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Abstract

We describe a linearizable, wait-free implementation of a one-bit
swap object from a single max register and an unbounded array of test-
and-set bits. Each swap operation takes at most three steps. Using
standard randomized constructions, the max register and test-and-set
bits can be replaced by read-write registers, at the price of raising the
cost of a swap operation to an expected O(max(logn,min(log t, n)))
steps, where t is the number of times the swap object has previously
changed its value and n is the number of processes.

1 Introduction
A swap object supports a single read-modify-write operation swap that re-
turns the old contents of the object while setting a new value. The simplest
variant of a swap object is one that stores only a single bit. This variant is
equivalent to a test-and-set object that has been extended with a test-and-
reset operation, where each operation returns the old value of the object
and writes a new value (1 for test-and-set and 0 for test-and-reset), all as
an atomic operation.

General implementations of swap objects can be very expensive, even
given test-and-set bits. The best known general swap object implementation
is that of Afek, Weisberger, and Weisman [AWW93], which may require as
many as Θ(n logn) steps to carry out a single swap operation even in the
one-shot case. Whether this cost can be reduced is an interesting open
question.

We do not answer this question, but instead observe that the cost can
be greatly reduced if the size of the swap object is restricted to a single bit.
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We give a simple implementation of a swap object from a single max regis-
ter [AACH12] that indexes an unbounded array of test-and-set bits. The key
observation is that swap operations on a one-bit register can be linearized
by first by separating out groups of swap operations that all have the same
input 0 or 1 (using the max register), and then choosing a single operation
from each group to linearize first (using a test-and-set). Because the swap
object is limited to one bit, knowing whether an operation is linearized first
within its group is enough to determine its return value: it will be equal
to the common input of the group if it is not linearized first and equal to
the other input if it is. No further ordering of operations within a group is
needed.

It is known [AACH12] that unbounded max registers can be implemented
directly from read-write registers, at a cost of O(min(log v, n)) steps for any
operation that leaves a max register with value v. Test-and-set bits can
also be implemented from read-write registers if randomization is permit-
ted; the costs of the best current implementations are an expected O(logn)
register operations for each test-and-set operation assuming an adaptive
adversary that can react to what the implementation does [AGTV92] and
O(log∗ n) expected operations assuming an oblivious adversary that can-
not [GW12]. Applying these construction to our algorithm gives a cost
of either O(max(logn,min(log t, n))) or O(max(log∗ n,min(log t, n))) regis-
ter operations on average for each swap operation, where t is the number
of times the swap object switches between its two values in the linearized
schedule. For typical values of t, we would expect the O(log t) term to
dominate.

2 Model
We assume a standard asynchronous shared-memory model, with concur-
rency modeled by interleaving under the control of an adversary sched-
uler. We are interested in implementations of objects that are wait-free
(every process finishes in a finite number of steps in any execution) and
linearizable [HW90] (there exists a sequential execution of the object that
is consistent with the observed execution order).

Our base objects consist of a max register and an array of test-and-
set bits. A max register [AACH12] supports write and read operations,
where a read operation returns the largest value previously written. A test-
and-set bit supports a single operation TAS, which sets the bit to 1 and
returns the previous value. Unless otherwise specified, we assume that both
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the max register and the test-and-set bits are initialized to 0. As discussed
previously, we can also use standard techniques to replace these base objects
with ordinary registers.

3 Implementation
Pseudocode for the swap operation is given in Algorithm 1. The imple-
mentation uses a single max register maxRound, and an unbounded array of
test-and-set bits t[0 . . . ]. To initialize the swap object to b, set maxRound to
b and initialize t[b] to 1 (as if a TAS operation had already successfully been
performed on it); this is equivalent to running swap(b) with maxRound and
all test-and-set objects initialized to 0 and discarding the result.

procedure swap(v)1
r ← maxRound2
if r 6≡ v (mod 2) then3

r ← r + 14
maxRound← r5

if TAS(t[r]) = 0 then6
return ¬v7

else8
return v9

Algorithm 1: Pseudocode for a swap operation

The step complexity of this implementation is O(1). Indeed, each exe-
cution of swap requires either two or three operations on the base objects
depending on the outcome of the test in Line 3.

Both max registers and test-and-set bits can be implemented from regis-
ters. If the max register r is implemented from registers using the technique
of [AACH12], the cost becomes O(log v, n), where v is the value in the max
register. It is easy to see that v is bounded by the number of swap oper-
ations, since each swap operation increments it at most once. Test-and-set
bits can also be implemented directly from registers using randomization.
Using the best currently-known implementations, the cost is an expected
O(logn) steps per test-and-set operation [AGTV92] assuming an adaptive
adversary and O(log∗ n) [GW12] assuming an oblivious adversary. In either
case the cost of the test-and-set will be dominated by the cost of the max
register after a linear number of swap operations in the worst case.
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4 Linearizability
To show linearizability, we construct an explicit linearization order based on
the final value of r for each swap operation, with processes sharing the same
value ordered further by the linearization order of the test-and-set bit t[r].

Theorem 1. Algorithm 1 is a linearizable implementation of a swap object.

