An optimizing network architecture that works

Anand Rangarajan
Steven Gold
Eric Mjolsness

Research Report YALEU /DCS/RR-1036
May 1994

An optimizing network architecture
that works!

Anand Rangarajan,? Steven Gold? and Eric Mjolsness?®

Department of Computer Science
Yale University
51 Prospect Street
New Haven, CT 06520-8285

Abstract

We have achieved considerable success with an optimizing network
architecture for problems in vision, learning, pattern recognition
and combinatorial optimization. This architecture is constructed
by bringing together a number of different techniques including (i)
deterministic annealing, (ii) self-amplification (iii) algebraic trans-
formations, (iv) clocked objectives and (v) projection methods.

1 Introduction

Optimizing networks have been an important part of neural computation since the
seminal work of Hopfield and Tank [4]. The attractive features of these networks—
intrinsic parallelism, continuous descent inside a hypercube, ease in programming
and mapping onto analog VLSI—raised tremendous hopes of finding good solutions
to many “hard” combinatorial optimization problems. The results (for both speed
and accuracy) have been mixed. This can be attributed to a number of factors, viz.,
slow convergence of gradient descent algorithms, inadequate problem mappings,
poor constraint satisfaction etc.

In contrast. we have achieved considerable success with an optimizing network ar-
chitecture for problems in vision, pattern recognition, unsupervised learning and
combinatorial optimization. These problems are 2-D and 3-D pose estimation with

!Keywords: Algorithms and Architectures; Oral presentation preferred.
2E-mail address of authors: lastname-firstname@cs.yale.edu

unknown correspondence (in vision), weighted graph matching (in pattern recogni-
tion), clustering with point and graph matching distance measures (in unsupervised
learning) and the traveling salesman problem (in combinatorial optimization). We
have designed a network architecture that emphasizes speed and accuracy by us-
ing a combination of optimization techniques including deterministic annealing,
self-amplification, algebraic transformations, Expectation-Maximization (EM) like
clocked objectives and projection methods.

2 Deriving the network architecture

We now describe the techniques used in deriving the network architecture. This
derivation is carried out with inexact graph matching as an example. The same
overall network architecture is subsequently used in all applications.

The weighted, inexact graph matching problem can be stated as follows: Given the
adjacency matrices of the two graphs G(V, E) and g(v, e),

N 2 M N
mm Egn(M) Z Z Z("ab My; — Z Mag5:) — GZZ]M‘”" a>0, (1)

a=11i=1 j=1 a=11i=1
M N
subject to Y Ma; < 1, Vi, Y Me < 1, Va, Mo € {0,1}. (2)

a=1 i=1

When the constraints are equalities rather than inequalities and weights in {0, 1},
this reduces to the graph isomorphism problem.

2.1 Deterministic annealing

The integral constraints on M are relaxed via deterministic annealing. It can be
shown [11] that deterministic annealing corresponds to adding a certain barrier
function to the original objective (1). The barrier is indexed by a control parameter
3 which is identified with the inverse temperature in an annealing process. The
annealing is completely deterministic.

1U+1 N+1

Equ(M, p,v) = ﬂ Z Z Mg; (log(Mai) — 1) (3)

T]]\l+1 M+1
+Zﬂa (Z Mm“‘l>+zl/z(z Mai'_1>

The inequality constraints are enforced via Lagrange parameters ¢ and v and slack
variables. The slacks are incorporated in M as an extra row and column which do
not necessarily sum to zero or one. The barrier function keeps M non-negative. An
annealing schedule is prescribed for 8 (low to high values). This is similar to the
gradual change of a barrier function control parameter. Deterministic annealing
ensures gradual progress towards a vertex of the hypercube.

2.2 Self-amplification

Deterministic annealing by itself cannot guarantee that the network will converge
to a valid solution. However, self-amplification [10] in conjunction with annealing
will converge for the constraints in (2) [11]. A popular choice for self-amplification
is [7, 8, 1]
N M41N+1
Esa(M)z_'Q_ Z ZMazia y>0. (4)
a=1 i=1
Self-amplification in conjunction with annealing ensures that a vertex of the hyper-
cube is found.

