
We propose an Artificial Neural Net (ANN) architecture for discovering common hidden
variables and for learning of invariant representations through synchronicity, coincidence
and concurrence. In the common variable discovery problem, the ANN uses measurements
from two distinct sensors to construct a representation of the common hidden variable
that is manifested in both sensors, and discards sensor-specific variables. In the invariant
representation learning problem, the network uses multiple observations of objects under
transformations to construct a representation which is invariant to the transformations.
Unlike classic regression problems, the network is not presented with labels to learn, instead,
it must infer a proper representation form the data; unlike classic signal processing problems,
the algorithm is not given the invariant features to compute, and it must discover proper
features.

Common Variable Discovery and Invariant
Representation Learning using Artificial

Neural Networks

Uri Shaham† and Roy R. Lederman‡,
Technical Report YALEU/DCS/TR-1506

† Department of Statistics, Yale University, New Haven CT 06511
‡ Applied Mathematics Program, Yale University, New Haven CT 06511

Approved for public release: distribution is unlimited.
Keywords: common variable, hidden variable, invariance learning, equivalence learning, rep-
resentation learning, coincidence modeling, neural networks

1 Introduction

Measurements of phenomena have many sources of variability; in a given context, some of the
variability is of interest and some is superfluous. Often, these sources of variability are modeled,
and the measurements are processed to remove the unwanted sources of variability; for example,
in the processing of audio signal, filters are used to suppress some frequency components in
order to best recover a signal in other frequencies. In other scenarios, the model does not allow
to recover the original signal, but there is a representation that captures the similarity between
two instances of the signal; for example, the proper rotation-invariant transforms allow to
estimate whether two images are identical up to arbitrary rotation although the original image
is known only up to rotation.

When the model for data generation is unknown, but there are examples for which the
values of the relevant variable are known, the problem of recovering the relevant source of
variability is a regression problem. In other words, if we have a dataset of measurements, each
labeled with the true value of the underlying variable X that we would like to recover, we can
potentially use some method of regression to construct an estimator for X.

In this manuscript we are interested in a case were the phenomenon is not modeled and the
sources of variability are unknown; in other words, we are interested in recovering an unknown
variable from unlabeled measurements of nonlinear functions of a mixture of relevant and
superfluous variables. Clearly, we cannot expect to construct a filter or perform regression in the
absence of labeled data or a model. Instead, we use synchronicity, coincidence and concurrence
as additional sources of information which reveal the structure of the phenomenon; we assume
two (or more) sets of measurements that share the same underlying “relevant” variable, to
which we refer as the common variable, but each having its own superfluous variables. Our
goal is to obtain a parametrization of the “relevant” variable, i.e. a representation of the data
that depends only on the variable of interest, and that is invariant to the superfluous variables;
in this manuscript we introduce an Artificial Neural Net (ANN) architecture and an algorithm
to obtain this goal.

We discuss several formulations of the problem and demonstrate that the the approach is
applicable to common variable learning problem, to equivalence class learning, and to invariant
representation learning.

The organization of this manuscript is as follows. In Section 1 we formulate the common
variable discovery problem and present an example to illustrate the problem. In Section 2
we present an ANN algorithm for the common variable discovery problem. In Section 3 we
discuss some of the properties of the maps learned by the ANN. We also discuss the invariant
representation learning problem and its relation to the common variable discovery problem via
the equivalence learning problem. In Section 4 we present experimental results and discuss
some of the properties illustrated by these results. Brief conclusions are presented in Section
5.

1

1.1 Illustrative toy problem

In this section, we present a toy example (adapted from [1]) to demonstrate the motivation
for common variable learning. For simplicity, we chose an example that is easy to model and
visualize, however, we note that the algorithm is not “aware” of the model, so the concepts
illustrated in this example apply to more complex scenarios, where the user is not able to
construct a model for the data.

We consider the experimental setup in Figure 1, where three objects, Yoda (a green action
figure), a bulldog and a bunny are placed on spinning tables and each object spins independently
of the other objects. Two cameras are used to take simultaneous snapshots: Camera 1, whose
field of view includes Yoda and the bulldog, and Camera 2, whose field of view includes the
bulldog and the bunny.

Figure 1: Top: Yoda, the bulldog and the bunny on spinning tables and the two cameras.
Bottom left: a sample snapshot taken by Camera 1 at a given point in time. Bottom right: a
snapshot taken at the same time by Camera 2.

In this setting, the rotation angle of the bulldog is a common hidden variable which we will
denote by X; this is the common variable is manifested in the snapshot taken by both cameras.
The rotation angle of Yoda, which we will denote by Y , is a sensor-specific source of variability
manifested only in snapshots taken by Camera 1, and the rotation angle of the bunny, which
we will denote by Z, is a sensor-specific source of variability manifested only in Camera 2. The
three rotation angles are “hidden,” in the sense that they are not measured directly, but only
through the snapshots taken by the cameras. Given snapshots from both cameras, our goal
is to obtain a parametrization of the “relevant” common hidden variable X, i.e., the rotation

2

angle the bulldog, and ignore the “superfluous” sensor-specific variables Y and Z.
If the model were known, we would crop the images from Camera 1 so that Yoda is not

visible; this would give us a representation of X, which we could process further. Alternatively,
if some of the images had a label of the true value of X, we could conceivably construct an
estimator for X. Here we have neither a model, nor labeled samples, but we know that the
snapshot taken by Camera 1 has the same value of X as the snapshot taken at the exact same
time by Camera 2.

The goal of the ANN architecture described in Section 2 is to learn a representation that de-
pends only on the state of the common hidden variable, discarding the sensor specific variables.
Optional dimensionality reduction methods, described in Section 2.6.3, are used to simplify the
representation and to visualize it. An example of a representation obtained by the algorithm,
visualized using these dimensionality reduction methods, is presented in Figure 2; each point
in the figure corresponds to a snapshot; the color of each point corresponds to the value of the
common variable X, i.e. the rotation angle of the bulldog. Figure 2 demonstrates that all the
snapshots with the same value of X have been represented in essentially the same way; in other
words, all the points with the same color have been mapped to approximately the same place.

Figure 2: A representation of snapshots taken by Camera 1. Each point corresponds to a
snapshot; the color of each point corresponds to the value of the common variable X.

3

1.2 Problem formulation: common variable discovery

In this section we present a more formal definition of the common variable discovery problem.
We consider three hidden random variables (X,Y, Z) ∼ πx,y,z(X,Y, Z), from the (possibly high
dimensional) spaces X , Y and Z, where, given X, the variables Y and Z are independent.

We have access to these hidden variables through two observable random variables

S(1) = g1(X,Y) (1)

and

S(2) = g2(X,Z) (2)

where g1 and g2 are bi-Lipschitz. We denote the range of g1 and g2 by S(1) and S(2), respectively;
these ranges may be embedded in a high dimensional space. We refer to the random variables
S(1) and S(2) as the measurement in Sensor 1 and the measurement in Sensor 2, respectively.

