independent Route Ranking

Aaron D. Jaggard Vijay Ramachandran

YALEU/DCS/TR-1314
April 2005

This work was partially supported by the U.S. Department of Defense (DoD) University Research
Initiative (URI) program administered by the Office of Naval Research (ONR).

Robustness of Path-Vector Protocols without
Independent Route Ranking

Aaron D. Jaggard∗ Vijay Ramachandran†

Abstract

Recent work has presented theoretical frameworks that rigorously model
the behavior of path-vector protocols [6, 7, 13], which are primarily used
for inter-domain routing on the Internet. We expand the scope of these to
include protocols with route-selection procedures that cannot be captured
by a per-node linear order on paths; in particular, our generalized model
captures the use of commonly deployed route attributes such as MED, which
is used to fine-tune routing between networks that share more than one inter-
connection. Using the model, we give the best-known sufficient condition
guaranteeing robust convergence of path-vector protocols in the generalized
case and discuss its applications to protocol design.

1 Introduction

Most routes on the Internet transit several independently administered network do-
mains, called autonomous systems (ASes). Although routing within an AS is well
understood, routing between ASes is difficult because of the diverse networks and
larger distances involved. Inter-domain routing on the Internet is accomplished to-
day using the Border Gateway Protocol (BGP) [12], a path-vector protocol. Routes
are established hop-by-hop through the network as information about destinations
is shared between routers; at each step, this depends on routers’ locally configured

This work was partially supported by the U.S. Department of Defense (DoD) University Re-
search Initiative (URI) program administered by the Office of Naval Research (ONR).

∗Department of Mathematics, Tulane University, New Orleans, LA, USA. E-mail:
adj@math.tulane.edu. Partially supported by National Science Foundation (NSF) Grant DMS–
0239996 and by ONR Grants N00014–99–1–0150 and N00014–01–1–0795.

†Department of Computer Science, Yale University, New Haven, CT, USA. E-mail:
vijayr@cs.yale.edu. Partially supported by a 2001–2004 DoD National Defense Science and
Engineering Graduate (NDSEG) Fellowship, by ONR Grant N00014–01–1–0795, and by NSF Grant
ITR–0219018.

1

routing policies, which can be quite expressive. Therefore, convergence to a sta-
ble set of consistent routes throughout the network is dependent on a composition
of decisions involving many different, autonomously provided inputs. Previous
work [14] has demonstrated that the interaction of these local policies can produce
global anomalies in BGP, e.g., nondeterministic routing and protocol divergence.
To acheive greater network stability, a better understanding of the interaction of
routing policies is necessary; furthermore, this must be done in a rigorous manner
so that network operators can rely on provable guarantees about protocol behavior,
even in worst-case scenarios.

This paper continues a line of work that explores the theoretical foundations
of inter-domain routing and routing-policy interaction. Several existing models
of path-vector protocols [5–7, 13] that are used to derive general sufficient condi-
tions for robust convergence ignore the complexities of sharing inter-domain routes
within an AS; in particular, the model of the Internet assumes that every AS can be
represented by one node in a graph with a single routing policy and a single link
to each neighboring node. (In reality, an AS is often made up of several routers
that maintain BGP sessions to share inter-domain routes; these sessions often con-
nect links to different neighboring ASes and provide multiple inter-connections
between the same ASes.) On the other hand, work that included these complexi-
ties [1, 8] has been unable to prove general guidelines for convergence in the same
way that these models have. Our paper bridges this gap by presenting a generalized
model to capture the static semantics of policy interactions for both inter-domain
and intra-domain BGP sessions. This model is used to derive a sufficient condition
analagous to those for the simplified case.

In the remainder of this section, we review existing theoretical frameworks that
inspired the methodology of this work and previous attempts to analyze anomalies
related to multiple AS inter-connections, discussing a specific example with BGP.
In Section 2, we introduce our model, defining relevant terms (both old and new).
We then derive the generalized convergence constraint in Section 3 and discuss
various applications in Section 4.

1.1 Related Work on Modeling BGP

Path-vector protocols establish connectivity by sharing putative routes to reachable
destinations on a hop-by-hop basis between routers: potential routes are collected;
a best route is chosen; and that choice is advertised to neighboring routers that
repeat the process. Local policies influence each step of this process, because the
attributes of a route—information in a path’s data record—is changed on import
and export based on policy configuration, and this affects the choice of the best
routes and which routes are shared. Gao and Rexford [5] showed that constraints

2

on policies and a simple assumption about the business-relationship structure of the
Internet can guarantee robustness, i.e., predictable convergence to a routing solu-
tion, even in the presence of link and node failures. The benefit of this result is that
the constraints are local, i.e., network stability could be achieved with little global
coordination between policies, which is normally impossible given the autonomy
of ASes.

Griffin, Shepherd, and Wilfong [7] presented the Stable Paths Problem (SPP)
as the underlying theoretical problem being solved by BGP. SPP captured the static
semantics of the interaction of routing policies on paths to a single destination as a
preference ordering at each node on putative routes. They were able to give a suffi-
cient global condition for robustness, but showed that checking individual policies
exactly for the existence of a stable routing solution is NP-hard. The combination
of these results with the Gao-Rexford conditions produced an elegant analysis of
the behavior of a modified, safe version of BGP that assumed the required Internet
business structure but allowed back-up routing [4].

These results were incorporated into two theoretical frameworks [6, 13] that
model the behavior and design of path-vector protocols more generally; both of
these give concrete, rigorous analysis of convergence conditions. They show that
an underlying consistency between the preference ordering of routes at nodes and
ordering routes by path length represents a sufficient condition for robust conver-
gence equivalent to that of the original SPP work; they also explain how to achieve
or enforce that ordering in various ways.

1.2 MED-Induced Oscillations

Unfortunately, the above branch of work only applies to a specific type of path-
vector protocol—those in which the best-route selection procedure can be mod-
eled by mapping paths under consideration to a rank, or weight, in some totally
ordered set and choosing the path of minimum (or maximum) rank. This prop-
erty is called independent route ranking (IRR) because the rank of a path can be
determined from the attributes of that path’s data structure, which, in turn, can be
used to compare it to any other path for best-route selection. However, BGP’s full
route-selection procedure cannot be modeled in this way. In particular, use of the
multi-exit discriminator (MED) attribute, which is common when two ASes share
multiple inter-connections and want to perform cold-potato routing,1 violates IRR.

1Normally, ASes use hot-potato routing, in which traffic destined for another AS is routed to the
nearest egress point—or border router—with a connection to the next-hop AS on the path. In the
case of cold-potato routing, if an AS has two or more connections to the next-hop AS, some factor
other than shortest distance is used to choose the egress point. The MED attribute is a common way
to force cold-potato routing, and its use will be discussed in more detail later in this paper.

3

MED-induced oscillations are a well-known problem of BGP [2, 3, 10], and it
has been conjectured that the violation of independent route ranking is the major
reason. These oscillations are especially difficult to analyze and debug on a real
network because they are a product of not only BGP policy settings—involving at-
tributes set in separately configured, independent ASes—but also internal distance
settings within an AS (determined by an interior gateway routing protocol, or IGP).

There has been some theoretical work on the consequences of using the MED
attribute, but the results have been incomplete. Basu et al. [1] and Musunuri and
Cobb [11] proved that including in advertisements routes not chosen as best pre-
vents MED-induced oscillations, but this change to BGP would increase the size of
routing tables and the number or size of update messages. Griffin and Wilfong [8]
enumerated canonical examples of MED-induced oscillations and described them
using a narrow extension to their SPP model, but did not propose broad configura-
tion suggestions for using the MED attribute nor a robustness constraint analogous
to that given for the original SPP model. Other suggestions to solve the MED-
oscillation problem affect the use of route reflectors and configuration of iBGP
sessions within an AS [15] or require changing the interpretation of attributes [10].

This paper provides a complete, rigorous model that not only permits analysis
of the MED attribute but also includes more general route-selection procedures
that may violate the independent-route-ranking property. We fully extend the SPP
framework to cover these instances of the inter-domain routing problem and derive
a constraint for policy configuration that guarantees robust convergence; as it is
more general, it applies to instances of the limited, original SPP model as well. The
generalized SPP can be included in the existing path-vector design frameworks [6,
13] to broaden their application and give a much cleaner measure for protocol
expressiveness.