2.3 Algebraic transformations

An algebraic transformation [6] transforms a minimization problem into a saddle-
point problem. The advantage of this operation is two-fold: (i) it cuts network costs
in terms of connections and (ii) the transformed objectives are easier to extremize.
Consider the following transformations:

ot 2
X ax- % (5)
Xlog(X)-X — XU-exp(U) (6)

where X and U are reversed “neurons” [6]. Using these transformations, we trans-
form the graph matching objective to

M N M N 1
Eam(M.U A pv) =373 | Nai (Z GasMyi = 3 Majgji | = 5%
a=11i=1 b=1 j=1
M N | MAIN+ 7 _—
a ; ; Mai + az::l > [Ua,,Ma, — exp(Uai) — §Ma,»}
M N+1 N M+1
+Zﬂa< Mai_1)+ZVi<ZMai_l)~ (7)
a=1 i=1 i=1 a=1

The objective becomes linear in M following the application of the transforma-
tions in (5) and (6) to the graph matching and barrier function terms respectively.
This has come at the expense of finding a saddle-point (minimization w.r.t M and
maximization w.r.t A, U, u and v). With the application of the algebraic transfor-
mations, the relaxation is partitioned into four phases; A, U, M and (u, v).

2.4 Clocked objectives
After expressing the constraints and performing the algebraic transformations, the

control structure for performing the network dynamics is specified by a clocked
objective function [2]:

E@ = Eam </*,[j*, M*, <(/‘I”M)* ,(V, M)*>®>@ (8)

where Egum (-)g is a clocked phase (iterated when necessary) and ()" indicates an
analytic solution within a phase.

With this notation, the clocked objective states that closed-form solutions of A, U
and M are used by the network.

Moo = D GaMy— Y Majgji, (9)
b J
Ui = =B Gradsi— D Aajgi; — YMai | , (10)
b 7
M;, = exp (Ui — Bpa — Bui). (11)

The network dynamics for the graph matching problem proceeds by coordinate-
wise extremization on A, U, M and further relaxation on the constraints (¢ and v).
Clocked objectives allow analytic solutions within each phase, highly reminiscent of
the EM algorithm [5].

2.5 Projection methods

The clocked objective includes a phase where we have to solve for the Lagrange
parameters g and v. However, it can be shown [11] that this can be replaced by
a projection onto the constraints. Note that the constraints are not as complex as
the general integer programming constraint [1]. Projection corresponds to iterative
row and column normalization:

Mai

Mai .
———— i€ {l,N}; My — —7—
Stk Mo st Mo

The projection includes the slacks as well and is not restricted to a square matrix,
unlike [11].

Mgyi — ,a€e{l,M}. (12)

To summarize, deterministic annealing creates a sequence of objective func-
tions which approaches the original objective function (as @ is increased). Self-
amplification in conjunction with annealing ensures that a vertex of the hypercube
is reached. Algebraic transformations in conjunction with clocked objectives help
partition the relaxation into separate phases within which analytic solutions can
be found. Constraints are solved by projection and in the case of graph matching
(and quadratic assignment in general), the iterative row-column projection method
is used. With the clocked objectives, analytic solutions and the projection method
in place, we have our network architecture.

3 Problem examples

We now apply the same methodology used in deriving the inexact graph matching
network to several problems in vision, learning, pattern recognition and combina-
torial optimization. None of the networks used penalty functions, gradient descent
with line search parameters or general constraint solvers. In all experiments, Silicon
Graphics workstations with R4000 and R4400 processors were used.

3.1 Point matching

The point matching problem arises in the field of computer vision as pose estimation
with unknown correspondence [2]. The problem is:

min Epm(M, 4) = 3 Maill2i — Ayall” +9(4) = @Y Mai (13)

ai ai

subject to ZM“" <1, and, ZM"‘ <1
a i

where z and y are two point sets (2-D or 3-D) and A is a set of analog variables
(rotation, translation, scale, shear). Since the objective is linear in M, no algebraic
transformations are necessary. With M held fixed it is possible to solve exactly for
A. When A is held fixed, we project on the constraints. In our experiments, A is
an affine transformation which is decomposed into rotation, translation, scale and
vertical and oblique shear. Each point matching instance takes between 15 to 50
seconds depending on speed/accuracy tradeoffs.

