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Abstract

In this paper we analyze the emulation of two-dimensional meshes, butterfly networks, and
spanning trees on meshes, Boolean cubes, and Cube Connected Cycles (CCC) networks. We
consider three timing models for signal propagation along a wire: constant delay, capacitive
delay, and resistive delay. We also present novel layouts for hypercubes and CCCs that offer
better performance for some problems, while essentially maintaining the performance for other
problems. The mesh interconnection performs better on all emulations for all delay models,
if the communication throughput determines the performance. With resistive delay model,
meshes also offer the best latency for all emulations. The hypercube and CCC layouts yield
lower latency for emulating butterfly networks and spanning trees for the constant delay and
capacitive delay models.

1 Introduction

In Wafer Scale Integration, the cost and performance of a parallel computer are critically dependent
upon the network interconnecting processing elements. This is because signal propagation delays
along a wire do not scale as well as switching speeds with decreased feature sizes; and the wiring
area for most networks dominates the area for logic. In this paper we compare the performance of
the two dimensional mesh, the binary hypercube and the Cube Connected Cycles network [5] on 3
model problems. Following Dally (2], we assume the same number of processors for all networks,
the same memory size per processor, and the same total area i.e. the hypercube and the CCC have
narrower communication paths than a mesh. The model problems we consider are the emulation
of two dimensional meshes, butterfly networks and spanning trees. We shall refer to the networks
being emulated as guest architectures, and the networks on which the emulation occurs as the host
architectures.

We consider three timing models. In a purely capacitive model the signal delay across a wire
of length [ is proportional to log! if driven by a sequence of optimized drivers, viz. “exponential
horn” [4]. In the resistive model both resistance and capacitance of wires are accounted for. The
delay is proportional to 2 [1,7], but can be reduced to become proportional to ! by introducing a
sequence of “repeaters” along the wire. The delay would be proportional to the length of the wire
also when the speed of light is a determining factor. A third model is a constant delay model,
which represents the case where the clock period is determined by some other piece of the design.
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2 Host Architectures

We first establish a numbering of the nodes of the host architectures. Let aoi,a1]i,...ax|i, represent
the number obtained by concatenation of the I; bit long numbers a;. In what follows the length
subscripts and the bars may be omitted if they are clear by context. Gray(z) is used to denote the
representation of  in the binary reflected Gray code. We shall assume that each processor is layed
out in a square area of side s, has a local memory of size M2, and that all communication channels
lie outside this area. We assume that all the channels enter and leave the processor at a corner.

Each network has P2 = 22P processors. The processors in all the networks are numbered 0
through P? — 1. In the mesh, a processor numbered z|py can communicate with processors = + 1|y,
provided £ + 1 < P, with 2 — 1|y provided z > 0, with z|y + 1 provided y + 1 < P, and with
z|ly — 1 provided y > 0. In the hypercube, a processor numbered a|;b|;c can communicate with
processor alble, for all ¢. For the CCC, let P? = (P"2log P'?), with logP’ = p’. To simplify
the following discussion, we assume that p’ is an integer, and 2p’ a perfect square. It should be
observed that if either is not true then our estimates are only affected by small constant factors.
In the CCC a processor numbered a|;_1b|1c|p—;5 communicates with processors a|;—1b|ic|pi— ;7
(along the intercycle channel) and a|;_1b|ic|p—;(s £ 1 mod 2p’) (along the intracycle channels).
The processors communicate with one another using channels of width wy, w, and w, for the mesh,
the hypercube, and the CCC. We shall assume that there are separate channels for communication
in either direction.