2 A Generalized Framework for Inter-Domain Routing

We begin this section by reviewing the dynamics of inter-domain routing protocols.
We then define route-selection functions and independent route ranking (IRR), ex-
plaining the difference between our more general definitions and the more spe-
cific definitions used in previous theoretical work. We then present the General-
ized Stable Paths Problem (GSPP) and the Generalized Path-Vector Policy System
(GPVPS) as the underlying theoretical problem being solved by routing protocols
and the framework for routing-protocol design, respectively, both of which incor-
porate the generalized version of route selection. In doing so, we provide an exam-
ple GSPP demonstrating a MED-induced oscillation.

4

2.1 Overview of Inter-Domain Routing

Internet traffic is forwarded from source to destination by routers along paths that
traverse inter-domain and intra-domain links. Routers perform a basic forwarding
operation, in which the destination IP address of a packet of traffic is matched to
an entry in a forwarding table, and the packet is sent to the corresponding next
hop—or neighboring router—listed in the entry. The job of routing protocols is to
fill this forwarding table to form consistent, loopless paths for traffic to follow.

Intra-domain routing is well understood and is often based on simultaneous
best-path calculations using some Interior Gateway Protocol (IGP)—at the intra-
domain level, “best” is often defined as shortest. Inter-domain routing, however, is
more complicated because the autonomy of domains and the scale of the Internet
prevents both information about network topology to be distributed for such cal-
culations and coordination or consistency among definitions of “best.” Therefore,
routes are computed on a hop-by-hop basis and decisions are influenced by local
policy configurations.

Knowledge about destinations is learned through advertisements from neigh-
boring routers; once a path to another AS is established, an AS will share that
reachability information with its neighbors so that they gain knowledge of the des-
tination as well. Assuming that destinations are first originated by the protocol-
speaking router responsible for that destination, paths are thus established by re-
peating the following three-step process:

1. Information about established routes through neighboring routers is collected,
called importing routes. The route data stored in the local routing table de-
pends on the route information in the update message and the import policy;
the policy may filter routes entirely, i.e., remove them from consideration.

2. For each destination, the protocol’s best-route selection procedure is used to
choose best routes from the local routing table. Best routes are then used to
populate the forwarding table for these destinations.

3. Best routes are advertised to neighboring routers, called exporting. Update-
message information about these routes is influenced by export policy, which
may also filter routes.

The routers with inter-AS connections exchanging this information are border
routers; however, an AS consists of non-border routers that must learn how to
reach external destinations as well. The inter-domain protocol is thus also used to
share external destinations with internal routers. As a result, path-vector protocols
accomplish two inter-domain routing tasks:

5

1. establishing connectivity and sharing reachability information across inter-
domain links; and

2. distributing knowledge of inter-domain routes to non-border routers.

It is important to note that much of the previous theoretical work studying the
convergence of BGP and other path-vector protocols, e.g., [5–7, 13], modeled the
Internet as a graph in which each vertex represents one AS, thereby considering
only inter-AS connections and ignoring anomalous behavior related to task (2).
However, such anomalies have indeed been identified [2, 3, 10], and this paper
generalizes the previous theoretical work to address these anomalies.

We write paths in the direction of forwarding traffic; e.g., P = v0v1 · · · vn is a
path from node v0 to destination vn. Node v1 is the next hop on P . At the inter-
domain level, most nodes vi will represent ASes, not individual routers. However,
because of task (2), it will be important to write a portion of the path from the
source router to the border router such that nodes represent internal routers; e.g.,
we may write P = ABC(3)(6)(12)(7) for a path from the source AS starting
at router A through internal router B to border router C, then onto ASes 3, 6,
and 12 before reaching the destination AS 7. We assume that each of transit and
destination ASes can appropriately route traffic; thus inter-domain route-signaling
messages do not contain intra-domain routing information for these other ASes.
In general, when a router is establishing forwarding paths to a destination, we can
view the Internet graph from that router’s perspective as one in which all other ASes
are represented by one node, neighboring ASes connect to the border routers of this
router’s AS, and other nodes represent the intra-domain routers and connections.
(It is interesting to note that inter-domain routing protocols are themselves built on
top of IP; therefore, it is expected that intra-domain IP forwarding can take place
based on computations of the IGP.)

2.2 Route-Selection Functions and Independent Route Ranking

Step 2 in the above-described three-step process of choosing best routes from a
routing table can be modeled by the following type of function.

Definition 2.1. A route-selection function σv maps a set of paths R to a set S ⊆ R
that is a set of “best” routes at node v; we write σv(R) = S. When we restrict the
selection to a particular destination, we will write σd

v(R) = Sd such that all paths
Sd have destination d.

In most cases, including BGP, |σd(R)| ≤ 1 for a set of paths R and some des-
tination d (i.e., for each destination, at most one best path is chosen). Furthermore,
we assume that choosing some permitted path is preferred to choosing no path,

6

although some paths are filtered by local policy such that they are never considered
as part of the selection process. Assuming that these filtered paths are not stored
in the routing table R, then for all Rd ⊂ R to a particular destination d, Rd �= ∅
implies σd(Rd) �= ∅. The process of collecting and storing routes, including what
data structures are used for this purpose, and how it interacts with the selection
procedure depend on the protocol implementation.

Independent route ranking (IRR) means that the preference of a path relative
to other paths depends only on that path alone (and any information in that path’s
routing-table entry) and not knowledge of other paths.

Definition 2.2. A selection function σ obeys Independent Route Ranking iff, for
all sets of routes R1 and R2 and destinations d, the following two conditions hold:

1. σd(R1) = S implies σd(R1 ∪ R2) ∩ (R1 \ S) = ∅; and

2. σd(R1) = S and σd(R1 ∪ R2) ∩ S �= ∅ implies σd(R1 ∪ R2) ⊇ S.

We call violations of the first condition type-1 IRR violations and those of the
second condition type-2 IRR violations. In the case of single-route selection func-
tions, the above definition of IRR is equivalent to the following: if path P1 is chosen
over all paths in P as best, then additional knowledge of a route P2 �∈ P does not
then permit another route P3 �= P1 in P to be chosen as best; only P1 or P2 may be
chosen relative to P ∪{P2}. (Condition 2 is not relevant for single-valued selection
functions.)

Previous theoretical work [6, 7, 13] on path-vector protocols modeled only se-
lection functions that independently assign a rank to each route and choose the path
of minimal (or maximal) rank. Selection functions written in this way are called
linear selection functions; at each node, the preference order on unfiltered (per-
mitted) paths is consistent with a linear order. Because the protocol-convergence
conditions described in [6,7,13] depended on this notion of rank, they do not apply
to the more general setting involving arbitrary selection functions. We note the
relationship between linear selection functions and IRR below.

Definition 2.3. A selection function σ is a linear selection function iff there exists
a map ω : P → U from permitted paths P to a totally ordered set U such that

∀R ⊂ P, σ(R) =
{
P | ∀P ′ ∈ R, ω(P) ≤ ω(P ′)

}
.

Proposition 2.4. A selection function has no IRR violations iff it can be written as
a linear selection function.

Proof. First assume that σ is a linear selection function; then there exists some
ranking function ω such that σ(R) = {P | ω(P) ≤ ω(P ′) ∀P ′ ∈ R}. If there

7

were a type-1 IRR violation, then there exist R1, R2 such that σ(R1) = S1 and
σ(R1 ∪ R2) = S2 such that S2 ⊂ (R1 \ S1). But then for all P ∈ S2, it must be
that ω(P) ≤ ω(P ′) for all P ′ ∈ (R1∪R2), but this implies that ω(P) ≤ ω(P ′) for
all P ′ ∈ R1, thus P ∈ S1, which contradicts S2 ⊂ (R1\S1). If there were a type-2
IRR violation, then there exist R1, R2 such that σ(R1) = S1 and σ(R1∪R2) = S2

such that S2 ∩ S1 �= S1 and S2 ∩ S1 �= ∅. Let P ∈ S1 \ S2; then ω(P) ≤ ω(P ′)
for all P ′ ∈ R1 but there exists P ′′ ∈ (R1 ∪ R2) such that ω(P) > ω(P ′′). Thus
P ′′ ∈ R2, but by transitivity, if ω(P) ≤ ω(P ′) for P ′ ∈ R1, then ω(P ′′) < ω(P ′);
this means that no route P ′ ∈ R1 could be chosen by σ(R1∪R2), which contradicts
S2 ∩ S1 �= ∅. Therefore, any linear selection function has no IRR violations.

