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Abstract
We define and analyze a procedure for computing approximate
eigenvalues and eiéenfnnctions for self-adjoint elliptic
operat§rs using a combination of inverse iteration and a
multi-level iterative technique. This algorithm achieves the
optimal order work estimates typical of multi-level

techniques.
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1. Introduction

In this work we consider the solution of the self-adjoint elliptic

eigenvalue problem

~VaVu + bu=2A 1 in 0 C RZ.
u=0 on 801,
du/én =0 on 30 - 801. (1.1)

where © is a polygonal region in R2. ae Cl(ﬁ). be Co(ﬁ), with

0 <a(a(x) £a,

0 <b(x) <b, , for x ¢ 0.

When one discretizes the weak form of (1.1) using a finite element
discritization one obtains a generalized algebraic eigenvalue problem of

the form
AU=2AMT ’ (1.2)

where the stiffness matrix A and the mass matrix M are large, sparse,

symmetric, and positive definite (A may be only semi-definite).

Some effective ways to solve (1.2) are through the use of inverse
iteration and its extensions and generalizations (e.g., the Rayleigh
quotient method, block inverse power method and subspace iteration) [10]

[11] [12], or more recent procedures based on the Lanczos method [6].
These methods all require the solution of ome or more‘linear systems of the

form




(A-pM)U=B (1.3)

in each iteration. In many instances, these systems are solved by sparse

direct methods based on Gaussian elimination,

In this work, we analyze & procedure for computing the eigemvector
correspnding to the smallest eigenvalue by means of inverse iterationm,
using a multi-level iterative method to approximately solve the required
sets of linear equations., This was done to simplify the analysis as much
as possible rather than to advocate any specific algorithm. Our real hope
is that this work will suggest that multi-level techniques can be
advantageously inéorporated into many of the usual algorithms which are
used to solve finite element eigenvalue problems. Our approach to the
problem was motivated by the work of Blue, Wilson and their coworkers

[4], [5] in combining an multi-level code for linear boundary value

problems [3] and a Rayleigh quotient method.

When the shift p is equal to an eigenvalue, it is hard to make
quantitative assessment of the success of the inverse iteration procedure
since the condition npmber of A- p M becomes infinite. In our analysis,
we must bound the shift away from the eigenvalues by a small ammount in
order to establish norm estimates for the rate of comvergence. However,
our convergence proof shows that when this assumption is violated, one
should expect the customary rapid convergence of the procedure, for

essentially the same reasons as in the case of Gaussian elimination.

As in the case of linear boundary value problems, the application of

the multi-level iteration to (1.3) results in an algorithm in which the




smallest eigenvalue and corresponding eigenfunction can asymptotically be
computed in O(N) operation; (N is the order of A and M). Another effective
multi-level technique for eigenvalue problems has been proposed by |
Hackbusch [7]. Bis apprbach is somewhat different from ours in that he
develops a more self—contain?d multi-level procedure specifically for
eigenvalue prﬁblems. as opposed t§ incorparating multi-level techniques, as
linear equations solfers. into existing algorithms. A Rayl?igh quotient

scheme similar in some respects to ours is described in McCormick [8].

In Section 2, we define terms, establish thation, state our
assumptions, and prove some preliminary Lemmas. In Section 3, we define
the j—level iteration and analyze its convergence when p is close to the
smallest eigenvalue. In Section 4, we consider an idealized inverse
iteration procedur? using the j—level iteration to approximately solve the
linear systems. In Section §, we present a numerical example and make some

concluding remarks.

2, Preliminaries

We seek a numerical approximation of the weak form of (1.1): find u ¢

Ké and A ¢ R such that

a(o,v) = A (u,v) for all v ¢ Hé. (2.1)
where
1 1 -
He=1{v lver(2) , v=00n2de },
a(u,v) =/ avaVw+buvdx ,
0
(v,v) =S uv dx . (2.2)

Q



The problem (2.1) will in general have an infinite sequence of

non-decreasing eigenvalues
0$11$x2 e o0

and corresponding eigenfunctions §j. Without loss of genmerality, we assume

that 11 is positive, and that
a(&i,gj) =2, &, ,
(3,80 =8, , (2.3)
where sij is the Kronecker delta.

