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Abstract

We show how to embed every 2-dimensional mesh into a hypercube
with expansion 1 and dilation 5. Previous embeddings with expan-

sion 1 and O(1) dilation have only applied to restricted cases.

1 Introduction

Problems in which the optimal use of one resource requires suboptimal use of
another are common in Computer Science. Classic examples include tradeoffs
between time and space, between chip area and time [Th79], and for parallel
computing between number of processors and runtime.

This paper examines an expansion/dilation tradeoff for graph embeddings
[HMR83]. The motivation is that we wish to program algorithms for commu-
nication graphs natural to their structure (eg. binary trees for divide and conquer
algorithms or meshes for physical differential equations) but to run these programs
on physical networks chosen for general-purpose parallel computation (eg. a hyper-
cube or FFT). Thus we are left with the problem of mapping the communication

graph onto the connection graph.

This work was supported in part by the National Science Foundation under Grant
MIP-8601885




In particular, given a communication graph, M, the task is to determine the
~ ‘best’ embedding, o, from M onto a family of connection graphs, ¥. The resources
we measure are ezpansion and dilation. Expansion is the ratio of the number
of nodes in H, the chosen sized connection graph, to the number of nodes in
the smallest connection graph in the family having at least as many nodes as
M. Dilation equals max; ; d(o(m;),o(m;)) where m; and m; are neighbors in M
and d(z,y) is the length of the shortest path between z and y in H. Expansion
represents the fraction of processors utilized and dilation correlates to the time
per communication (in number of connection link transmissions in H per edge
transmission in M.) '

This paper examines the case where the communication graph is a mesh and
the connection graph is a hypercube. Earlier papers have explored the tradeoffs
for the cases where the communication graph is a tree and the connection graph
is a hypercube [BCLR&6] and where both graphs are 2-D meshes [AIR082].

Some meshes, such as the 4 x 8 mesh,‘are subgraphs of the hypercube of
the same size and therefore have the best possible embeddings. For other meshes,
however, such as the 5 x 11 mesh, either expansion or dilation must be nonoptimal.
Any 2-D mesh can be embedded with expansion 2 and dilation 1 using a gray code.
Many meshes can be embedded with expansion 1 and dilation 2 but no method
is known which embeds all meshes with expansion 1 and dilation 2. This paper
shows that for a cost of dilation 5 the expansion can be reduced to its minimum
value. In particular we give an algorithm for embedding with dilation 5 any N
node mesh into the smallest hypercube containing at least /N nodes.

Section 2 briefly reviews gray codes. Section 3 presents key properties of hy-
percubes, section 4 describes the Reflection Embedding, and section 5 introduces
percolation to improve the Reflection Embedding of section 4. The final section

gives some applications and possible extensions.




2 Gray Codes for Mesh Embeddings

Definition 1 The n-dimensional hypercube, H,, is a set of 2" vertices labelled
from O to 2" — 1 and an edge between any two vertices whose labels differ in
exactly one bit position. All the edges between vertices differing in the sth bit are

said to be in the 7th dimension.

One nice property of a hypercube is that if all the edges in dimension 7 are
‘removed and the 7th bit of each label is ignored two half sized hypercubes are
formed. Thus hypercubes can be recursively split into smaller hypercubes.

The recursive structure of the hypercube leads to the class of reflected gray

codes.

Definition 2 An nth order reflected gray code is a sequence of dimensions defined

inductively as:

Go = 0
Gn = Gp_10ono(Gup1)®
where SB = the sequence S in reverse order
and o = string concatenation.

The flezed sequence, G, is the sequence in which the order of dimensions is reversed.

Thus:

Go=n

G; = Gu_ion—io (é,,_;)R

The ith dimension along the nth order sequence will be denoted as Gn(7).



Example 1

G4 = 0102010301020104010201030102010
G 4 4342434143424340434243414342434
Gi(6) = 1

Definition 3 Given a hypercube, a reflected gray code, and a distinguished ver-
tex, the gray code ordering is the numbering of the vertices of the hypercube formed
by assigning O to the distinguished vertex and assigning ¢+ 1 to the vertex reached

by crossing dimension G(¢ + 1) from the vertex assigned value ¢. (See figure 1).
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Figure 1: Gray Code Ordering of a 4-cube

An interesting property of the reflected gray code which we will use later is
that between any two nodes whose gray code orderings differ by 2¢ there is a path
of distance two in the hypercube. For example although 8 is a distance 23 from 0

along G4 it can be reached by crossing dimensions 2 and 3.