Now assume that we have an IRR selection function σ. For all R ⊆ P , if
σ(R) = S, then assign path ranks such that ω(P) ≤ ω(P ′) for P ∈ S, P ′ ∈
R. Suppose this ordering of path ranks is not consistent with a linear order; then
there exist two permitted paths P1, P2 such that more than one of ω(P1) < ω(P2),
ω(P1) > ω(P2), and ω(P1) = ω(P2) are true. Suppose that σ({P1, P2}) = {P1}
so that ω(P1) < ω(P2), but ω(P2) ≤ ω(P1): then there exists R ⊂ P such that
σ(R) ∩ {P1, P2} = {P2} and R ⊃ {P1, P2}. But then let R1 = {P1, P2} and
R2 = R \ {P1, P2}; then σ has a type-1 IRR violation with R1 and R2, which
contradicts our IRR assumption. (By symmetry, there is also a contradiction if
ω(P1) > ω(P2) but ω(P2) �< ω(P1).) Suppose that σ({P1, P2}) = {P1, P2}
so that ω(P1) = ω(P2) but ω(P2) �= ω(P1): then there exists R ⊂ P such that
σ(R) �⊃ {P1, P2} and R ⊃ {P1, P2}. But then let R1 = {P1, P2} and R2 =
R\{P1, P2}; then σ has a type-2 IRR violation with R1 and R2, again contradicting
our IRR assumption. Therefore, any IRR selection function can be written as a
linear selection function.

It has been conjectured that IRR violations are a major cause of protocol os-
cillations [1, 8]. Below we prove that given one IRR violation at a node, we can
construct a simple network on which the protocol diverges, but in which the other
nodes’ selection functions obey IRR and could satisfy previously established con-
vergence conditions.

Theorem 2.5. Suppose σv is an IRR-violating (nonlinear) selection function. Then
there exists an oscillating network instance containing node v in which all other
nodes have IRR (linear) selection functions.

Proof. Assume single-valued selection; the argument below generalizes. If σ vi-
olates IRR, then there exists a set Y of paths to d containing at least vP1, vP2

such that σd
v(Y) = vP1 and for some set of paths Z �= ∅ such that Z ∩ Y = ∅,

σd
v(Z ∪ Y) = vP2. Let the next hops on vP1, vP2, . . . ∈ Y be v1, v2, . . ., respec-

tively; assume that these paths are fixed, i.e., ∀R
 P1, σd
v1

(R) = P1 and anal-

8

ogously for the other σd
vi

. Let the next hops on vZ1, vZ2, . . . ∈ Z be z1, z2, . . .,
respectively. For each zi, let σd

zi
(R ∪ {Zi}) be Zi if R �
 zivP2 and zivP2 if

R
 zivP2; but, assume that Zi are fixed, i.e., these paths are always broadcast.
This instance diverges. Assume that the links between all routers use first-in-

first-out (FIFO) communication, though the network may be asynchronous. Con-
sider a snapshot in time in which v has chosen vP2 as best; this only happens if
it also learns of all paths in Z, which means that all zi have selected Zi as their
best paths. After this, v will broadcast vP2 to its neighbors, eventually reaching
the zi. These nodes will thus switch to zivP2, withdrawing Zi. When the with-
drawal reaches v, it will switch to choosing vP1 as best, withdrawing vP2. This
withdrawal will eventually reach the zi (after the first broadcast of vP2) causing
these nodes to switch back to Zi; the broadcast of these choices back to v returns
us to the original state when all the zi switch, thus producing an oscillation.

If we examine the network when v has chosen vP1 as best, there are two possi-
bilities: (1) All zi have chosen Zi as best but the broadcasts of these choices have
not yet reached v; or (2) some zi (possibly all) have not chosen Zi as best. In case
(1), the broadcasts of Zi will eventually reach v causing a choice of vP2 as best;
this leads to the starting state above. In case (2), if Zi is not best at some zi, zivP2

must be available because Zi is fixed; thus, v must have chosen vP2 at some pre-
vious time. In this case, choose that snapshot of time as a starting point, and it is
clear that the above oscillation will occur.

2.3 Generalized Stable Paths Problem

The Stable Paths Problem (SPP) [7] was suggested as the theoretical problem un-
derlying inter-domain routing, but limits nodes’ route-selection functions to linear
selection functions. We now present the generalized version first discussed in [8]
to accommodate modeling attributes in BGP that are inconsistent with independent
route ranking.

Definition 2.6. An instance of the Generalized Stable Paths Problem (GSPP) is
a network G = (V, E) and a set of permitted paths P in G to a fixed destination
node v0 ∈ V . (The set P of permitted paths can be partitioned into sets Pv, v ∈ V ,
which are the permitted paths at node v, i.e., starting at v and ending at v0.) All
nodes v �= v0 have a route-selection function σv0

v : 2Pv → Pv. A path assignment
π : V → P is a solution to GSPP iff π(v0) = (v0) and for every v �= v0 ∈ V ,
π(v) = σv0

v ({vP ∈ P | P = π(u) and {u, v} ∈ E}).

Remark 2.7. GSPP is NP-complete. This is because GSPP is in NP—given a
solution, it is easy to check whether it is stable—and because SPP, an NP-complete
problem [7], trivially reduces to GSPP by writing its path preferences as (linear)

9

selection functions. Also note that this version of the problem assumes single-
valued selection functions.

Example 2.8. Figure 1 shows an example GSPP given in [8, 10]. This instance
models the route-selection procedure of BGP running on a network in which the
Multi-Exit Discriminator (MED) attribute is used. The network is shown from the
perspective of AS 3. We briefly discuss the BGP route-selection procedure and
then discuss this specific GSPP.

When a route is imported (or learned) from neighbors, it is given a local-
preference value that is entered into the routing table to indicate how “good” the
route is; the MED attribute, on the other hand, is set by the exporting (or adver-
tising) AS to indicate its preference among multiple inter-AS connections. The
path-selection procedure for BGP is as follows:

1. Routes with the largest local preference are chosen as best.

2. In the case of a tie, routes with the shortest AS-path length are chosen.

3. In the case of a tie, if there are multiple paths to the same AS, choose the
path with the lowest MED value. MED values are only compared among
paths to the same AS.

4. If there remains a tie because there are paths to different ASes, choose the
path with the shortest IGP distance to its egress point.

Therefore, the importing AS has ultimate authority by setting local-preference val-
ues, but these are often set to the same value for all routes through given AS, even
across different inter-AS links. In practice, this allows a neighboring AS to influ-
ence the decision between the inter-AS links using the MED attribute.

One typical example of MED usage is cold-potato routing. Assuming MEDs
are not used (i.e., ignoring step 3), the route-selection procedure above (via step 4)
breaks ties based on closest egress point (minimal IGP distance). This is known
as hot-potato routing. Depending on the destination prefix, a neighboring AS may
specify alternate preferences for ingress points using the MED attribute, e.g., to
avoid using expensive intra-domain links. Consider two inter-AS connections: one
in San Francisco, one in New York. A small customer network may have high costs
sending traffic across its internal links. When advertising destinations to its Internet
provider, the customer can attach appropriate MED values to the destinations so
that the provider chooses the egress point in California or New York closest to the
destination. If the provider instead used basic hot-potato routing, the closest egress
point in the provider network would be chosen, possibly causing the customer to
handle transcontinental traffic.

10

In Figure 1, IGP distances are listed as numbers next to links; MED values are
listed next to inter-AS connections in parentheses. Let the fixed destination be AS
0, and assume that all paths have the same local-preference value assigned at AS
3. The selection functions for the internal routers A and B are also shown.

AS 3

A

EDC

1

0

B

2

1

2 1 4

(1) (0)

Selection functions for routers
A and B:

σ0
A(AC10, AD20) = AD20

σ0
A(AD20, ABE20) = ABE20
σ0

A(AC10, ABE20) = AC10
σ0

A(AC10, AD20, ABE20) = AC10

σ0
B(BAD20, BE20) = BE20

σ0
B(BAC10, BE20) = BAC10

Figure 1: The GSPP MED-EVIL.

This instance, called MED-EVIL, was first given in [8] as an example of a MED-
induced oscillation. It is important to note that both selection functions have IRR
violations because of the MED values set by AS 2; thus, the paths cannot be ranked
and this configuration cannot be represented as a standard SPP.

We now briefly describe why this GSPP has no solution. First assume that A
and B have not advertised routes to each other; then they will choose AD20 and
BE20, respectively, because of minimal IGP distances. If these nodes share these
choices, B will still choose BE20 because, even though BAD20 has a shorter
IGP path length, its MED value is higher than BE20 and both paths lead to AS
2. Router A, upon learning of ABE20, will no longer consider AD20 because
of its higher MED value and will choose AC10 instead (because of its IGP path
length is shorter than ABE20, the other viable option). When A’s new choice is
broadcast to B, router B will choose BAC10 because of its shorter IGP distance
(over BE20), withdrawing BE20. However, this withdrawal removes the path
through AS 2 with lower MED value, causing A to choose AD20 again, withdraw-
ing AC10. Thus, we have an oscillation similar to that in the proof above.

