Yale University
Department of Computer Science

On the Power of Preemption

Jeffery Westbrook?

YALEU/DCS/TR-999
January 1994

1Department of Computer Science, Yale University, New Haven, CT 06520.

westbrook@cs.yale.edu.

Email:

Abstract

We study the use of preemption in on-line load-balancing problems. A centralized
scheduler must assign tasks to servers, processing on-line a sequence of task arrivals
and departures. The goal is to keep the assignment of tasks well-balanced; that is,
to minimize the maximum load on any processor. The scheduler may occasionally
preempt and reassign tasks, in an attempt to decrease the maximum load. Only a
limited amount of preemption is allowed, however. We give a general strategy, based
on the idea of a witness, and then apply it to derive solutions to various load balancing
problems, including those of identical and related machines, restricted assignment tasks,
and virtual circuit routing. In each case, only a limited amount of preemption is used
but the load is kept substantially lower than possible without preemption.

1 Introduction

A number of recent papers have studied on-line or dynamic load balancing problems [1, 2,
4, 3,5, 6,10, 12]. A typical dynamic load balancing problem consists of a fixed set V of n
servers and a dynamic set of tasks U that arrive and depart on-line. As soon as each task
arrives, it must immediately be assigned to some server, increasing the load on that server.
Eventually the task completes and departs. The goal is to keep the maximum load on any
server minimized. A fundamental aspect of the problem is that arrival and departure times
are determined by an unknown adversary. An on-line load-balancing algorithm knowns
neither what the next task will be nor when any currently existing task will terminate. In
this paper, we consider the following load balancing problems.

e Identical Machines. Each task u has an associated weight w,, and can be served by
any one of the servers. The load on server v is the sum of the weights of tasks assigned
to it.

¢ Related Machines. The same as the previous problem, except that each server v has
a capacity, cap,. The load on v is the sum of the assigned weights divided by the
capacity.

e Restricted Assignment. Each task has a unit weight but can only be served by one of
some subset of the machines. The load on a machine is the number of assigned tasks.

e Virtual Circuit Routing. The servers are the edges of an undirected graph. Each edge
has an associated capacity cap,. A task u is a request for a connection between two
nodes sy, ?,. The set of servers assigned to the task must form a path between s, and
ty. Each task has an associated weight w,. The load on an edge is the sum of the
weights of the connections using that edge divided by its capacity.

Although virtual circuit routing is the only problem that explicitly addresses communi-
cation networks, most of these load balancing problems can occur in heterogeneous networks
containing workstations, I/O devices, etc. Servers correspond to communication channels
and tasks to requests for communication links between devices. Task weight reflect desired

bandwidth. A network controller must coordinate the channels so that no channel is too
heavily loaded. The request sequence is unknown in advance. Load balancing problems
like those above also arise in assigning computational subtasks of a distributed or parallel
computation to timesharing servers. Such situations arise in programs written using LINDA
[7, 8]. An even distribution of load provides fairness in scheduling and helps guarantee that
the computation does not get held up too long at synchronization barriers waiting for all
tasks to catch up. This improves throughput. Finally, the restricted assignment problem
arises in implementation of fast network flow algorithms [11, 12].

The active tasks at time t are those tasks that have arrived but not yet departed.
An optimal assignment of the active tasks minimizes the maximum load. Let A} be the
maximum load in an optimal assignment of the tasks active at time ¢. For an on-line load-
balancing algorithm A, let A(t) denote the maximum load on any server at time ¢ if A is
used to determine assignment of tasks to servers. Note that A} depends only on the set of
active tasks at time ¢, whereas A(t) in general depends on the entire history of task arrivals
and departures.

We say A is c-competitive against peak load if at for all ¢, A(t) < maxy<;cA},. That is,
the maximum load on an on-line server is bounded by ¢ times the maximum optimal load
ever seen. We say A is c-competitive against current load if for all ¢, A(t) < cA}. That is,
the maximum load on an on-line server is no more than ¢ times the maximum load in an
optimal assignment of the currently active tasks.

The distinction between peak load and current load is quite significant. For example,
consider Graham’s [9] greedy heuristic for the identical machines problem, which simply
assigns each new task to the least loaded server, and never reassigns a task. It is noted in
[4] that this algorithm is 2-competitive against peak load. On the other hand, an algorithm
that never reassigns tasks cannot be better than n-competitive against current load. An
adversary may generate n? unit cost tasks. Some server v must have load at least n. The
adversary then deletes all tasks except for those on v.

With the exception of [12], all previous papers on load balancing have given algorithms
that are competitive against peak load, but not against current load. The peak load mea-
surement is useful in network design, since if it is known that the peak optimum load will
be limited by some value, one can add enough server capacity to guarantee that the on-line
scheduler will never load a server beyond its capacity. On the other hand, the current load
measure is more appropriate if one is interested in providing fairness in processor utiliza-
tion and in guaranteeing that parallel subtasks can proceed at roughly the same rate. The
behavior of load-balancing algorithms that are competitive against current load cannot be
skewed by some transient peak. The current load measure is also required in the applica-
tion of load balancing to network flow described in [12]. Naturally, an algorithm that is
c-competitive against current load is c-competitive against peak load.

The algorithms described in this paper are competitive against current load. As ob-
served above this requires some amount of preemptive rescheduling. The use of preemption,
however, presents other problems. We cannot simply measure an on-line algorithm by a
competitive ratio, since if the algorithm is free at any point to reassign all tasks, it can
always guarantee a competitive ratio of 1. This would generally be undesirable in prac-

tice. Preempting a task can be an expensive process and one may be willing to accept an
imbalance in the load in order to avoid the expense of reassignments.

