Presented at the Symposium on High Speed Computer and Algorithm Organization,
‘University of Illinois at Urbana-Champaign, April 13-15, 1977.

- Minimal Storage Band Elimination1
S. C. Eisenstat,2 M. H. Schultz,2 A. H. Sherman3

Research Report #105

1 This research was supported in part by NSF Grant MCS 76~11460, ONR Grant
N00014~76-C-0277, and AFSOR Grant F49620-77-C-0037.

Department of Computer Science, Yale University

Department of Computer Science, University of Texas at Austin

ABSTRACT

A variation of Gaussian elimination is presented for solving band
systems of linear equations on computers with limited core storage,
without the use of auxiliary storage such as disk or tape. The method
‘is based on the somewhat unusual idea of recomputing rather than saving
most nonzero coefficients in the reduced triangular system, thus trading
an increase in work for a decrease in storage. For a five-point problem

on an n x n grid, the storage required is ~ n2 versus n3 for band
elimination, while surprisingly the work required at most doubles.

1. Introduction

Consider the system of linear equations
(S) Ax=5bO

where the coefficient matrix A is an N x N symmetric positive definite
band matrix with bandwidth m, i.e., aijr= 0 if |1 - j| > m (see Figure

1). Direct methods for solving (S) are generally variations of

t
symmetric Gaussian elimination: Form the U DU decomposition of A, where
U is unit upper triangular and D positive diagonal, and then
successively solve the triangular systems

U y=b, Dz =y, Ux = z.

The matrix U is again a band matrix with the same bandwidth as A.
Variations of symmetric Gaussian elimination which take advantage of
this structure to avoid storing and operating on entries outside the
band are known as band elimination methods [6]. The total work (in
‘terms of the number of multiplications and divisions) and storage
required are given by

2

1/2 8m® + 7/2 Nm - 1/3 m3 + 0(N+m2)

OB(N,m)
and

Nm + 0(N+m2)

~

SB(N,m)

respectively [1].

As an example, consider the following model problem which arises
from the familiar five-point finite difference discretization of the
Poisson equation on the unit square with homogeneous boundary
conditions. Given a uniform n x n grid in the plane (see Figure 2a), we
associate a variable uij with each mesh-point (i,j) and form the system

of linear equations

4 u f 1<i, j<n

13 7 M-1,5 T Yi,3 T %,5-1 T Y54 T fig
where

u =0 i=0, ntl or j =0, ntl

2) .
There are N = n~ unknown variables uij’ and, with the natural row-by-row

ordering (see Figure 2b), the bandwidth is m = n. Thus the work and
3

storage required to solve the linear system are ~ 1/2 n4 and. © n
respectively.

-3

Our model problem illustrates the behavior one often encounters in
using Gaussian elimination to solve large band systems: The storage
required can easily exceed the core storage available for even
moderately large N and m, even though the problem and solution (i.e., A,
b, and x) CAN be represented in core. Thus, although we could store the
nonzero coefficients, right hand side, and solution for our model

problem in ~ 5n2 locations, the factorization would require an

additional ~ n3 locations. More generally, although we could store x in
N words of storage, we would still require an additional ~ Nm words of
storage for D and the band of U, even if we could recompute the nonzero
entries of A and b as easily as store them.

In this paper we discuss several variations of band elimination
which can solve (S) with minimal core storage. The methods are based on
the following assumptions:

(1) The nonzero entries of A and b are inexpensive to generate on
demand (e.g., A is sparse and can be represented more compactly
than in band form, or A must be preserved for subsequent
computations). :

(2) There is enough core storage for the solution vector x, plus an

additional y(N+m2) words of working storage (for some small
constant y), but not enough to store the band of U.

We count only the working storage required to solve (S) in stating the
storage requirements of such methods. All other storage (i.e., storage
for A, b, and x) is associated with the linear system rather than the
method of solution and is ignored.