In this work we will focus attention on the approximation of 11 and
§1. In particular, we note that the minimax characterization of 11 is

given by

11 = inf a(u,u) / (u,u) . (2.4)

For non-negative integral k, let Bk(ﬂ) be the usual Sobelev space equipped

with the norm

2 = 3 pPal]

Il < x

(DBu,DBn) .

L}
NA1

Igl

I~
w



For positive non-integral k, define Hk(ﬂ) by interpolation, and for k
negative, define Hk(ﬂ) as the dual of B_k(ﬂ). We define the emergy norm,

“In"lz = a(u,u), and note that for some positive constant C = C(a,b,2),
c1 "n"i £ a(u,u) < C "u"i , for all u ¢ Hé (2.5)

Ve assume & modest ammount of elliptic regularity for the solution u ¢

Hé of the boundary value problem

'a(u,v) = (f,v) for all v e Hé. (2.6)

Specifically, we assume there exists 0 < @ { 1 such that v e Hl+a(9)

provided f ¢ Ha-l(ﬂ) and
el . < c,v,0) Nell _, . (2.7

Let QTi be a triaﬁgulation of . Ve assume qu to be both
quasi-uniform and shape-regular. Letting ht denote the diameter of t ¢

0.71’ we set

h, = max h .
1 t e qu t

Let ht dt denote the diameter of the inscribed circle for t. We define the

positive constants 80 and 8, by

80=miny d »

t ¢ )1 t
81 = min ~ ht / hl . (2.8)
t e ) 1

We inductively construct a nested sequence of triangulations 07;,

j=1,2,..., starting from‘frl in the usunal fashion. For each t ¢ QT&_I,

construct four triangles in 97’ by pairwise commecting the midpoints of the
j y



edges of t. Each triangulation QTj will then have the same shape regularity

and quasi-uniformity constants, 80 and 81, as in and will have

hj = max h, = by o173
te 933

With each triangulation ?T}, we associate the Nj-dimensional space‘?ﬂj
c Hé of Co—piecewise linear polynomials., Since the triangulations are

nested we have the inclusion property

My CcMy» 1L3<k

Also,

N, =4N. ., , > 1.
j j-1 .

We assume that the spacesfn?j satisfy the following standard
approximation property [9], [12]: if u e BS(02), 1 { s {1 + a, then there
exists u e Qﬁj such that

s
“n—njﬂo + hj "n—ujnl £c hj “n"s (2.9)

where C = C(BO,SI,Q).

The finite element analogue of (2.1) is: find ® e‘qﬁj and A ¢ R such

that

a(u,v) =i (u,v) for all v e’”]j . (2.10)
The problem (2.10) will havg Nj real eigenvalues
12j £ oo £ lej

and corresponding eigenfunctions 515' We assume without loss of gemerality



8850 By) =25y 85y
(B4 Bxjy) = 84k - (2.11)

The minimax characterization of the smallest eigenvalue 11. is given
J

by

xl. = min a(u,u) / (u,u) . (2.12)
I ow e,
v#03

A simple homogeneity argument, coupled with (2.5) and (2.8) shows

h-2

j . (2.13)

lN.j £ C(a,b,&o.Sl,Q)
J
We shall assume that kl is a simple eigenvalue well separated from 12.

Then, using (2.7), (2.9), and standard finite element error analysis [12],

one can show that
P a. a/2
2a 1+a

R TRES +-3(1 By Ay . | (2.14)

If h1 is sufficiently small llj is simple and well separated from xzj
(independent of j). Finally, note that the minimax characterizations (2.4)

and (2.11) can be used to show

(2.15)

I~

[
I~
w
.

M LAy LA 1

Let © e'?ﬂj. Then



We define the norms "lu"ls. -2 {s 2, by

N.
X 2
2 _ s
Well} = 3 ofaj, . (2.16)
i=
Note lllulll = "ln"'l. and "n"o = "ln“lo for u ¢ qu.

The following lemma is proved in [2], [1].