In our toy example in Section 1.1, X is the rotation angle of the bulldog, Y is the rotation
angle of Yoda, and Z is the rotation angle of the bunny; these angles are not measured directly,
but through the snapshots taken by the two cameras. Sensor 1, which is Camera 1, produces
the snapshot S(1), which is a function S(1) = g1(X,Y) of the direction of the bulldog and the
direction of Yoda. Sensor 2, which is Camera 2, produces the snapshot S(2) = g2(X,Z) which
is a function of the direction of the bulldog and the direction of the bunny.

The i-th realization of the system consists of the hidden triplet (xi, yi, zi) and the cor-

responding measurements (s
(1)
i , s

(2)
i); while xi, yi and zi are hidden and not available to us

directly, s
(1)
i = g1(xi, yi) and s

(2)
i = g2(xi, zi) are observable. We note that both s

(1)
i and s

(2)
i

are functions of the same realization xi of X. Our dataset is composed of n pairs of corre-

sponding measurements
{

(s
(1)
i , s

(2)
i)
}n
i=1

, which are functions of the n hidden realizations of

the system {(xi, yi, zi)}ni=1.

In the toy experiment, the pair of measurements (s
(1)
i , s

(2)
i) is a pair of snapshots taken

simultaneously by the two cameras, so that the bulldog is in the same state in both s
(1)
i and

s
(2)
i . Interestingly, the two cameras observe the bulldog from different directions, so although

the bulldog is in the same state xi when the two images are taken, it does not look the same
to the two cameras, as illustrated in the two simultaneous snapshots shown in Figure 1.

Ideally, we would like to construct a function φ : S(1) → X that recovers x from g1(x, y),
so that for every x ∈ X , and every y ∈ Y, we would have x = φ (g1(x, y)). However, since
X and g1 are unknown, we cannot expect to recover x precisely, and we are interested in a
function f1 : S(1) → Rd that recovers x up to some scaling and bi-Lipschitz transformation. In
particular, we require that for all x ∈ X and y, y′ ∈ Y

f1(g1(x, y)) = f1(g1(x, y
′)) (3)

and for all x 6= x′ ∈ X and y, y′ ∈ Y

f1(g1(x, y)) 6= f1(g1(x
′, y′)). (4)

4

In the toy example, it is clear that the X cannot be recovered exactly because, for example,
there is no reason to prefer the range [0, 360) to the range [0, 2π) or to determine the phase
of the rotation. However, the reduced representation obtained by the algorithm and presented
in Figure 2 is an example of a simple representation of X up to scaling and bi-Lipschitz
transformation.

1.3 A neural network approach

The purpose of this section is to provide a brief overview of the architecture of the neural
network proposed in this manuscript. The detailed description is found in Section 2.

We construct two networksN1 andN2 which accept samples from S(1) and S(2), respectively,
with both networks having outputs in Rd. Once the networks are trained, N1 implements our
proposed function f1 while N2 implements a similar function on S(2). The two networks
may have different numbers of layers and otherwise different configurations; however the two
networks have the same number of output units.

In order to train the networks, we form a joint network N by connecting N1 and N2 to a
single output unit, which computes the difference between the outputs of the two networks; the
output layers of N1 and N2 are therefore hidden layers of N . The joint network is then trained
as described in Section 2.4; the training of N implicitly includes training its components N1

and N2. The architecture of the joint network is illustrated in Figure 3.

Figure 3: A diagram of the network structure.

1.4 Related work

Several works focus on neural nets that learn representations of inputs that are measured via
two sources (e.g., [2, 3]), possibly of different modalities, for example audio and video, or images
and texts. However, these works mostly deal with learning cross modality and single modality

5

representation, while we aim to ignore modality-specific attributes, and learn the common
hidden variable that affects both modalities.

Several works develop neural networks which are invariant to specific input transformations,
such as translation and rotation (see, for example [4, 5]). However, these networks are designed
to be invariant to specific, well modeled transformations, rather than to learn an unknown
transformation.

Our architecture is related to the the architecture proposed in [6] for a related problem
of non linear Canonical Correlation Analysis (CCA) using a Deep Neural Network. In this
manuscript we follow a different approach in the use of the dataset, in the comparison of the
two networks, and in the design of the loss function; our experiments suggest that the approach
presented here is more suited to the common variable discovery problem.

The common variable problem has been studied in [1] from the manifold learning and kernel
perspective. While the approach presented in [1] and the approach presented in this manuscript
share some conceptual relations, they have fundamentally different properties and they use
fundamentally different approaches to the problem, a comparison of the two approaches will
be presented at a later date.

2 Algorithms

2.1 Rationale

The goal of the algorithm introduced in this manuscript is to construct a function f1 : S(1) → Rd

that maps samples s
(1)
i = g1(xi, yi) to a representation that reflects X up to some bi-Lipschitz

transformation; in particular, we would like f1(s
(1)
i) to depend on xi and be invariant to the

value of yi and we would like f1 to satisfy (3) and (4).

We assume that the data are provided as pairs of measurements Dpos = {(s(1)i , s
(2)
i)}npos

i=1 ,

where the measurements s
(1)
i = g1(xi, yi) and s

(2)
i = g2(xi, zi) are functions of xi, yi and zi,

which are hidden realizations of the random variables X, Y and Z. The crucial information is

provided in the dataset through the fact that both s
(1)
i and s

(2)
i in the i-th pair are functions

of the same value of xi. The idea is to use this information to learn maps f1 and f2 such that
for all i,

f1(s
(1)
i) = f2(s

(2)
i). (5)

Assuming the appropriate independence of Y and Z given X, the requirement in equation
(5) makes f1 and f2 functions of xi, which gives the property that for every x ∈ X , y, y′ ∈ Y
and z, z′ ∈ Z,

f1(g1(x, y)) = f1(g1(x, y
′)), (6)

and similarly

f2(g2(x, z)) = f2(g2(x, z
′)). (7)

6

The trivial solution that satisfies (6) and (7) is constant functions f1 and f2; to avoid the
trivial solution, we add the requirement that for all xi 6= xj ,

f1(s
(1)
i) 6= f2(s

(2)
j), (8)

so that f1 and f2 cannot simply “ignore” the value of x.
We implement the function f1 by a network which we denote by N1, and the function f2

by a network which we denote by N2; the algorithm is designed to train N1 and N2 to satisfy
a relaxed version of the requirements (5) (thus, implicitly, (6) and (7)) and (8). We construct
a joint network N , described in Figure 3, which compares the outputs of N1 and N2.

The idea is that when we use sample s
(1)
i from the pair (s

(1)
i , s

(2)
i) ∈ Dpos as input to N1, the

output of N1 should be identical to the output of N2 when s
(2)
i is used as input. We train the

joint network N to minimize the difference between the two outputs, thereby approximating
(5) and thus, implicitly, (6) and (7).