To measure the cost of reassignment, we assume that each task u has an associated
restart cost, r,,. The restart cost is incurred every time u is assigned or reassigned to some
server or connection path. We assume that r, is time-invariant. The algorithms in this
paper are designed so that the total cost of all reassignments is bounded by some small
function, usually linear, of the sum of the startup costs of all tasks, denoted S. Since each
task incurs its restart cost at least once, when it is first assigned, the restart cost is at
least §. The algorithms we present are designed and analyzed under the assumption that
Ty = Wy. In the final section we give a general method to remove this restriction, at the
price of an increase in the competitive ratio. It is useful to distinguish between lazy and
eager rebalancing. In lazy rebalancing, tasks are rebalanced only in response to other tasks
being deleted from the system. In eager rebalancing, tasks may be reassigned after both
arrival and departure of other tasks. If tasks never depart, however, no lazy algorithm can
improve on the lower bounds known for permanent tasks without preemption.

We first present a general witness-based strategy for constructing algorithms competitive
against current load. We then give an algorithm for the identical machines case that is 16-
competitive with total restart cost 2.5. Section 3 gives a 24-competitive algorithm for related
machines with total restart cost 45. Previously, Azar et al. gave an algorithm for related
machines that is 20-competitive against peak load [3]. Their algorithm is non-preemptive,
i.e., the restart cost is 5.

In Section 4 we study the restricted assignment problem, and give an eager rebalancing
scheme for the case that w, = 1 for all weights. The scheme is parameterizable to trade
of competitive ratio against restart cost; its best competitive ratio is O(1) at a restart

“cost of O(Slogn). Previously, Phillips and Westbrook [12] give a preemptive algorithm

that is O((logn)/p)-competitive against current load while incurring restart cost p.5, where
0 < p £ 1is a user-specified parameter. Their algorithm works for arbitrary weights. Azar
et al.[2] give an eager algorithm for the case of unit weights that is O(1) competitive against
peak load if the optimum peak load is Q(logn), and incurs restart cost O(S5(logn)).

In Section 5 we give an algorithm for virtual circuit routing that is O(log n)-competitive
against current load, with restart cost O(Slognlog(C/cap,,i,)), where C is the sum of
edge capacities and cap,,;, is the minimum edge capacity. This algorithm is based on an
algorithm of Azar et al.[2] that is O(logn) competitive against peak load and incurs an
assignment cost O(Slogn). Finally, in Section 6 we give a general method to remove the
restriction that r, = w,,.

2 Witness-Based Algorithms for Preemptive Balancing

The paradigm used in all sections of this paper is as follows. Assume for the moment a
known lower bound A¢ on the minimum possible load. We maintain a set of levels ¢ for
t = 0,1,2,.... Each level is treated as a separate load balancing game, managed by a
scheduling algorithm that obeys the following rules:

1. The load on a server due to jobs assigned to level i is ¢(n));, where ¢(n) is some
function of n and A; = 2*Ag. The scheduler is allowed to reject attempted insertions
of tasks as necessary to maintain this condition.

2. If task ¢ is rejected by level i, then the current optimum load is at least A;. Task # is
called a witness for load);.

3. For all ¢ < g, then in some level j > i there is a witness for load A;_;.

We call this a witness-based strategy.

Lemma 1 An on-line algorithm that satisfies the conditions for a witness-based strategy
is 4¢(n)-competitive against current load.

Proof: The on-line load is at most

Zq: 2'c(n)Ao < 2¢(n)Ao2, (1)

=0

where ¢ is the maximum level. The existence of a witness for level ¢ — 1 implies that the
optimum load is at least Ag29~!. Combining this with equation 1 gives the lemma. O

2.1 Example: identical machines

We now give an example for the case of identical machines. There are several non-preemptive
algorithms that are competitive against peak load with a ratio 2 — € for some small constant
€ [6, 9, 10], but as mentioned above, none of these are better than n-competitive against
current load. Although the related machines case of the following section subsumes this
case, the algorithm described here is simpler than that for related machines and achieves a
better competitive constant.

Let W; ; be the current total weight of all tasks assigned to server 5 in level . Then the
load on server j is simply Y"7_o W, ;.

To insert task u, compute the minimum level 7 such that there is some server j satisfying
W ; + wy < 4);. Assign u to level ¢, server j and increase Wi ; by w,.

To delete task ¢ from server j in level ¢, decreasing W; ; by w; and apply the following
rebalancing procedure.

1. Select a task u currently assigned to some server £ in the maximum level, ¢.

2. Locate a server j satisfying Wy_; ; + w, < 2A,-1.

3. If there is no such server, u is a witness for load A,_;. Terminate. Otherwise, reassign

u to server j in level ¢ — 1. Decrease W, x by w, and increase W,_; ; by w,. Goto to
step 1 and repeat.

To show that this is a witness algorithm, we need to check that the three defining
conditions hold. Trivially, the maximum load on level i is 4)\;. We confirm that if level g—1
rejects task u, the load is at least A\q_;. Consider two cases. On the one hand, suppose
Wy > Ag—1. Then the optimum load is trivially greater than A,_;. On the other hand,
suppose wy, < Ag-1. Then for all 1 < j < n, Wy_1; > Ay, else we could have placed u
on some server. Hence the total weight of all tasks in the system is > nA,_; and by the
pigeonhole principle the optimum algorithm must have load > Aq_1. It is easily verified by
induction on the number of insertions and deletions that at all times, there is a witness for
any level less than the current maximum.

Theorem 2 The witness algorithm maintains load within 16 times the current load.
QOver all assignments and reassignments, the total weight that is reassigned 2W, where

W = ZueU wu.

The competitiveness of the algorithm follows directly from the fact that the algorithm
is a witness algorithm. The bound on the total reassigned weight follows from a potential
function analysis. Since a very similar analysis is given in the next section, we omit it from
this example. Under the assumption that w, = r,, the total cost of all reassignments is 2.5,
where § =}y Tu-

3 Related_ Processors

In this section, we consider the case that each server i has a particular capacity or through-
put cap;. Let W; denote the sum of the weights of tasks assigned to server i. Then the load

on server ¢ is given by W;/cap;. A non-preemptive algorithm for permanent tasks is given
in [1].