Lemma 1 Vi,0 < i < n, if the gray code orderings or nodes u,v differ by 2° then

u and v are distance 2 apart in the hypercube.

Proof: The proof follows directly from the observation that a length 2! sequence is
a length 2°~! sequence followed by a single bit change followed by the same length
2i-1 sequence in reverse followed by another single bit. Thus every dimension
crossed for the first length 2°~! sequence is crossed back in the second and only

the two other bits remain changed. il

Definition 4 A d-dimensional mesh, My, of size l; X la X --- X l4 is a set nodes
labelled v = (v1,vs,...,v4) where 1 < v; < I; and and an edge between nodes v
and w iff Z;’=1 |v; — wj| = 1. (In other words nodes are neighbors if their labels
differ by one in a single dimension.) All edges between nodes which differ only in

v; are said to be in the ¢th azis.

Definition 5 An embedding of graph G into graph H is an injective mapping from
the vertices of G to the vertices of H.

Definition 6 A d-dimensional gray code embedding (dDGC) of aly X lg X -+ - X 14
mesh into a n = Y% log(l;) dimensional hypercube! maps node v = (v1,v2,...,v4)
‘of the mesh to the hypercube slot o(v) = catf, Glog(,—'_)(v,’). (Where cat is the

concatenation of the log(l;)-bit values.)

A 1-D mesh is just a Hamiltonian path and thus is embedded with optimum
expansion and dilation via a one dimensional gray code embedding. For higher
dimension meshes the multi-dimensional gray code does not always use minimum
expansion. In our earlier example of a 5 X 11 mesh a 2-D gray coding uses 3 bits

for the first dimension and 4 for the second and thus a hypercube of 27 = 128

IWe will often want to refer to the highest power of two smaller than X or the smallest

power of two larger than X. These two values will be written respectively as X and X.




nodes. But this mesh has only 55 nodes and would fit in a 6-cube of 64 nodes.
In general for a W x L mesh the 2-D gray code will give minimum expansion iff
WL>WL. '

In fact, for some meshes, dilation 1 requires nonoptimal expansion regardless
of the embedding used. For completeness we include the following theorem which

has been independently discovered by, among others, [BrSc85,Chan86,HoJo87]:

h

;‘Eh h |h |h hh h |h |h |h
i i
s| slot with two| h
.| dimension h edges
J h
h
Axis ¢

Figure 2: Conflict when Edges in Two Mesh Axes Correspond to Edges in

one Hypercube Dimension

Theorem 1 (Meshes in Cubes with Dilation 1) _
Ifanly xly x--- x4 1s embedded in an n-cube with dilation 1 then n > > 4log(l)-

Furthermore there ezists an embedding such that n = 3% log(T;).

Proof: The crux of the proof is that all hypercube edges along any hypercube
dimension must correspond to mesh edges along a single mesh axis. This fact
relies on the fact that any two hypercube edges on opposite sides of a 4-cycle must
be along the same dimension. (As the cycle is traversed two dimensions are crossed
and then the same two dimensions must be crossed back.) _

- Now consider any two mesh axes ¢ and j (see figure 2). If a hypercube edge

along dimension h corresponds to a mesh edge along axis ¢ then a whole ‘column’
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of mesh edges will correspond to hypercube edges in dimension A since each will be
opposite another in a 4-cycle. If some other edge along dimension h corresponds
to a mesh edge along axis 7 a similar ‘row’ of edges would correspond to dimension
h hypercube edges. But the ‘row’ and ‘column’ intersect thereby assigning two h
dimension hypercube edges to a single hypercube slot which is impossible. Thus
all edges in a hypercube dimension correspond to a single mesh axis.

Thus each mesh axis of length [; is assigned at least log(l;) hypercube dimen-
sions disjoint from those used for other mesh axes. Clearly the entire embedding
will require at least Y"¢log(l;) hypercube dimensions.

When a gray code is used along each mesh axis (for example a dDGC) ex-

actly log(l;) hypercube dimensions are used for a mesh axis of length I; and
n=¥1log(l).