Lemma 2.1: Let u eﬁWj. Then there exists C = C(a,b.ﬁo,sl,ﬂ) such that,

for 0 { s <1,
¢ lkll_ < Mol < c Ikl (2.17)
s s s
The following Lemma follows from results in [1].
Lemma 2.2: Assume that (2.7) and (2.9) hold and let u eﬁbg. Then

(2.18)

1+a
inf "u—v"o £cC hj "ln"'1+a ’

v efh]j_l
where C = C(a,b.&o,Gl,Q).

Let p be an approximation of ll. Ultimately, p will be the shift in

the inverse iteration procedure.



Lemma 2,3: Let u 87? and u sqg_l satisfy
a(e-u,v) - p (v-u,v) =0 » for all v sﬂg_l. (2.19)
If p < llj satisfies
2 2 ,1/2
i 8y 5-17%1; I p Ml 81 5-17%1; g 1%« Mg mo (2.20)
then

Mall <c Ml . (2.21)

Proof: Lemma 2.3 states that the projection with respect to the inmer
product given in (2.19) is stable with respect to the energy norm, provided

that p satisfies (2.20). Let

Ny
L T I } By 8551
i=2
= 111 + uz.
Then
2 _
"luzﬂl = a(uz,uz)

I~

-1
(l—p/kzj_l) { a(uz.uz) -n (nz,uz) }

)y a@) - 3,3 )

I

(1-p/x2j_1

(1—p/12j_1)'1 { a(z,0) - (3,0 )

c MMl Mol (2.22)

[ 2N
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where we have used (2.19) with v = u. Also,

_.1/2 _ -1 - -
“Iulﬂl = llj—l(llj—l p) | a(u,tlj_l) - (n.tlj_l) |

1/2 -1 .
< xlj_l(xlj_l—p) {1 a(u.glj) -u (u.Elj) I

+ | ““"1j-1“§1j)’ B (n'glj—l—tlj) 13

-1
L€ (g g L Oy 4
_ 2 _ _ 2 .1/2
[ Hl&lj §1j_1ﬂl p lllt1j §1j_1"l0 )| } Ml
<c Ml (2.23)

where we have used (2.15) and (2.20). The lemma now follows since

mam? = Mo W+ W, W2

3. The j-level Iteration

Let p be an approximation of 11, to be taken as a shift for the
inverse iteration procedure. The algorithm outlined in Section 4 consists
of solving a sequence of problems of the form (1.3), or, in finite element

notation, find z e . such that
043
a(z,v) = p (z,v) = G(v) for all v eﬂv1j. ‘ (3.1)

where G(v) is a linear functional. The exact interpretation of G(v) will

vary in different situationms.

The j-level scheme we will analyze here is addressed to problems of

the form (3.1) and can be defined inductively as follows:



11
1. If j=1 (3.1) is solved exactly, typically by a direct method.

2, If j§ > 1, one iteration of the j-level scheme takes an initial

)/ . 1 .
guess z, 345 to a final guess Z 4 € 6 as follows: for 1 ( k ¢

m,

(z,-2,_,¥) = (xij—.n‘l 6(v) - alz,_1.v) +p (z ;W)  (3.2)

.

for all v 87%. Let q 84%_1 be the approximation of E 54?_1

generated by applying p iterations of the j-1 level scheme to

the residual equations

a(a,v) - n (g,v) = G(v) - a(zm,v) + (zm,v) (3.3)

G(v)
for all v 375_1. starting from initial guess zero. Then set

241> %nt Q- (3.4)

This scheme is analagous to the j—level scheme described in [2] and
reduces to that scheme in the case p = 0. As usual, the particular form of
the smoothing iteration (3.2) is chosen for convenience, and can be
replaced by computationally more attractive iterations as outlined in [2].
In practice, we take p = 2, since this choice leads to optimal order work

estimates.
The following Theorem is the analogue of Theorem 1 in [2].