Without loss of generality, we assume that cap; > cap;,; for all 1 < i < n. We begin
with a lazy rebalancing scheme that keeps the load bounded by 3 for a given parameter A,
but that may reject insertions in doing so. This scheme is an adaptation of the algorithm

of [1]. Let W; be the sum of the weights of tasks assigned to processor j. We also define a
quantity Mj;, which will roughly be the maximum weight ever on processor j.

Insertion. Let u be the new task, with weight w,. Let j be the maximum such that
(W; + wy)/cap; < 3. Assign task u to processor j, increase W; by w,, and set M; =
max{W;, M;}. If there is no such j, then reject task w.

Deletion. Let u be the job that is departing, say from processor i. Decrease the value of
W; by w;. Then apply the rebalancing procedure described below.

1. Let £ = max{j | Zfzo M; - 2W; > 0}

2. If there is no such z, then stop.

3. Otherwise, for all ¢ < j, set M; = 0, W; = 0. Preempt each job ¢ currently on such a
processor and re-insert it using the insertion algorithm.

Lemma 3 Suppose task u is rejected upon attempted insertion. Let * be the mazimum
load in the optimum assignment of all the tasks currently active, including u. Then * >).

Proof: Let k be minimal such that My /cap, < 2. If there is no such k, define k = n+1.

Suppose k = 1. Since u is rejected it must be the case that (W, + w,)/cap; > 3X. Thus
we conclude A* > w, /cap; > A.

Suppose k > 1. For all servers j < k, M;/cap; > 2. The deletion rebalancing routine

guarantees the property that Zf-;l(M,- —-2W;) < 0,for all 1 < j < k. Let X be the set of
tasks currently assigned to some server j < k.

Consider any optimal assignment in which all tasks in X are assigned to servers j < k.
Let W be the weight on j in the optimal assignment. We have A* > W [cap; for all j < n.

Hence * Y F-lcap; > YE 1wy > S5l w; > 51 Mi/2 > AT% ! cap;. Thus A* > A

=1
Now consider any optimal assignment in which some task z € X is assigned to some
server j > k. At the time that task z was last reassigned, all servers j > k had load at
most M;. This follows from the fact that M; is decreased only in a rebalancing operation,
at which time all jobs on servers numbered lower than j are reassigned. Since z was not
placed on server k, it must be the case that (My+w;)/cap; > 3, and since My /cap;, < 2],
it follows that w;/cap; > wg/cap; > A for all j > k. Hence A* > \. O

This basic algorithm can be used to give an algorithm that is 12-competitive against
peak load. To get a witness-based algorithm competitive against current load, a small
modification is used. As usual, we maintain levels A; = 2°)o, using the basic algorithm on
each level. As each new task t arrives, it is placed into the minimum level which will accept
it. The algorithm is allowed to accept t into level i, however, if it can be done without
increasing the level-i load on the destination machine beyond 6A;.

To delete task ¢, remove it from its current level, and apply the rebalancing procedure
described above. Then run the following additional rebalance procedure. Determine g, the
maximum occupied level and j, the minimum numbered processor holding a task in level
g. Select any task t assigned to j at level gq. Attempt to insert ¢ into level ¢ — 1. In this
case, the algorithm rejects ¢ if it cannot be placed without increasing some level ¢ — 1 load

beyond 3. If ¢ is rejected by level ¢ — 1, terminate. Otherwise, reassign t to level ¢ — 1 and
repeat.

Theorem 4 The witness-based algorithm is 24-competitive against current load. If the
total weight of all tasks is W, then the total weight that is reassigned is 4W .

Proof: It is not hard to verify that Lemma 3 still holds for the modified algorithm.
Hence the modified algorithm satisfies the conditions of a witness-based algorithm, with
¢(n) = 6. The competitive ratio follows from Lemma 1.

To show the bound on total weight reassigned, we perform an amortized analysis. Let
®;; = 2(M;; — W, ;), where M;; and W;; are the values of M; and W;, respectively, in
level 1. Let & = 37 | =1 ®ige

For purposes of analysis, we will label each server j as marked or unmarked in level 1.
We define a second potential function,

T = min{0, 3);cap; — W; ;} if j is marked
10 if 7 is not marked

Let W = 2?:1 Z;'lzl qlirj'
Server j becomes marked in level ¢ when the load on the server in level ¢ exceeds 3);

and ¢ is not the top level. Once server j is marked, it remains marked until 7 is becomes
the top level, at which time it is unmarked.

Both ® and ¥ are non-increasing when a new job u is inserted. The weight on a server
can only increase. If a new top level g is started, a server ¢ may become marked at level
q— 1 only if W,_; ; > 3A;_1cap;. Hence the amortized cost of the insertion is w;.

Suppose u is deleted from server j in level i. Then ®;; increases by 2w, and ¥, ;
increases by at most w,, for a total amortized cost of 3w,,.

Suppose job u is reassigned from top level ¢ to server j in level ¢ — 1. Since u can fit on
J, we have that w,/cap; < 3A,—1. This implies that at the time u was first assigned to a
level higher than ¢ —1, the load on j in level ¢ — 1 must have been > 3A,_;, or else u could
have been placed on it. Hence server j must be marked in level g. Hence ¥,_; ; decreases
by w, when u is reassigned, for a total amortized cost of 0.

Finally, consider a rebalancing done within level j. One may verify that the decrease in
® is sufficient to pay both for the reassignments of tasks and for the increase in ¥. O

4 Eager Load Balancing for Restricted Assignment

In the restricted assignment problem, each task u has an associated subset of servers on
which it can be executed. It must be assigned to one server in that subset. If no tasks
ever depart and tasks cannot be preempted, the best possible competitive ratio for both
randomized and deterministic algorithms is Q(logn); this ratio is achievable with a simple
greedy strategy [5]. Azar et al.[4] showed that when tasks both arrive and depart, no
non-preemptive algorithm can be better than O(y/n) competitive against peak load. An
non-preemptive algorithm that is O(y/n) competitive against peak load is given in [3].