11

2.4 Generalized Path-Vector Policy Systems

The Path-Vector Policy System (PVPS) framework is a model of all the compo-
nents of a path-vector protocol [6]. It used the standard SPP as a semantic domain
for protocol expressiveness and included path rank as a basic component of the
route-selection procedure. In this section, we expand the framework to include ar-
bitrary selection functions, and we incorporate GSPP as a new measure of protocol
expressiveness. The expanded framework can then be used to design and analyze
non-IRR path-vector protocols.

Definition 2.9. A generalized path-vector policy system (GPVPS) is a triple com-
prising: PV , the path-vector system that models the underlying message-passing
system for route advertisements and signaling; PL, a policy language used to con-
figure local-policy inputs; and K, a global constraint on network instances assumed
to be true for executions of the protocol modeled by PV .

The PV is described by several components, including:

R: the set of allowable path descriptors, the data structure used to store and share
routes;

Lin , Lout : constraints on import and export policies, which are transformations
on path descriptors used to change the attributes of paths stored in routing
tables;

O: a constraint on originated path descriptors (for destinations advertised for the
first time);

Lσ: constraints on nodes’ route-selection functions; and

tin , tout : the policy-application functions, which indicate (1) how the protocol im-
plements the application of nodes’ policies to path descriptors and (2) any
built-in transformations performed on import or export.

Remark 2.10. By fixing some constraints, a GPVPS can be restricted to model a
linear selection function and a standard PVPS. In particular, assume there is some
totally ordered set U and some map ω : R → U , and let

Lσ(σ) ⇒ ∀ d, σd(R) = min{P | ω(P) ≤ ω(P ′) ∀P ′ ∈ R}.

Definition 2.11. An instance of a GPVPS is a pair I = (G, F) of a network
G = (V, E) and a configuration function F that maps each v ∈ V to a tuple
comprising:

12

min , mout : import and export policies; e.g., min(u) : 2R → 2R is a function f
on sets of path descriptors describing the transformation performed when v
imports descriptors from u such that Lin(f) holds (analogously for mout and
Lout);

morig : a set of descriptors originated by v such that O(morig) holds; and

σv: the route-selection function to be used on routing tables for node v such that
Lσ(σv) holds.

If R is a set of path descriptors at some node u, then those path descriptors imported
from u by a neighboring node v can be represented as the output of the arc-policy
function for the signaling edge (u, v). This function combines the effect of export-
and import-policy application and is defined as

f(u,v)(R) = tin
(
v, u, min

v (u), tout
(
u, v, mout

u (v), R
))

.

A path assignment ρ : V → 2R is a solution to the instance I iff

ρ(v) = σv

⎛
⎝morig

v ∪

⎛
⎝ ⋃

{u,v}∈E

f(u,v)(ρ(u))

⎞
⎠

⎞
⎠ .

Remark 2.12. We assume, just as in the original work on PVPSes [6], that policy
functions are separable, i.e., if p is a policy function and R is a set of path descrip-
tors, then p(R) = {p(r) | r ∈ R}. Separability is preserved by policy application,
thus arc-policy functions are separable:

∀ (u, v) ∈ E, f(u,v)(R) =
{
f(u,v)(r) | r ∈ R

}
.

A solution therefore must consist of consistent, best paths to each destination.
We make the following definition to ease the notation when converting paths to
path descriptors and vice versa.

Definition 2.13. Any realizable path P = vv1v2 · · · vnd, which is a path that is
contained in morig

v or is an extension of a path realizable at the next hop (v1), has
a corresponding path descriptor

r(P) = f(v1,v) ◦ f(v2,v1) ◦ · · · ◦ f(d,vn)(r
∗),

where r∗ ∈ R is the path descriptor for the originated destination d. If P is not
realizable or is filtered, r(P) = ∅.

Conversely, given a path descriptor r, let P(r) be the path described by r.

13

Because the GPVPS framework is general enough to model various types of
inputs and constraints on those inputs, the implementation of intended protocol be-
havior is left to the protocol designer; several methods may achieve the same types
of permitted routing configurations. For example, the general notion of “routing-
policy expressiveness” might be captured by either allowing broad choices of se-
lection functions for individual routers, or by defining a simple route-selection pro-
cedure and limiting path-descriptor transformations via import- and export-policy
constraints.

Example 2.14. To model BGP, let the set of path descriptors be the set of data
records used in BGP update messages and routing tables (including attributes such
as local preference and MED). Set the policy-application functions to hide (or zero-
out) all private attributes on eBGP export and extend the AS-path entry, checking
for and filtering loops. Then set the import and export policy constraints to limit
attribute changes as described in the BGP specification [12], e.g., local preference
is an integer value in some range. Set the origination constraint to check for the
proper form of path descriptors for local paths. Finally, set the selection function
constraint so that all routers use the BGP selection procedure described earlier.

The original framework used SPP as a semantic domain to measure the expres-
siveness of a PVPS, i.e., the types of routing configurations that could be expressed
using a PVPS given its constraints. For example, a single-destination network in-
stance of a shortest-paths PVPS must be consistent with an SPP in which each
node’s ordering on paths matches the path length. Because we allow arbitrary
selection functions for GPVPSes, we define a new measure of expressiveness in-
corporating GSPP.

Definition 2.15. Suppose that Ir is a restriction of a GPVPS instance I in which
the only path descriptor originated is r for some single destination d. Define the
GSPP S(Ir) to have the set of permitted paths at each node be the realizable paths
at that node, i.e., P =

⋃
v∈V {P = v · · · d | r(P) �= ∅}. (These are the unfiltered

paths.) Let the selection functions be the same as in the GPVPS instance. Then
S(Ir) represents the routing configuration for that destination.

The expressive power of a GPVPS PV is the set of all allowable routing con-
figurations (all allowable instances), i.e.,

M(PV) = {S(Ir) | Ir is a restriction of a legal instance I of PV }.

Remark 2.16. We note that any solution π for the GSPP S(Ir) corresponds to a
solution ρ for the restricted GPVPS instance Ir and vice versa. The proofs of these
facts are mostly algebraic manipulation and exactly mirror the analogous proofs
in [6] for the original SPP and PVPS.

14

GSPP can also be used as a better measure of expressiveness for the original
PVPS; all GSPPs in this case will have linear selection functions because the orig-
inal PVPSes do not allow IRR violations.

The original framework defined expressiveness in terms of equivalence classes
of SPPs because only the relative preference ordering of paths at each node, not
the actual integer ranking function used to order paths, is important in capturing
a routing configuration. Therefore, any SPP S belongs to an equivalence class of
SPPs E(S) in which all SPPs may have different integer rank functions but have the
same ordering of permitted paths at each node. We note that there is an injection
from SPP equivalence classes to GSPPs; there is a canonical GSPP whose selection
function orders paths in the same way as each of the SPPs in the equivalence class.

Another way to see this is from the definition of linear selection functions (Def-
inition 2.3). Given a linear selection function, there are any number of rank maps
ω that preserve the choices of the selection function. Every one of these rank as-
signments corresponds to a possible SPP instance (because nodes have functions
assigning ranks to paths), but these SPPs all share the same relative preference be-
tween paths and thus belong to the same equivalence class. However, there is only
one (canonical) GSPP for a set of selection functions assigned to nodes.

2.5 GSPP and GPVPS Convergence Properties

We are not only interested in whether policies interact such that there is a stable
path assignment, i.e., whether or not a GSPP has a solution, but also in how path-
vector protocols, following the three-step hop-by-hop process described above, can
reach that assignment. In the next section we will provide a broad sufficient condi-
tion that guarantees robust protocol convergence to a unique solution; the condition
can be used as a global constraint for GPVPSes. To derive this condition, we must
investigate protocol behavior in addition to the existence of solutions. The follow-
ing structure, a graph constructed from a GSPP instance, allows us to do this.

To simplify our discussion, we can assume that routing to different destinations
are computed completely independently; therefore, we can always discuss proto-
col convergence with respect to one destination. This allows us to use restricted
GPVPS instances and GSPPs to describe protocol convergence in general. If a par-
ticular convergence property holds for all GSPP instances in the expressiveness of
a GPVPS, we can then say the GPVPS itself has that convergence property.