In order to approximate the condition (8) too, we use a second datasetDneg = {(s̃(1)i , s̃
(2)
i)}nneg

i=1

composed of “false” pairs of samples; this dataset is constructed from Dpos or obtained in some

other way. The idea is that when we use sample s̃
(1)
i ∈ S(1) from the pair (s̃

(1)
i , s̃

(2)
i) ∈ Dneg

as input to N1, the output of N1 should be different from the output of N2 when s̃
(2)
i ∈ S(2)

is used as input. We train the joint network N to maximize the difference between the two
outputs, thereby approximating (8).

At the end of the process, the map f1 implemented by N1 is our approximate representation;
as a useful “side effect,” we also obtain the map f2 which approximates a similar function for
the samples obtained from Sensor 2.

In the context of the toy problem described in Section 1.1, we have N1 a network which
accepts snapshots from Camera 1 and N2 a network which accepts snapshots from Camera
2; the idea is to have these two networks give the same output when they are presented with
snapshots that were taken simultaneously and to give a different output when the images were
taken at different times. The best that the two networks can be expected to do is to “conspire”
to produce an output that depends only on the rotation angle of the bulldog, which they can
both observe; if the bulldog is in the same position, the snapshots could have been taken at the
same time and the two networks would give the same output, and if the bulldog is in different
positions, then the snapshots were clearly taken at different times and the two networks would
give different outputs. Since the bunny is only viewed by Camera 2, N1 cannot take its position
into consideration, and since Yoda is only viewed by Camera 1, N1 should prefer to ignore it
when it attempts to “guess” what the output of N2 would be.

7

2.2 A summary of the algorithm

The purpose of this section is to provide a brief summary of the algorithm, with references to
the more detailed discussion in the following sections.

Data: {(s(1)i , s
(2)
i)}ni=1.

Result: N1 and N2: implementation of maps f1 : Rd1 → Rd and f2 : Rd2 → Rd.
Construct datasets Dpos and Dneg (see Section 2.3).
Optional: pre-train each layer of N1 and N2 using autoencoders (see Section 2.6.1).
Optimize the parameters of the joint network N (see Section 2.4).
Optional: dimensionality reduction of the learned representation (see Section 2.6.3).

Algorithm 1: Common variable learning using an ANN

2.3 Constructing a dataset of positive pairs and a dataset of negative pairs

The algorithm is given a dataset of n pairs corresponding to n realizations of X,Y, Z. We refer
to this dataset as the positive dataset,

Dpos =

{(
s
(1)
i , s

(2)
i

)}npos

i=1

. (9)

We construct a second dataset, referred to as the negative dataset, which contains “false pairs”:

Dneg =

{(
s̃
(1)
i , s̃

(2)
i

)}nneg

i=1

, (10)

where s̃
(1)
i = g1(x̃i, ỹi) and s̃

(2)
i = g2(x̃

′
i, z̃i). Ideally, s̃

(1)
i and s̃

(2)
i in the pair

(
s̃
(1)
i , s̃

(2)
i

)
should

be different realizations with different values of X, so that x̃i 6= x̃′i; in practice, it suffices
that x̃i 6= x̃i with sufficiently high probability. When Dneg is not explicitly available, an
approximation is constructed from Dpos by randomly mixing pairs as follows:

Dneg =

{(
s
(1)
r1(i)

, s
(2)
r2(i)

)}nneg

i=1

, (11)

with s
(1)
j and s

(2)
j elements in pairs in the dataset Dpos, and r1, r2 : {1, ..., n} → {1, ..., n} some

random functions, such as random permutations.

2.4 The Neural Network Architecture

The architecture of our network N is presented in Figure 3. The network is composed of two
networks N1 and N2 and a single output unit which is connected to the output layer of both
networks. In our experiments, both N1 and N2 have an input layer and one to three additional
layers; however, various network configurations are applicable and the two networks need not

8

have the same structure; the two networks are only required to have the same number of output
units.

The output node Q of N compares the output of N1 and N2,

Q(s(1), s(2)) = σ
(
‖f1(s(1))− f2(s(2))‖2

)
(12)

with s(1) and s(2) the inputs of N1 and N2, respectively, f1(s
(1)) and f2(s

(2)) the outputs of N1

and N2, respectively, and σ the sigmoid function.
The network is optimized to minimize the loss function L(θ), defined by the formula

L(θ) =
α

npos

∑
(s(1),s(2))∈Dpos

(
1

2
− σ

(
‖f1(s(1))− f2(s(2))‖2

))
+

β

nneg

∑
(s(1),s(2))∈Dneg

(
1− σ(‖f1(s(1))− f2(s(2))‖2)

)
+ λ‖θ‖22,

(13)

where θ is a vector containing the weight parameters (but not bias parameters) of N1 and N2.
For the positive pairs in Dpos, we would like ‖f1(s(1)) − f2(s(2))‖2 to be close to zero, thus
σ
(
‖f1(s(1))− f2(s(2))‖2

)
close to σ(0) = 1

2 ; for the negative pairs in Dneg, we would like to

maximize ‖f1(s(1))− f2(s(2))‖2, thus have σ
(
‖f1(s(1))− f2(s(2))‖2

)
close to σ(∞) = 1.

2.5 Generalization to k sensors

Our design can be generalized to k sensors, for example, by constructing k networks N1, ...,Nk
and connecting them to the output unit. The training data consists of paired observations

where each pair corresponds to two of the k sensors, i.e., (s
(j)
i , s

(l)
i), where j, l ∈ {1, .., k}. During

training, for each such example the output unit computes the Euclidean distance between the
outputs of the j-th and l-th networks and the error is back-propagated only through these
networks.

2.6 Implementation

The purpose of this section is to describe some technical aspects of the algorithm proposed in
Section 2.

2.6.1 Weight initialization and pre-training

The weights are initialized using sampling from normal distribution with zero mean and small
variance. In experiments where we have more than a single hidden layer in each network, we
pre-train every hidden layer in N1 and N2 as a Denoising Autoencoder (DAE)[7] with sparsity
loss (see, inter alia, [8]); we use the loss function defined by the formula

L(θ) =
1

2n

n∑
i=1

‖si − ˆ̃si‖22,+λ
(
‖W (1)‖2F + ‖W (2)‖2F

)
+ β

dH∑
j=1

KL (ρ||ρ̂j) , (14)

9

where n is the number of training points, si is an input point, s̃ is s by corrupted by setting a
random subset of entries to zero, ˆ̃s is the reconstruction of the s by the autoencoder, W (1) and
W (2) are the weight matrices of the encoder and the decoder respectively, ‖ · ‖F is Frobenius
norm, dH is the number of hidden units, ρ is some small positive number (e.g. 0.05), ρ̂j is the
average activation of the j-th unit, KL (ρ||ρ̂j) is the Kullback-Leibler divergence between the
probability mass functions of Bernoulli random variables with parameters ρ and ρ̂j , and β, λ
are some nonnegative constants. The first term in (14) is the squared reconstruction error, the
middle term is an l2 penalty over the encoder and decoder weights, and the last term encourages
the average activation of every hidden unit to be near ρ, so that the hidden representation of
the data is sparse.