In section 2, we review the standard approach to this problem, the
use of auxiliary storage, and indicate some of the disadvantages of
auxiliary storage band elimination. In section 3, we introduce minimal
storage methods as a corollary of the somewhat unusual idea of
recomputing rather than saving most nonzero entries in the

factorization,1 the effect being to trade a logarithmic increase in work
for a factor of N/2m decrease in storage. Finally, in Section 4, we
consider the special case of the model problem, and show that the work

at most doubles while storage is reduced from ~ n3 to ~ nz.

The same approach can be applied to sparse elimination; see [2].

2. Auxiliary Storage Band Elimination

A standard approach to problems in which the storage required
exceeds the amount of core storage available is to use auxiliary storage
such as disk or tape. This approach works extremely well for band
elimination [5], as can be seen by examining the process more closely.

In the classic view of Gaussian elimination, we use the kth
equation to eliminate the kth variable from the remaining N-k equations
for k=1,...,N, and then solve the resulting triangular system. In
terms of the factorization model, this corresponds to solving

Utiy = b, D z = y

as A is factored, and then solving
Ux =2

when the factorization is complete.

A program fragment for symmetric band elimination using a scratch
array M appears as Figure 3a. Note that only those locations M[i,j] for

which k < i < j < ktm are referenced in eliminating the kth variable.
These locations form an (m+l)x(mt+l) triangular window on the upper band
of M. All the previous rows contain entries of U and will not be needed
until back-solution; all subsequent columns contain entries of A and
have not yet been used in the elimination process; and the window
advances as each variable is eliminated (see Figure 3b).

This suggests an auxiliary storage band elimination algorithm. We
use core storage as an (m+l)x(m+l) triangular window on the elimination
process. After each variable is eliminated, the window is shifted; the
row of U left behind is written to auxiliary storage; and the last
column of the window is initialized to the next column of A. During
back-solution, we retrieve the rows of U in reverse order and solve for
the corresponding component of the solution. Since we do exactly the
same operations as in band elimination,

~ 2
OAS(N,m) = 1/2 Nm“,

yet the core storage required (other than that for A, b, and x which we
have agreed to ignore) is just that for the window, namely

SAS(N,m) = 1/2 (ml)(m+2).

An obvious refinement of this algorithm is to save as much of the
factorization in core as possible, but, when core storage is exhausted,
to make room by moving those rows of U not needed for the next stage of
elimination (i.e., not in the window) to auxiliary storage. In a
certain sense, in-core band elimination on computers with large virtual

memory has the same effect: When no real memory is available, the
operating system moves the least recently used pages (i.e., rows of U)
out to the swapping device (i.e., auxiliary storage), and then retrieves
them as they are referenced during back-solution.

While auxiliary storage band elimination can be used to solve large
band systems of linear equations on computers with limited core storage,
it does have certain disadvantages. First, a large amount of auxiliary -
storage is required to save the factorization. Second, the added cost
of transferring the factorization to and from auxiliary storage can not
be neglected. While in principle this input/output can partially
overlap the numerical computation, in practice the degree of such
overlap is highly dependent on the machine, auxiliary storage device,
and operating system in use. Third, retrieving the rows of U in reverse
order requires the ability to read backward or random access auxiliary
storage, an operation which is again highly dependent on the program
enviromment.

3. Minimal Storage Band Elimination

The disadvantages associated with auxiliary storage band
elimination are inherent in the use of auxiliary storage. In this
section, we introduce a minimal storage band elimination algorithm for
solving band systems of linear equations with limited core storage and
NO auxiliary storage. Rather than trade input/output and auxiliary
storage for a reduction in core storage, we trade additional arithmetic

operations instead.2 The basic idea behind the algorithm is quite
simple. We discard most nonzero coefficients in the reduced triangular
system as they are computed and regenerate them during back-solution;
only enough information is retained to solve for a subset of the
unknowns at each stage, thus reducing the size of the problem to be
solved. '

Observe that, in solving (S) using auxiliary storage band

elimination, after the (N-m)th variable has been eliminated, the
coefficients and right hand side of the resulting m x m system remain in
core. Thus we can solve for the last m components of the solution
without referencing auxiliary storage. Moreover, we can use these
values to reduce the size of the problem to be solved. Writing (S) as a
block system conforming to the N-m unknown variables x, and the m known

1

variables Xy»

e S PR W T By ,

= s
t

Ala Ay *2 b,

we see that the remaining unknowns X, satisfy the reduced system
Allxl = b1 - A12x2 = bl'

This suggests the following method for solving band systems with
limited core storage and no auxiliary storage:

(1) Use band elimination to eliminate the first N-m variables,
discarding the rows of U as they are computed (i.e., we store only
the window).