2.1 Normal Layout of the Hypercube and the Mesh

The processors are laid out in a square region of side S, in P rows and P columns. The processors
are separated from each other by communication channels. Processor z|,y occupies position (z,y)
of the layout. For both architectures each processor directly communicates only with processors in
its row or column. For meshes, it is only necessary to have two tracks per row, one per channel
in each direction. Thus S = P(s + 2w,). For hypercubes, each row of processors forms a smaller
hypercube of p dimensions. The communication channels for the sth dimension can be accomodated
in 2-2¢ tracks. Thus, the total number of tracks required is at most Y i—n 2 2¢ = 2(P — 1) tracks.
Thus S ~ P(s+ 2Pwy). This layout is known to have optimal area.

2.2 Layout for the CCC

We embed a cycle of length 2p’ in a square grid of side \/2p’, with dilation 1 or 2 (\/2p” 0dd). A point
on the cycle is arbitrarily designated as 0, and the subsequent points are numbered 1 through 2p’ — 1.
Let this numbering be denoted by path(z,y) for grid point (z,y). The layout for the CCC can be
obtained from the layout for the 2p’ dimensional hypercube, each hypercube processor being replaced
by the 2p’ processors in each cycle of the CCC, using the path function. Thus, the processor at
position (z|pv|p—pt, y|prw|p—pr) of the layout is numbered z|y| path(v,w). The number of horizontal
tracks required per row of cycles is at most 2P’. Each row of cycles requires at most 2/2p’ horizontal
tracks to layout the intracycle channels. Given that there are P’/ rows of cycles, the total height of
the layout is S = P'(\/2p's + 2\/2p'w, + 2P'w.) = Ps + 2Pw, + P?w.[p' ~ Ps + P?w,/p. Because
the cycle can be embedded with dilation 2, the maximum distance between adjacent processors in a
cycle can be at most 25/P. The maximum distance between arbitrary processors is S/2, when the
cycles differ in the most significant bit.
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Figure 1: Normal layout for a hypercube

2.3 Gray code derived layouts

Gray code derived layouts have better performance for mesh like communication, without signifi-
cantly sacrificing performance for other communication patterns. The total area and maximum wire
length are the same as for the previous layout. For hypercubes, the processor occupying position
(z,y) is numbered Gray(z)|Gray(y). Processors only communicate with others in the same row or
column. Since Gray(z) and Gray(z + 1) ( < P) differ only in one bit, the processor at (z, y) is
directly connected to the processor at (z + 1,y). Thus, this layout contains an embedded mesh for
which all the channels have the same length, figure 2. For CCCs, the position (2|pv]p—pr, Y|prw|p—pr)
holds the processor numbered Gray(z)| Gray(y)| path(v, w).

In the layout of section 2.1 all the channels corresponding to a given dimension in the hypercube
have the same length; %2“’“‘3” for dimension . However, in the Gray code layout channels along
the ¢th dimension have lengths %(2 -2kmedp _ 1) k= {0,1,...,4}. The intercycle channel lengths
in the CCC vary similarly; %(2 . gkmodp’ _ 1), k= {0,1,...,1i}. For FFT like communication
patterns the performance of Gray code derived layouts may be at most a factor of two lower than
the normal layout. Mesh-like communication may be a factor of P/2 higher.

2.4 Channel width and cycle time comparison

We have S = Ps + 2Pwy ~ Ps + 2P?w, ~ Ps + P?w/p. Thus, w, = wy/P and w, = 2pw,/P.
With the normal layout the maximum signal propagation distance is S /2 for the hypercube and the
CCC and S/P for the mesh. With the Graycode derived layouts for the hypercube and the CCC,
the maximum distance is S. For the constant, capacitive and resistive delay models, we define ty,to
and t3 resp. as the time taken for signal propagation over a distance S /P ie. in general signal
propagation over distance ! requires time t1, ¢z logl and t3l/(%) resp. with 5 = ¢z log £. This gives
us table 1, ignoring some lower order terms.
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Figure 2: Graycode derived layout for a hypercube )

Channel | Max. | Delay along longest channel
width | length | Const. Cap. Res.
Mesh w S/P ty to t3
Hypercube w/P 28 t to+cop | zPts
Hypercubegray w/P S t ta + cop Pts
CCC 2wp/P 28 t1 to+cop | 2Pt
CCCgqray 2wp/P S t1 ta + cop Pig