2.6.2 Optimization

The optimization of the network N is performed using standard Stochastic Gradient Descent
(SGD) with momentum (see, for example, [9]) and dropout (see, for example, [10]), or us-
ing L-BFGS (see, for example, [11]); in both optimization algorithms, we compute gradients
using standard backpropagation (see, for example, [12]). In the optional pre-training using
autoencoders, we use L-BFGS.

Remark 2.1. In all our experiments, the learning rate of the SGD needed to be fairly large,
typically in the range 1− 10, compared to 0.01− 0.001 used in many ANN applications. This
might imply flatness of our loss function.

2.6.3 Dimensionality reduction and visualization

Suppose that {s(1)i }ni=1 is a set of samples from Sensor 1, the learned network N1 : S(1) → Rd

maps each sample s
(1)
i to the representation q

(1)
i as follows:

q
(1)
i = f1(s

(1)
i). (15)

When the representation is low dimensional (d between 1 and 3), it is often easy to visualize

the representation of the samples using a scatter plot of the vectors in {q(1)i }ni=1. However, in
our experiments we observed that the algorithm performs poorly when we set d ≤ 3 compared
to a larger d; typically 50 ≤ d ≤ 200.

We use two methods of dimensionality reduction to analyze the representation {q(1)i }ni=1

obtained for datasets in the experiments in this manuscript. The first method is the standard
Principal Components Analysis (PCA), where we use the first three principal components of

{q(1)i }ni=1 to produce a three-dimensional scatter plot of the representation; the second method
is diffusion maps [13] (for brief description of diffusion maps see Appendix A.1).

The diffusion maps algorithm typically produces simpler reduced representations as can be
seen, for example, in Figure 4; therefore, we prefer to use it in most of our experiments.

10

Figure 4: A three dimensional reduced representation obtained in one of our experiments.
Left: PCA. Right: diffusion map. The color of each point corresponds to the true value of the
common variable.

2.7 Using a test set to evaluate the performance of the ANN

The output of Q(s(1), s(2)) (defined in (12)) of the joint network N can be interpreted as
a classification prediction. We set 0.75 as a classification threshold for estimating whether
(s(1), s(2)) is a “real” or “fake” pair, so that if Q(s(1), s(2)) < 0.75 the network estimates that
the pair (s(1), s(2)) is a positive pair like those in Dpos and if Q(s(1), s(2)) ≥ 0.75 the network
classifies the pair as a negative pair, like those in Dneg.

Although the network is not designed as a classifier, we use its classification error on a test
set as a rough estimate of the quality of the learned representation. Since the choice of the
threshold is arbitrary, we do not expect the test error to be zero.

3 Properties of the maps f1 and f2

3.1 The quotient set and equivalence learning

The purpose of this section is to describe the problem of finding a common variable in terms
of finding equivalence classes; a brief reminder of the related definitions appears in Appendix
A.2. In the setting described in Section 1.2, we introduce the equivalence relation ∼ and we say
that two samples are equivalent if and only if they share the same value of X. In other words,
the realization (xi, yi, zi) of the hidden variables (X,Y, Z) is equivalent to the realization of the
realization (xj , yj , zj) if and only if xi = xj , regardless of the values of Y and Z:

(xi, yi, zi) ∼ (xj , yj , zj) iff xi = xj . (16)

In other words, the quotient set X × Y × Z/ ∼ is isomorphic to X .

11

Since g1 is invertible, this equivalence relation extends to S(1), the space of measurements
in Sensor 1; with a minor abuse of notation:

s
(1)
i ∼ s

(1)
j iff xi = xj , (17)

and similarly in Sensor 2:

s
(2)
i ∼ s

(2)
j iff xi = xj . (18)

Therefore, we have the quotient set S(1)/ ∼, where the equivalence class of s(1) = g1(x, y)
is

[s(1)] =
{
g1(x, y

′)|y′ ∈ Y
}
. (19)

We observe that a function f1 that satisfies (3) yields the same value for any member of an
equivalence class [s(1)]. In other words, with a minor abuse of notation, there is a natural
way to define f1 : S(1)/ ∼→ Rd on the quotient set S(1)/ ∼ rather than on S(1). Moreover, a
function f1 that satisfies (4) also yields a different value for members of different equivalence

classes [s
(1)
i] 6= [s

(1)
j] ∈ S(1)/ ∼. In other words, such f1 is an injective function, defined on the

quotient set S(1)/ ∼.

3.2 Alternative formulation: invariant representation learning

In this section we present the closely related problem of learning representations that are
invariable to certain transformations; a brief reminder of the related definitions appears in
Appendix A.3.

Suppose that G is a group that acts on a set S. We say that s ∈ S is equivalent to s′ ∈ S
up to G if there is g ∈ G such that

g.s = s′. (20)

we denote the equivalence relation by s ∼ s′. A representation f1 of S that is invariant to G
satisfies for all s ∈ S and g ∈ G

f1(s) = f1(g.s) (21)

and for all s 6∼ s′ and all g ∈ G

f1(s) 6= f1(g.s
′). (22)

In the invariant representation learning problem, we have examples of pairs (g.s, g′.s) with
different randomly selected group actions g, g′ ∈ G operating on a randomly selected element
s ∈ S and in some cases we may have examples of “negative pairs” (g.s, g′.s′) with s 6= s′ ∈ S
(or, we can generate such “negative pairs” using (11)). We would like to use these datasets to
find a function f1 that satisfies (21) and (22).

12

The invariant representation learning problem is very similar to the equivalence learning
problem as formulated in Section 3.1; in both cases we aim to construct functions that distin-
guish between equivalence classes. The description of the algorithm applies to either formula-
tion with small changes; for simplicity, the discussion in this manuscript follows the formulation
in Section 1.2.

Remark 3.1. Using the network design to learn invariant representation can be also done
while enforcing f1 = f2, for example by using same architecture of the two networks N1 and
N2, and keeping their weights tied during the optimization.

3.3 The topology of the mapped data and comparing measurements from
the same sensor

The goals stated in (3) and (4) require the function f1 to give the exact same value for samples
with the exact same X and strictly different values for samples with different values of X.
When such a function is obtained, it can be used to compare the samples and determine if they
have the same value of X, i.e. if they are equivalent in the sense defined in Section 3.1.

In practice, because of the continuity of the functions g1 and g2 and the continuity of the
computation operations in the networks that we use here, samples that are “close” in X would
have similar representations, so that the representation of X is smooth. Informally,

xi ≈ xj ⇔ f1(g1(xi, yi)) ≈ f1(g1(xj , yj)), (23)

therefore, the function f1 can be used to estimate if two samples s
(1)
i and s

(1)
j in Sensor 1 have

“close” values xi and xj .