Definition 2.17. The evaluation digraph of a GSPP instance S is a directed graph
T (S) = (VT , ET) in which the nodes represent protocol selection states, and the
edges represent transitions between states. A selection state is a path assignment
π ∈

(∏
v∈V Pv

)
; if α ∈ VT , then we write the path assignment corresponding

15

to this node as πα. The start state is the node corresponding to the empty path
assignment, in which π(v0) = (v0) and, for v �= v0, π(v) = ε, the empty path.

The directed edge (α, β) is present in ET iff for all v �= v0 ∈ V

πβ(v) = σv0
v

⎛
⎝ ⋃

{u,v}∈E

{vπα(u)}

⎞
⎠ ;

i.e., given that nodes select the paths πα and then broadcast these selections to their
neighbors through asynchronous FIFO links, nodes might next select the paths πβ .
Note that there may already be path data in the links that has been delayed in
transit, so that πα(v) = P and πβ(v) = P ′ but, for a neighbor u, πα(u) = Q
and πβ(u) = uP . (Therefore, states may not be consistent; these states are not
acceptable as solutions.)

We can follow the execution of a path-vector protocol on a GSPP instance by
its trace, which corresponds to a directed path in the evaluation digraph beginning
at the start state. Traces end at sink states, i.e., nodes whose only outgoing edges
are loop edges. Because the evaluation digraph is finite, if all traces are acyclic
(ignoring loop edges), then all protocol runs will converge. Conversely, it is clear
that if the network can dynamically oscillate during route selection then there is a
cycle in the corresponding evaluation digraph; each of the paths among which a
node oscillates will appear in at least one of the states in the corresponding cycle.

Proposition 2.18. A path assignment corresponds to a sink state iff it is a solution.

Proof. A solution is a stable set of consistent routes. Suppose πα is a solution; then

by Definition 2.6, for all v �= v0 ∈ V , σv0
v

(⋃
{u,v}∈E{vπα(u)}

)
= πα(v). By

Definition 2.17, this is equivalent to α having no outgoing edges in the evaluation
digraph other than loop edges, meaning that α is a sink state.

Therefore, we can define protocol-convergence properties in terms of the struc-
ture of the corresponding evaluation digraph. The following combinations of the
existence of solutions and the ability of protocols to reach those solutions are of
interest to us.

Definition 2.19. The following are convergence properties for GSPP and GPVPS
instances.

Solvability A GSPP is solvable if there exists at least one path assignment that is
a solution; i.e., the evaluation digraph of the GSPP has at least one sink state.

16

Unique Solvability (Predictability) A routing configuration is uniquely solvable
if there exists exactly one GSPP path assignment that is a solution; i.e., the
evaluation digraph contains exactly one sink state.

Safety A routing configuration is safe if a path-vector protocol is able to converge
to a solution; i.e., all traces in the GSPP’s evaluation digraph are acyclic.
The existence of a solution does not determine safety.

Robustness A routing configuration is robust if it and all sub-instances (resulting
from node or link failures) are uniquely solvable and safe; i.e., all traces in
the GSPP evaluation digraph are acyclic and end at the same sink state.

Remark 2.20. Note that the definition of robustness, while requiring all sub-
instances to be predictable and safe, requires all traces only in the original GSPP’s
evaluation digraph to be acyclic and end at the same sink. This is because sub-
instances have evaluation digraphs that are subgraphs of the original instance’s
evaluation digraph (with some paths no longer possible because of failures); the
property of acyclicity holds on subgraphs.

We are interested in robust path-vector protocols because these avoid nondeter-
minism and divergence, which are problems that are difficult for network operators
to understand and debug when they occur at the inter-domain level.

3 Main Results: Conditions for Protocol Convergence

Given a set of routing-policy inputs, we can study the corresponding GSPP’s eval-
uation digraph to see how they affect path-vector-protocol execution. However, an
evaluation digraph is both large and complex; it is impractical to construct it as
doing so requires simulating all possible update sequences in the GSPP instance.
Griffin, Shepherd and Wilfong [7] showed that a smaller structure, called a dispute
wheel, can be constructed from an SPP instance that is not robust. Unfortunately,
the original definition of the structure is not compatible with nonlinear selection
functions.

We begin this section by introducing a new version of dispute wheels and prove
that it does adequately capture oscillations in generalized SPPs. From that discus-
sion, we are then able to describe oscillations in terms of an underlying order on
permitted paths described by local-policy configurations. This notion of partially
ordered SPPs first appeared in [6]; however, because our generalized version of the
problem does not have a notion of rank, we must nontrivially change the compo-
nents of this order to correctly describe the robustness condition.

17

3.1 Generalized Dispute Wheels

Definition 3.1. A generalized dispute wheel (see Figure 2) contains active nodes
v0, . . . , vk (with all subscripts interpreted modulo k + 1) such that vi has a spoke
path Qi to the destination d and vi and vi+1 are connected by a rim segment Ri+1

such that either:

1. ∃S ⊇ {Qi, Ri+1Qi+1} such that σd
vi

(S) = Ri+1Qi+1; or

2. ∃S �
 Ri+1Qi+1 such that

(a) σd
vi

(S ∪ {Qi}) �= Qi and

(b) σd
vi

(S ∪ {Qi, Ri+1Qi+1}) = Qi; or

3. ∃S �
 Ri+1Qi+1 such that

(a) σd
vi

(S ∪ {Qi}) = Qi and

(b) σd
vi

(S ∪ {Qi, Ri+1Qi+1}) �∈ {Qi, Ri+1Qi+1}.

d

v w

QQ

Q

R R

i

i i+1

i+1

i−1

u x

vi

vi+1i−1

Figure 2: Dispute wheel.

Remark 3.2. Note that of the three relationships between active nodes in a gener-
alized dispute wheel, only condition (1) can occur for a linear selection function;
conditions (2) and (3) imply the existence of an IRR violation. Condition (1) is
analogous to the condition on rim segments found in the original definition of a
dispute wheel for standard SPPs.

18

The dispute wheel is a graph constructed from a GSPP instance, using the same
vertices and edges in the instance’s network graph. However, nodes may appear
more than once in a dispute wheel, e.g., in more than one spoke path.

Theorem 3.3. If the evaluation digraph of a GSPP instance contains a cyclic trace,
i.e., if a GSPP instance is not safe, then it contains a generalized dispute wheel.

Proof. Let C be a cycle in the evaluation digraph of the instance, v0 a node which
does not select the same route throughout C, and Q0 one of the paths that v0 selects
in C. Without loss of generality, we may assume that u is the last (and thus only)
node on Q0 that does not select the same route throughout C. Viewing Q0 as one
of the spokes of a generalized dispute wheel, we now attempt to construct another
such spoke and a rim segment joining it to the spoke Q0.

Let v0P1 be the next path that v0 selects in C, and let x1 be the first node on
P1. If x1 oscillates its path selection in C, then let v1 be the last cycling node on
P1, let Q1 = v1 · · · d be the next spoke, and R1 = v0x1 · · · v1 be the rim segment
connecting these two spokes. (Both Q1 and R1 are subpaths of P1.) Because x1

oscillates in C, it must broadcast and withdraw P1 during the oscillation, and one
of these actions causes the selection-state transition; thus the rim segment satisfies
condition (1) in Definition 3.1.

If x1 does not oscillate in C, let v0P2 be the path that v0 selects in C after
v0P1 and x2 the first node on P2. If x2 cycles in C, we may proceed as above,
otherwise we consider the path v0P3 that v0 selects in C after v0P2, etc. Eventually,
we either construct another spoke connected to Q0 by a new rim segment or we
progress through all of C and return to the path assignment in which v0 selects
v0P1. If the latter happens, then v0 cycles through a sequence of paths in C, and
each of these paths is learned from a neighbor who does not cycle in C. All of
these paths are thus known to v0 at all times, therefore all of the changes in path
assignment to v0 must be the result of IRR violations. (This is because a change
in path assignment requires that v0 know of different routes before and after the
change. If the change selects a route that was already known but not chosen, by
Definition 2.2, the selection function for v0 has a type-1 IRR violation.)

In this case, assume that v0’s selection of Q0 is the result of σd
v0

(S) = Q0

and v0’s choice of v0P1 is the result of σd
v0

(S1) = v0P1, with Q0, v0P1 ∈ (S ∩
S1). Because S ∆ S1 �= ∅, there is some route P2 such that either learning or
withdrawing v0P2 causes the transition from S to S1 and Q0 to v0P1. Let x be the
first node on P2 and v1 be the last oscillating node on P2. (There is such a node
because P2 is broadcast and withdrawn in the oscillation; otherwise we would
not have this oscillation.) Then we can let Q1 = v1 · · · d be the next spoke, and
R1 = v0x · · · v1 be the rim segment joining them such that either condition (2)—if
P2 is learned—or condition (3)—if P2 is withdrawn—is satisfied.