Theorem 3.1: Let the assumptions detailed in Section 2 hold and let p > 1

be any integer. Let p < llj satisfy

1/2

2 2
Oy o=ty % - My, =gyl Y77 C8 0oy, -w) (3.5)
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for some & > 0. Then there exists a constant 0 { y ¢( 1, and an integer m >

1, both independent of j, such that, if & is sufficiently small and

Ma-qll <+ WMall , (3.6)
then
Proof: Let ey T %y TIs 0 (k { mtl, and let
N.
J
6= 2 835

N,
J
ey = Doy by L (A A ) 1 (L= ) 1E (3.8)
k i 7ij ij XN ] N.j : *
i=1 . ]
From (3.8), it is evident that
Me M < Me M. (3.9)
m 0
Next, note that (3.3) can be written as
a(q-em,v) - (q—em,v) =0, (3.10)

for all v e/pk._ From Lemma 2.3, we have

j-1°

Mgl <c e Wl <c leyll. (3.11)



We must now obtain a bound for |"arem|". Let

N,

i
m - P18yt Eﬂigij

i=2

n
|
(]
I

=P + Py »
and choose p e‘?ﬂ}_l to satisfy
a(pz-;.v) -n (pz—E.v) =0

p i
for all v ei)'(j—l' Then, for n a%(j-l'

2
“|p2"| a(p,,p,)

-1
£ Q- p/xzj)

-1

= (1 - p/xzj) { a(i—em.pz) -n (3f°m'92’ }

-1

=(1

-1
(1 - ll/lzj) {

I~

¢ Oy =02 thne lly Wp,=3 I
j

I~

c o~ R e
n i m

1+
jJ

where we have used Lemmas 2.2 and 2.3. A standard argument given in

shows
-a/2 ,a/2
eyl < 0o A% Mg
Thus, (3.12), (3.13), together with (2.13) show

2 -a/2 -
Mo M2 <cm™2 Wage I Moyl .

{ a(pz.pz) - (pz.pz) }

"’*23’ { a(afem.pz-;) - (Efem.pz-;) }

a(n—em,pz—s) -u (n-em.pz-;) }

M M

13

(3.12)

[2]

(3.13)

(3.14)
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To estimate "lplﬂl. note

"Iplﬂl = ligz ().lj--n)—1 | a(a—em.ﬁlj) - (Efem.tlj) |

1/2 -1 - -
2 (Alj-p) | a(qfem.ﬁlj—§1j_1) -p (q-em.tlj—ilj_l) I

I

C5s Hlafemlﬂ (3.15)

where we have used (3.5). Thus

- 2 2 2
q-e MM Mo M5+ o, l

A

-a/2 - , - 2
Cu 2 Wegll Ma-e I +c' & M-e

or

/2

Ma-e Ml ccu®? @a-co)™ Mell . (3.16)

Thus, from (3.6), (3.11), and (3.16)

"lem+1"| 4 "lem—qﬂl + Mq-qlll

a/

cCi{yP+m 2 1-c'e)y Hleoﬂl . (3.17)

I~

Choosing y sufficiently small that Cyp £ y/2 and m sufficiently large that

Cm-a/2 (1-C'8)_1 £ v/2 completes the proof.

We now consider in detail the role of assumption (3.5) (and (2.20) of
Lemma 2.3). Basically (3.5) provides the ability to comtrol the error in
the direction of 515 in (3.15). As p approaches llj' the argument given in
(3.15) fails. Thus, in the term |“Efeml" in (3.17), we are only able to
control the portion of the error orthogonal to §1j. However, since we

expect to incorporate this scheme in an inverse iteration procedure, we are
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really only interested in computing a vector in the direction of glj’ and
as a8 practical matter we can tolerate (or even applaud) errors in this

particular direction.