Corollary 1 1nﬁnitely many d-dimensional meshes require expansion 241,

Proof: ;
If Vi,l; = 29 + 1 then "¢ log(l;) = d(d + 1). Thus a 24(d+1) pode hypercube
is used. But [Jl; = (29 +1)¢ < 2+l 50 a 24°+1 node hypercube would be large

enough and the expansion is 2911

3 Combinatorial Lemmas

Definition 7 A reflected pebbling is a pebbling of a hypercube according to the
following rules. Choose a gray code sequence, G, for the hypercube. Initially place
a pebble on each of the first p nodes of the hypercube according to the gray code
ordering defined by G. On the ith round move pebbles across dimension G (i — 1).
Thus on round ¢ whether a pebble is placed on a given node depends on the prior
round’s pebbling of the node’s image across dimensioﬁ G (¢ — 1). This image node

is called the node’s partner for round z.



Definition 8 Any subcube spanned by the smallest ¢ dimensions is a primary

i-subcube. There are 2"~* primary ¢-subcubes in an n dimensional hypercube.

Full 2—cube Empty 2—cube

Mixed 2-cube Emptyv2—cube

Figure 3: Initial Pebbling of a 4-cube

Lemma 2 (Reflected Pebbling Lemma)

Given an n-dimensional hypercube and a reflected pebbling of p pebbles:

1. If p = 2' (the pebbles fill a primary i-subcube) then every node is

pebbled ezactly once after 2"~ rounds.

2. After each round the mazimum difference in the number of times two

neighboring nodes in the hypercube have been pebbled is 1.

8. After each round the mazimum difference in the number of times any

two nodes have been pebbled is n.

Proof:

1. .A;ny dimension higher than ¢ maps each primary i-subcube onto some
other primary i-subcube, whereas any dimension smaller than or equal
to ¢ maps each primary i-subcube onto itself. The sequence of on—i 1
dimensions of G prior to the first occurrence of dimension ¢ form a
complete gray code of the dimensions higher than ¢. Therefore the
subcube containing the pebbles must have been mapped to every other

i-subcube exactly once after 2"~ rounds.
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2. First consider two nodes which differ in the highest dimension. On
even numbered rounds G specifies the highest dimension and thus the
two nodes are partners. Thus each node is pebbled on the even round
iff the other was pebbled on the odd round and they must have been
pebbled the same number of times after even rounds. The odd rounds

can then make them differ by at most one.

Next consider nodes which differ in a lower dimension, ¢, and the pri-
mary i-subcube containing them. After the first round if the primary
i-subcubes are examined in gray code order there are O or more sub-
cubes filled with pebbles followed by O or 1 partially filled subcube
followed by empty subcubes. (See figure 3). Since the partners of
one primary subcube are always another primary subcube there will
always be at most one subcube which is partially pebbled. In a round
in which one of the full or empty subcubes is mapped to our subcube
both nodes are pebbled or both are not pebbled respectively. Thus
any differences in pebble numbers are the same as if only the partially
pebbled primary i-subcube were pebbled at the start. Furthermore,
when the dimensions larger than i are ignored in G the remaining se-
quence in G induces a reflected pebbling on this primary i-subcube.
Thus examining only the rounds on which the partially pebbled sub-
cube is mapped to the subcube containing the two nodes yields a new
reflected pebbling on the subcube. In this pebbling the two nodes

differ in the highest dimension so the previous case applies.

3. The original pebbles can be broken up into at most n sets by choosing
first all the pebbles in the largest i-subcube with 2/ < p and then suc-
cessively the the pebbles in the largest é-subcube with 2 less than or

equal to the remaining number of pebbles. Since at most one subcube




of each size is chosen there are at most n chosen sets. Considered
individually each set and the subcube containing it fulfills the condi-
tioﬁs of part 1 and thus causes a pebble to be placed on each node
before causing a second pebble on any node. Thus each is responsible
for a difference of at most one in the number of pebbles placed on
any two nodes. Since there are at most n sets there can be at most a

discrepancy of n.l

S - —

—_—— B ————e P B

<
-~

Figure 4: Alternate Shortest Path Through v

Lemma 3 If a shortest path, P, between nodes s and t in a hypercube contains

two neighbors of v then v is on a shortest path between s and t.