19

Because the oscillation cycle is finite, we can repeat this process until we reach
a selection state or path assignment that we have already visited. At this point, a
subset of the spoke and rim segments will form a generalized dispute wheel.

Corollary 3.4. If an instance of GSPP is not solvable, then it contains a general-
ized dispute wheel.

Proof. An unsolvable GSPP has no sink state in its evaluation digraph; therefore
all traces must contain cycles, and any of these cyclic traces produces a generalized
dispute wheel by Theorem 3.3.

Proposition 3.5. If an instance of GSPP has multiple solutions, then it contains a
generalized dispute wheel.

Proof. We follow an analogous proof method in [7]. Suppose π1, π2 are two so-
lutions; we can view these as trees in the network, rooted at the destination v0:
Ti =

⋃
v∈V πi(v). Then let H = (V, E(T1)∩E(T2)) be the graph induced by the

intersection of the trees and let T be the component of H including v0. Note that
V − V (T) is nonempty—otherwise T1 = T2.

In the following process, assume that all nodes ui are assigned paths in both
solutions. Choose an edge {u1, v1} ∈ T1 where u1 �∈ V (T) and v1 ∈ V (T). Then
π1(u1) = u1Q1, where Q1 is the path in T from v1 to d; π1(v1) = π2(v1) = Q1

so that Q1 is in both solutions because T is the intersection of both solutions.
There is some other path P1 = π2(u1) in T2; this path is of the form R2Q2 where
R2 = u1 · · ·u2 contained in T2 \ H and Q2 = v2 · · · d contained in T . Note
that π2(u2) = u2Q2, so we can repeat this process by examining the path π1(u2).
Continuing, we can alternate between both solutions until we repeat a node ui.

The paths Ri, Qi form a generalized dispute wheel. This is because for each i,
there must exist some S ⊂ Pui such that σv0

ui
(S∪{Ri+1Qi+1, uiQi}) = Ri+1Qi+1

because for either i = 1 or i = 2, πi(ui) = Ri+1Qi+1 given the construction
above. (If not, πi is not a stable solution, because the path uiQi must be available
given that Qi is in the intersection of both solutions.) This satisfies condition (1) in
Definition 3.1.

The contrapositive of the above three assertions forms a sufficient condition on
GSPP instances that guarantees robust protocol convergence; we summarize this
as the following.

Proposition 3.6. If a GSPP instance has no generalized dispute wheel, it is robust.

20

3.2 Partially Ordered GSPPs and Generalized Dispute Digraphs

The three types of conditions described in Definition 3.1 that connect dispute-
wheel spokes by rim segments can be used to define relations between permitted
paths in a GSPP. These relations can, in turn, be used to define a graph structure
on the paths in a GSPP that makes the relationship between paths based on policy
interactions easy to visualize. The underlying compatibility of local-policy con-
figurations can then be described as the existence of a consistent partial order on
permitted paths using these relations. By rephrasing the sufficient condition from
Proposition 3.6 using these terms, we can better understand how individual pol-
icy interactions (corresponding to the following path relations) constitute a global
routing anomaly.

Definition 3.7. Define the following four relations on permitted paths in a GSPP
instance; assume that v0 is the fixed destination node and that u, v ∈ V are other
network nodes.

Subpath P1 � P2 iff

P1 = v · · · v0, P2 = u · · · v0, and uP1 = P2

Linear Selection P1 � P2 iff

P1 = v · · · v0, P2 = u · · · v0, and ∃S : σv0
u ({uP1, P2} ∪ S) = uP1

Nonlinear Selection (first type) P1 �1 P2 iff P1 = v · · · v0, P2 = u · · · v0, and

∃S �
 uP1 : σv0
u ({P2} ∪ S) �= P2 and σv0

u ({uP1, P2} ∪ S) = P2

Nonlinear Selection (second type) P1�2 P2 iff P1 = v · · · v0, P2 = u · · · v0, and

∃S �
 uP1 : σv0
u (S) = P2 and σv0

u ({uP1} ∪ S) �∈ {uP1, P2}

We now define the following graph on the set of permitted paths using the
above relations.

Definition 3.8. Given a GSPP instance S, its generalized dispute digraph is the
directed graph D(S) = (VD, ED). The nodes VD = P are the permitted paths
in the network. The directed edge (P1, P2) is present in ED iff one of P1 � P2,
P1 � P2, P1 �1 P2, or P1 �2 P2 holds.

21

Note that the dispute digraph is smaller than the evaluation digraph as each
node is labeled with a single network route rather than a set of network routes; it is
also easy to build given the definition of each node’s selection function.

Because the relations correspond to transitions in the evaluation digraph and
connections between dispute-wheel spokes, we can prove the following.

Theorem 3.9. A GSPP instance has a generalized dispute wheel iff it has a cycle
in its generalized dispute digraph.

Proof. First assume that the instance has a generalized dispute wheel. Its rim gives
a cycle in the generalized dispute digraph as follows, because the pair of paths
from adjacent rim nodes to the destination each belong to one of the four rela-
tions in Definition 3.7. Begin with any active node vi on the rim; let r1 be the
next node on the rim segment Ri. From the construction of the dispute wheel,
r1Qi = r1vi · · · d is an extension of Qi, so Qi � rQi; this relation holds for
further extensions along the rim, such that (ri · · · r1Qi) � (ri+1ri · · · r1Qi). Let
R∗

i be the rim segment up to, but not including, vi−1; using these relations, we
see there is a path from Qi to R∗

i Qi in the dispute digraph for each active node
vi in the dispute wheel. Call these paths Di. Then, for every RiQi and Qi−1,
one of the three conditions in Definition 3.1 holds. In the case of condition (1),
∃S : σd

vi−1
(S ∪ {RiQi, Qi−1}) = RiQi; thus R∗

i Qi�Qi−1, corresponding to the
edge (R∗

i Qi, Qi−1) connecting Di and Di−1. In the case of condition (2), learning
RiQi at vi−1 forces another route to be selected over Qi−1; thus R∗

i Qi �2 Qi−1,
also corresponding to the edge (R∗

i Qi, Qi−1) connecting Di and Di−1. Finally, in
the case of condition (3), withdrawing some route at vi−1 forces Qi−1 to be cho-
sen; thus R∗

i Qi�1 Qi−1, corresponding to the same edge connecting Di and Di−1.
Therefore the dispute-digraph edges corresponding to pairwise relations between
paths starting at adjacent rim nodes form a cycle.

In the other direction, assume that we have a cycle in the dispute digraph.
Consider any edge (P1, P2) and examine the relation between P1 and P2. If P1 �
P2, then let the first node of P1 be a rim node and connect it to the first node of
P2 as an adjacent rim node (counterclockwise, referencing Figure 2.). If P1 � P2,
P1 �1 P2, or P1 �2 P2, then let P2 be a spoke Qi and connect the first node of P2

to the first node of P1 on the rim segment Ri+1; the subpath of P1 from the first
node to the last oscillating node will be the rim segment Ri+1 and the remainder
of P1 will be the next spoke Qi+1. The resulting structure will obey one of the
three conditions in Definition 3.1 for rim segments connecting spokes and will
have subpaths along individual rim segments (moving clockwise); therefore, this
structure is the dispute wheel corresponding to the dispute-digraph cycle.

This immediately leads to the following corollary, which provides an equiv-

22

alent sufficient condition to Proposition 3.6 using the transitive closure of path
relations (local conditions) instead of dispute-wheel freeness (a global condition).

Corollary 3.10. Given a GSPP instance, if there is a cycle in its evaluation di-
graph, then the corresponding relation © = (� ∪ � ∪ �1 ∪ �2)∗ on permitted
paths is not a partial order.

Proof. If P1 © P2, then there is a path in the dispute digraph from P1 to P2 (as in
the proof of Theorem 3.9). If the relation © is not a partial order, there are two
paths P1 �= P2 such that P1©P2 and P2©P1; the two corresponding paths form a
dispute-digraph cycle. Analogously, if there is a cycle in the dispute digraph, there
are paths P1 �= P2 corresponding to nodes in this cycle such that P1 © P2 and
P2 © P1; thus © cannot be a partial order. The result then follows directly from
Theorems 3.3 and 3.9.