In this section we give an eager algorithm for the case of unit weights. Its competitive
ratio is parameterized by a value 1 < ¢ < log n, which determines both the ratio and amount
of reassignments. It is competitive against current load.

Regard the problem as a game on a dynamic bipartite graph. On one side are the servers,
V; on the other side are the tasks, U. An edge (u,v) indicates that u can be assigned to v.
Edge (u,v) is matching if u is assigned to v.

We begin with a value, A, that upper-bounds the current optimum load. Given X C U,
let Y(X)={veV]|3(u,v) € E,u€ X}. In other words, Y is the set of columns v such
that some element in X has an edge to v. A simple observation by the pigeonhole principle
is that A > maxxcy | X|/|Y(X)|.

A balancing path is an even-length sequence of alternating matched and unmatched
edges {v1, u1}, {u1,v2},{ve, u2},..., {tm-1,vm} with the property that load(v;) < load(v;)
for 1 <7< m -1 and load(vy,) < load(v;) — A.

We may use a balancing path to reduce the maximum load on servers vy, vs,..., 0y by
reassigning u; to viy; for 1 < ¢ < m — 1. We say the set of servers are r-balanced if there
is no balancing path of length r or less.

Lemma 5 If the set of n servers is 2q-balanced, 1 < q < lnn, then the mazimum
on-line load is cA, where c satisfies the equation

Inn/qg>c(lnc-1) (2)

Proof: Let h be the maximum j such that there is an on-line server of height at least
jA. For all j > 0, let Y/ be the set of columns v € V' that are reachable by an alternating
path of length at most 24, 1 < i < g, starting from a column of height at least jA. Thus Y
is the set of columns of height at least j\. Let y = |¥/|.

No column in Yij has height less than (j—1)A, since otherwise there would be a balancing
path of length 21 < 2¢. Let X; be the set of items on columns of height at least A\i. We
have | X;| > iAyg.

For any j and i < g — 1, the set Y¢{|-1 contains all servers adjacent to some item that is
currently placed on a server in Y. There are at least A(j — 1)y} such items, and hence by
the pigeonhole principle ')

yf(j - 1))‘/9f+1 <A (3)

We also have (2) yg > yg“"l. This follows from the observation that no server of load less
than jA is reachable in 2q or fewer steps from a server of load (j + 1)\, or else there must
be a 2¢-balancing path. Combining equations 3 and (2) we derive the following recurrence:

w2 (%7 w=n

Solving the recurrence, we find n > y*(h!)9. Since y" is at least 1, this reduces to n > (h!)7.

Taking the natural logarithm of both sides and applying Stirling’s approximation we derive
Inn/g > h(lnh-1). O

Lemma 6 For any q, all servers can be kept 2q-balanced using O(qh) reassignments per
insertion or deletion.

Proof: To insert an item u, place it on any server v to which it is adjacent. This
increases the height of v and may create a balancing path starting at ». It cannot, however,
create a rebalancing path originating at any other node. Rebalance along any balancing

path starting at v and terminating at v;. At the conclusion of the rebalancing, v is returned
to its initial height, server v; has increased in height by 1, and all other servers have
unchanged height. Recursively apply the same procedure starting at v;. By the definition
of a rebalancing path, at the conclusion of rebalancing v, has height equal to the height of
load(v) — A. Hence the procedure can only be applied O(h) times before reaching a column
of height 1. Each call performs O(q) reassignments.

The case of deletion is similar, except that deleting an item from v may create a re-
balancing path terminating at v, and recursive calls occur at servers that are increasing in
height by A. O

Theorem 7 The eager rebalancing witness-based algorithm is O(h) competitive against
current load and performs O(qh) rebalances per item, where h is the value of ¢ satisfying
equation 2 for parameter q.

Proof: As usual we let level i have a A value of 2'Ag. For level j, define Q’ (M} - J

W;i)gh, where M; 7 is the maximum load on column j in level ¢, and WJ is the current load
on column j. The proof is a straightforward case analysis. O

Corollary 8 For any ¢ < 1, there is an algorithm that performs O(logn/loglogn)
reassignments and keeps the on-line load within a factor of O((logn)®/loglogn) of the
current load.

Corollary 9 There is an algorithm that performs O(log n) reassignments and keeps the
on-line load within a factor of O(1) of the current load.

Corollary 8 follows from setting ¢ = (logn)'~¢, and Corollary 9 from setting ¢ = logn.
This improves on the previous result of [2] in two ways: first it works for all values of the
optimum load and second it is competitive against current rather than peak load.

5 Virtual Circuit Routing

In the virtual circuit routing problem one is given a communication network modeled by
an undirected graph. Each edge e € E has an associated capacity cap,. A task u is a triple
(Wy, S4,ty), indicating the need for a weight w, connection between nodes s, and ¢,. An
on-line algorithm must choose a path in the graph between s, and t, to serve as the virtual
connection. The current weight on each edge, Wk, is increased by w,. The load on an edge
is W, /cap.. We assume that the restart cost r, is fixed and is independent of the number
of edges in the connection. As usual we assume r, = w,; the restriction can be removed
using the method of Section 6.

Azar et al. [2] give an algorithm that is O(logn) competitive against peak load and
incurs restart cost O(Slogn), where A is the sum of assignment sizes. In particular, the
algorithm uses an estimate of the current load A. We use this algorithm as the basis for an

witness algorithm that is competitive against current load. Unfortunately, we are unable
to find a scheme that amortizes the startup cost associated with reassigning an item from a
higher level to a lower level against the startup costs of departed jobs, as we are in all the
other situations. Therefore we take a different approach.

