
Equispaced Fourier representations enable fast iterative
Gaussian process regression

Alex Barnett1, Philip Greengard∗2, and Manas Rachh1

1Center for Computational Mathematics, Flatiron Institute
2Department of Statistics, Columbia University

July 8, 2022

Contents

1 Introduction 2

2 Factorization of the kernel 4

3 Equispaced Fourier representation of GPs 6
3.1 Discretized inverse Fourier transform . 7
3.2 Numerical Implementation . 8

4 Error analysis 10
4.1 Discretization error . 10
4.2 Accuracy of posterior mean . 12
4.3 Conditioning of Gaussian process covariance matrices 14
4.4 Empirical condition number . 15

5 Numerical experiments 16
5.1 EFGP time and accuracy for various N . 16
5.2 Accuracy vs. time . 17
5.3 Spatial Gaussian process regression with satellite data 18

6 Generalizations and conclusions 18

A Equivalence of weight-space and function-space 19

∗pg2118@columbia.edu. Research supported by Alfred P. Sloan Foundation.

1

B Discretization error estimates for the Matérn kernel 21

Abstract

We introduce a class of Fourier-based fast algorithms for computing with Gaus-
sian processes. Our approach relies on discretizing Gaussian processes via complex
exponentials with equispaced frequencies. This discretization results in a weight-space
linear system with a matrix that can be applied in O(m logm) operations where m
is the number of frequencies, and can be solved efficiently with iterative methods.
The efficient matrix-vector multiply of the weight-space linear system results in an
efficient linear solve that is highly sensitive to discretizations that use large numbers
of Fourier modes, enabling high performance for Gaussian processes in higher dimen-
sions and kernels with fat-tailed spectral densities. We provide formulae for the error
of discretizations, the condition number of the Gaussian process covariance matrix,
convergence rates of iterative methods, and a general formula for the accuracy of the
posterior mean at the data points for approximate methods. Numerical experiments
are demonstrated for Gaussian processes over Rd for d = 1, 2, 3.

1 Introduction

Gaussian process (GP) regression is ubiquitous in machine learning and statistics (e.g. [3,5,
22,23,26]) due in large part to its generality and mathematical simplicity. In Gaussian process
regression, the goal is to recover a function (or certain properties of a function) given noisy
observations from that function in addition to some knowledge about the data-generating
process. More precisely, suppose we are given N data points {(xi, yi) : xi ∈ Rd, yi ∈ R} with
observations y1, ...yN which are noisy samples from a Gaussian process distribution. That is,

yi ∼ f(xi) + εi (1)

f(x) ∼ GP(m(x), k(x, y)) (2)

where εi ∼ N (0, σ2) is independent and identically distributed (iid) noise, σ2 is the residual
variance, m : Rd → R is the mean function of the Gaussian process, and k : Rd ×Rd → R is
the covariance kernel. The likelihood function of the Gaussian process distribution is given
by the equation

p(y) ∝ 1

|K + σ2I|1/2
e−

1
2
yT(K+σ2I)−1y (3)

where K is the N ×N matrix with Ki,j = k(xi, xj), and I is the N ×N identity matrix. The
main limitation of Gaussian process regression as a practical applied tool is the computational
cost of the inversion of K + σ2I. In particular, evaluation of the likelihood function p, as
well as the evaluation of the mean and standard deviation of p all require the inversion of
K +σ2I. For a general N ×N matrix, direct inversion requires O(N3) operations, which for
many modern data sets is prohibitively expensive.

A large literature has emerged over the last several decades devoted to computational
methods for efficient inversion of K. These methods generally take advantage of structure
that is particular to the covariance matrices that appear in Gaussian process problems.

2

For example, for low-dimensional Gaussian process regression problems, the off-diagonal
blocks of K tend to be low-rank. This can be exploited with hierarchical decompositions
that lead to fast inversion (e.g. [1, 18]). Other common methods involve subsampling rows
and columns of K (Nyström methods), inducing point methods, or exploiting analytical
structure in particular families of covariance kernels [10, 22, 30]. Yet another common class
of techniques involves Fourier based methods (e.g. [15, 16, 20, 21]). [16] provides a review of
several methods that use Fourier and FFT-based Gaussian process solvers.

The algorithms of this paper are in large part an extension of the methods of [15] to
higher dimensions. In [15] a 1-dimensional Gaussian process is discretized with Fourier
expansions, where frequencies are chosen numerically so as to provide accurate discretizations
over families of Gaussian processes. The covariance matrix of the Gaussian process can then
be inverted in either O(Nm2) time or O(m3 + (N + m) log (N +m)) via the weight-space
linear system where N is the number of data points and m the number of Fourier modes.