——= 2.5
05 ,—»""_-'5100/0
oa T V 2
2 U,
g 815
g0-3 30% s
§ 02% z]
L S
0.1 - :':'66/: 0.5
- == 0
0.02 0.04 0.06 0.08 0 0.05 0.1 0.15
standard deviation . standard deviation

Figure 1: Left: (a) Affine point matching of 50 point 2-D point sets with 0, 10, 30
and 50% deleted points and 10% spurious points. Right: (b) Clustering with an
affine point matching distance.

To test affine point matching, 2-D point sets with 50 points were generated by
sampling from a uniform distribution in the unit square. The point sets were trans-
formed via an affine transformation followed by additive Gaussian noise with varying
standard deviations. Then a fraction of the points are deleted and another fraction
added. We generated 500 test instances at each standard deviation. The results
are shown in Figure 1(a). The four curves show the performance for 0, 10, 30 and
50% deleted and 10% spurious points. The error is computed for all affine trans-
formation parameters and is the ratio of the absolute error to the interval in which
the parameters lie. Note that there is virtually no difference between 0 and 10%
deleted points.

3.2 Clustering with smart distances

We now embed the fast 2-D affine point matching method in a clustering objective.
The goal is to classify shapes that are distorted by an affine transformation and

have missing and extra features with respect to each other. We have described this
in an earlier work as clustering with a domain-specific distance [2] where the aim
was to use the natural distortion measure (point matching in this case) rather than
a standardized, invariant distance measure. The domain specific clustering problem
is formulated as

I,T,irg,A Eq(M,y,m, A) = Z M,iDyi(z,y,m, A) (14)
a
subject to Z Mga; = 1, and constraints on m, A
a
where D,;(z,y,m, A) is the point matching distance measure of (13). Here y are the
point set cluster centers and M,; the cluster membership matrix [2]. The resulting
network is similar but more elaborate than the one reported in [2]. The distance
measure allows for shear and scaling distortions and missing and extra features
which were absent in [2]. The network consists of an outer phase (clustering) and an
inner phase (point matching). Both phases are extremized with EM like dynamics.
The objective has nearly a million variables and takes about, 4 hours to optimize.

We generated 8 prototype point sets with 20 points each and a total of 256 point sets
from all prototypes using the entire range of transformations (affine, permutation,
missing and extra features, additive noise). We report the results in Figure 1(b).
At each standard deviation, 10 trials were run. The results are good at low stan-
dard deviations and the bias in the results gets larger as the standard deviation is
increased, as expected.

3.3 Graph matching

We have already examined the graph matching problem and constructed its opti-
mizing network. Undirected 50 node graphs were generated with weights uniformly
distributed in [0, 1]. The distorted graph was generated by randomly permuting the
nodes and adding uniform noise to the links. Then, a fraction of the nodes were
deleted. We generated 100 test instances at each standard deviation. Figure 2(a)
sunimarizes our inexact, weighted graph matching results. The three curves show
the performance for 2, 10 and 20% deleted nodes As expected, the performance
degrades as more nodes are deleted and more noise is added. At low numbers of
deleted nodes and moderate standard deviations, the network performs well. Fig-
ure 2(b) depicts exact graph matching for 100 and 50 nodes with 200 and 1000 test
instances respectively at each standard deviation. The 50 node and 100 node exact
graph matching optimization take about 10 seconds and 80 seconds respectively.