Let C = Y cpc(e) and let W = Yy wy, where U is the set of active tasks. Let h be
the maximum load incurred by the on-line algorithm. We have

h > W,/cap, Ve€ E

hZc(e) > ZW,

e€EE ecE
o> WiC

v

On the other hand, h < W/cap,,;,, where cap,,;, = min.cg{c(e)}.

We modify the witness algorithm as follows. The lowest level has load Ao = 28 W/Cl,
The highest level has load A\; = 9[logW/€aPnin] Level i has load 2i)o.

For an active task u, we bound the number of times u can be rerouted between changes
in the value of Ag. Since a task can be rerouted O(logn) times per level, and there are
O(log C/capy,i,) levels, u can be rerouted O(lognlogC/cap,,;,) times, at cost w, per
rerouting. If Ao decreases by 1, W has decreased from S to §/2. The additional level
may add one to the number of levels the remaining jobs may drop down. This is charged
to the jobs that have left, for an additional O(logn) per job. The total reassignment cost:
is O(W log C/cap,,;, log n) and the algorithm is O(log n) competitive against current load.

6 Unrelated Weights and Startup Costs

In the previous sections we gave algorithms that provide competitive bounds while guaran-
teeing that the total weight of tasks that are assigned and reassigned is bounded by a small
function f in sum of the weights of the input tasks. Under the assumption that w, = ry,
this implies that the total assignment cost is bounded by the same function f on the total
startup cost. In this section we show how to extend these algorithm to handle the case that
wy # 1y. We will partition tasks based on the startup cost per unit weight of each task,

Tu/Wy. Let a be the minimum value of this ratio over all input tasks and b the maximum
value.

Choose a parameter 1 < § < (b/a). Partition the input tasks into O(logs(b/a)) classes
such that task u is in class 7 if
a6t < L < g6,
s,

Within each class run the load-balancing algorithm appropriate to the problem being solved.

Lemma 10 Let A be an algorithm that achieves a competitive ratio of ¢ while the total
weight of reassigned items is bounded by g(W), where W = 3" oy w,, and g(z) = Q(z). Then
there exists an algorithm As that achieves a competitive ratio of clogs(b/a) and incurs a
total reassignment cost a8t g(S/aé'), where S = ¥ ey Tu-

- 10

Proof: Within each of the classes, the algorithm is ¢ competitive with the optimum
load for tasks within that class. Let A* be the maximum over classes of the optimum load
within that class. This is a lower bound on the true optimum load of all tasks. Since within
each class no server has load greater than cA*, the maximum on-line load is O(clogs(b/a).
Within class i, the reassignment cost per unit weight is at most aé**!, hence the total cost
of reassignments is aé**1g(W). On the other hand, W > §/(aé’). O

Using Lemma 10 we have the following:

o Algorithms for identical and related machines that are O(logs(b/a)) competitive against
current load and incur total assignment cost O(85).

¢ An algorithm for the restricted machines problem that is O(logs(b/a)) competitive
against current load and incurs reassignment cost O(6logn) when all weights are
unit, and an algorithm for the restricted machines problem that is O(% lognlogs(b/a)
competitive against current load and incurs a reassignment cost O(péS) for arbitrary
weights, where p is any parameter between 0 and 1.

¢ An algorithm for virtual circuit routing that is O(lognlogs b/a) competitive against
peak load and incurs a reassignment cost O(65 log nlog(C/cap,,;,)-

All results follow by applying the lemma to algorithms presented herein, with the exception
of the algorithm for general weights in the restricted subset case, which follows by applying
the lemma to the algorithm in [12]

While the bounds of this section are perhaps not ideal, in that they depend on the
value of a ratio between input costs, it is worth noting that they remain independent of the
number of tasks.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with
applications to machine scheduling and virtual circuit routing. In Proc. 25th ACM
Symp. on Theory of Computing, pages 623-631, 1993.

(2] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual
circuit with unknown duration. In Proc. ACM/SIAM Symp. on Discrete Algorithms,
1994. To appear.

[3] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. Online load bal-
ancing of temporary tasks. In Proc. 1998 Workshop on Algorithms and Data Siructures
(WADS 93), Lecture Notes in Computer Science 709. Springer-Verlag, Aug. 1993.

[4] Y. Azar, A. Karlin, and A. Broder. On-line load balancing. In Proc. 33nd Symp. of
Foundations of Computer Science, pages 218-225, 1992.

[5] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. In Proc.
3rd ACM-SIAM Symp. on Discrete Algorithms, pages 203-210, 1992.

11

[6] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling
problem. In Proc. 24{nd ACM Symp. on Theory of Computing, 1992. A

[7] N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444-458, April
1989.

[8] D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage: Preliminary
experience with piranha. In Proc. 1992 ACM Int. Conf. Supercomputing, July 1992.

[9] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

[10] D. R. Karger, E. Torng, and S. J. Phillips. A better algorithm for an ancient scheduling
problem. In Proc. 1994 ACM/SIAM Symp. on Discrete Algorithms, 1994. To appear.

[11] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm. In
Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pages 157-164, 1992.

[12] S. Phillips and J. Westbrook. On-line load balancing and network flow. In Proc. 1993
Symp. on Theory of Computing, Apr. 1993.

12

A Parallel 3D Parabolic Wave Equation Solver
Ding Lee!, Diana C. Resasco, Martin H. Schultz2
Faisal Saied®

YALEU/DCS/RR-995
January 1994

The authors were supported in part by the Office of Naval Research (ONR) under contracts
N00014-89-J-1671 and N00014-93-WX-24092, by the Naval Undersea Warfare Center (NUWC)
independent research project A10003 and by grants from IBM and NSF ASC 92 09502 RIA.

Aproved for public release: distribution is unlimited.
!Naval Undersea Warfare Center

2Yale University, Dept. of Computer Science
3Univ. of Illinois at Urbana-Champaign, Dept. of Computer Science

Abstract

Three dimensional (3D) models of sound propagation in the ocean can
lead to very large scale computations. With the advent of parallel com-
puting, we have the chance of doing these computations at an acceptably
fast rate.