The term [l q-qlll in (3.17) measures the error due to the recursive
application of the j—level iteration. As p approaches llj’ we lose the
ability to control the error in the direction of §1j_1 in Lemma 2.3.
However, this is also not serious in the present context for several
reasons. First, most of this error lies in the direction of §1j; by (2.14),
D

b
than the part lying in the direction of &, .. Second, with p i.l . LA,
1j 1j 1j-1

one can see that the error in §1j_1 orthogonal to Elj is smaller by O(h

by (2.15) (with llj < xlj-l unless §1j = Elj-l) the deterioration of the

bound (2.23) is generally much less severe than in (3.15).

Finally, as a practical matter, the proofs of Lemma 2.3 and Theorem
3.1 suggest that it might be advantageous to choose shifts p which satisfy

 <(p(

p < xlj. For example, if one were to choose a shift satisfying llg £

xlj-l with p closer to llj-l than to llj’ convergence to the direction of
§1j might be retarded somewhat, since the term '"afqﬂl would then be the

term over which we have least control.

4., A Multi-level Inverse Iteration Algorithm

In this section we comsider an idealized inverse iteration procedure

in which the j-level scheme is used to solve (approximately) the resulting

linear systems. Suppose xlj is known and we have some initial guess UOj €
’Yn.. Let lo,.ll =1, and assume
j 0j
| alo I > Y2 (4.1)

0508150 1 22572
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and that the shift "j satisfies (3.5). Then the inverse iteration
procedure for computing ckj' x=1,2,... is defined as follows: Compute ;kj

e ﬂqj, an approximation of ;kj e’77j, where
a(ckj.v) - "j (akj.v) = {llj-pj} (ck_lj,v) (4.2)

for all v e‘?ﬁj, using r > 1 iterations of the j-level scheme and initial

guess © Then set

k-1j5°
oy = oy | Moy M - (4.3)
We shall choose r and pj to satisfy

0 < R, —p) <172 - 2¢° .
(llJ pJ) / (XZJ uJ) / Y (4.4)

where y is given in Theorem 3.1. This can be done consistantly with (3.5)

since llj and le are assumed to be well separted independent of j. Let
mkj’ wkj’ and wkj denote the restrictions of ij. ckj' and ckj’

respectively, to the orthogonal complement of tlj'

Theorem 3.1 tells us that

o Ml

~ = T
|||ckj ckj"' £y o kj

k-1j

£ 7r "'mk—lj“l . (4.5)

We now seek to estimate “lmkjul = “lwkjﬂl / “|akj“| in terms of “lmk—ljnl‘

First note that

~ — + ~ -—
Wag, M < Wag I+ Wa -y W

I~

— + ~ -—
Moy M+ WEy -z

[

T
{ (xlj—pj) I Ogm) +y ) Hlmk_ljﬂl (4.6)
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where we have used (4.5). Also

| ’(ckj’glj) 1> 1 a(akj’clj) I - I;a(ckj_ckj’glj) |

> (/2 - %) xigz , (4.7
where the second inequality follows if we assume (as an induction
hypothesis) that

L ato, 408, 12 xigz/z . (4.8)
Noting that (4.4) shows yr < 1/2, we have
llI'&kj M>12-+4">0, (4.9)

and
T r.-1
lllmkj m <t (yymry) 1 Oy Bty ) (/2 -y lllmk_ljm
Le lllmk_lj m, ' (4.10)

where ¢ ( 1 by (4.4). Note that for an appropriate choice of shift "j’
both ¢ and r can be taken independent of j. Also note that (4.10) validates

the induction hypothesis (4.8). Thus we have shown

—

Theorem 4.1: Let the hypotheses of Theorem 3.1 hold,let r and "j satisfy
(4.4), and let ch satisfy (4.1)., Then the iterates ckj defined by
(4.2)-(4.3) converge to + k;;lz tij'

As the final step in our analysis, we consider an overall procedure in

which we sequentially compute approximations to §1j’ j=1,2,..., using the

approximation of §1j—1 as the initial guess for §1j.
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-1/2 ¢
11 11

iterations of (4.2)-(4.3) using the 1-level scheme (direct

1. For j=1, compute o, an approximation of + A , using 5,

solution) and some initial guess not deficient in §11.