Table 1: Channel Delay and Width




3 Emulation of two-dimensional meshes

We consider the naive means of emulating meshes in the different host architectures. An edge of the
mesh is mapped to a single edge/path in the Boolean cube. There exist p distinct paths between
an arbitrary pair of nodes in the Boolean cube, but the paths are, in general, not edge-disjoint,
and data cannot be transmitted concurrently along all p paths for all pairs without contention.
The case of the CCC is similar. Consider an N x N two-dimensional guest mesh with N = 2" =
KP. When the host architecture is also a mesh, guest processor |pv|n—py|pW|n—p is mapped onto
host processor z|y. We prefer this consecutive [3] mapping in that it minimizes the interprocessor
communication. For a Boolean cube host, guest processor z|pv|n—py|pw|n—p is mapped onto host
processor Gray,(z)|Gray,(y), and for a CCC host, submeshes of size \/2p’ x /2p’ are mapped
onto each cycle. Specifically, processor |, v|p—p@|n—py|pW|p—p'bln—p is mapped onto processor
z|y| path(v, w) of the CCC. In each case, host processors are assigned square submeshes of size K2.

Suppose each node of the guest mesh communicates L bits with its neighbors. Then for the
mesh host, each of its 4 channels handles K L bits. Similarly, each utilized channel of the hypercube
transfers KL bits. The total time required for the commuincation depends upon the widths of the
data paths, and the rate at which signals can travel along the paths, Table 2. On the CCC, there
is an extra level in the hierarchy. The submeshes held by the 2p’ processors in each cycle together
form a larger submesh of size \/2p’K x \/2p'K. Neighboring submeshes of the larger size lie in
cycles directly connected by an intercycle channel. Thus, the neighbors of the submesh held by each
processor may lie within the cycle or in a neighboring cycle. The data movement has three phases.
In the first, the processors communicate with their neighbors within the cycle. Processors whose
neighbors lie outside the cycle also send the required data to the processor that can communicate
with the appropriate cycle. In the second phase, the data collected in the first phase for intercycle
communication is actually sent over to the other cycle. Finally, in the last phase the data received
by each cycle is forwarded to the appropriate processor.

The first phase communication can be accomplished by a simple scheme in which the data asso-
ciated with all boundaries of the smaller meshes is circulated around the cycle. This communication
requires 4K L - 2p’ /2w. ~ 2PK L/w transmissions utilizing the bidirectional channels, w, = 2wp/P,
and assuming p ~ p'. Each transmission is over a distance of at most 25/P. The final phase can
easily be accomplished in the same time as the first phase. Thus the combined time for these phases
for the three timing models can be estimated to be 4PK Lt; /w, 4PK L(t2 + c2)/w and 8 PK Lt3 /w.
In the second phase all four intercycle channels can transmit concurrently. The number of transmis-
sions required is K L\/2p"/w, = PKL./2p’/2wp. The Graycode layout guarantees that the length of
each channel is at most 25/P' = 2/2p’S/P. Thus, the time required for this phase is respectively
PKLt,/(/2pw), (tz+c2log2y/2p")PKL/(\/2pw), and 2PK Lt3 /w for the three timing models. The
time for the first and last phases dominates, except for the resistive model. For the normal layout,
the longest channel has a length S/2. The results of this analysis are summarized in table 2.

4 Butterfly based algorithms

A butterfly network with V = 2" inputs has n + 1 stages numbered 0 through n, each stage having
2™ nodes. The nodes in the last stage also form the outputs of the network. Node 7 in stage j
is numbered (¢, 7). Node (al,—;—1b|1¢|1d|;—1,7) receives L bit arguments for its computation from
nodes (albc|d,5 — 1) and (alb|c|d,5 — 1) for 0 < 7 < n, and sends the the L bit results of its
computation to nodes (alblc|d, s + 1) and (a|bc|d, 7 + 1) for 0 < j < n. The algorithm has n steps, 1
through n. At the beginning of step 7, nodes in stage j receive data from nodes in stage j — 1, which
they use to compute during that step. Thus at the jth step only the nodes in stage 7 are active. The
N = K2P? nodes are mapped onto the P? processors so that the initial log K2 steps are executed
independently by each processor (consecutive mapping). The time required for the first 2k = logK?