In 1-dimension, the number of modes, m, needed to discretize a Gaussian process tends
to be sufficiently small that O(m3) operations is easily affordable. Since the number of
discretization nodes needed increases roughly as md for d-dimensional Gaussian processes,
the cost of O(m3d) can become prohibitive even for smooth kernels in 2 dimensions.

In this paper, we address the O(m3d) linear solve in higher dimensions by first repre-
senting a Gaussian process as a Fourier expansion with equispaced frequencies and Gaussian
coefficients. The equispaced frequencies serve two roles – first, they efficiently discretize a
Gaussian process, especially when kernels are smooth, and second, they facilitate an effi-
cient solution to linear systems that appear in Gaussian process problems. The fast linear
solve stems from the fact that with equispaced nodes, the covariance matrix of the Gaussian
process likelihood can be applied in O(m logm) operations after O((N +m) logN +m) pre-
computation. The linear system can thus be solved efficiently using iterative methods such
as conjugate gradient.

The efficiency of iterative algorithms for solving linear systems can be severely limited by
the conditioning of the matrix. To address this, we provide a tight upper bound on the con-
dition number of a general Gaussian process covariance matrix along with the corresponding
convergence rates for conjugate gradient. Specifically, the condition number of K+σ2I is an
O(N) quantity. We demonstrate empirically that the upper bound is typically an accurate
approximation, within about a factor of 2 of the empirical condition number for most data
distributions. In addition to providing convergence estimates for iterative algorithms, the
condition number highlights the importance of solving Gaussian process linear systems in
double-precision arithmetic. For example, with N = 106 or more data points and an O(N)
condition number, one is liable to lose nearly all precision in the solution when computing
in single precision arithmetic.

In addition to numerical algorithms, we provide theoretical tools for computing with
equispaced Fourier Gaussian process representations. We include a formula for the error of
the equispaced Fourier Gaussian process discretization, as well as a general formula for the
error of the posterior mean of Gaussian process regression at the data points.

We compare the equispaced Fourier algorithms of this paper to several alternative ap-
proaches to Gaussian process regression that have desirable theoretical properties and user-
friendly implementations in software. Section 5 includes results of numerical experiments for
these methods as well as the equispaced Fourier methods introduced in this paper (EFGP).

3

error (SE kernel)∗ precomputation solve mean at q points variance at q points

PG 2021 e−γm
1/d

(N +m2) log (N +m2) m3 (m+ q) log (m+ q) m2q

FLAM – N3/2 N logN (N + q) logN + q N logNq

RLCM – N N N + q logN N + q logN

SKI m−3/d – niter (N +m logm) Nq niter (N +m log (m)) q

EFGP e−γm
1/d

(N +m) log (N +m) niterm logm (m+ q) log (m+ q) niterm log (m) q

Table 1: Computational complexities for various Gaussian process-related tasks for several
algorithms for data defined on Rd. For “SKI”, m denotes the number of inducing points.
For the other algorithms, m is the total number of Fourier modes, i.e. if p nodes are used
along each dimension then m = pd.

In Table 1 we summarize theoretical properties of several algorithms for Gaussian process
regression including the methods of [15], SKI [30], RLCM [4], and EFGP. SKI is a so-called
inducing point method where inducing points lie on an equispaced grid, which facilitates a
fast matrix-vector multiply of the approximate covariance matrix and therefore the efficient
solution of linear systems. In FLAM, low-rank interactions between well-separated points
are exploited for efficient matrix factorization and inversion in O(N) operations. RLCM
constructs a hierarchically low-rank factorization of the covariance matrix in linear time in
such a way so as also to allow the application of its inverse in linear time as well.

The methods of this paper are in part motivated by algorithms developed for related
signal processing tasks in cryo-electron microscopy (see e.g. [28], [8]) and MRI imaging [14].

The remainder of this paper is structured as follows. In the following section we describe
the factorization of a covariance kernel that allows for efficiently computing several Gaussian
process statistics. In Section 3 we describe the equispaced Fourier discretization of a Gaussian
process. The sources of error in the Fourier representations and subsequent linear solves are
presented in Section 4. In Section 5 we demonstrate the results of numerical experiments with
our algorithms in addition to several alternatives. We provide some concluding thoughts,
and describe plans for future research in Section 6. Finally, in the appendices we include
proofs of several analytical results in this paper.

2 Factorization of the kernel

Many computational methods for Gaussian process regression rely explicitly or implicitly
on factoring the kernel matrix. In this section we briefly summarize one such factorization,
computed using a suitable basis. Let f : D → R be distributed according to a zero-mean
Gaussian process with covariance kernel k : D → R. Then by definition (see [22]) for all
x, y ∈ D [

f(x)
f(y)

]
∼ N

([
0
0

]
,

[
k(x, x) k(x, y)
k(y, x) k(y, y)

])
. (4)

4

In statistical problems, k is generally chosen to belong to one of a handful of families of kernels
such as Matérn, squared-exponential, or rational quadratic. Without loss of generality, we
will assume that D = [0, 1]d for the rest of the discussion.