2, Then for j > 1 we compute cj e’pij. an approximation of * l;}lz
§1j. using s iterations of (4.2)-(4.3) and initial guess oj—l €
[} ..M
To analyze this procedure, we first consider the extent to which oj-l
lies in the direction of ﬁlj' Letting mj be the component of oj orthogonal
to glj’ and assuming "|aj"| =1, we have
_ _ 2, .1 1/2
.1 % { Q1 "lmj_lﬂl ) llj-l } §1j_1 + i1
_ _ 2, .-1 1/2
={Q lllmj_llll RSP A Y (4.11)
1/

2, -1 2
+ { (1—Hlmj_1HI ) Ay ) (8500 8 0 ¢ Wiy -

The last two terms in (4.11) may have some non-trivial compoment in the
direction of §1j. Nonetheless, on the basis of (4.10) and (2.14), we have,

for j > 1

ey

s 2, -1 ,1/2 _
Wo < e® € =Mo_ W2 a7t 0% Wey y-¢
S
+ e Mo I

s a ,(a-1)/2 a
<t UK, By A (142%) + W, , M 3. (4.12)

1 1

Solving the majorizing difference equation, under the assumption that

a s

2°¢ (1, we obtain
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Mogll ¢ 29 Moyl + § 22 5{oD)/2
0 =2 ¢ (142% (1-52%71 (4.13)
Choosing s, sufficiently large that

_"lmlnl £ g‘?{o h; A{a—l)lz (4.14)
we obtain fqr ji21,

Wo Ml <%, nd x{“’l)/z. (4.15)
Finally, we note from (4.12) that for j > 1,

Datog gty =gy agi/d sl WHY2 - e % 4229/

1/2

1j /2

> A

for h1 sufficiently small.

We next comnsider the extent to which cj lies in the direction of §1.

In particular,

—1/2

-1/2
o5 = %M '

U8 -8 1Ay

+{ (1-Ne, M21/2 712 _,-1/2

1j 1 } §1j + w0, .(4,16)

3

Since all three terms are of the same size, we have from (2.14), (4.15),

and (4.16)

Woy-t a2l <2 82 a{e2)/2 (4.17)

for p = 0(1) independent of j.



20

Theorem 4.2: Let s be chosen such that e 2% < 1, and let the hypotheses of

Theorem 4.1 hold. Then the cost of computing o, satisfying (4.17) is O(Nj)

j

for j sufficiently large.

Proof: By theorems proved in [2], [1], the cost of a single j-level

iteration is asymptotically bounded by Co

iterations on each level for j > 1 is r-s, where r and s can be chosen to

Nj' The total number of j-level

be independent of j. Thus the cost of computing aj is bounded by

J
c, + } CorsN <

<6 N
=2

where C1 is the (fixed) cost of comuting oy and we have used the fact that

~

N, S4N_,.

5. Numerical Example and Concluding Remarks

In practical computations the values of the integer parameters m, r,
and s can usually be chosen to be relatively small, on the order of 1 - 4,
Note that the procedure for sequentially computing the cj as in Theorem 4.2
consists of r*s j—level iteratioms (j > 1), with the right hand side

updated every r—th iteration.
As an example, consider the problem
-Au=1hau in £ = (0,1) X (0,1),

u=0 on 92, (5.1)
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Figure S-I:ﬁ;
with 1 the 3 X 3 grid pictured in figure 5-1. We solved this problem using
four levels of traingulation, as described in Section 2, with the finest
mesh being 17 X 17. Ve chose m = 2, r=1, and s = 2. Empirically, this
results in yr = 10-2. The smoothing iteration for the j-level scheme was
symmetric Gauss—Seidel. The value of Llj on the right hand side of (4.3)
is approximated by a Rayleigh quotient. If u 37%, u#0, thgn the Rayleigh

quotient R(uw) is given by
R(u) = a(u,v) / (u,v)

The initial guess for level j is given by & local piecewise quadratic
approximation constructed from the the level j-1 solution (in most cases,
this appears to be slightly better than just using the level j-1 solution).
In other respects, the multi-level method used is very close to the scheme
described here. Some results of the computation are shown in Table 5-1.