Proof: The two neighbors of v are a distance 2 apart. (See figure 4). Thus since
P is a shortest path it must take distance 2 to get from one neighbor to the other.
Then the path from s to ¢ which follows P to the first neighbor, visits v, visits the
second neighbor, and then follows P to s has the same length as P and is also a

shortest path.ll
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Lemma 4 In an n dimensional hypercube forall sets {hi,...,hn—1} of n—1 home
nodes, there exist n — 1 pairwise disjoint pairs of nodes py,...,pn—1 such that both

nodes in p; are neighbors of h; and no home node 13 included in any pair.

Proof: We start with the fact that nodes a distance 2 apart in the hypercube share 2
common neighbors while nodes any other distance apart share no neighbors. Then
we show that sequentially for ¢ = 1 to n — 1, h; can claim two neighbors as pair p;
while ensuring that p; does not contain nodes which are both neighbors of hj for
7> 1.

Inductively for each 7 we show that there are more possible pairs to choose from
than pairs which are disqualified by containirg two neighbors of some hj, 5 > 1.

In the hypercube h; has n neighbors. Suppose z of its neighbors are in fact
home nodes and thus cannot be in p;. There still remain (%) possible pairs of
neighbors from which to choose p;. The z home hodes which are neighbors of hy
cannot share neighbors with h;. The remaining n — 2 — 2 home nodes could each
share some one pair of nodes with hy. Since n —z > 2, ("3%) > n— 2 — 2 and
thus the number of possible pairs is greater than the number which contain two
neighbors and a pair can be chosen.

Now assume the first ¢ home nodes have claimed their pairs under the induction
hypothesis. Then suppose h;4+; has z home neighbors and y < ¢ neighbors were
claimed by the previous 7 home nodes. Thus there are at least n — z — ¢ neighbors
from which to choose. Each of the n—z—%—2 home nodes which are not neighbors
and have index greater than 7 can disqualify one pair. Since ("_;"i) >n—zr—1—2

there remains at least one pair of neighbors to become p;y; .1

Lemma 5 (Disjoint Path Lemma) Given an n-dimensional hypercube, p < n

sources, and p sinks there exist n node disjoint paths from sources to sinks.

Proof: The proof is by induction on the number of dimensions in the hypercube.
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When n = 2 the lemma is true by inspection.

Assuming the lemma is true for n — 1- we show it true for n. ‘Choose the
source/sink pair, (s,t), with minimum Hamming distance between s and t. Since
there are at least 2 sources the distance s to { must be less than n. Thus there
exists a half cube containing both s and ¢. Choose any such half cube and call it
the upper half cube, the dimension not in the half cube’s span 7, and its image
across dimension ¢ the lower half cube.

Connect s to £ via any shortest path. Note that since s and ¢ are a closest pair
no shortest path between s and ¢ can pass through any other source or sink.

For.each source or sink other than s and ¢ in the upper half cube create a
surrogate source or sink at the node’s image across dimension or at the image
of one of its neighbors. By the induction hypothesis paths can be found from the
sources originally in the lower half cube and the surrogate sources to the original
sinks and surrogate sinks. These paths can then be extended from the surrogates
to the original source via the dimension ¢ edge at the surrogate and possibly one
edge in the upper half cube.

Thus we must guarantee that no surrogate source is placed on an original
source, that no surrogate sink is placed on an original sink, and that the possible
extra path node in the upper half cube does not lie on the path between s and ¢.

When a source’s (or sink’s respectively) image across dimension ¢ is not a source
(sink) the surrogate can be placed on the image and the path in the upper subcube
will contain only thé source (sink) itself and thus will not intersect the path from
s to t.

When the sources’s image is occupied by a source we will displace the surrogate
to the image of a neighbor. The existence of a neighbor which does not lie on the

s to t path relies on two facts: |
By lemma 4 each of the possibly n — 2 sources can pick two neighbors in the

n — 1 dimensional half cube as potential surrogates disjoint from those chosen by
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the other sources. (s needs no surrogate and any source looking for a surrogate
neighbor represents two sources, one from each half cube so at most n — 2 sources
need surrogate neighbors.)

Since by lemma 3, two neighbors of a source cannot both be on the path
between s and ¢ at least one of the 2 neighbors chosen is an acceptable surrogate.

Thus every source and sink can be assigned a surrogate either at its image
across dimension ¢ or at the image of a neighbor which does not lie on the s to ¢
path.