Remark 3.11. The original set of relations defined in [6] for SPP partial ordering
could assume linear selection functions; thus both types of the “nonlinear selec-
tion” relation were not used. However, the “linear selection” relation was also
different, defined as follows: assuming that ω is a ranking function, P1 � P2 iff
ω(P1) ≤ ω(P2). In this version of the definition, both paths begin at the same
node, and the extension of P1 to u in Definition 3.7 was captured in the transitive
closure of�with the subpath relation�. If we defined a similar selection relation,
i.e., P1 � P2 iff there exists some S such that σ({P1, P2} ∪ S) = P1, then any
IRR violation would automatically introduce a cycle in the dispute digraph (this
fact follows directly from Definition 2.2). Because not all such IRR violations
cause protocol oscillations (given other nodes’ policies), subsuming one subpath
relation into the three selection relations eliminates these spurious cycles from dis-
pute digraphs. Consequently, the example dispute cycles in the next subsection
will appear different than in [6, 7].

Using the generalized dispute digraph, one can diagnose the cause of oscilla-
tions: cycles that involve nonlinear-selection edges are the result of IRR violations,
and cycles only involving linear-selection and subpath edges are manifestations of
basic policy disputes not based on IRR violations.

3.3 Example GSPPs and Dispute Digraphs

In the following diagrams of generalized dispute digraphs, we will use the follow-
ing convention for edges: solid lines correspond to subpath relations, dashed lines
correspond to linear-selection relations, and dotted-and-dashed lines correspond to
nonlinear-selection relations. Of these, those with solid arrowheads are of the first
type while those with white arrowheads are of the second type.

23

Example 3.12. We begin with the generalized dispute digraph for MED-EVIL, the
GSPP from Example 2.8. To simplify the diagram, we have condensed ASes 1, 2,
and 0 into a single AS 0 connected to routers C, D, and E; we can write analogous
selection functions that maintain the policies and MED-induced oscillation in the
original MED-EVIL. The graph is shown in Figure 3.

AC0 AD0 BE0

C0 D0 E0

ABE0BAD0BAC0

Figure 3: Generalized dispute digraph for MED-EVIL.

This digraph has two cycles, AC0−BE0 and AD0−BE0; as expected, both
of these involve nonlinear selection edges and the paths that cause IRR violations.
The policies of MED-EVIL create no oscillation when MEDs are ignored: note
that the linear-selection edges do not form any cycles. Involving MEDs creates
relations between paths that are not consistent with a partial order. To achieve a
partial order, we can attempt to change local policies to change the relations, i.e.,
break the cycle; e.g., we can force node A to always choose the path AC0.

Example 3.13. We now revisit two canonical policy-induced oscillations repre-
sented by SPP instances first given by [7]. The instance DISAGREE is shown in
Figure 4; it contains two stable solutions but does not predictably converge to ei-
ther one, thus its dispute digraph contains a cycle. The instance BAD GADGET is
shown in Figure 5; it has no solution, so its dispute digraph also contains a cycle.
Because these instances have linear selection functions, the route-selection func-
tions are shown as a linear order on permitted paths next to each node such that the
most preferred path is listed on top.

24

2010

0

1 2
210120

(a)

120

10 20

210

(b)

Figure 4: (a) The SPP instance DISAGREE and (b) its corresponding generalized
dispute digraph.

30

10 1 2
230
20

0

3
310

120

(a)

10 20 30

210 320 130

(b)

Figure 5: (a) The SPP instance BAD GADGET and (b) its corresponding generalized
dispute digraph.

4 Applications to Protocol Design

In this section we examine some strategies for constraining policies to guarantee
robust protocol convergence. Although dispute wheels and dispute digraphs are
useful tools for studying policy interactions, using them can be impractical for real
network configurations. The dispute digraph has size proportional to the number
of loopless paths in a network; checking for dispute wheels is at least as hard,
because there is no known way to directly produce a dispute wheel without an
instance’s dispute digraph or evaluation digraph. Furthermore, it is almost impos-
sible to obtain Internet-wide policy information to generate these structures, and
the structures will be different every time nodes make policy changes. Ideally,
we want constraints on the protocol specification or policy-configuration language
that applies to a broad set of networks and routing configurations—we would like
to use the sufficient condition from the previous section while allowing for as much
policy expressiveness as possible.

25

Previous work [5, 6, 13] has given concrete local constraints on policies that
guarantee robustness. Unfortunately, generalizing these types of constraints is hard
because our new model allows for nonlinear selection functions, which removes
any notion of path-rank values, and because our model broadens the notion of the
protocol’s route-selection procedure arbitrarily.

Some obvious, draconian constraints, e.g., preventing the advertisement of any
route that causes an IRR violation, can be trivially shown to prevent routing anoma-
lies, but these are very strict and harshly limit expressive power. Below we review a
specific proposal to review MED-induced oscillations in BGP, and we use our tools
to suggest an improvement. In the following subsections, we discuss two other con-
jectured solutions and, using the results from the PVPS and GPVPS frameworks,
prove them to be true.

4.1 Multiple-Path Broadcast

Basu et al. [1] and Musunuri and Cobb [11] proved that a modification to BGP’s up-
date messages will prevent MED-induced oscillations. They suggested that nodes
broadcast not only best routes, but any route that remains after step 3 in the BGP
route-selection process (see Example 2.8), i.e., all routes with minimal MED val-
ues, possibly one for each AS, are broadcast, not only the one with minimal IGP
distance to the egress point. This prevents routes that cause IRR violations from
being broadcast and withdrawn repeatedly. In the case of MED-EVIL in Exam-
ple 2.8,2 node B would then always broadcast the route BE20, even though it
would never select it. Because the route is never chosen elsewhere due to its high
MED value, this introduces no consistency problems. However, it (1) allows other
nodes to make the correct choice of routes with respect to MED values and (2)
stops the oscillation by making that choice stable.

We can see the effect of such a change by examining the cyclic traces in the
evaluation digraph. The MED-induced cycle of MED-EVIL is shown in Figure 6.
The nodes show the selections of nodes A and B, and the labels on arrows show
the causes of transitions (routes being advertised or withdrawn). Note the IRR vio-
lation is clear in the transition between the first and second states; node A switches
from AD0 to AC0 by learning a different route, ABE0. With multiple-path broad-
cast, the withdrawal of ABE0 never takes place; therefore the state (AC0, BAC0)
becomes a sink state and a stable assignment.

This effect easily generalizes to all GSPP instances involving MEDs: any
MED-induced oscillation corresponds to an evaluation-digraph cycle of the above
form, and preventing a route withdrawal by broadcasting additional routes will

2As in Example 3.12, we simplify the instance by condensing AS 1, AS 2, and AS 0 into a single
AS 0 and modifying the selection functions accordingly.

26

+ABE0
BE0

AC0
BE0

AC0
BAC0

AD0
BAC0

broadcast (always
send ABE0)

with multiple−path

+BAD0

−ABE0

+BAC0

AD0

Figure 6: Cycle in the evaluation digraph of MED-EVIL.

break the cycle by preventing one (or more) of the cycle’s transitions. In addition,
because more routes are always broadcast, nodes will not choose higher-MED-
valued routes when lower-MED-valued routes are available, thus preserving the
intended behavior of the MED attribute. More generally, if routes causing IRR vi-
olations are always broadcast, the resulting route-selection functions with restricted
domain have no IRR violations.

Multiple-path broadcast can increase the size of routing tables and update mes-
sages. However, we propose that IRR violations can be detected dynamically, pre-
cisely when a newly learned route causes a switch in selection without selecting the
new route. Requesting that the new route always be broadcast will prevent a future
oscillation due to withdrawal of that route without any route inconsistencies. Main-
taining one extra route as needed is more storage-efficient than the multiple-path
broadcast proposed by [1,11]. Although this solution requires further modification
to BGP, dynamic detection of IRR violations is possible by examining protocol-
execution traces. In practice, whenever a BGP update message is received, the
route selection before and after the update message can be compared. If the new
selection is neither the old selection or the newly learned route, the route points to
an IRR violation (this is clear from Definition 2.2. Requesting this IRR-violating
route to be broadcast as long as it is available prevents any induced oscillations
because the route essentially becomes fixed, breaking the cycle of withdrawals and
advertisements in the evaluation digraph. Formally, we have the following.

Proposition 4.1. An oscillation due to an IRR violation can be dynamically de-
tected and stopped by requesting one additional route to be broadcast permanently.

Proof. Given a cycle in the evaluation digraph involving an IRR violation, there
are transitions in this cycle involving an advertisement or withdrawal of a route
that is never selected. This route can be detected by comparing path assignments
in the states adjacent to these transitions. If the withdrawal transition is prevented

27

by forcing the route to be advertised as long as it is available, even if it is not
chosen, the withdrawal transition cannot take place and the cycle is broken.

