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1. Introduction

In this paper we present the Modified Conjugate Residual (MCR)
Method, a stabilized version of Luenberger’s Method of Conjugate
Residuals [6], for solving large sparse systems of linear equations.
This iterative method has special significance when the system is not
positive definite so that methods like Conjugate Gradients [2] are
inapplicable. In the special case when the system is positive definite,
MCR reduces to one of the family of general conjugate gradient methods
discussed by Hestenes [4]. In section 2 we present the MCR method and
its properties, in section 3 we derive general error bounds, and in
section 4 we present an efficient computational version of the MCR
algorithm. In section 5 we introduce a model indefinite problem, simple
finite difference approximations to the forced vibration problem in two
and three dimensions and apply the convergence results of section 3 to
obtain error bounds. Although these problems are very specialized,
nearly all our results are applicable to the solution of the linear
systems arising from the application of finite difference or finite
element methods to more general self-adjoint second order elliptic
partial differential equations in more general domains. Finally in
section 6 we describe the results of numerical experiments on the model
problem. Proofs of the theoretical results and further details will

appear in [1].



2. The Modified Conjugate Residual (MCR) Method

Consider the NxN linear system
(2.1) Ax = f
where A is non-singular and symmetric. To approximate x, the MCR method
generates a sequence of direction vectors P, which are mutually
Az-orthogonal, and computes the iterates XgrX sXyseee by moving at

the (i+1)St step in the direction of p; SO that

Xiy = xi + aipi, where ai is chosen to minimize the error
functional
(2.2) E(ai) = (f—Axi+1, f—Axi+1).

Due to the special way in which the direction vectors are chosen the
uni-directional minimizations correspond to minimization in the whole

subspace spanned by the pi's, so that the x, obtained actually

i+l
minimizes E(x) on the affine subspace X, + {po,pl,pz,...,pi},

where {...} denotes the subspace spanned by the vectors enclosed in

the brackets.

In particular, we use the following method, based on the Lanczos

algorithm [7] for generating the direction vectors:

Choose Pys define P_; = 0, and for i=0,1,..., let

(2.3a) Piv1 = APy = Py < %Py s
where

Y, = (% A0 ) /(hp B ) and
(2.3b)

s, = (A% .Ap, ) /Ao . Ap. ).

i i i-1 i-1 i-1



We can show that
2 . .
(2.4) (p;>A pj) =0, 1i#j.

We now consider the following scheme for computing the approximations

x, to x:
i

Given an arbitrary initial guess x, to x, compute

0

= f-AxO, set Py =T and for i = 0,1,2,... compute

r 0

0

(2.5) a, = (ri,APi)/(APi,APi)
Xi1 - %y T 3ypy
Tyl T Ty T aghey

and generate Py by (2.3).

1

In section 3 we show that the above procedure can be made more efficient
in certain cases. However, for now, we refer to (2.5) as the MCR

algorithm and proceed to outline its properties and convergence results.

We can show that the following relations hold for the MCR method of

(2.5):
(2.6a) Ap; € {PysPyseeesPy )
(2.6b) r, € {pysPyseeespy
(2.6C) {Po,pl,ooo,Pi} - {pO,Apo,ooo,A pO} = {rO,ArO,...’A ro}
(2.6d) (ri,Apj) =0, j«<i,
(2.6e) (rj ’Arj) =0, i # Js
(2.6f) (rj ,APi) = (rO’Api)’ h| < i,
(2.6g) and r, # 0 =>p, # 0
i - i -

(0 denotes the zero vector)



We also have the result:

Theorem 2.1: For each i, x, minimizes E(x) over the affine

i+l
subspace x, + {PO’PI""’pi}'



3. Error Bounds

The fundamental minimization property of Theorem 2.1 allows us to
view the MCR method as one in which the error functional is minimized
over subspaces of increasing dimension, and thereby to prove that it
converges in at most N steps to the unique solution of Ax = f.

Moreover, we can obtain error bounds by a procedure analogous to the one

used for Conjugate Gradients [3].