Elsewhere, we have reported closely related (more accurate but slower) Lagrangian
relaxation networks for 100 node graph isomorphism and matching [8] and these
compare favorably with other neural net graph matching networks in the literature

[9].
3.4 TSP

We formulate the TSP problem in a conventional manner [4, 7].
n}t}n Et_sp(M) = Z MaiM(ael)jdij (15)

aij

8100 %80

=g L

L L

g 80 ¥ 60 Iy

g 60 g /,//

g 40 o 100 node -

"E ‘E 20 g

g 20 S _+ -7’50 node

1] e ot

[0 @ 0 - =

e 005 0.1 015 0.2 < 005 0.1 015 0.2
standard deviation standard deviation

Figure 2: Left: (a) Inexact 50 node graph matching with 2%, 10% and 20% deleted
nodes. Right: (b) Exact 50 and 100 node graph matching

subject to > My =1,Y4, 3 M =1,V a, and My € {0,1} (16)
a ‘

where d;; is the city—city distance. Poor constraint satisfaction of (16) is one of the
reasons for the poor performance of the original Hopfield network. This was partially
corrected in [7] by keeping one of the constraints (row or column) always satisfied.
By using the row-column projection method, we ensure that the constraints are
always satisfied via a separate phase of optimization. The algebraic transformation
in (6) is used for the barrier function and the resulting network is very similar to
the one reported in [7] with the crucial difference being the row-column projection
method for the constraints. A typical 100 node TSP run takes about 3 minutes.

600 ——— T T T T T T
400+ b
200} .
0 nﬂ |,|—|n L il 1 L 1 1
6 8 10 12 14 16 18 20 22 24
tour length

Figure 3: Histogram plot of tour lengths in the 100 city Euclidean TSP problem

We ran 2000 100-city TSPs with points uniformly generated in the 2-D unit square.
The asymptotic expected length of an optimal tour for cities distributed in the unit
square is given by L(n) = K\/n where n is the number of cities and 0.765 < K <
0.765+2 [3]. This gives us the interval [7.65,8.05] for the 100 city TSP. A histogram
of the tour lengths is displayed in Figure 3. From the histogram, we observe that

98% of the tour lengths fall in the interval [8,11]. No heuristics were used in either
pre- or post-processing. These results are preliminary.

4 Conclusions

We have constructed an optimizing network architecture that performs well on
a variety of problems in vision, learning, pattern recognition and combinatorial
optimization. The resulting networks are fast and have been used in large scale
(million variable) nonlinear optimization problems. This work renews the promise
of optimizing networks.

Acknowledgements

This work is supported by AFOSR grant F49620-92-J-0465, ONR/ARPA grant
N00014-92-J-4048 and the Yale Center for Theoretical and Applied Neuroscience.
We acknowledge Chien-Ping Lu, Suguna Pappu, Manisha Ranade and Alan Yuille.

References

[1] A. H. Gee and R. W. Prager. Polyhedral combinatorics and neural networks.
Neural Computation, 6(1):161-180, Jan. 1994.

[2] S. Gold, E. Mjolsness, and A. Rangarajan. Clustering with a domain specific
distance measure. In J. Cowan, G. Tesauro, and J. Alspector, editors, Advances
m NIPS 6. Morgan Kaufmann, San Francisco, CA, 1994.

(3] B. L. Golden and W. R. Stewart. Empirical analysis of heuristics. In E. L.
Lawler et al. editors, The Traveling Salesman problem: A guided tour of com-
binatorial optimization, pages 207-249. John Wiley and Sons, New York, 1985.

(4] J.J. Hopfield and D. Tank. “Neural” computation of decisions in optimization
problems. Biological Cybernetics, 52:141-152, 1985.

[5] M. 1. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6(2):181-214, March 1994.

[6] E. Mjolsness and C. Garrett. Algebraic transformations of objective functions.
Neural Networks, 3:651-669, 1990.

[7] C. Peterson and B. Soderberg. A new method for mapping optimization prob-
lems onto neural networks. Intl. Journal of Neural Systems, 1(1):3-22, 1989.

[8] A. Rangarajan and E. Mjolsness. A Lagrangian relaxation network for graph
matching. In Proc. ICNN ’94. IEEE Press, 1994.

[9] P. D. Simi¢. Constrained nets for graph matching and other quadratic assign-
ment problems. Newral Computation, 3:268-281, 1991.

[10] C. von der Malsburg. Network self-organization. In S. F. Zornetzer et al.,
editors, An Introduction to Neural and FElectronic Networks, pages 421-432.
Acad. Press, San Diego, CA, 1990.

(11] A. L. Yuille and J. J. Kosowsky. Statistical physics algorithms that converge.
Neural Computation, 6(3):341-356, May 1994.