2 ~

The true eigenvalue 11 =2 n° = 19.7392. The approximate eigenvalues xljs

are the Rayleigh quotients of the approximate eigenvector iterates. In



Table 5-1: Convergence of the Inverse Iteration Procedure

N.

i J H

1 1 -216.0
2 9 18.0
3 49 16.2
4 225 15.2

24.0

24.0
21.659

21.658

21.272
20.272

20.270

19.944
19.876

19.876

)/

1js-1154s 1js|

1.1 E0

5.2 E-5

4.9 E-2

8.3 E-5

3.4 E-3

6.2 E-7
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terms of the continuous problem, s = 1 is more than adaquate to compute an

approximation of A, to the order of the discretization error.

1

One can note the rapid convergence of the inverse iteration procedure

despite the relatively poor shift policy (the computations were done on a

DEC-20 using single precision arithmetic — a 27 bit mantissa).

The

conservative shift policy was used to bies the Rayleigh quotient iteration

in favor of convergence to a multiple of §1j. The initial shift for the

level j problem is given by
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~

my =Ry T Ayya/4 iv1 (5.2)

where xlj is the accepted value of klj‘ This imparts some flavor of the
power method and thus favors convergence to §1j° In this particular
program, a new shift is computed every 5-th iteration (in s), and is given
by the average of the old shift and current eigenvalue estimate (only
rarely does one need s > 5). Thus the sequence of shifts is chosen to
(hopefully) approach the true eigenvalue from below and thus bias the
»overall iteration in favor of comvergence to §1j. A shift policy this

conservative was not necessary for for this particular problem but has

proved necessary when ll is close to Az and §1 is not very smooth.

There are situations in which we may be interested in computing
several eigenvalues and corresponding eigenvectors. One approach to this
problem is to used the method of subspace iterationm. Suppose xj, 1<j<«
n, are well separated from the remaining eigenvalues. We begin the
procedure with n orthonormal vectors. We perform an inverse power step on
each vector, and use the resulting vectors to form an n X n matrix. We
then solve the resulting (generally dense) eigenvalue problem to obtain
approximate eigenvalues and to re—orthonormalize the vectors. This

sequence is then repeated until convergence [121, [10].

The analysis in Sections 2 and 3 generalizes in straightfoward fashion
to cover this sitvation. The j—level iteration is used in all of the
inverse power steps. The strategy of solving the problem sequentially on
the gridsﬁz,ﬁ;.... , and using the solution on the j—th grid as the initial
guess at the solution on the j+1l-st grid is also applicable. BHowever, the

condition that h1 be sufficiently small becomes more restrictive an n
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increases. This is because bounds analagous to (2.14) for other
eigenfunctions and eigenvalues generally deterioriate as lj increases; for
example, the approximation of lN, and EN. in the spaceqz is typically 0(1)

[12]. Thus as n increases, the fineness ofﬁi must increase in order to
insure adaquate approximation of all the desired eigenvalues and

eigenfunctions.

Another procedure for computing several eigenvalues and eigenvectors
has recently been proposed by Ericsson and Ruhe [6]. Their scheme is
based on the Lanczos algorithm. In their work, they wish to compute all
eigenvalnes lying in a specified interval and the corresponding
eigenvectors. Multi-level techniques can be applied to this situation in a
fashion analagous to subspace iteration. A common technique for
determining the number of eigehvalnes less than a given number p, is to
compute an LDLT composition of the matrix A — p M, end count the number of
negative pivots [6], [12]. This can still be done in the present case
since the matrix corresponding to the coarsest gridﬁi is factored as part
of the multi-level procedure (success here again requires that h1 be small
enough that all the eigenvalues and eigenvectors of interest are well

approximated on the coarsest grid).

The stratgedy of sequentially solving the problem on{a.fg,... is
again advantageous, since the issue of how many eigenvalues lie in the
given interval and their distribution can be resolved once and for all omn
the coarsest grid, where computation is relatively inexpensive. The

solution of the remaining problems can be viewed primarily as a means of

increasing the accuracy of the eigenvalues and eigenvectors as
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approximations of the continuous problem. One may even wish to switch or
modify the algorithm after the first grid, since much of its power would no

longer be necessary.