Proof. Fix an execution of the protocol.
For each swap operation σ, define r(σ) to be the value of the internal

variable r at the time of the call to TAS(t[r]) in Line 6 of the execution of
σ. Note that r(σ) mod 2 is always equal to the input value vσ of σ. Let Si
be the set of all swap operations σ for which r(σ) = i. We will construct
a linearized execution by ordering the sets Si by increasing i, and ordering
operations within each Si based on the linearization order for t[i].

To show that this is in fact a linearization, we must show both that it
respects the observable order of operations and that the resulting execution
corresponds to a sequential execution of a swap object.

For the first part, suppose that some operation σ1 finishes before another
operation σ2 starts. First let us show that r(σ1) ≤ r(σ2). The value r(σ1) is
either read from maxRound or written to it before σ1 finishes; the subsequent
read of maxRound by σ2 thus returns a value r′ ≥ r(σ1), and r(σ2) is either
r′ or r′+ 1, which in either case is greater than or equal to r(σ1). If r(σ1) <
r(σ2), then the two operations are in distinct sets Sr(σ1) and Sr(σ2), and σ1
is linearized first. If instead r(σ1) = r(σ2), then both are in the same set Si.
Now because σ1 accesses t[i] before σ2, it again holds that σ1 is linearized
first.

For the second part, we start by showing that there are no gaps in
the sequence of sets Si. Specifically, we observe that if Si is nonempty for
i > b+1, where b is the initial value of maxRound, then so is Si−1. The reason
is that if Si is nonempty, then either some operation reads i from maxRound
or writes i to maxRound. In either case, because i is not the initial value
of maxRound, there is a first operation σ that writes i to maxRound. This
operation must previously have read i− 1 from maxRound. Since i > b+ 1,
i− 1 > b, and so i− 1 can only appear in maxRound if some other operation
σ′ writes it. But then σ′ ∈ Si−1 and Si−1 is nonempty as claimed.

Now consider some specific operation σ and let i = r(σ). Recall that
i mod 2 = vσ, where vσ is the input to σ. There are two cases, depending
on the value returned by TAS(t[r]) in σ:

• If this value is 0, then we have that (a) σ is linearized first among
all operation in Si, and (b) σ returns ¬vσ = (i − 1) mod 2. If Si−1
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is nonempty, then there exists a swap(¬vσ) operation in Si−1 that
linearizes immediately before σ, and thus it is correct for σ to return
¬vσ. If Si−1 is empty, then i − 1 ≤ b. It cannot be the case that
i = b, because t[b] is initialized to 1, contradicting the assumption that
TAS(t[i]) returns 0. Nor can we have i < b. It follows that i − 1 = b,
and σ correctly returns the initial value b.

• If this value is 1, then either (a) σ is not linearized as the first operation
in Si, or (b) σ is linearized as the first operation in Si and i = b. In the
first case, σ returns the input to the previous operation in Si; in the
second, it returns the initial value b. In both cases this return value is
correct.

5 Conclusion
We’ve shown that it is possible to build a very efficient swap object from test-
and-set bits and max registers, if the swap object is limited to two values.
The key idea is that we can alternate sequences of swap(0) and swap(1)
operations so that the operations within each sequence can be linearized
with a single test-and-set bit. Because there are only two possible values,
the return value of each swap operation can be computed directly from the
result of the test-and-set operation: either it is linearized after another swap
with the same input, or it is linearized after another swap with a different
input. Unfortunately, there does not seem to be any direct way to expand
this trick to handle more than two inputs.

From the work of Afek, Weisberger, and Weisman [AWW93], we know
that a general swap object can be implemented directly from test-and-set
bits and read-write registers, but the cost per swap operation is superlinear
in the number of processes. This leaves a huge complexity gap between the
two-valued case and the general case. A natural next step might be to look
at less restricted cases such as three-valued swap. This object is general
enough to break the specific technique used here for two-valued swap, but
may still allow for a highly efficient implementation.

6 Acknowledgments
The question of how to build small swap objects was inspired by discussions
of a related problem with Dan Alistarh. I would like to thank Dan Alistarh,

5



Faith Ellen, and Keren Censor-Hillel for comments on the algorithm and
discussions of possible extensions.

References
[AACH12] James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Poly-

logarithmic concurrent data structures from monotone circuits.
Journal of the ACM, 59(1):2:1–2:24, February 2012.

[AGTV92] Yehuda Afek, Eli Gafni, John Tromp, and Paul M. B. Vitányi.
Wait-free test-and-set (extended abstract). In Proceedings of the
6th International Workshop on Distributed Algorithms, WDAG
’92, pages 85–94, London, UK, UK, 1992. Springer-Verlag.

[AWW93] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A com-
pleteness theorem for a class of synchronization objects (ex-
tended abstract). In Proceedings of the Twelfth Annual ACM
Symposium on Principles of Distributed Computing, pages 159–
170, 1993.

[GW12] George Giakkoupis and Philipp Woelfel. On the time and space
complexity of randomized test-and-set. In Proceedings of the
2012 ACM symposium on Principles of Distributed Computing,
PODC ’12, pages 19–28, New York, NY, USA, 2012. ACM.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems, 12(3):463–492, July
1990.

6