For the remainder of this paper, we assume, in accordance with the literature, that
Gaussian processes are zero-mean and that the observation model for the Gaussian process
regression is Gaussian. That is, we assume that observed data yi is of the form yi = f(xi)+εi
where f is a zero-mean Gaussian process and εi is iid Gaussian noise. Under this model, the
posterior distribution at any point in the domain of f is also Gaussian. Let µ : [0, 1]d → R
denote the posterior mean function and s : [0, 1]d → R denote the posterior variance function
of a Gaussian process regression. Suppose that y ∈ RN is the observed data at points
x1, x2, . . . xN ∈ [0, 1]d. Let σ2 denote a prescribed residual variance, and K denote the
N ×N matrix with entries Ki,j = k(xi, xj). Then the Gaussian process posterior mean and
variance are given by

µ(x̃) =
N∑
j=1

αjk(x̃, xj) ,

s(x̃) = k(x̃, x̃)−
∑
j

γ(x̃)jk(x̃, xj) ,

(5)

where α, γ(x̃) ∈ RN satisfy the linear systems

(K + σ2I)α = y (6)

(K + σ2I)γ(x̃) = k̃ (7)

where k̃ = [k(x̃, x1), . . . k(x̃, xN)]T. The direct computation of the posterior mean requires
the solution of an N × N linear system, followed by an O(N) cost for evaluation at any
location x̃ ∈ [0, 1]d. On the other hand, the evaluation of the posterior variance requires the
solution of the same linear system of equations but with a different right-hand-side k̃ for
each location x̃. Thus, the computational cost of the posterior mean at q points in [0, 1]d is
O(N3 + qN), and that of the posterior variance scales like O(N3 + qN2 + qN). These costs
can be prohibitively expensive for large N, q.

Suppose now that the kernel k admits a finite-rank factorization of the form

k(x, y) =
m∑
j=1

φj(x)φj(y) (8)

for a given set of basis functions φj : [0, 1]d → R. While the covariance kernels of interest,
such as squared exponential, and Matérn kernels, do not admit such a factorization in exact
arithmetic, it is possible to construct such a factorization that approximates a desired kernel
to high accuracy. We note that a Gaussian process distribution with a finite rank covariance
kernel of the form (8) has an interpretation as a basis function expansion

f(x) ∼ β1φ1(x) + · · ·+ βmφm(x) (9)

with β ∼ N (0, 1). In subsequent sections we describe a numerical procedure for constructing
approximations of the form (8) for general kernels as well as error estimates for Gaussian
process tasks.

5

For a finite rank covariance kernel k with m basis functions, the corresponding matrix K
also admits a rank m factorization independent of the number and location of data points.
Specifically, suppose that X is the N × m matrix given by Xi,j = φj(xi), i.e. X is the
matrix of basis functions tabulated at the data points, then K = XX?. In this setting,
the computational cost of evaluating both the posterior mean and posterior variance at q
points reduces to O(Nm2 +Nm+qN) and O(Nm2 +qNm+qN) respectively – a significant
improvement over direct computation for generic kernels, particularly when m� N, q.

For many problems, the computational cost of evaluating the posterior mean and poste-
rior variance can be reduced further by using an alternate formulation of the posterior mean
and posterior variance given by

µ(x̃) =
N∑
j=1

αjk(x̃, xj) =
m∑
j=1

β̂jφj(x̃)

s(x̃) = k(x̃, x̃)−
∑
j

γ(x̃)jk(x̃, xj) =
m∑
j=1

η(x̃)jφj(x̃)

(10)

where β̂, η(x̃) ∈ Rm satisfies

(X?X + σ2I)β̂ = X?y (11)

(X?X + σ2I)η(x̃) = φ̃ (12)

where φ̃ = [φ1(x̃), . . . , φm(x̃)]T. Using this formulation, the cost of evaluating the posterior
mean and variance reduces to O(Nm2+Nm+Mm) and O(Nm2+MNm+Mm) respectively.
The linear systems (11) and (7) are closely related – in fact there is a formula that relates
their solutions

α =
1

σ2
(y −Xβ̂). (13)

We provide a proof of this identity in Appendix A in addition to proofs of the equivalence
of the posterior means and posterior variance computed via (5) and (10).

The approach to Gaussian process regression that involves solving linear systems (11)
and (12) is often referred to as the weight-space view of Gaussian process regression whereas
the approach in (5) is referred to as the function-space view [22].