This procedure breaks cycles in a “snapshot of time,” i.e., for a static routing
configuration that induces a protocol oscillation. If changes occur and routes are
introduced or withdrawn for legitimate causes, the resulting GSPP instance will
have a different evaluation digraph; however, the relevant IRR-violating routes can
be detected for this new configuration in the same way. If the IRR-violating route is
no longer available, the broadcasting node can send the appropriate withdrawal—
this still allows the receiving node to detect new IRR violations involving other
routes. Furthermore, if any IRR-violating selections are superseded by learning
new routes that are always more preferred or by other IRR-violating routes, the
original routes are not needed and the broadcast can be stopped.

4.2 Compare All MEDs

Some routers have an option to change the route-selection procedure involving
MEDs: In step 3 of the BGP procedure described in Example 2.8, instead of elimi-
nating multiple paths to the same AS by choosing the one with lowest MED value,
MED values are compared across all paths so that, regardless of AS next-hop, only
paths with the lowest MED values are retained for possible selection.

This option essentially changes the route-selection procedure so that it is linear:
for each path, the preference of that path depends, in order, on its local preference,
then path length, then MED value, and finally IGP distance. Therefore, IRR vio-
lations are no longer possible, and previous convergence constraints apply. In fact,
because local-preference, AS-path length, and MED values do not change during
intra-domain BGP (iBGP) sessions, and because IGP distances increase as paths
are extended, the absolute rank value associated with paths increases on extension.
This obeys the strict-monotonicity constraints of [6, 13], so MED-induced oscilla-
tions cannot occur. (Of course, more general policy-induced oscillations due to,
e.g., local-preference settings, can still occur.)

Formally, comparing all MEDs changes the route-selection procedure such
that selection functions are linear, compatible with the rank map ω(l, P, m, d) =
(−l, |P |, m, d), lexically ordered, where l is the local preference, P is the AS path
(path vector), m is the MED value, and d is the IGP distance.

4.3 AS-Distinct Local-Preference Settings

McPherson et al. in [10] suggest a workaround for MED-induced oscillations that
prevents BGP from having a conflict when it reaches the MED step. If only routes

28

from one AS remain when MEDs are considered, then all routes have their MED
values compared and, similar to above, IRR violations are not possible. One simple
way to do this is to assign local-preference values such that no two routes from
different ASes have the same value; then the first step of the BGP selection process
will automatically eliminate all routes except those from a single AS. (One can also
assign distinct local-preference values to equidistant ASes; then the first two steps
eliminate all routes but those from one AS.)

This route-selection procedure is consistent with linear selection functions be-
cause, just as above, the rank of a route independently depends on four criteria in
order. Once the MED value is considered, all remaining routes have the same local
preference, path length, next-hop AS, and MED value, again leaving the strictly
monotonic IGP distance to be used to break ties. Therefore, this modification to
BGP prevents MED-induced anomalies.

5 Conclusions and Future Work

In this paper, we have fully extended the notion of convergence conditions on SPPs
to the generalized version of the problem allowing arbitrary route-selection proce-
dures instead of those based on some notion of a linear path rank. Doing so allows
us to fully understand the causes of policy-induced routing anomalies from the per-
spective of an underlying mathematical consistency between nodes’ policies. The
generalized version is able to capture the behavior of protocols, e.g., BGP with
MEDs, that do not satisfy independent route ranking (IRR). In examining these
generalized policy interactions, we rigorously defined protocol-convergence prop-
erties and several useful graph structures that illustrate protocol behavior. We pro-
vided two equivalent sufficient conditions for robust convergence, both of which
involve structures that are significantly smaller than examining the execution states
of the protocol directly. We also discussed applications of these results to proto-
col design, including some simple (but strict) local-policy constraints and rigorous
examinations of proposed solutions to MED-induced oscillations.

There are two obvious directions for future work left open in our paper. The
first is the development of analogous constraints to monotonicity for arbitrary
selection functions. The original condition highly depends on path-rank values,
which are not available in the generalized version, but the constraint provided an
equivalent local condition to dispute-wheel freeness. We have only been able to
develop very simple local-policy constraints, and these limit expressiveness quite
a bit. Because route-selection procedures are so broad, we expect it to be difficult
to generalize previous notions of constraints. One method that may prove fruitful
is examining a restricted set of route-selection procedures; e.g., the application of

29

PVPSes to class-based systems [9] produced a set of robust protocols with a vary-
ing but concrete balance of local and global constraints. Similar work could be
done while still allowing IRR violations.

The second is a further broadening of the model to capture the static semantics
of policy interactions when multiple-path broadcast is used; more generally, the
results can be extended to SPPs with set-valued arbitrary selection and broadcast
functions. The notion of a broadcast function is similar to a selection function: it
returns a subset of paths, as dictated by the protocol specification, that are adver-
tised to neighbors, given nodes’ routing tables as inputs. (This allows more lati-
tude in modeling step 3 of path-vector-protocol behavior discussed in Section 2.1.)
Separating broadcast functions from export policies allows more freedom in im-
plementing constraints at different parts of the route-advertisement process and
keeps the separability property for policy functions. Unfortunately, it seems that
the problem statement for arbitrary, set-valued selection and broadcast functions
is difficult; in fact, the problem of finding a stable, consistent solution for such
a routing configuration may not be in NP because there may be a set of oscillat-
ing routing tables for each node that, given particular broadcast functions, do give
at least one stable solution. This extension to the model could help design and
evaluate protocols or protocol modifications such as the ones reviewed briefly in
Section 4.1 without having to study large evaluation digraphs.

References

[1] Anindya Basu, Chih-Hao Luke Ong, April Rasala, F. Bruce Shepherd, and
Gordon Wilfong. Route oscillations in I-BGP with route reflection. In Pro-
ceedings of ACM SIGCOMM’02, pages 235–247, November 2002.

[2] Cisco Systems. Endless BGP convergence problem in Cisco IOS soft-
ware releases. Field Note, October 2001. http://www.cisco.com/warp/
public/770/fn12942.html.

[3] R. Dube and J. G. Scudder. Route reflection considered harmful. IETF Inter-
net Draft, November 1998.

[4] Lixin Gao, Timothy G. Griffin, and Jennifer Rexford. Inherently safe backup
routing with bgp. In Proceedings of IEEE INFOCOM 2001. IEEE Commu-
nications Society, IEEE Press, 2001.

[5] Lixin Gao and Jennifer Rexford. Stable internet routing without global coor-
dination. ACM/IEEE Transactions on Networking, 9(6):681–692, December
2001.

30

[6] Timothy G. Griffin, Aaron D. Jaggard, and Vijay Ramachandran. Design
principles of policy languages for path vector protocols. In Proceedings of
ACM SIGCOMM’03, pages 61–72. ACM Press, August 2003. Extended ver-
sion available as Yale University Technical Report YALEU/DCS/TR-1250,
ftp://ftp.cs.yale.edu/pub/TR/tr1250.pdf.

[7] Timothy G. Griffin, Bruce F. Shepherd, and Gordon Wilfong. The stable paths
problem and interdomain routing. ACM/IEEE Transactions on Networking,
10(2):232–243, April 2002.

[8] Timothy G. Griffin and Gordon Wilfong. An analysis of the MED oscillation
problem in BGP. In Proceedings of the 10th International Conference on
Network Protocols (ICNP’02), pages 90–99, November 2002.

[9] Aaron D. Jaggard and Vijay Ramachandran. Robustness of class-based
path-vector systems. In Proceedings of the 12th International Confer-
ence on Network Protocols (ICNP’04), pages 84–93. IEEE Press, Octo-
ber 2004. Extended version available as Yale University Technical Report
YALEU/DCS/TR-1296, ftp://ftp.cs.yale.edu/pub/TR/tr1296.pdf.

[10] D. McPherson, V. Gill, D. Walton, and A. Retana. Border gateway protocol
(BGP) persistent route oscillation condition. RFC 3345, August 2002.

[11] Ravi Musunuri and Jorge A. Cobb. A complete solution for iBGP stability.
In Proceedings of IEEE ICC-04. IEEE Press, June 2004.

[12] Y. Rehkter and T. Li. A border gateway protocol (BGP version 4). RFC 1771,
1995.

[13] João L. Sobrinho. Network routing with path vector protocols: Theory and
applications. In Proceedings of ACM SIGCOMM’03, pages 49–60. ACM
Press, August 2003.

[14] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent route
oscillations in inter-domain routing. Computer Networks, 32:1–16, 2000.

[15] Daniel Walton, David Cook, Alvaro Retana, and John Scudder. BGP persis-
tent route oscillation solution. IETF Internet Draft, May 2002.

31