(2) Solve the resulting dense positive definite system of m equations
in the last m variables.

Advances in semiconductor technology have made the central processing
unit (as well as attached processors such as array processors)
relatively inexpensive compared to auxiliary storage devices. Thus,
such an exchange is not unreasonable.

(3) Substitute these values into the original system to obtain a new
system of N-m equations in the remaining N-m unknowns.

(4) Solve the new system by the same algorithm.3
Clearly the storage required is the same as that for auxiliary
storage band elimination, i.e.
S(N,m) = 1/2 (m+l)(m+2);

but what is the increased cost? Letting 6(n,m) denote the work

required, we have4
e(N,m) = eB(N,m)' + o(N-m,m)

1/2 Nmz + 06(N-m,m) .

m

Therefore,

1/4 sz,

n

o(N,m)

i.e., the work has increased by a factor of N/2m. For our model
problem, we have reduced the storage required from ~ n3 to ~ 1/2 nz, but

the work has increased from ~ 1/2 n4 to ~ 1/4 nS. Fortunately, we can
do much better.

A basic technique for speeding up algorithms is divide-and-conquer.
Rather than reduce a problem to a slightly smaller subproblem at each
stage, it is often more efficient to reduce it to TWO subproblems each
of at most HALF the size. Thus, suppose we could solve for the middle m
components of the solution. If we write (S) as a block system
conforming to the first ~ (N-m)/2 variables xl, the middle m variables

Xy and the last ~ (N-m)/2 variables X35

3 Note that the coefficient matrix in the new system, being a principal
submatrix of A, is again a symmetric positive definite band matrix with
bandwidth (at most) m; thus the procedure can be applied to the new
system.

For ease of exposition, we have assumed that the bandwidth does not
decrease and that only m components are solved for at each stage°
otherwise the work would be somewhat smaller.

A A 0 X b

11 12 ™ 1
At A A x = | b

12 22 23 2 2 |
0 At A X b
23 33 3 3

then the remaining unknowns X, and Xq satisfy two INDEPENDENT

“(N-m) /2 x ~(N-m) /2 linear systems,

Aly*p = by mAx, = by ;
A..x. = b, -AY x = b
33 X3 3 A3 % = Dbs.

Since the coefficient matrices of the two subproblems are again
principal submatrices of A, they are symmetric positive definite band
matrices with bandwidth (at most) m. Thus the algorithm can be applied
recursively to each of the subproblems. However, to use this technique,
we need a method for solving for the middle m components of the
solution. ’

_ Recall that symmetric Gaussian elimination can be viewed as an
elimination process. That is, each equation is used to eliminate the
corresponding variable from the remaining equations, and the resulting
triangular system is solved for the unknown variables. For band
elimination, we observed that, when we eliminate the variables in
forward order, no nonzero coefficients are created outside the band.
Thus we need only store and operate on coefficients within the band. Of
course, the same is true if we eliminate the variables in reverse order,
since reversing the order of the variables and equations preserves the
band structure. Moreover, since A is positive definite, any order of
elimination is numerically stable [7].

This suggests another minimal storage band elimination method:

(1) Eliminate the first ~ (N-m)/2 unknowns in forward order, using a
triangular window and discarding the rows of U.

(2) Eliminate the last ~ (N-m)/2 unknowns in reverse order, again

using a triangular window.5

(3) Solve the resulting dense positive definite system of m equations
in the middle m unknowns.