3.4 Comparing measurements from different sensors

The algorithm treats the measurements in Sensor 1 and the measurements in Sensor 2 sym-
metrically, in the sense that it aims to construct maps f1 : S(1) → Rd and f2 : S(2) → Rd that
map into the same codomain Rd and have similar properties. Moreover, the algorithm aims to
find such f1 and f2 that agree in the sense defined in equations (5) and (8).

Following the same argument as in Section 3.3, the two functions f1 and f2 can be used to

compare a sample s
(1)
i = g1(xi, yi) from Sensor 1 to a sample s

(2)
j = g2(xj , zj) from Sensor 2 to

estimate whether the two samples are obtained from “close” values of X; informally,

xi ≈ xj ⇔ f1(g1(xi, yi)) ≈ f2(g2(xj , zj)). (24)

The two sensors might measure different modalities, such as audio signals in one and images
in the other, so that the framework proposed here allows to compare two different modalities
in terms of the common variable.

13

4 Experimental results and discussion

In this section we present experimental results of common variable learning and invariant
representation learning, and discuss properties of the algorithm that have been observed in the
experiments.

In each of the experiments below, we used a positive dataset Dpos and a negative dataset

Dneg of equal size to train the network, each sample in each dataset is a pair (s
(1)
i , s

(2)
i). For

testing, we generated a different positive dataset and a different negative dataset, independently
of the ones used for training. In each experiment, the testing datasets were of equal size as
well.

In each experiment, we construct two networks, N1 which takes samples from Sensor 1
as input, and N2 which takes samples from Sensor 2 as input, and combine them in the joint
network N . The networks N1 and N2 have either three layers (two hidden layers and an output
layer) or one layer (output layer) composed of sigmoid units; the output layers of N1 and N2

serve as a hidden layer before the single output node of the joint network N . The three-layer
networks are pre-trained with a DAE (see section 2.6.1).

As the network N is trained, its components N1 and N2 are also trained, and implement
the maps f1 : S(1) → Rd and f2 : S(2) → Rd. Once the optimization is completed, we break

every test example (s
(1)
i , s

(2)
i) into its elements s

(1)
i and s

(2)
i and map each of these elements to

Rd using the corresponding map. Having obtained this representation for the observations from
both sensors, we compute the diffusion embedding of the test data and embed each element
into Rn based on the first three diffusion coordinates. We present figures of these diffusion

embeddings, where each point represents an element s
(1)
i or s

(2)
i ; the color assigned to each

point represents the true value of the underlying X, which we are attempting to recover. In
addition, we measure the accuracy of the network in the sense defined in Section 3.4.

4.1 Common variable learning: the Person dataset (rotated images)

In this section we present an example for automatic construction of a representation for a

common variable from two sets of images. Each sample (s
(1)
i , s

(2)
i) in the positive dataset Dpos

is a function of three parameters xi, yi, zi ∈ [0, 180], chosen uniformly at random. The samples

are generated from these parameters as follows: we denote by Iθ the image I, rotated by θ; s
(1)
i

is a concatenation of two rotated images, the image I rotated by xi and the image I rotated
by yi:

s
(1)
i = (Ixi , Iyi). (25)

Similarly, s
(2)
i is a concatenation of two rotated images, the image I rotated by xi and the

image I rotated by zi:

s
(2)
i = (Ixi , Izi), (26)

as illustrated in Figure 5. The common variable is hence xi, which is manifested in the left side

of s
(1)
i and s

(2)
i , and the superfluous variables are yi and zi, which are manifested in the right

14

side of s
(1)
i and s

(2)
i . Figure 5 presents a positive example from the dataset. Figure 6 presents

a negative example (s̃
(1)
i , s̃

(2)
i) of the negative dataset Dneg, where

s̃
(1)
i = (Ix̃i , Iỹi) (27)

and

s̃
(2)
i = (Ix̃′i , Iz̃i). (28)

Both s
(1)
i and s

(2)
i are 968-dimensional.

Figure 5: Each sample in the positive dataset is composed of two images, s
(1)
i and s

(2)
i . s

(1)
i is

a concatenation of Ixi and Iyi . s
(2)
i is a concatenation of Ixi and Izi .

Figure 6: Each sample in the negative dataset is composed of two images, s̃
(1)
i and s̃

(2)
i . s̃

(1)
i is

a concatenation of Ix̃i and Iỹi . s̃
(2)
i is a concatenation of Ix̃′i and Iz̃i .

15

Each of the training datasets Dpos and Dneg contained 1, 000 pairs of samples. Both N1

and N2 had a single layer of size 100, the network was fine-tuned using SGD. The network
achieved 96.2% accuracy on a test set (as defined in Section 3.4). The diffusion embedding of
the test data is presented in Figure 7; the smooth transition of colors in the one dimensional
curve indicates that the curve indeed represents the common variable.

A visual representation of the weights of the units in the first hidden layer of N1 and N2

is presented in Figure 8; the figure demonstrates that both networks capture features from the
left side of the images s(1) and s(2), which is influenced by the variable X, and virtually ignore
the right side of s(1), which is influenced by Y and right side of s(2), which is influenced by Z.

Figure 7: Embedding of the test set of the Person dataset: projection onto the first three non
trivial eigenvectors. Color gradient corresponds to the value of common hidden variable X
(rotation angle of the left image, in degrees).

4.1.1 Sensitivity analysis

In this section we describe variants of the experiment in Section 4.1, in which we test the
performance in three different regimes:

• Case 1: small dataset: 200 examples, 100 hidden units in each output layer. The accuracy
on the test set is worse: 74.9%.

• Case 2: limited network capacity: 2, 000 training examples, 10 hidden units. The accuracy
on the test set is 86.3%.

• Case 3: more hidden layers: 2, 000 training examples, three layers, each with 100 units.
The accuracy on the test set is 91.96%.

16

Figure 8: the weights of the first hidden layer on N1 (top) and N2 (bottom), learned from the
Person dataset.

17

The diffusion embeddings of the representations obtained in the three cases are presented in
Figure 9.

Figure 9: Sensitivity analysis experiments on the Person dataset. Top left: small dataset. Top
right: limited network capacity. Bottom: more hidden layers.

4.2 Common variable learning: the Toy dataset (spinning figures)

In this example, we revisit the toy experiment described in Section 1.1 and in Figure 1. Here,
S(1) is a snapshot taken by Camera 1 and S(2) is a snapshot taken by Camera 2. The dataset

Dpos is composed of pairs of snapshots (s
(1)
i , s

(2)
i) where s

(1)
i and s

(2)
i are taken simultaneously

by Camera 1 and Camera 2, respectively. The dataset Dneg is constructed by pairing snapshots

that where taken at different times. The samples s
(1)
i and s

(2)
i are 60× 80 color images (hence

the dimensionality is 14,400). Examples for elements in Dpos and Dneg are presented in Figure
10.