Delay Model

Constant Capacitive Resistive

Mesh KLt Jw KLty /w KLts/w
Hypercube PKLt[w (t2 + c2p) P?KLts/2w

PKLJw

Hypercubegrqy | PKLt/w PK Lty /w PKLts3/w
cco 4PKLty/w | (4t2 +c2\/3p) | (P/VBD+8)
PKL]w PKLts/w
CCCarag | 4PKLiiJw | 4PKLisjw | 10PKLis/w

Table 2: Time for emulating one mesh like communication

steps is 2k K2. The remaining steps are similar to a butterfly algorithm with P2 inputs.

4.1 Naive butterfly emulations

For the hypercube, node (z|2,y|2k,7) is mapped onto processor z. In step 2k 4+, 1 < 1 < 2p of
the algorithm processor a|zp—;b|1¢c|i—1 communicates with processor alb|c, i.e., over a distance of
2imedr S for the normal layout with delays ty, t2 + c2(¢ — 1) mod p, and #32'~1m°d?_ The total
time, computed by summing over i, is 2pt; K2L/wp, and 2pta K2L/wp, + cop(p — 1) K2L/wy, and
2Pt3K2L/wy. The time required for the Graycode derived layout is computed in a similar manner.

~ For the mesh the communication in step 2k + ¢ is between processors that are at a distance of
2¢medr S The number of transmissions required is 2:™°4? K2[,/w. The total number of transmis-

sions over the course of the algorithm is Y i=2F 2¢~1medr K2 /) < 2PK2L [w.

For the CCC the first 2k local steps are followed by log 2p’ steps requiring communication within
cycles. This communication can be done in 2p’ iterations [5], each iteration requiring KL elements
to be communicated between nearest neighbors in the cycle. The maximum communication distance
in this phase is 2%, and the number of transmissions in this phase is 2p’ K2L/w,. The computation
takes log2p’ iterations, with each processor computing the results for K2L nodes in each iteration.
The final phase consists of 2p’ steps and requires intercycle communication in 4p’ iterations [5]. In
each iteration, the maximum number of data transmitted is K%L, and the maximum distance of
transmission is §/2 with the normal layout, and S with the Graycode layout. Each iteration requires
processors to compute results for K2L nodes. These results are summarized in table 3.

4.2 Butterfly emulations fully utilizing the Hypercube bandwidth

The naive butterfly emulation is unable to efficiently utilize the channels in the hypercube. There
are two ways in which this can be improved. Suppose the computation at each step is negligible,
as in barrel shifts, packing, bit reversal etc. Since these algorithms only involve data movement,
it is possible to start data transmission along dimension ¢ as soon as data begins to arrive along
dimension ¢ — 1. This pipelining allows all the communication channels to become active very fast.
For the constant delay model and K2L/wj, > 2p, pipelining improves the channel utilization by a
factor 2p. Similar results are obtained for the other models. Such improvements are also possible by
using a different technique when the computation involved in each step is not negligible. This is best
described in the context of an FFT. If the number of elements at each processor is K2, it is possible
to implement a radix 2k = logK? FFT. For 2k < 2p, this results in increasing communication
channel utilization by a factor 2k.