Therefore the n — 1 paths extended from the lower subcube plus the path

between s and ¢ form the desired set of n paths.l

4 The Two-phase Embedding Strategy

In this section we will discuss only two dimensional meshes. We will also concen-
trate only on those meshes which are not embedded with minimum expansion by
2DGC so throughout the section M will be a W x L mesh where WL < WL and
W < L.

- Once the requirement of dilation 1 is removed there is no clear strategy com-
parable to 2DGC. We use a two phase strategy which allows us, nonetheless, to
use some of the properties of the 2DGC. First the guest mesh is embedded into an
intermt;diate mesh which is a convenient size for 2DGC and then the intermediate
is embedded into the cube.

The intermediate mesh, M;, which we will use will be W; x L, = W x L.
Clearly the 2DGC gives a bijective, dilation 1 map from M, to a hypercube. Thus
if we can embed M into M; with dilation § and optimum expansion we can embed
M into a hypercube with the same dilation and expansion by composing the two

embeddings.
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Several authors have examined the problem of embedding one mesh into an-
other mesh [AIR082,K0At86]. Some of their techniques are of use to us. In par-

ticular we will make use of line compression.

4.1 Line Compression

The idea of line compression (LC) is to take one W-node column of the guest mesh
and compress it into [W/W;] Wi-node columns of the host mesh. In general,
however, LC can cause row neighbors to be greatly separated. In fact the distance
between row neighbors equals the number of host columns needed for one guest
column. However, W is always by definition at least half W. Thus only two
columns of M; will be needed for each column of M. We will call line compression
into two columns LC2. |

Thus our basic building block will be an embedding of one guest column into
two host-mesh-sized columns. (See figure 5) Let D = W — W; and S = W; — D.
Then each block will have D rows in which two columns are filled and S rows in
which a single column is filled. If we think of these two column blocks as new |

intermediates then our remaining task is split into:

1. How is a column of M mapped to a block? Which of the rows of
the block contain two elements and which one, etc. We will call those
rows containing two elements doublets and those with only one element

singlets.

2. How is a block mapped into M;?

In deciding how to solve these new tasks we will want to keep track of three

quantities:

1. What is the maximum dilation within a block? This will correspond

to the dilation of edges between adjacent rows of M.

14
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Figure 5: One Column of LCg
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2. What is the maximum dilation of edges between adjacent blocks? This

will correspond to the dilation of edges between adjacent columns of
M.

3. Were we able to fit all the blocks into M;? Were we forced to map two

nodes of M onto one node of M; and if so how often did we do so?

4.2 Reflection Method Embedding

The Reflection Method Embedding ( RE ) will utilize the fact that the 2DGC
embedding of M; into the hypercube maps columns and rows of M; into subcubes.
Thus the edges of the subcubes can be used to help spread the doublets out evenly
across rows without spoiling the dilation.

The embedding can be visualized as follows. First map each column of M into
two columns of Mj so that dilation within the column is small. If the same map
is used for each column then doublets will be mapped to the same rows by each
column and thus 2 - L columns will be needed. Since L; < 2L this will often be
too many columns. However, if the doublets were spread evenly across the rows
we might be able to pack the blocks to the left thereby saving columns.

The dispersal of the doublets is achieved by reflecting each block around a
hypercube dimension. The sequence of dimensions used for reflection follow a
flexed gray code and thus the Pebbling Lemma gives us bounds on how uniformly

the doublets have been allocated.

Reflection Method A W x L mesh, M, is embedded into a WL node hypercube
via a W x L intermediate intermediate mesh M; as follows: (See figure 6)

Let é(z) = be the /th element in the flexed gray code G~log(1) and S =2W -W.

1. Use LC2 embedding for each column of nodes of M into two successive

column slots of M;j.
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Figure 6: The Reflection Method Embedding

For all (r,¢),1 < r £ W,1 < ¢ < L, map node (r,¢) of M to slot

(r1,¢1) of M as follows:

r fr<8
rn =
S+[52] otherwise

2¢c—1 ifr<Sorr—Sisodd

1 = ,
2c otherwise

2. Reflect each block about the appropriate hypercube dimension.

Ve > 1,Vr change ry to r; & G(c — 1).

3. Pack all nodes to the left.

Define DB(r’, c) = the number of doublets placed in row ' of M, after
¢ — 1 blocks have been placed.