In this experiment, the training sets Dpos and Dneg consisted of 10, 000 examples each.
Both N1 and N2 had three layers, the two hidden layers in each network had 150 units, and the

18

Figure 10: Two sample examples from the Toy dataset. Top row: a positive example from
Dpos: snapshots taken simultaneously, containing two different views on the bulldog at the
same rotation angle. Bottom row: a negative example from Dneg. Left column: the snapshot
s(1) taken be Camera 1. Right column: s(2) taken by Camera 2.

Figure 11: Embedding of the Toy dataset. The color of each point corresponds to the true
common hidden variable, i.e. the rotation angle of the bulldog.

19

output layers had 100 units. The joint network N was trained using L-BFGS. The classification
accuracy on the test set (as defined in Section 3.4) was 95.96%. Figure 11 presents the diffusion
map of the computed representation; the closed curve and the smooth transitions in color found
in Figure 11 demonstrate that the algorithm recovered a good representation of the common
variable X.

4.3 Common variable learning: the Bunny dataset (revolving cameras)

In the previous experiments, the hidden variables were manifested as separable objects in the
images; in this experiment, we consider a different type of map from the variables to the images.
We constructed a dataset of images of a bunny on a spinning table, and then digitally rotated
the images; the digital rotation can be viewed as a revolution of the camera.

We denote by Ix,y = g(x, y) an image that was taken by a camera rotated in angle y when

the bunny is rotated in direction x. In the positive dataset s
(1)
i = Ixi,yi and s

(2)
i = Ixi,zi , so

that s
(1)
i and s

(2)
i are images in which the bunny is rotated in the same direction while the

cameras are in arbitrary angles. In this case the functions g1 and g2 that generate the sensor
measurements are identical g1 = g2 = g. The dataset Dneg is constructed from Dpos by pairing

Ix̃i,ỹi and Ix̃′i,z̃′i , so that the bunny and the camera in s̃
(1)
i are both rotated independently of

those in s̃
(2)
i . Both S(1) and S(2) are 30× 40 gray-scale images. Examples from Dpos and Dneg

are presented in Figure 12.

Figure 12: Two sample examples from the Bunny dataset. Top row: a positive example:
the bunny is rotated in the same direction in both images, whereas the cameras are rotated in
arbitrary angles. Bottom row: a negative example: both the bunny and the camera are rotated
in arbitrary angles. Left column: s(1). Right column: s(2).

20

In this experiment, the training sets Dpos and Dneg consisted of 10, 000 examples each. The
networks N1 and N2 had a single layer of 200 units. The training was performed using SGD.
The classification accuracy on the test set was 94.7%. The diffusion embedding of the test set
is presented in Figure 13; again, the learned representation corresponds to the value of the
common variable.

Figure 13: Diffusion embedding of the bunny dataset. The smooth transition of the color along
the curve implies that the learned representation is a parametrization of the common variable,
i.e., the rotation angle of the bunny.

4.4 Common variable learning: two different modalities

In the previous experiments we used the same type of input in both sensors; in this experiment
we used a different data modality in each sensor: images in one sensor and audio signals in the
other. Specifically, a measurement from Sensor 1 is a concatenation of two rotated images

s
(1)
i = (Ixi , Iyi), (29)

as in Section 4.1, whereas s
(2)
i is a T dimensional vector vxi,zi(t), t = 1, .., T with entries

vxi,zi(t) = sin(2πω(xi)t+ zi), (30)

where ω(·) is a deterministic function, so that xi determines the frequency of the sine, and zi
determines the phase. In other words, the common variable X determines the rotation of the
left image in the first sensor and the frequency of the sine in the second sensor; the sensor

21

specific variables are the rotation angle of the right image in s
(1)
i and the phase of the sine in

s
(2)
i .

Both N1 and N2 had three layers, with 100 units in each. Dpos and Dneg consisted of 10, 000
examples each. The accuracy on the test set was 93.5%. The diffusion embedding of the test
measurements from both sensors is presented in Figure 14. The smooth transition of the color
along the manifold implies that that the learned representation corresponds to the common
variable.

This experiment demonstrates that the ANN can represent measurements from two different
modalities in the same space, with their embedding determined by the value of the variable of
interest.

Figure 14: Embedding of the images and audio signals from the test set in the two modal-
ities experiment. Data from two different modalities is mapped to the same space, and is
parametrized by the common variable.

4.5 Learning a rotation-invariant representation

The following experiment demonstrates the proposed algorithm’s applicability to the invariant
representation learning problem, discussed in Section 3.2. The goal here is to learn maps f1
and f2 that are rotation-invariant.

The data used for this experiment was generated from images from the Caltech-101 dataset
[14]; we pre-processed all images by converting them to 50×50 pixels gray-scale images. Given
a set S of images, we define G to be the group of rotations, so that g.s is a rotation of s by

g degrees. As discussed in Section 3.2, to generate a sample (s
(1)
i , s

(2)
i) in the positive dataset,

22

we sampled an image si from the dataset and two arbitrary rotations g1,i, g2,i ∈ G and set

s
(1)
i = g1,i.si (31)

and

s
(2)
i = g2,i.si, (32)

i.e., s
(1)
i and s

(2)
i are two rotated instances of the same image. The negative dataset was

generated in the same way, with two different randomly selected images s̃i and s̃′i in each

negative sample (s̃
(1)
i , s̃

(2)
i) :

s̃
(1)
i = g̃1,i.s̃i (33)

and

s̃
(2)
i = g̃2,i.s̃′i. (34)

A positive example and a negative example are presented in Figure 15. The test set con-
tained a different subset of Caltech-101 then the training set.

The networksN1 andN2 had three layers each; the joint network was trained using L-BFGS.
The weights of the units in the first hidden layer of N1 and N2 are presented in Figure 17. The
learned functions achieved a high accuracy score of 99.44%; of the 20,000 test examples, half
positive and half negative, we found 112 classification errors, 109 of which were false positives.
Some of the errors are presented in Figure 16.

To check whether the hidden representation we obtained is indeed invariant to rotation, we
perform the following analysis: we randomly selected an image and rotated it in two arbitrary
angles; we denote the resulting images by a and a′. We then selected a different image and
rotated it in an arbitrary angle; we denote the resulting image b. If the map f1 is indeed
invariant to rotations, then we expect to have

‖f1(a)− f1(a′)‖2 � ‖f1(a)− f1(b)‖2. (35)

Histograms of ‖f1(a) − f1(a′)‖2 and ‖f1(a) − f1(b)‖2 for 10,000 repetitions of the above pro-
cedure are presented in Figure 18; as evident from the histograms, ‖f1(a)− f1(a′)‖2 is indeed
significantly smaller than ‖f1(a)− f1(b)‖2, as expected.