Communication Time Computation
Constant Delay Capacitive Delay Resistive Delay Time
Mesh 2Pty [K*L/w] 2Pty [K*L/w]| 2Pt3 | K*L/w| | K2L(2m + 2p)
Hypercube 2pty |PK*L/w| p(2t2 + ca(p — 1))- 2Pts- K?L(2m + 2p)
[PK2L/w) [PK2L/w)
Hypercubegray | 2pty |[PK*L/w] p(2t2 + ca(p + 1)) 4Ptg- K2L(2m + 2p)
[PK2L/w) [PK2L/w]
CCC 6pt; | PK*L/2wp| | 2p(3t2 + c(2p — 1))- 2p(P +2)ts- | K2L(2m + 4p)
[PK2L/2wp] [PK2L/2wp)
CCCqray 6pty |PK2L/2wp]| | 2p(3ta + c2(2p+ 1)) | 4p(P + 1)ts- | K2L(2m + 4p)
[PK2L/2wp] [PK2L/2wp)

Table 3: Time for FFT

These techniques can improve the performance of the hypercube by a factor of at most 2p, under
proper conditions, thus making its performance competitive with that of the mesh and the CCC for
the constant delay model.

5 Summary

Meshes are superior in emulating meshes if the data volume is large, (KL > w/P) for all three
timing models. The hypercube layout performs comparable to the mesh layout if the data volume is
low and if the constant delay model is applicable, and also under the capacitive and resistive model
if the Gray code layout is used. The performance of the CCC layout is inferior to the hypercube
layout by a constant factor.

The emulation of butterfly networks on a mesh layout yields a higher performance than on the
CCC and the hypercube for all three timing models if the data volume is high (K2L > w). The
“performance of the CCC is only off by a small constant factor (1.5) in the constant delay case. The
Gray code layout is almost as effective as the normal layout in the capacitive case, and inferior by
a factor of 2 in the resistive case. For small data volume, the wide channels in the mesh cannot be
utilized fully. Under the constant (capacitive) delay model, the narrow channels in the CCC can be
kept busy, and there is no (low) penalty for having long channels. In these cases the CCC performs
better than the mesh. The CCC is in general superior to the hypercube for butterfly emulation.

Table 4 summarizes the performance on broadcasting L bits using spanning trees. The con-
clusions are similar to those for butterfly emulation. Note that for the resistive delay model and
hypercubes it is preferable not to use a spanning tree of minimum height, but to form a spanning
tree of the wires forming a mesh embedded in the cube. However, the mesh layout is faster due to
its wider data paths. If latency is important, then the mesh is superior by a constant factor only
for the resistive model.

We conclude that with high data volume the mesh layout yields the best performance for all
the emulations under all timing models. For small data volumes, the mesh is comparable to the
hypercube and CCC if the Gray code layout is used for emulating meshes. It is inferior to both
the hypercube and the CCC for emulating butterfly networks and spanning trees if the constant
or capacitive delay models apply. Even for small data volumes, meshes are superior if the resistive
model applies.

For the emulations considered, the benefit of the Gray code layouts in emulating meshes is higher
than the drawback in emulating butterfly networks or trees.




Constant Delay Capacitive Delay Resistive Delay

Mesh ([L/w] — 1+ 2P)t, (IL/w] — 14 2P)t, ([L/w] —1+2P)ts

Hypercube | ([PL/w]—1+2p)t; | ([PL/w]—1)(t2+c2(p—1)) | (3([PL/w]—1)+2)Pts
+2pta + cop(p — 1)

Hypercube | ([PL/w] — 1+ 2p)t; ([PL/w] — 1)(t2 + cap) ([PL/w] —1+4)Pts
(Gray) +2pts + cop(p + 1)

cce (IPL/wp] —1+4p)t: | ([PL/wp] —1)(t2 +c2(p— 1)) | (3([PL/wp] — 1) +2)Pts
+4ptg + cop(p + 1)

CCC ([PL/wp] — 1+ 4p)ty ([PL/wp] — 1)(t2 + c2p) ([PL/wp] — 1+ 4)Pts
(Gray) +4pta + cop(p +3)

Table 4: Time for broadcast using naive spanning trees of minimum height
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