Using Theorem 2.1 and property (2.6c) we can write

) 1 . .
=x_+ I s,AJr where {s,}% are scalars
_ 0 j j=o

=x_ + Pi(A) rO where Pi(A) is a polynomial of degree at most i in A.

0
Then,
I (I - Pi(A)A) (x - XO)
and
(3.1) E(x - Xi+1) = (f - Axi+1, f - Axi+1)
= Ry WrsRy L, Wrg)
where

Ri+1(A) =1 Pi(A)A.

Let us define ﬁm to be the set of polynomials Rm(y) of degree at most
m in y satisfying Rm(O) = 1. Then, due to (3.1) and Theorem 2.1, we
can visualize MCR as a method that chooses, at the (i+1)St

iteration, the particular polynomial Rm € ﬁm that minimizes the

functional E(x), i.e.,

Bxjyy) =min Ry, (WrRy, (MTg)
R, € R,
i+l i+l



Since A is symmetric, there exist orthonormal eigenvectors Vj,

j=1,2,...,N of A such that

Av, =A.v,, j=1,2,...,N,

] |
where {Aj}§_1 are the eigenvalues of A.
- N
We have r_ = I t.v, for some scalars {t,}g .
0 4o 13 3=l
Then N N
Ri+1(A)r0 = .Z thi+1(A)vj = E thi+1()\j)vj
j=1 j=1
and N N
= mi It.R A , I t.R ()
B 2 R ( B 141 075 o 1411304
i+l - i+l 3 J
N
= min z t2 R? (r,)
R . R j=1 j i+l j
i+l i+l
N
5(min _ max |Ri+l(lj)| 2 z t?
Ri+1 € Ri+1 L<i<N =1
(3.2) = Q2 E(x.)
i+l 0"’
where Q, = min max J|R, .(A.))].
i+l R c R, 1<i<N i+l j
ixl i+l ——

Depending upon the spectrum of A and what is known about it, we can

use different techniques to get bounds on Q, We consider two

i+1°
approaches. First, we treat the case in which at most a few eigenvalues
lie on one side of the origin and we know the end-points of the interval
containing the eigenvalues on the other, for example, in the solution of

difference approximations to the forced vibration problem. For this

case we have the following theorem:

Theorem 3.1: If the eigenvalues of the matrix A lie in

{Al,lz,...,lm} u [a,b] where 1 < m < N, a, b>0, and Ay <0



for 1 < i < m, then for k > 0 the iterates x given by MCR

k+m
satisfy
1 -va. k

(3.3) e - Ax, o ||2_<_ 20— £ - Ax, I,
and

3 - /- -
G lx-x, I, < 20 RD G ik - 1,

m A -b

where a = a/b, C = I C~l——) is a constant independent

A
2 =1 ] 2
of k, and K(A") denotes the condition number of A".
If the matrix A is positive definite, (3.3) and (3.4) hold with

C =1, and we have the same rate of convergence for Modified Conjugate

Residuals as for Conjugate Gradients (cf. [3]).

In the second approach we assume that all we know is the end-points
of the two intervals, one on either side of the origin, that contain the
eigenvalues of A. Using Lebedev’s results[5] we can show the following

result.

Theorem 3.2: If the eigenvalues of the matrix A lie in [-a,-Db] [c,d]

where a,b,c,d > 0 and a = b=d - ¢ > 0 then for i>0 the iterates

B

e - ax 1, < 2=t 2 e e

and i+1J
.

”X_xi+1"2<2/—(A)(1+/13') = - x, 1,

X, ,, &iven by MCR satisfy

where B8 = (bc)/(ad) and K(AZ) denotes the condition number of Az.



We note that Theorem 3.2 requires that the two intervals on either
side of the origin, known to contain the eigenvalues of A be of equal
length. If we have that a - b # d - ¢ we can take the smaller of the
two intervals and extend it away from the origin to get intervals of
equal length on either side of the origin and then apply Theorem 3.2 to

obtain bounds on the rate of convergence,



4. The MCR Algorithm — Computational Version

In this section we show that in certain cases we can reduce the
cost of an iteration of the MCR method by using a less expensive process
than (2.3) for generating the new direction vector. We present the
computational version of the MCR method in its reduced form for both
positive definite A and general symmetric A. The algorithms are
numerically stable, easy to program and require very little storage and

work per iteration.
In particular, the following identity holds.