We describe our work towards porting a 3D parabolic equation solver
to current parallel computers. The code is FOR3D, developed at NUWC,
and is based on the Lee-Saad-Schultz model. This model takes the az-
imuthal coupling into account, and marches the solution out in range,
with an AD scheme, which requires alternated sweeps, solving indepen-
dent tridiagonal systems alternating in the depth and azimuth directions
at every range step. '

Our parallel implementation is in Linda, a language that allows parallel
algorithms to be expressed in terms of a machine-independent model of
parallel computing. Codes parallelized in Linda will run on any parallel
computer on which Linda is implemented. We will focus on a cluster of
workstations viewed as a distributed memory multiprocessor.

We report on the improvement in performance that can be obtained
through a combination of algorithmic improvements and parallel comput-
ing. We touch upon some software engineering issues that have a strong
bearing on the process of porting existing codes to parallel architectures.

We demonstrate that workstation clusters can be very effective for
scientific codes, particularly when a fast interconnect or switch is used.

1 Introduction

In this paper, we describe our progress in implementing a portable parallel
version of FOR3D, a code developed at the Naval Undersea Warfare Center
(NUWC) for the prediction of sound propagation in the ocean. Section 2 de-
scribes the equations solved by the original FOR3D code. In Section 3 we discuss
some general considerations on implementing a parallel version of the code. A
brief description of Linda is given in Section 4 and the hardware used for our
experiments is described in Section 5. In Section 7 we show performance data,
we discuss possible future directions of our research in Section 8, and in Section
9 we present our conclusions.

2 Description of the Problem and Numerical
Approach

FORSD solves the following parabolic equation, which models one-way outgoing
propagation:

up = iko(-1+VIF X +)u (1)

where «u is a function of depth (z), azimuth () and range (), ko is a constant,
the reference wavenumber, and the differential operators X and Y are given by

1 8,10
— 2 - — (==
X = n*(r0,z)-1+ kgpaz(paz)
1 8,10
Y = k—g;aﬂ—a'g(;'a—e) (2

where n(r, 8, z) is the index of refraction and p is the density. In FOR3D, p can
be a step-wise linear function of z and 6 [5].
A local solution to (1) can be written down symbolically as:

u(r + Ar, 0, z) = e~ FoAr gikolry T+ X+Y y(r, 4, 2). 3)

The numerical scheme designed by Lee, Saad and Schultz [4] makes use of
the following rational approximation to the square root operator:

\/1+X+Yz1+%X—%X2+%Y.

By assuming near commutativity of the operators X and Y, (3) becomes:

- { ix_1x3) ¢ 1
u(,,,_'_ Ar, 8, z) —e 1koAreskoAr(1+2X X)etkoAraYu(r’ 9, z).

Then, the exponential operators are further approximated by rational functions,
giving the following marching scheme:

I+aX I+pY
I+aX I+pY

u(r+ Ar,8,2) = u(r,6,2) ©)
where a = § + ijkoAr and 8 = ilkoAr.
A finite difference discretization of (4) leads to a problem of the form

ABU* = A*B*U (5)

where U and Ut are the computed solution vector at the present range r and at
r+ Ar, respectively, and A and B represent the discretizations of the operators
I+ aX and I+ BY respectively, computed at range r + %Ar.

The computational domain at each range step is an N, by Ny grid, originally
numbered column-wise, i.e., by depth first, then by sector. With such ordering,
the matrix A is block-diagonal, with tridiagonal blocks in the diagonal. Sim-
ilarly, if the gridpoints are numbered by sector first (i.e., row-wise), then the
matrix B is block-diagonal, with tridiagonal blocks in the diagonal.

At each range step, computations are arranged in two AD half-steps, alter-
nated with a transposition (reordering) of the partial solution vector:

o z-half-step: Compute right hand side and solve
AU = A°B'U (6)

o Transpose intermediate solution U

o f-step: Solve . _
BUt =T (7)

¢ Transpose new solution Ut back to original ordering.

The FOR3D code is described in detail in [1].

3 Parallel Implementation: Some General Con-
siderations

In this section we briefly outline some general features of our approach to paral-
lelizing FOR3D, independent of any particular parallel hardware/software sys-
tems. In the subsequent sections we will describe how this approach is imple-
mented on clusters of workstations using LINDA.

The basic structure of a range step in FOR3D consists of a set of independent
tridiagonal solves in depth followed by another set of independent tridiagonal
solves in the azimuthal direction. In addition, matrix vector products involving

tridiagonal matrices are required in each of these directions to form the right
hand side.

Our approach to parallelizing these computations is to assign one or more
of the (depth dependent) tridiagonal systems to each processor. Each processor
forms the tridiagonal matrices it needs, and hence the matrices are not involved
in the communications. The solves are done locally, using Gaussian elimination
adapted to the structure of the matrices.

In the second phase of the range step, each processor solves one or more tridi-
agonal systems in the ¢ direction. The matrices for this phase are again formed
locally, and are not involved in any inter-processor communication. However
the right hand sides of the tridiagonal systems in this phase depend on the
intermediate solution obtained from the first half-step, and data movement is
required between these phases.

This data movement can be conceptually viewed as matrix transposition and
can be implemented in several different ways. The simplest approach involves
each processor sending data to every other processor and receiving data from
every other. The global nature of the communication reflects the global data
dependencies inherent in the FOR3D model. Any 3D model that takes full -
coupling into account will have analogous global communication requirements.
It is important to exploit any features of the parallel hardware and software
to make this phase as efficient as possible to minimize the overhead cost of
parallelization.

Because of the well-structured nature of the computational kernel in FOR3D,
we achieve good load balance across processors.

