Yale University
Department of Computer Science

P.O. Box 208205
New Haven, CT 06520-8285

Slightly smaller splitter networks

James Aspnes!
Yale University

YALEU/DCS/TR-1438
November 2010

'Supported in part by NSF grant CCF-0916389.



Abstract

The classic renaming protocol of Moir and Anderson [4] uses a network of ©(n?) splitters to
assign unique names to n processes with unbounded initial names. We show how to reduce this
bound to ©(n?/?) splitters.

1 Introduction

We show how to reduce the ©(n?) space and output namespace of renaming using a splitter network
in the style of Moir and Anderson [4] to ©(n3/2). The individual time complexity remains ©(n),
which is optimal for deterministic renaming given an unbounded initial namespace [3].

Our construction is based on alternating small Moir-Anderson grids with layers of small binary
trees. The resulting renaming algorithm is not even remotely competitive with the tight output
namespace and polylogarithmic time complexity of the best currently known randomized renaming
algorithm [1], and requires more space, more time, and a larger output namespace than the best
currently known deterministic algorithm [3] in the case where the initial names are sub-exponentially
large. However, it uses less space than any other currently known algorithm when the initial names
are unbounded, and might perhaps be useful as an initial stage before a better algorithm under
such circumstances.

1.1 Splitter networks

A splitter [4] is a shared-memory object, implemented from two multi-writer atomic registers,
with a single operation that returns a value right, down, or stop. Splitters satisfy the following
conditions:

e In any execution of a splitter, at most one process obtains the value stop.
e If only one process invokes a splitter, that process obtains stop.

o If at least two processes invoke a splitter, at least one process obtains either stop or right
and at least one process obtains either stop or down.

We can think of splitters as routing components of a network, where the right and down
outputs send processes along virtual “wires” to further splitters. Figure 1 shows the splitter network
used by Moir and Anderson [4]. It consists of two-dimensional triangular grid of ('y) splitters,
containing splitters at all positions (i,7) where 0 < 4,5 < n and i + j < m, where each process
enters the grid through the splitter at (0,0), and at each splitter (7, j) stops if it receives stop,
proceeds to (i + 1,7) if it receives right, and proceeds to (i,j + 1) if it receives down. Moir and
Anderson show that in any execution in which m processes follow this procedure, every process
eventually receives stop at some splitter, before reaching one of the 2m output wires.

A simple explanation of this fact can be obtained by supposing that some process p reaches
an output wire, and looking at the path it took to get their (see Figure 2). Each splitter on this
path must handle at least two processes (or p would have stopped at that splitter). So some other
process leaves on the other output wire, either right or down. If we draw a path from each of these
wires that continues right or down to the end of the grid, then along each of these m disjoint paths
either some splitter stops a process, or some process reaches a final output wire, each of which is
at a distinct splitter. It follows that:



Figure 1: A 6 x 6 Moir-Anderson grid.

|
i

N E
ISH
igil

]
il

R

<

T
.
-
Hi
L

<

P N O O A O A

Figure 2: Path taken by a single process through a 6 x 6 Moir-Anderson grid (heavy path), and
the 6 disjoint paths it spawns (dashed paths).



Lemma 1. In an m x m Moir-Anderson grid, either all processes stop, or

(# of nonempty output wires) + (# of stopped processes) > m + 1, and (1)
(# of nonempty output splitters) + (# of stopped processes) > m. (2)

An immediate corollary of the first bound (1) is that an m x m Moir-Anderson grid stops any
set of m or fewer processes, because otherwise there are not enough to supply the m + 1 processes
in the inequality. The second bound (2) will be useful in our improved construction.

2 Blockers

Let an (m, k)-blocker be a splitter network with the property that if m processes enter the network
at its designated input gate, at least k processes stop somewhere in the network. A single splitter
is a (1, 1)-blocker (but is only an (m, 0)-blocker for any m > 1). An m x m Moir-Anderson grid is
an (m,m)-blocker.