Ve > 1,Vr change ¢y to ¢ + DB(ry,c¢).

17




4. Reflect any nodes assigned slots outside of M; back into Mj. This
may cause more than one node to be assigned the same slot. (Strictly
speaking this makes the Reflection Method not an embedding but in

the next section this will be rectified.)

V¥(r,c) such that ¢; > L change ¢; to ¢; — L.

5. If either node in a doublet is now a distance greater than 3 from its
neighbor in the previous column swap the slots of the two nodes in the
doublet.

Lemma 6

For any bit position 1 < b < log(W), and indices 1 <r <W,1<e¢<L
|DB(7'1,C) - DB(Tl @b, C)I <1

Proof: Apply the Reflection pebbling lemma with the rows receiving doublets

corresponding to the nodes receiving pebbles.l

Corollary 2 If nodes u and v are neighbors within a column of the mesh then
their slots are at most a distance 3 apart in the hypercube.
Dist(RE(r + 1,¢),RE(r,c)) < 3.

Proof: Starting at RE(r,c) the row for RE(r + 1,c¢) is distance 1 away since the
row assigned the two nodes differs in one dimension of G. That the distance in this
row to RE(r + 1,¢) is less than two is clear from the following observations along
with Lemma 6. The row 7+ 1 node is mapped to column (¢ —1)+DB(r+1,¢)+1
or (¢—1)+DB(r+1,c) +2 and the row r node is mapped to (¢ — 1)+ DB(r,c)+1
or (c — 1) + DB(r,c) + 21

18




Corollary 3 If nodes u and v are neighbors within a row of the mesh then their
slots are at most a distance 3 apart in the hypercube.
Dist(RE(r,c + 1), RE(r,c)) < 3.

Proof: Once again an edge exists to the correct row since the columns differ by
one gray code dimension. The distance within the row is less than two in each of
the following two cases. If row r corresponds to a singlet th‘eli the difference in
columns will be ¢+ DB(r1 @ b,c+ 1)+ 1 — ((¢c — 1) + DB(r1,¢) + 1) < 2. If it
corresponds to a doublet then column ¢ node falls in column (¢ — 1)+ DB(r1,¢)+1
or (c—1)+DB(r1,¢)+2 and the column c+ 1 node falls column ¢c+DB(r'@b, (c+1))
or c+DB(r' @b, (c+1)) +2. The maximum distance along the intermediate mesh
row between placements is thus 4. However, by lemma 1 there is always a length
2 path in the hypercube between any two slots a distance 2 apart on the gray
code ordering. Thus if the distances along the row would be 3 and 3 or 2 and 4
depending on the order of the elements in the doublet the latter is chosen in rule

5 and the hypercube distance is 2 for both. I

Lemma 7 Only the last logWW' — 1 columns can contain slots to which two nodes
have been mapped.
|DB(r1,¢) — DB(r,¢)| < log(W).

Proof: Again a simple application of the Reflection pebbling lemma. Before step
4 the number of columns receiving nodes in any row equals the number of singlets
placed in the row (which for all rows equals the number of columns in the guest
mesh) plus the number of doublets placed in the row. But by the lemma the
number of doublets varies by at most log W and thus the difference between the
number of the last column in which every row has a guest node embedded and the
first column in which no row has a guest node embedded is also at most logW. If

‘the end of the intermediate mesh were at a column in which every slot received a
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node and more nodes remained then the guest mesh would have more nodes than
the intermediate mesh contradicting our assumption. Thus the doubling back
must begin in the area where some slots did not receive nodes, leaving fewer than
logW columns to reflect back and cause two nodes to be mapped to a single slot.
Therefore only the last fewer than log W columns can contain slots to which two

nodes have been mapped.l

Theorem 2 The Reflection Method Embedding of a W x L mesh to a logW L
dimension hypercube has dilation 8 and causes two nodes to be mapped to one

hypercube slot only in a log(W) + log(log(W)) dimensional subcube.

This next section describes the percolation technique which allows the slots
containing two guest nodes to offload one node to the slots containing no guest

nodes. Thus the Reflection Method becomes a 1-1 embedding.

5 Percolation

Sometimes, as in the Reflection Method above, a mapping has small dilation but
leaves some slots containing two nodes and others containing none. One way of
resolving these conflicts is to percolate one of the nodes from the two node slot over
to an empty slot. The defining property of a percolation is that no node is moved
a distance greater than 1 in the hypercube. In this way the dilation is increased
by at most 2. (If two nodes were d apart before the percolation and each moves
across a different dimension the dilation would be d +2.)