4 Linda

Linda is a coordination language that complements traditional languages for
computation. In our application, we used Fortran-Linda from Scientific Com-
puting Associates. A few simple commands are added to Fortran. The resulting
language is architecture-independent, which makes the code highly portable.
The Linda coordination model is based on a form of virtual shared memory,
called “tuple space”, that is designed specifically to accommodate inter-process
coordination. Linda-style shared memory has been efficiently implemented in
settings such as distributed-memory parallel machines and local area networks,
whose architectures preclude communication via conventional shared memory.
A tuple space stores tuples, which are ordered aggregates of data objects. Linda
provides three basic access operations with built-in synchronization: the out op-
eration generates a tuple and adds it to memory; the in operation looks for some
“matching” tuple and removes it, blocking if necessary until one is available; the
rd operation is like in, but copies rather than removes the matched tuple. Tu-
ple space is an associative memory: in or rd statements specify a “matching
template” or anti-tuple which may include either values or typed place-holders

or both. Linda also provides a process-creation mechanism integrated with the
tuple space abstraction: the eval operation generates and places in tuple space
an unevaluated tuple. When each field of the unevaluated tuple has been fully
evaluated, the unevaluated tuple turns into an ordinary tuple which can be read
or removed using the standard operations.

For a more detailed description of Linda and its applications, see [2].

5 Hardware

For our experiments, we used a network of IBM RS6000/560 workstations. With
the Ethernet interconnect, only one processor pair can communicate at a time.
A faster interconnect was recently added, IBM’s AllNode (or V7), a switch which
supports multiple, high-bandwidth, low-latency connections between processors.

6 Parallel FOR3D

In our parallel version of FOR3D, the computational domain is initially dis-
tributed so that each processor gets a sector (i.e. a number of azimuth values).
In homogeneous networks, each processor works on a data set of approximately
the same size, but the code accepts data sets of different sizes, to provide flexi-
bility for good load balance when working on heterogeneous networks. For each
range step, the computations in the depth direction are performed locally, then
the partial solution is transposed across processors, so that each processor can
locally compute the azimuth step, and then the solution is transposed back.

Instead of approximating 4 by Ut = B~1A~1A*B*U (solved by steps (6)
and (7) in section 2), we use the ordering Ut = B~!B*A~!A*U. This order-
ing of the operators facilitates the organization of the computation, because it
permits us to group the computations in each alternated direction. The two
transpose operations at every range step make sure that the data for each half-
step is local to each processor, therefore these steps are performed with perfect
parallel speed-up. All communication between processors is done at the trans-
pose phase.

o z-half-step: Compute right hand side and solve (Each processor computes
a portion of the solution.)

AU = A*U 8

¢ Transpose intermediate solution U

e O-step: Compute right hand side and solve (Each processor computes a
portion of the solution.)

BU* = B*U 9)
¢ Transpose new solution Ut back to original ordering.

Master-worker model

Linda allows the user to design a parallel application using the master-worker
model, in which one of the processors acts as master, assigning data and tasks
to the spawn processes. Although it is not essential, we chose to use this model
for our parallel FOR3D. The master process is in charge of processing and
distributing the environmental data, and for gathering output for visualizing
the solution when requested by the user. It is possible to program the master
processor to become a worker in cases when it is likely to stay idle for long
periods of time.

Fig. 1 illustrates the sequence of computation and communication at a par-
ticular set of range steps, for a case of a master process and three workers.
The arrows represent data being communicated among processors. We need to
point out that this picture is an oversimplification of the communication pat-
tern, and it does not necessarily represent the Linda model. Linda preprocesses
the communication pattern in order to minimize overhead.

The master process gathers the solution vector for visualization when neces-
sary (in most applications, the solution is not printed out at every range step),
while the workers can continue marching the computations in range. When
new environmental data needs to be inputed (again, this is not usually done at
every range step), it is the master processor’s job to process the new data and
distribute it among the workers.

7 Parallel Performance

In the current implementation, the transpose step is the communication bot-
tleneck. The cost for the transpose step increases linearly with the volume of
data being transposed. Since we get perfect speed-up for the arithmetic compu-
tations, the amount of speed-up that can be achieved for a given problem size,
as we increase the number of workers (processors), is basically bounded by the
cost of the transpose. In Fig. 2 we show run time curves for two problem sizes,

Master \ t‘ Visualization .« e New Environmemg
P1 \Zk ei ?z%yew lz_ . 7]y Te oy

P3 z!ﬁequlpe

N EIVENE

Wi A

..z/'e?\q/he

Figure 1: Communication and computation pattern

B

Table 1: Runtimes for 3D and N x2D models
Run-time for one range step computation.

Grid size N,=T99 x Ny=180

Number of

Processors 3D | Nx2D
1 420 3.20
2 2.80 | 1.61
3 1.97 | 1.12
4 1.62| 0.85

for increasing number of processors. The solid lines indicate perfect speed-up
(i-e. the one-processor time divided by number of processors). We can see that
arithmetic times agree with the perfect speed-up curve, but as more workers
are added, the time for the transpose dominates, making the parallel code less
efficient. Fig. 3 shows speed-up curves for the same problems. These results are
obviously heavily dependent on architectural features of the network or parallel
machine. In Fig. 4 we ¢an see the substantial improvement in efficiency achieved
by the same processors when going from an Ethernet interconnect to the faster
AllNode switch interconnect.

When @ coupling can be ignored, FOR3D can solve the equations in N x 2D
mode, i.e. as a collection of independent two-dimensional problems. Basically,
the #-half-step is skipped. In this case, the code is not only faster, but obviously
more parallelizable, since no transpose is needed. Table 1 shows runtimes per
range step for a particular gridsize. We can see how the times for N x 2D follow
perfect speed-up closely.

Finally, as an example of the improvement in performance that can be ob-
tained through a combination of algorithmic and hardware improvements, code
optimization, and parallel computing, we show in Table 2 the progression in
computing time from a run of the original FOR3D code on a Sparc II worksta-
tion to our parallel version on five IBM RS6000/560 workstations.