We will build an (n,n)-blocker out of O(n3/?) splitters using a sequence of \/n stages, each of
which is an (n,/n )-blocker. After each stage, all processes that have not stopped are fed into the
single input of the next blocker. The overall structure is thus similar to the cascaded-tree splitter
networks considered by [2] but we obtain much lower space complexity by using a combination of
Moir-Anderson grids and binary trees in each stage instead of just a single large binary tree.

The essential idea of each (n, \/n )-blocker is to use a Moir-Anderson grid of size 2y/n and apply
inequality (2) from Lemma 1 to show that at least 2/n processes either stop inside the grid or
leave the grid through distinct output splitters. Since there are only n processes, fewer than /n
output splitters will get more than /n processes. Deducting these overloaded splitters from the
24/n total gives at least y/n output splitters that either (a) get between 1 and /n processes, or (b)
correspond to a stopped process inside the grid. By attaching a (y/n, 1)-blocker to both outputs of
all 2y/n splitters in the last layer, we stop at least one process for each splitter in class (a), for a
total of \/n stopped processes.

We have not yet shown how to build a (y/n, 1)-blocker. Here we can just use a binary tree with

V/n splitters:

Lemma 2. Any binary tree of m splitters is an (m,1)-blocker.

Proof. By induction on m. A single splitter is a (1, 1)-blocker. Given a binary tree of m splitters
accessed by at least one process, either the root node stops a process, or it sends at least one
process to each of its two subtrees. Let m; and mo be the sizes of the two subtrees; by the
induction hypothesis, the subtrees are (m1,1) and (mg, 1) blockers, respectively. So for no process
to be blocked, we must send at least mq + 1 processes to the first subtree and mo + 1 processes
to the second, for a total of m; + mg + 2 = m + 1 processes. It follows that the full tree is an
(m, 1)-blocker. O

Figure 3 shows an example of an (n,y/n )-blocker constructed in this way. This uses (2 [\éﬂ) =
(24 0(1))n splitters for the Moir-Anderson grid, plus (2 [v/n]) [v/n] = (2+ 0(1)) n splitters for
the output blockers. The depth of the blocker is 2 [\/n ] + [lgn] = (24 0 (1)) v/n. Summarizing:

Lemma 3. For any n, there is an (n, /n)-blocker with (4+o(1))n splitters and depth (2+0(1))y/n.



Figure 3: A (9,1/9)-blocker, consisting of a 6 x 6 Moir-Anderson grid with a (3, 1)-blocker on each
output wire, implemented as a binary tree of splitters.



3 The full splitter network

To obtain the full splitter network, we iterate our (n,/n )-blocker /n times. Since each blocker
stops at least \/n processes, every process stops at some stage. Summing the size and depth of the
blockers over all \/n iterations gives:

Theorem 4. For any n, there is a network of (4 + o (1)) n3/? splitters with depth (2 + o (1)) n that
solves renaming deterministically for n processes.

Though we have assumed a known, fixed bound on the number of processes n, it is not hard
to see that the algorithm could be made adaptive by stringing together geometrically increasingly
large networks, with processes that fail to obtain a name in one network falling through to the next.
This would give names in the range O(k%/?) and time complexity O(k), where k is the number of
participating processes.

3.1 Conclusions

We have shown that it is possible to build a splitter network that assigns names to n processes in
O(n) individual work using O(n%/?) space (and names). Because of the lower bound of Chlebus and
Kowalski [3], improving the time complexity is not possible using a splitter network, but it may be
that further improvements to the structure of the network could reduce the space complexity.

References

[1] Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui. Fast ran-
domized test-and-set and renaming. In Nancy A. Lynch and Alexander A. Shvartsman, editors,
DISC, volume 6343 of Lecture Notes in Computer Science, pages 94—-108. Springer, 2010.

[2] Hagit Attiya, Fabian Kuhn, C. Greg Plaxton, Mirjam Wattenhofer, and Roger Wattenhofer.
Efficient adaptive collect using randomization. Distributed Computing, 18(3):179-188, 2006.

[3] Bogdan S. Chlebus and Dariusz R. Kowalski. Asynchronous exclusive selection. In Rida A.
Bazzi and Boaz Patt-Shamir, editors, PODC, pages 375-384. ACM, 2008.

[4] Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci.
Comput. Program., 25(1):1-39, 1995.