3 Evans and Hatzopoulos [3] have used two-sided band elimination to

solve centro-symmetric (aij = an—i+1,n—j+l) band systems of linear

equations.

(4) Use these values to split the problem into two independent
subproblems.

(5) Apply the algorithm recursively to solve each subproblem.

The storage required is approximately twice that of our earlier
method, since we must maintain the contents of both windows; in fact,

precisely6

_ 2
SMS(N’m) = (mtl)

locations are required. Let BMS(N,m) denote the work required to solve

a system of N equations with bandwidth m using this algorithm. The work
to solve for the middle m unknowns is exactly the same as before so

that7

n

EGMS(N,m) 6B(N,m) + 2 eMS((N—m)/Z,m)

2

n

1/2Nm” + 2 OMS(N/Z,m) .

Thus

N 2
OMS(N,m) = 1/2 Nm logz(ZN/m).

While minimal storage band elimination avoids the problems
assoclated with the use of auxiliary storage, it does have certain
disadvantages. First, the work required has increased logarithmically,
although this can be improved somewhat by reordering the subproblems at
each stage to minimize bandwidth (see Section 4). Second, the method
has no memory: We solve for one right hand side but do not save any of
the information needed to solve for additional right hand sides (as in
auxiliary storage band elimination). Third, the method is somewhat more
complex than in-core or auxiliary storage band elimination.

Storing two complete windows would require (mt+l)(mt+2) locationms.

- However, when reverse elimination (Step (2)) begins, the last column of
" the forward window contains an unmodified column of A and need not be
stored.

1 Again, for ease of exposition, we have assumed that the bandwidth does
not decrease.

-lo-
4. Minimal Storage Band Elimination for the Model Problem

In deriving the operation count for minimal storage band
elimination, we did not make any additional assumptions about the
induced subproblems. We merely observed that the coefficient matrices,
being principal submatrices of A, were again symmetric and positive
definite with bandwidth (at most) m. As. a consequence, the decrease in
storage engendered a logarithmic increase in work. However, if the
matrix A has more structure, one would expect that the bandwidths of
some subproblems could be reduced by reordering the variables and
equations, thus reducing the total work required. The savings can be
quite significant. We show in this section that the number of
arithmetic operations needed to solve our model problem is approximately

5/3 that for band elimination.8

Consider minimal storage band elimination applied to a five-point
problem on an n x n grid. During the first partial solution step, we

solve for the variables on a horizontal grid line9 which divides the
"grid into two “n/2 x n subgrids (see Figure 4a). Given these values,
the problem splits into independent five-point problems on each of the
two subgrids. The optimum ordering for each subproblem (in terms of
minimizing the bandwidth) ‘is the column-by-column ordering for which the
bandwidth is "n/2 [4]. During the second partial solution step (as
applied to the optimally ordered subproblems), we solve for the

variables on vertical grid 1ines9 which further subdivide the grid (see
Figure 4b). Each resulting subproblem is a five-point problem on an
“n/2 x “n/2 grid. Thus we have reduced our problem to four structurally
similar problems of approximately one-fourth the size which can now be

solved in the same manner.lo

8 Similar results are easily obtained for more general finite difference
and finite element approximations to self-adjoint elliptic partial
differential equations. The key property is that the subproblems
generated have a sufficiently regular structure that one can analyze the
effect of reordering to minimize bandwidth.

9 When n is even, the middle m variables do not lie on a single
grid-line; however, we could equally well sclve for the m variables on
either of the two central grid-lines.

10 It is interesting to note that the order in which we solve for the
variables is essentially the reverse of the nested dissection ordering
proposed by George [4] for sparse elimination.

-11-

Let GMS(p) denote the number of arithmetic operations required to

solve a five-point problem on a p x p grid using optimally ordered
minimal storage band elimination. From the preceding discussion, we
have

- 2 2
eus(p) = eB(p ,P) + 2 eB(p /2,p/2) + 4 eMs(p/Z)

m

172 GH®? + 20/2)(p%/2) (p/2)2

3
+ 4 0,.(p/2) + 0(p))

mn

' 4 3
4 eMS(p/Z) + 5/8p + 0(p)).