8 Future Directions

In order to make FOR3D more efficient, we envision improvements to the se-
quential as well as the parallel versions.
One such improvement to the sequential code will be to replace

(I+aX)' (I+aX)= %14.(1_ %)(I_i_&x)—l

180 X 399 GRID, V7 INTERCONNECT

4.5} 4
af -
3.5+ .
w 3F]
a
Sasl i
2
@ 2o .
1.5} Total 4
1 g
Arithmetic Sl 0 T -
0.5 St mememe o T
i e S---o-==r==3
(] 2 4 e 10
NUMBER OF PROCESSORS
180 X 799 GRID, V7 INTERCONNECT
4.5 L
4k -
3.5¢ 4
w» 3F J
=1
S2s| Total i
]
@» L |
1.5} Arithmaetic 4
1+ ~‘-~~-“—~—--.=
Tt~ -
N ——
% 2 : 5 70

4]
NUMBER OF PROCESSORS

Figure 2: Parallel Performance of FOR3D
Run-time for two grid-sizes, as a function of the number of processors. Total

time is the combination of transpose time plus arithmetic time. Dashed lines
represent extrapolated values.

SPEED-UP vs. NUMBER OF PROCESSORS

o

45 .

3 180 x 799 grid]

25

180 x 399 grid

15

Figure 3: Parallel Performance of FOR3D: Speed-up

and
(I+pY)™ (I+pY)= -Z—-I+ (1- —g-)(IﬁLBY)-1 =-I+2(+8Y)"!

in (4). This substitution eliminates the need to compute the right hand sides
in the z and @ half-steps. We will report more on this at a later time.

In order to reduce the number of transpose steps needed, another idea is to
use alternating sweep ordering, in which the (z and 6) half-steps are followed by
(0 and then z) half-steps, thus eliminating the need for one of the two transposes
per range step.

Since the cost for the transpose depends on the volume of data transfered,
one variation of the algorithm is the use of substructuring (reduced system)
techniques to solve the tridiagonal systems for the # half-step. Instead of trans-
posing the whole array, partial Gaussian elimination is applied to sections of

10 -

180 X 799 GRID, V7 INTERCONNECT AND ETHERNET

T T T T

(5]

»
o)
T
A

E
T

©
)
T

W
T

Ethemnet Total

SECONDS
[\
‘f'

N
T

Ethemet Transpose 7

-
(4]
T

S~o
i
Tee—.—a

-
T

0.5 V7 Transpose

. 1 1

(=]

4 6
NUMBER OF PROCESSORS

Figure 4: Comparison between Ethernet and AllNode interconnections

each system, and only a small reduced system is exchanged and solved through
the network. This method doubles the operation count for the tridiagonal solves,
but in most cases it will greately reduce the cost for the transpose, because the
volume of data being transfered is reduced to the size of a separator set (about
N, vs. iv—‘-’;f—l-\f'- per processor) [6, 3, 7, 8].

We finally point out that more parallelism is to be obtained in real appli-
cations by simultaneously solving for several frequencies. The computation for
each frequency is completely independent.

9 Summary and Conclusion

We have described the implementation of a functioning portable parallel code
for computational ocean acoustics. The tremendous advances in workstation
technology have made the workstation cluster approach to parallel computing
very attractive. Our experiments on a cluster of high-end workstations with a
fast interconnect show that high performance can be achieved in a cost effective
manner. .
We used the coordination language Linda for our implementation. Linda is
easy to use and has low overhead. Code written with Linda will run in any

- -1

Table 2: Speed improvement
Run-time for one range step computation.

Grid size N, = 799, Ny = 180

Sparce II
Original (sequential) code 49.0 sec
New (sequential) code 24.2 sec

IBM RS6000/560
New (sequential) code 4.2 sec
Parallel code: 5 procs. 1.3 sec

parallel computer that supports Linda.
The experience gained by designing this application will be useful in paral-
lelizing other similar acoustic codes.

10 Acknowledgements

This research was supported in part by the Office of Naval Research (ONR)
under contracts N00014-89-J-1671 and N00014-93-WX-24092, by the Naval Un-
dersea Warfare Center (NUWC) independent research project A10003 and by
grants from IBM and NSF ASC 92 09502 RIA.

References

[1] G. Botseas, D. Lee, and D. King. FOR3D: A computer model for solving
the LSS three-dimensional wide angle wave equation. Technical Report TR#
7943, Naval Underwater Systems Center, 1987.

[2] N. Carriero and D. Gelernter. How to write Parallel Programs: A First
Course. MIT Press, Cambridge, MA, 1990.

[3] S. L. Johnsson. Solving tridiagonal systems on ensemble architectures. STAM
J. Sci. and Stat. Comput., 8:(354/392), 1987.

[4] D. Lee, Y. Saad, and M. H. Schultz. An efficient method for solving the
three-dimensional wide angle wave equation. In Computational Acoustics,
Vol 1: Wave Propagation, Amsterdam, 1988. North-Holland.

[5] D. Lee, Y. Saad, and M. H. Schultz. A three-dimensional wide angle
wave equation with vertical density variations. In Computational Acoustics:

12

Ocean-Acoustic Models and Supercomputing, pages 143-154., Amsterdam,
1990. North-Holland.

[6] F. Saied. Numerical techniques for the Solution of the Time-dependent
Schrédinger Equation and their Parallel Implementation. PhD thesis, Yale
University, 1990. Available as Research Report YALEU/DCS/RR-811, De-
partment of Computer Science, Yale University.

[7] A. Sameh and D. Kuck. On stable parallel linear system solvers. J. ACM,
25:(81/91), 1978.

[8] H. H. Wang. A parallel method for tridiagonal equations. J. ACM Trans.
Math. Softw., 7:(170/182), 1981.

13