23

Figure 15: Two sample examples generated from the Caltech-101 dataset for the rotation-
invariance experiment. Top row: a positive example (s(1) and s(2) are the same image, up to
rotation). Bottom row: a negative example (s(1) and s(2) are the different images, rotated in
different angles).

Figure 16: Three errors in the rotation invariance experiment. Each column is a negative
example which was classified as positive.

24

Figure 17: Layer 1 Features in the rotation-invariance experiment.

25

Figure 18: Histograms of ‖f1(a) − f1(a′)‖2 (left) and ‖f1(a) − f1(b)‖2 (right) in the rotation-
invariance experiment.

4.6 Learning a translation-invariant representation

In this section we repeat the rotation-invariance experiment of Section 4.5, but we replace the
rotation with a circular horizontal translation; examples of from the datasets are presented in
Figure 19.

The accuracy achieved in this experiment was 98.75%. The first layer weights of N1 and
N2 are presented in Figure 20. Histograms of ‖f1(a) − f1(a′)‖2 and ‖f1(a) − f1(b)‖2 (defined
in Section 4.5) are presented in Figure 21. As in the rotation-invariance experiment, ‖f1(a)−
f1(a

′)‖2 is significantly smaller than ‖f1(a)− f1(b)‖2 as desired.

Figure 19: positive (top) and negative (bottom) examples generated from the Caltech-101
dataset in the translation-invariance representation.

26

Figure 20: Layer 1 weights in the translation-invariance experiment.

27

Figure 21: Histograms of ‖f1(a)−f1(a′)‖2 (left) and ‖f1(a)−f1(b)‖2 (right) in the translation-
invariance experiment.

4.7 Comparison to Deep CCA

Given realizations {(s(1)i , s
(2)
i)}ni=1 of random variables S(1) and S(2), the deep CCA algorithm

(see [6]) computes maps f ′1 and f ′2 so that the cross correlation between f ′1(S
(1)) and f ′2(S

(2))
is maximized. We implemented the deep CCA network described in [6] and applied it on
the Toy dataset of Section 4.2, with the same network structure used in our experiment in
Section 4.2. The diffusion map of the output of the deep CCA algorithm, presented in Figure
22, demonstrates that in this experiment the deep CCA algorithm fails to recover the common
variable (the rotation angle of the bulldog); additional analysis indicates that the representation
obtained by deep CCA in this experiment reflects the sensor specific superfluous variables
(rotation angles of Yoda and the bunny), which we would like to discard.

Figure 22: Diffusion embedding of the representation obtained by a deep CCA network for
images from Camera 2 in the Toy dataset. The embedding does not appear to follow the value
of the common variable.

28

4.8 Random projections and complex data models

In this section we discuss complex models of data generation; we replace the images that we
have in the experiments above with unknown random projections of the images onto a lower
dimensional space. These random projections “scramble” the data and remove much of the
structure in it, the original images cannot be recovered without a good model of the data and
the projections. The heavily distorted data is an example of complex data that can not be
visualized as an image and that does not have the structure of an image; such complex data
are obtained in compressed sensing (without the information that allows reconstruction) and
in applications such as measurement of neural activity in the brain.

We repeated the experiment in Section 4.1 using the Person dataset, with each image
replaced by a 100 dimensional random projection (the same random projections for all images
in the same camera). The classification accuracy in this experiment was 96.6%, similar to the
accuracy obtained on the original dataset before the random projections. The diffusion map of
the representation is presented in Figure 23.

We also repeated the experiment in Section 4.2 using the Toy dataset, with each image
replaced by a 100 dimensional random projection. The accuracy in this experiment was 93.66%,
a small decrease compared to 95.9% in the original dataset before the random projections.
However, in this case the embedding in Figure 24 (top) does not reflect a smooth transition of
the color; a more detailed investigation in Figure 24 (bottom) reveals that each point in the
embedding corresponds to two values of X. In other words, the algorithm has recovered the
common-variable up to some ambiguity; it can still distinguish between different values of X,
but for almost every x there is some very different x̃ that cannot be distinguished from x in
the embedding. This phenomenon, to which we refer as “folding,” is discussed in Section 4.9.

Figure 23: Embedding of images from the randomly projected Person dataset. The learned
representation corresponds to the value of the common hidden variable.

29

Figure 24: Top: embedding of the randomly projected Toy dataset. Bottom: foldings in the
randomly projected Toy dataset: two axes are diffusion embedding coordinates as before, and
one axis is the true value of the common variable X.

4.9 Non-injective maps and “folding”

The algorithm attempts to construct an approximate classifier which minimizes the loss function
(13), and due to the special structure of the joint network N , it also builds an approximate
representation in N1. The minimization of the loss function defined in (13) on the datasets
Dpos and Dneg does not strictly require the map f1 to be injective in X (in the sense defined
in Section 3.1); in some cases, the network may “fold” the representation so that it assigns the
same representation to two (or more) values of X, but still distinguish between each value of
X and most other values. In other words, a “folded” representation recovers the the common

30

variable up to some ambiguity.
We only observed the “folding” phenomenon in the randomly projected Toy dataset in

Section 4.8, and in the variation on the Bunny dataset in Section 4.3, when the number of
layers was increased to three (not presented here).

4.10 Using additional information: ∆x

In the formulation and examples presented thus far, data are presented to the algorithm in
the form of “positive” pairs and “negative” pairs; the positive pairs are often simultaneous
measurements which are related through coincidence and therefore share the same value of
the common variable X, while the negative pairs are often measurements that were taken at
different times and are therefore assumed to have different values of X with high probability.
When additional information about the problem and the data is available, such information
can be integrated into the algorithm to improve the results, as demonstrated in this section.

Suppose that we have a dataset of pairs of measurements {(s(1)i , s
(2)
i)}ni=1 where s

(1)
i =

g1(xi, yi) and s
(2)
i = g2(x

′
i, yi), and that for each pair we have some distance in the common

variable ∆xi = ‖xi − x′i‖. We assign to each such pair a label l(∆X) with the function
l : R+ → [12 , 1], a non decreasing function such that l(0) = 1

2 and l(∞) = 1. The “soft” labels
li replace the strict distinction between “positive” pairs and “negative” pairs, so that the new

labeled dataset D = {(s(1)i , s
(2)
i , li)}ni=1 replaces the datasets Dpos and Dneg. The network is

trained to minimize the loss function L(θ) defined by the formula

L(θ) =
∑

(s(1),s(2),l)∈D

(
l − σ

(
‖f1(s(1))− f2(s(2))‖2

))
. (36)

To demonstrate this scenario, we modified the Bunny dataset, and generated random pairs

of images. Let xi, xj ∈ [0, 1] be the rotation angles of the bunny in s
(1)
i and s

(2)
j , we define the

distance ∆xi by the formula

∆xi = min{|xi − x′i|, 1− |xi − x′i|}, (37)

so that ∆xi ∈ [0, 0.5]. We define the function l by the formula

l(∆x) =
1

2
+ min

{
1

2
, 4∆x2

}
, (38)

a plot of the function l is presented in Figure 25.
Figure 26 presents the diffusion embedding of the representation, obtained from a three-

layer network on this modified Bunny dataset with “soft labels”.
.
.