Suppose there is one slot containing two nodes and one slot which is empty. If
the slots are neighbors then one of the nodes can be moved from the overfull slot
to the empty slot and no node has moved a distance greater than 1. However, if
the overfull slot is further than distance 1 from the empty slot one of the nodes

in the overfull slot cannot be moved directly to the empty slot. Instead we pick a
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simple path between the overfull slot and the empty slot. One of the nodes in the
overfull slot is moved to the second slot on the path, the node previously in that
slot is moved to the third slot, etc. until the node in the penultimate slot is moved

into the empty slot. (See figure 7). Thus each node is moved at most a distance 1.

ARy

overfull full full empty
slot slot slot slot

Figure 7: Percolation of a single source

When there are multiple overfull slots (sources) and multiple empty slots

(sinks) a set of vertex disjoint paths between sources and sinks is necessary.

Definition 9 A percolation of a set of source vertices to a set of sink vertices in

a graph is a set of vertex disjoint paths connecting each source vertex to a sink

vertex.

Percolation of the Reflection Embedding The percolation will proceed in
two phases. (See figure 8). In the first phase we find disjoint paths along the rows
of M; which connect each source (respectively sink) to an intermediate source
(sink) so that the intermediate sources (sinks) are evenly distributed among the
columns. We ensure that the paths for the sources pass through slots in one W /2
column region (call it R;) of M; and those for the sinks pass through slots in a
distinct region (call it R3). In the second phase we find disjoint paths along the
columns which connect intermediate sources to intermediate sinks. These paths
pass through slots in a third W /2 column region (call it Rp). Thus every source
will be connected to a sink via a path that first travels along a path containing

slots in R; which takes it to a new column then along a path in Rz which takes it
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to the row of its partner sink and finally along a path in R3 which takes it to the
sink’s column and thus to the sink’s slot.

We next describe where these regions are and how the disjoint paths are found.
The identity of the regions is simple. W < L implies W < 2L and thus there are
at least four subcubes spanning W /2 columns. The rightmost four will be used
as path regions. Label them from left to right R;, Rz, R3, and R4. Since W > 2
implies log W < W /2 all the sources and sinks originally lie in region R4. Regions
R4 and R, are connected via cube edges to both region R; and region Rj3.

The first phase’s disjoint paths are a little more complicated to describe. Sup-
pose the total number of sources is T. Then we wish to assign sources in region
Ry to intermediate sources in region R; so that every column has either |27 /W |
or [2T /W] intermediate sources. Those columns having the larger number of in-
termediate sources will be to the left of those having the smaller number. Once
the number of intermédiate sources in each column is known the pairing to the
original sources can be made as follows. Suppose row r contains T, sources. For
each row, r, from top to bottom assign the T, sources to the T, columns which
have the most as yet unplaced intermediate sources by placing an intermediate
source in row r of each column. (Break ties arbitrarily.)

Now consider any single row. There are T, < log(W) — 1 intermediate sources
in R; and the same number of images in Ry of originalvsources from R4 across the
cube edges mentioned above. Treating the images as sources and the intermediates
as sinks the Disjoint Path Lemma guarantees that disjoint paths exist between the
two sets within region R;. (The original source to intermediate source pairings
may not be the same as when we assigned intermediate sources to columns but we
do not care.)

The paths for the sinks are found in a similar way except region R3 is used
instead of region R; and there may be extfa. sinks left over at the end of the

intermediate sink assignment.
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The second phase is now simple. In each column of Ry treat the images in
R, of the intermediate sources from R; as sources and the images in Ry of the
intermediate sinks from Rg as sinks and apply the Disjoint Path Lemma to the

logW dimensional cube containing the column.

. image of
image of intermediate
source source source
2—3 4 1
intermediate
source
image of
intermediate intermediate
sink sink
5 T+——6 8
image of ) sink]
Isink
Region 1 Region 2 Region 3 Region 4

Figure 8: Overview of Percolation

Thus a set of vertex disjoint paths between each overfull slot and an empty
slot are created and the percolation adjusts the Reflection Method Embedding to
create a 1-1 embedding which maps at most one node of the mesh M onto each

slot of the hypercube.