In both this scheme and subspace iterration, it may be desirable to
choose shifts for which A — p M is indefinite, although p may not be
especially close to any eigenvalue. The multi-level schemes for indefinte
systéms described in [1] could be used. If the shift were close to an
eigenvalue, the analysis givén there would have to be modified in a fashion
analogue to Theorem 3.1. As in the case of 113. choosing a shift to be
slightly less than the the given eigenvalue is probably safer than choosing

it to be slightly larger, since corresponding eigenvalues on different

grids will satisfy inequalities similar to (2.15).

If the integer parameters m, r, and s are fixed, then O(r-s-n) j—level
iterations will be used in computing an approximate solution of the level j
problem, where n is the number of approximate eigenvectors, and s is the
number of subspace iterations per level, or the number of Lanczos steps per
eigenvector per level, depending on the algorithm. In any event, m, r, and
s can be selected independent of j and the work to solve linear systems
will be 0(n-Nj). Both procedures require the solution of small eigenvalue
problems of fixed size. The number of such problems per level is fixed, so
this will contribute a term like O(F(n)-log(Nj)) to the work estimate,
where F(n) is a bound on the cost of solving one of these problems (mote j
is proportional to log(Nj) for spaces that increase geometrically in size).

In the subspace iteration procedure, ome must re—orthonormalize the trial

vectors at each step. This cost is essentially the same as the cost of
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multiplying an n X n matrix and an n X Nj matrix. Since a fixed number of
subspace iterations will be used per level, this will contribute a term
like O(nz'Nj) to the work estimate. A similar sort of cost will be
required in the Lanczos scheme. There may well be good hueristics for

reducing the orthonmormalization cost, since as j incresaes, the initial

guesses for the eigenvectors improve.




[1]

2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11)]

[12]

27

REFERENCES

Randolph E. Bank. A Comparison of Two Multi-level Iterative Methods
for Non-symmetric and Indefinite Finite Element Equations. SIAM
Journal on Numerical Analysis to appear:, .

Randolph E. Bank and Todd F. Dupont. An Optimal Order Process for
Solving Finite Element Equations., Mathematics of Computation 36:,
1981.

Randolph E. Bank and Andrew H., Sherman. PLTMG Users' Guide.
Technical Report CNA152, Center for Numerical Analysis, University of
Texas, 1979.

J. L. Blue, A. Kahn, J. E. Lowney, and C. L. Wilson. Disappearance of
Impurity Levels in Silicon and Germanium due to Screening. Journal of
Applied Physics :, submitted.

J. L. Blue and C. L. Wilson. Calculating Eigenvalues and
Eigenfunctions Using an Interior Constraint. Journal of Computational
Physics :, submitted.

Thomas Ericsson and A. Ruhe. The Spectral Transformation Lanczos
Method for the Numerical Solution of Large Sparse Generalized
Symmetric Eigenvalue Problems, Mathematics of Computation
35:1251,1268, 1980.

Wolfgang Hackbusch. On the computation of Approximate Eigenvalues and
Eigenfunctions of Elliptic Operators by Means of a Multi-grid Method.
SIAM Journal on Numerical Analysis 16:201,215, 1979.

Stephen F. McCormick. A Mesh Refinement Method for Ax = A Bx.

Technical Report , Colorado State University, 1979.

J. T. Oden and J. R. Reddy. An Introduction to the Mathematical
Theory of Finite Elements. Interscience, New York, 1976.

B. N. Parlett. The Symmetric Eigenvalue Probleﬁ. Prentice-Hall,
Englewood Cliffs, New Jersey, 1980,

G. W, Stewart. Introduction to Matrix Computations. Academic Press,
New York, 1973.

Gilbert Strang and George J. Fix. An Analysis of the Finite Element
Method. Prentice—-Hall, Englewood Cliffs, New Jersey, 1973.