31

Figure 25: The label function l(∆x).

Figure 26: Diffusion embedding of the modified Bunny dataset.

5 Conclusions

A neural network based approach has been presented for the construction of invariant repre-
sentations and for the recovery of common variables, in the absence of a model or labeled data.
The joint network described in this manuscript learns the appropriate features and constructs
the appropriate representation from examples of measurements that are “equivalent” or “re-
lated” via an appropriate form of coincidence and examples of measurements that are “not
equivalent” or “unrelated”; a typical example for such sets of measurements are “related” mea-
surements that are taken simultaneously by different sensors and “unrelated” measurements
that are taken at different times. The joint network is designed to recover a meaningful rep-
resentation in its sub-networks; in other words, the desired representation is obtained in what
would typically be considered a “hidden layer” of a deep network.

32

Most of the experiments presented in this manuscript have been designed for ease for illustra-
tion and visualization; however, these experiments have many properties of complex data anal-
ysis problems. The potential application to much more complex data has been demonstrated
in experiments with datasets that have been heavily “scrambled”’ by random projections to
lower dimensional spaces. In addition, we have not used standard preprocessing techniques,
such as filtering, and we have not used standard network designs, such as convolution networks,
that take advantage of known structure in the data; when partial information about the data
is available, it can be incorporated into preprocessing steps and into th e network design to
improve the performance of the network.

6 Acknowledgments

The authors would like to thank Raphy Coifman, Sahand N. Negahban, Andrew R. Barron
and Ronen Talmon, for their help.

References

[1] R. R. Lederman and R. Talmon, “Common manifold learning using alternating-diffusion,”
2014.

[2] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep learning,”
in Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pp. 689–696, 2011.

[3] N. Srivastava and R. R. Salakhutdinov, “Multimodal learning with deep boltzmann ma-
chines,” in Advances in neural information processing systems, pp. 2222–2230, 2012.

[4] E. Oyallon and S. Mallat, “Deep roto-translation scattering for object classification,” arXiv
preprint arXiv:1412.8659, 2014.

[5] K. Sohn and H. Lee, “Learning invariant representations with local transformations,”
arXiv preprint arXiv:1206.6418, 2012.

[6] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical correlation analysis,”
in Proceedings of the 30th International Conference on Machine Learning, pp. 1247–1255,
2013.

[7] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, ACM, 2008.

[8] A. Ng, “Unsupevised feature learning and deep learning, stnanford class cs294.” http:

//deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial. Accessed: 2010-09-
30.

33

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

[9] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization
and momentum in deep learning,” in Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pp. 1139–1147, 2013.

[10] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks for
lvcsr using rectified linear units and dropout,” in Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pp. 8609–8613, IEEE, 2013.

[11] S. J. Wright and J. Nocedal, Numerical optimization, vol. 2. Springer New York, 1999.

[12] R. Rojas, Neural networks: a systematic introduction. Springer Science & Business Media,
1996.

[13] S. S. Lafon, Diffusion maps and geometric harmonics. PhD thesis, Yale University, 2004.

[14] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories,” 2004.

34

A Appendix: technical background

The purpose of the following sections is to provide a brief review of certain standard definition
and algorithms used in this paper.

A.1 The diffusion maps algorithm

A brief description of the procedure to obtain a diffusion map of a dataset is presented in
Algorithm 2; a more detailed description can be found, inter alia, in [13].

Data: {xj}nj=1, xj ∈ Rd.
Result: diffusion embedding {x̃j}nj=1, x̃j ∈ Rn−1.
Compute affinity matrix W , such that Wi,j = exp

(
−‖xi−xj‖

2
2

ε

)
.

Compute the diagonal matrix D such that Di,i =
∑n

j=1Wi,j .

Compute the symmetric graph Laplacian A = D−
1
2WD−

1
2 .

Compute the eigenvectors v0, ..., vn−1 and eigenvalues λ0, ..., λn−1 of A.

Compute n− 1 weighted vectors ϕ1, ..., ϕn−1, such that ϕi(j) = vi(j)
v0(j)

.

Compute the diffusion embedding x̃j = (ϕ1(j), ..., ϕn−1(j)).
Algorithm 2: diffusion maps

A.2 Equivalence Classes and quotient space

Definition A.1. Let S be a set, a ∈ S, and ∼ be an equivalence relation over S. The equiva-
lence class of a with respect to ∼ is

[a] := {x ∈ S : a ∼ x}. (39)

Definition A.2. The quotient set of S by ∼ is the set of all equivalence classes of elements in
S:

S/ ∼= {[a] : a ∈ S}. (40)

A.3 Group actions and invariant representations

Definition A.3. Let (G, ·) be a group and X be a set. A (left) group action of G on X is a
function ϕ : G×X → X such that

• ∀a, b ∈ G, x ∈ X, ϕ(ab, x) = ϕ(a, ϕ(b, x))

• ∀x ∈ X,ϕ(1, x) = x.

Usually ϕ(a, x) is denoted by a.x.

Let S be a set and G be a group that acts on S. Let h : S → S be a map with the
property that for every g ∈ G, h(g.X) = h(1.X). In this case we say that h(S) is a G-invariant
representation.

35

	Introduction
	Illustrative toy problem
	Problem formulation: common variable discovery
	A neural network approach
	Related work

	Algorithms
	Rationale
	A summary of the algorithm
	Constructing a dataset of positive pairs and a dataset of negative pairs
	The Neural Network Architecture
	Generalization to k sensors
	Implementation
	Weight initialization and pre-training
	Optimization
	Dimensionality reduction and visualization

	Using a test set to evaluate the performance of the ANN

	Properties of the maps f1 and f2
	The quotient set and equivalence learning
	Alternative formulation: invariant representation learning
	The topology of the mapped data and comparing measurements from the same sensor
	Comparing measurements from different sensors

	Experimental results and discussion
	Common variable learning: the Person dataset (rotated images)
	Sensitivity analysis

	Common variable learning: the Toy dataset (spinning figures)
	Common variable learning: the Bunny dataset (revolving cameras)
	Common variable learning: two different modalities
	Learning a rotation-invariant representation
	Learning a translation-invariant representation
	Comparison to Deep CCA
	Random projections and complex data models
	Non-injective maps and ``folding''
	Using additional information: x

	Conclusions
	Acknowledgments
	Appendix: technical background
	The diffusion maps algorithm
	Equivalence Classes and quotient space
	Group actions and invariant representations