Therefore

eMS (n)

n

5/6 n* + o(n)

so that the total work is approximately 5/3 that for band elimination.
The total storage is just

_ 2
Syg(®) = (ntl)

-~

versus n3 for band elimination..

During the execution of this algorithm, we eventually reach a value
of p sufficiently small that the entire factorization of each p x p
subproblem can be kept in core. In particular, if

p < 23,

then the storage required for band elimination satisfies

5,050 = D = p° < @ -

whereas we have assumed that the amount of storage available is at least

-~

nz. Thus we could switch to band elimination at this point. The
switch would have very little effect on the total number of arithmetic
operations since most of the work is done in the first few stages.
None-the-less, the reduced book-keeping makes it a good idea in
practice.

-12~

An N x N symmetric band matrix with bandwidth m (N = 9; m=4)

Figure 1.

-—

X X X X

X X X X X

X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X

- X X X X X

X X X X

it

-13-

Figure 2a. An nxn grid.

Figure 2b. The natural row-by-row ordering of an nxn grid.

*
*

* *x % % % %

3 4 5 6 7
10 11 12 13 14
1516 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49
X kx k k %X %

(S
N
*

=]
O
* % F *

*

* % X X X X X * %
*

*
*

Figure 2c. The coefficient matrix for the model problem on an nxn grid.

) — r- oy
T-I 4 -1
-1 T -1 -1 4 -1
-I T -1 -1 4 -1
A= . . . T = ' . . .
T I -1 4°-1
A -I T -1 4
hoe -+ XN . od - nxn

~14-

Fig. 3a. Symmetric band elimination.

FOR k = 1 UNTIL N DO
{imax = MIN (k+m, N);
FOR i = k UNTIL imax DO
M[k,i] = A[k,1i];
x[k] = b[k]};

FOR k = 1 UNTIL N DO
{imax = MIN (k+m, N);
FOR i = k+1 UNTIL imax DO
{uik = M[k,i] / M[k,k];
FOR j = i UNTIL imax DO
M[i,j] = M[i,j] - uik * M[k,j];

x[1) = x[1] - uik * x[k];
M[k,i] = uik};

x[k] = x[k] / M[k,k]};

FOR k = N STEP -1 UNTIL 1 DO
{imax = MIN (k+m, N);
FOR i = k+1 UNTIL imax DO
x[k] = x[k] - M[k,i] * x[1i]};

Figure 3b. The window on the band of A advances at each step.

— —

Ca T - A

C T T -

Figure 4a.

O 00X OOO
0O 00 X O0O0O0

Figure 4b.

The

0O 00 X O0OOO

variables on a horizontal grid

variables on vertical grid

]

]

000X O0O0O0O
0co0O0OXOoO0oO

O 00 X OOO
O 00 X OOO

-15-

———

-

o
o
o

lines

further

line subdivide the grid.

subdivide the grid.

-16-

REFERENCES
1. Bunch, J. R., Analysis of sparse elimination, SIAM Journal on
Numerical Analysis 11:847-873, 1974.
2. Eisenstat, S. C., M. H. Schultz, and A. H. Sherman, Minimal storage
- sparse elimination. To appear.
3. Evans, D. J., and M. Hatzopoulos, The solution of certain banded

4.

5.

6.

7.

systems of linear equations using the folding algorithm, Computer

Journal 19:184-187, 1976.

George, J. A., Nested dissection of a regular finite element mesh,
SIAM Journal on Numerical Analysis 10:345-363, 1973.

Jennings, A., and A. D. Tuff, A direct method for the solution of
large sparse symmetric simultaneous equations. In J. K. Reid,
Editor, Large Sparse Sets of Linear Equations, Academic Press, 1971.

Martin, R. S., and J. H. Wilkinson, Symmetric decomposition of
positive definite band matrices, Numerische Mathematik 7:355-361,
1965.

Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press,
1965.