Theorem 4.1: If a; # 0,

(4.1a) Piv1 = Tiyr T B4Ry
where
(4.1b) b, = (‘Ari+1’APi)/(AP1’APi)’

and Pin is given by relations (2.3), then

Pir1 T 7%Pin

The above theorem shows that if a; # 0, equations (4.1) generate
the same direction as the more expensive (2.3). Only the normalization
is different, but since that does not effect the validity of

orthogonality relations, it is clear that all the results of sections 2

and 3 hold.

In the special case of positive definite A, we can show (cf. [1])
that a, is never zero and that (4.1) can be used to generate the
direction vectors at every iteration. We also use alternative formulae

for ai and bi summarized in (4.2):
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MCR algorithm (A positive definite):

Choose x_, compute r, = f - Axo, set Pp =T and for i =

0’ 0 0

0,1,2,... compute

(4.2) a, = (ri,Ari)/(Api,Api)
X, = xi + aipi
= ri - aiApi

b, = ( Ari+1)/(ri,Ari)

Tiv1?

= Tiy T DyPy

The number of multiplications per iteration for the above procedure is

5N + 2 plus a matrix-vector product, viz. Ar, is computed as

i+1% APipy

Ay = ATy Tbihes.

Storage requirements are 5N plus whatever is required to store the upper

triangular part of A.

For general symmetric A, we could have a, equal to zero in which

i
case the longer iteration (2.3) would have to be used. However, each
time that a; # 0 we could use the shorter iteration and save some work.
In practice, though, due to finite precision and roundoff limitations;
it may not be possible to decide whether a; is zero or not. We can
show that if a; = 0 and we use the shorter version (4.1) to generate

the direction vector, the algorithm may get tuck at a point and serious
instabilities may occur. Therefore, we decide the use the shorter
version only when Iail > € where € > 0 is some threshold chosen a
priori and large enough such that roundoff and precision will not cause

us to choose (4.1) when ai = 0. We note, however, that if 0 < a; < €

we are using the longer iteration at step i, even though the shorter one
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is sufficient.

We can also show that,

5, = c;(hp 8D ) /(Ap, _ .Ap. )

1if |a, | < ¢
i =

where c, = -1

-1/a, if |a, > ¢
i-1 i-

1!
We thus have the following computational version of the Modified
Conjugate Residual Method for any symmetric indefinite linear system

Ax = f:

MCR algorithm (A symmetric):

Choose XO’ and ¢ > 0; compute r, = f - Axo, set PO = r_ and

0 0

for i = 0,1,2, ... compute

=x +
X1 - % T 3Py

=r. - aA
Tiv1l - Fi T 40Py
If Iail.s €,

(4.3) Piyp = APy ~YiPy ~ 4Py

2
where v = (A pi,Api)/(APi,APi)
and o, = ci(Api,Api)/(Api_l,Api_l)
1if Iai_ll_g,e
where ¢, =

-l/ai_1 if Iai_ll > ¢

If |a >
l iI €,

Piv1 = Tip1 VT PyPy

where bi = (—Ari+l,Api)/(APi,APi)
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Each iteration of (4.3) requires only one matrix-vector product.
To see this, suppose that we have already computed and stored the
vectors xi, ri, pi, Api, Pi—l and A.pi_1 and the scalar
(Api—l’Api—l)' If Iaillﬁ e the only matrix-vector product

performed at the (i+1)St iteration is A(Api) required in the

computation of Api+1 which is done as follows:

Ap,, =AW - 1Ap, - §,Ap

1f |a > ., then Ar is computed and Aj is obtained as
la, | ’ i+ P Pi+

1 1

Apyyy = ATy T oDyARy-

It is easy to see that in addition to the matrix-vector product, the
iteration requires 7N + 2 multiplications if Iail > < and 9N + 4

multiplications of Iail.g ce
age is required for the si ectors r, A
Storag qu t X vector xi, Py pi, pi, pi_1

and Api » each of which gets overwritten by its successor at the

1
. st | . 2 .
(i+l1) iteration, and a seventh vector that stores A P; if

Iail_g € and Ari+ if Iail > ¢. The matrix A is not modified

1
during the iteration process. Since it is symmetric, only the upper (or

lower) triangle may be stored. If A is sparse, sparse storage schemes

may be used.