Theorem 3 The Reflection Method Embedding with Percolation of a W X L mesh

to a logW L dimension hypercube has dilation 5 and minimum ezpansion.

Proof: Consider any two neighboring nodes in the mesh. After the Reflection

Method Embedding they are both mapped to hypercube slots which are are most
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distance 3 apart. One phase of percolation may push them a further 2 apart. Thus
the overall embedding is dilation 5.
Since log WL = logW L we are using the smallest dimension hypercube having

more slots than the mesh has nodes.l

6 Extensions and Comments

6.1 Improving the Dilation

For many meshes dilation better than dilation 5 is possible. Besides those for which
dilation 1 can be achieved by 2DGC there are many meshes which can be embedded
with dilation 2. In fact by using another mapping called the Translation Method
we have succeeded in embedding with dilation 2 all meshes with both widfh and
length smaller than 66.

It however remains an open question to determine whether all meshes can be
embedded with dilation 2 and expansion 1 or whether, in fact, some require larger
dilation.

For dilation greater than 1 load factor becomes an issue. To calculate load
factor a single path in the hypercube is chosen for each edge in the mesh. The
load factor is the maximum over all edges of the hypercube of the number of such
paths using the edge. A simple choice of paths for the Reflection Embedding
is for the path corresponding to the edge between a node and its right or lower
mesh neighbor to (if necessary) cross the percolation edge to the start node’s pre-
percolation slot, cross a hypercube edge to the correct row of the destination’s
pre-percolation slot, cross row edges to the destination’s pre-percolation slot, and
then (if necessary) cross the percolation edge to the destination slot. Thus each
hypercube edge may be crossed by at most 4 percolation edges (1 for each mesh

edge out of the node percolated across it) and either 2 column edges or 4 row edges
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for a total of 8. More complicated schemes can reduce this value somewhat.

6.2 Higher Dimensional Meshes and Toruses

As we saw earlier a d-dimensional mesh may use d— 1 extra dimensions if d-D gray
code is used. A first approach to decreasing the expansion is to pair mesh dimen-
sions for which a cube dimension can be saved via our 2-dimensional approach.
Using a multidimension gray code to fit the pairs together up to d/2 dimensions
can be saved at a cost of dilation 5 .

If better expansion is required an extension of the 2-dimensional method would
be necessary. This extension could be called Surface-Compression. As with Line
Compression the idea is to embed d — 1 dimension surfaces into two smaller d — 1
dimension surfaces. All the constructions easily generalize to show that adjacent
elements in the (d — 1)-dimensional meshes and corresponding elements in adja-
cent submeshes are at most distance 5 apart in the d-D meshes. However, if the
(d = 1)-D meshes already contain length p paths they could be stretched to length
5p. In other words a straightforward extension of the 2-D method to d dimensions
leads to an minimum expansion, 5¢~! dilation embedding.

Another open question is whether this bound can be reduced with or without
reducing the bound for the 2-dimensional case.

Often wrap-around connections between the last position and the first position
in a given row or column are desired. Since the gray codes of the row positions
already wrap around the reflection method automatically has column wrap around.
The gray codes of the column positions can be ‘stretched out’ by skipping pairs of
high dimension bit flips in order to make the last column close to the first column.
Since the stretching occurs in two column increments an extra distance of 1 may
occur on the wrap around edges.

The Percolation does not, however, stretch these edges so the overall embedding

is still dilation 5.
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6.3 Many-to-one Mappings

In some situations the size of the mesh may not be known at the start or the mesh
may be so big that several nodes of the mesh will have to be mapped to a single
node of the hypercube. In this case the polymorphic arrays of Fiat and Shamir
[FiSh84] can be used. A polymorphic array guarantees that if a polymorphic array
of size M is used then any array of size M/ V/5 can be dynamically constructed
without assigning more than one element of the new array to an element of the
polymorphic array and that furthermore for arbitrary sized arrays the number of
elements assigned to two different polymorphic array positions will differ by at
most O (logn).

These polymorphic arrays can be easily embedded using our method. Since
the dimensions of the polymorphic arrays have Fibonacci and Lucas number sized
lengths the 2-D gray code is often inappropriate. For example both the 5 x 11 and
21 x 47 versions (two of the four smallest sizes) would require an extra dimension

with 2-D gray code.
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