We note here the close connection between MCR and Luenberger’s
method of Conjugate Residuals [6]. Indeed, taking € = 0 we can rewrite
the algorithm (4.3) to give Luenberger’s method. In this case, at.
iteration k + 1 we are required to answer the question -- "Is a, = 0?"

As pointed out earlier, this decision is not easy in the presence of
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roundoff error so that Luenberger’s method suffers from certain
unresolved computational difficulties. By choosing € sufficiently

large we have the MCR method which is free from these problems.
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5. The Model Problems

In this section we introduce model problems in two and three
dimensions-- simple finite difference approximations to indefinite
self-adjoint second order elliptic partial differential equations in a

square and cube respectively (the forced vibration problem).
In two dimensions we consider the problem:

(5.1a) -t (x,y) - ow(x,y) = g(x,y), (x,y) € D = (0,1) x (0,1)
with Dirichlet boundary conditions
(5.1b) w(x,y) = 0, (x,y) € oD

where o is a constant.

To approximate the solution to this problem, we cover the domain D
with a uniform mesh with mesh-width h = 1/(n+l) and seek a mesh
function W(i,j) which is an approximation to w(ih,jh) for each 1 < i,

j < n. If we replace the differential operator by the familiar

five-point difference approximation at each interior mesh point,

cf. [8], we obtain the system of linear equations

(4-0h%) W(i,j) = W(i,j-1) = W(i,j+1) = W(i-1,j) = W(i+l,§) = h2G(i,i),

(5.2) 1<1, i< n,

where W(i,j) =0 if i = 0 or n+ 1 or if j = 0 or ntl and G(i,j) =

g(ih,jh).

If the unknowns W(i,j) are ordered in the natural row-by-row
fashion, the system (5.2) is reduced to a nxn block tridiagonal system

of linear equations
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AW

-IT

T -1 0
\\\\ .2
..I\\_I W=hG
0
J

where T is the nxn tridiagonal matrix

ot oy

(4-ch?) -1 0

) ‘\\\\\:T\
T= |-l -1
N

0 -1 (4-0h%)

bt

and I is the nxn identity matrix. The matrix A has five non-zero

diagonals and is symmetric.
In three dimensions, we consider the problem:
) _AW(X9Y9Z) - OW(X9Y9Z) = f(X,YsZ), (X,Y,Z) eD = (0,1) x (0,1) x (0,1)

with Dirichlet boundary conditions
w(x,y,z) = 0, (x,y,2z) € oD

where ¢ is a constant.

Proceeding in an analogous way to the two dimensional case, we put
an (n+l) x (n+l) x (nt+l) grid on the unit cube and use a seven-point
finite difference approximation to the differential operator. This

. 3 3 .. . .
yields an n” x n linear system Ax = f, where A is symmetric and has
its non-zeroes restricted to seven diagonals at distances zero (the main

diagonal), 1, n+l, and n2+1 from the main diagonal. We have



16—

-

. 2 2 .
where B is a n"xn matrix of the form

D -1\0
B = —]\ ’
-1

-I D

D is the nxn tridiagonal matrix,

[(6=0h’) -1 0
D = -1\(6—oh2)\_1 ,
0 -1 (6-0h%)

b

h = 1/(ntl) and the I’s denote identity matrices of suitable order.

If 0 < 0, the corresponding matrices A for the two and three
dimensional model problems are positive definite. However, if ¢ is
sufficiently positive, the corresponding matrices are strictly
indefinite, i.e., they have both positive and negative eigenvalues.
also have, in the notation of Theorem 3.1, o = O(hz). Applying

Theorem 3.1, we obtain the following convergence results:

We

Theorem 5.1: For the model problems, MCR requires O(n log n) iterations

to reduce the initial error by a factor n-p, p > 0. The number of
multiplications required to reduce the error by the same factor are

O(n3 log n) in two and O(n4 log n) in three dimensions.

In the next section we present results of numerical experiments

with MCR for the two-and-three~dimensional model problems for various

values of ¢ and h.
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The storage and work requirements for these problems are given in
Table 1. For the model problems, the diagonal elements of A are all
equal and all the non-zero off-diagonal elements are just -1°s so that
no storage is required for A, and computing a matrix-vector product
requires only N multiplications. Table 1 also gives the storage and
work requirements for a general problem. A general problem is one that
arises from the application of the simplest (i.e., five-point in two and
seven-point in three dimensions) finite difference approximations to any
second-order self-adjoint elliptic partial differential equation where A
has the same non-zero structure as for the corresponding model problem.
A is still symmetric, but the off-diagonal non-zero entries need not be
-1’s so that the storage and work costs are higher than for the

corresponding model problem.
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6. Numerical Results

Numerical experiments were performed to demonstrate the performance
of the MCR method on the two-and three-dimensional model problems for

various o and h. The solution was chosen to be

2
w(x,y) = 3exey(x—x )(y-yz)
in two and

w(x,y,2) = 3exeyez(x-x2)(y-yz)(z—zz)

in three dimensions. If . = 0, all the eigenvalues of A are positive.
The first few eigenvalues of the differential operator -A in two
dimensions are 19.7, 49.4, 79.0, 98.7,..., cf. [8], so that for ¢ = 30
and 90 A has one and three negative eigenvalues respectively.
Similarly, in three dimensions, the eigenvalues of - are 29.6, 59.2,
88.8, 108.6, ... so that for ¢ = 50 and 100 A again has one and three

negative eigenvalues respectively.

The initial guess X, was taken to be the zero vector and the error

at iteration i was defined as

error = || f - Ax 'Z/IIf - Ax

i| 0 IZ

and was computed as ((ri,ri)/(ro,ro))l/z. We chose ¢ = 10—4;

the computations were carried out on a PDP-10 (word-length 36 bits) in

single precision.

Figures la and 1b show the error versus number of iterations for
the model problems. Tables 2 and 3 give the total work required to

-6
reduce the error to 10 ~. 1In these experiments it turned out that
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MCR always chose the shorter iteration.

Since the difference approximations are only second-order accurate,
we also computed the number of iterations required to reduce the error
by a factor of l/n2 for various h and .. We see from Figures 2a and
2b that for a fixed problem (i.e., fixed g) the plot of the number of
iterations against n log n is a straight line. This illustrates the

conclusions of Theorem 5.1.
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Two dimensions (N=n2) Three dimensions (N=n3)
Storage No. of mults./ Storage No. of mults./
reqd. iteration reqd. iteration
> < >
Problem |ai| € |ai|_€ lail € |ai|E€
Model N 8N+2 10N+4 N 8N+2 10N+4

General 10N-2n 12N-4n+2 14N-4nt+éd 11N-3n2 14N—6n2+2 16N—6n2+4

Table 1: Storage requirements and multiplication counts for
N x N systems.

Mesh- No. of mults./ 0 =30 : 0 =90
width iteration No. of Total no. No. of Total no.
h lail>€ |ai|§€ iters. of mults. iters. of mults.
1/8 394 494 21 8,175 29 11,327
1/16 1,802 2,254 52 93,253 63 113,075
1/32 7,690 9,614 108 828,597 131 1,005,467

Table 2: Work required to reduce the error to 10”6 for
two-dimensional model problems on n x n mesh (h = 1/(n +1)).

Mesh- No. of mults./ g =50 g =100
width iteration No. of Total no. No. of Total no.
h Iai|>€ |ai|§€ iters. of mults. iters. of mults.
1/4 218 274 9 ‘ 1,907 8 1,689
1/8 2,746 3,434 32 87,185 52 142,105
1/16 27,002 33,754 71 1,910,391 93 2,504,435

Table 3: Work required to reduce the error to 10-6 for
three-dimensional model problems on n x n x n mesh (h=1/(n+1)).
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