3 Equispaced Fourier representation of GPs

In this, section we describe a numerical approach for constructing a low-rank approximation
of the form (8) to a translationally invariant covariance kernel k(x − y). The approach
we propose uses complex exponentials with equispaced frequencies for the basis functions
φj. We review several well-known properties of this discretization and use these properties
throughout the remainder of the paper. Such equispaced spectral discretizations tend to be
efficient numerical tools in low dimensions (Rd for d around 4 or smaller).

6

3.1 Discretized inverse Fourier transform

Suppose that k : [0, 1]d × [0, 1]d → R is an integrable and translation-invariant covariance
kernel of a Gaussian process. In a slight abuse of notation we use k interchangeably as
k(x, y) = k(x− y). We follow the Fourier transform convention of [22]

k̂(ξ) =

∫
Rd

k(x)e−2πi〈ξ,x〉 dx, (14)

k(x) =

∫
Rd

k̂(ξ)e2πi〈ξ,x〉 dξ, (15)

for all x ∈ Rd and ξ ∈ Rd. The basis function approximations we use for Gaussian process
distributions can be viewed as discretized versions of the Fourier inversion formula (15). In
particular, we approximate k via

k̃(x− y) =
∑
j∈Im

hdk̂(hj)e2πih〈j,(x−y)〉 , (16)

where Im = {(j1, j2, . . . jd) : jn ∈ {−m, . . .m} , n = 1, 2, . . . d} and h is a constant. Note that
k̃ can be interpreted as the periodic trapezoidal rule applied to the integral in 15 truncated
in the box [−mh,mh]d. The following proposition constructs the basis functions φj such

that k̃(x− y) =
∑

j∈Im φj(x)φj(y) where φj denotes the complex conjugate of φj.

Proposition 3.1. Let g : R→ C be the expansion defined by

g(x) ∼
∑
j∈Im

βj

√
hdk̂(jh)e2πhi〈j,x〉 (17)

where the coefficients βj, j ∈ Im are iid βj ∼ N (0, 1), k̂ : Rd → R denotes the Fourier
transform of the covariance kernel k : Rd → R and h is a constant. Then g is a Gaussian
process with covariance kernel k̃ defined by the formula 16.

Proof. By definition, k̃(x, y) = E[g(x)g(y)] and

E[g(x)g(y)] =
∑
j∈Im

hdk̂(hj)e2πhi〈j,x〉e−2πhi〈j,y〉

=
∑
j=Im

hdk̂(hj)e2πhi〈j,(x−y)〉 .
(18)

There are two primary reasons that the approximation of the covariance kernel by using
the periodic trapezoid rule for its Fourier transform is attractive in this environment. First,
the trapezoid rule has super-algebraic convergence when the integrand is smooth (C∞) and
vanishes at the endpoints. That is, the error of the order-m trapezoid rule,∣∣∣∣ ∫

Rd

k̂(ξ)e2πi〈ξ,x〉dξ −
∑
j∈Im

hdk̂(hj)e2πih〈j,x〉
∣∣∣∣ ≤ O(1

mn

)
, (19)

7

for any integer n. Many commonly-used covariance kernels have smooth Fourier transforms
that vanish (numerically) for large frequencies. However, for certain kernels such as the
Matérn 1/2 [22], which are non-smooth at 0, the decay of the Fourier transform is slow
and the error of the quadrature rule approximation is dominated by the choice of interval
[−mh,mh]d. We elaborate on errors of the equispaced quadrature rule in Section 4.

Second, equispaced discretizations in Fourier domain facilitate the use of the fast Fourier
transform (FFT) and non-uniform FFTs [9, 14] for Gaussian process regression tasks. In
particular, when using the equispaced discretization in Fourier domain, the solution to the
weight-space linear system

(X∗X + σ2I)β̂ = X∗y (20)

has a matrix that can be applied in O(md logmd) after O((N + md) log(N + md)) precom-
putation using FFT-based methods. We describe the details of this procedure in the next
section.

3.2 Numerical Implementation

Recall that the computation of the posterior mean using the weight-space representation for
the approximated kernel k̃ requires the solution of the linear system

(X∗X + σ2I)β̂ = X∗y (21)

where y ∈ RN and X is the N × (2m+ 1)d matrix defined by

X =

√
hk̂(hdj1)e

2πhi〈j1,x1〉 . . .

√
hdk̂(hjn)e2πhi〈jn,x1〉√

hk̂(hdj1)e
2πhi〈j1,x2〉 . . .

√
hdk̂(hjn)e2πhi〈jn,x2〉

...
...√

hk̂(hdj1)e
2πhi〈j1,xN 〉 . . .

√
hdk̂(hjn)e2πhi〈jn,xN 〉

 (22)

where x1, ..., xN are observed data, n = (2m + 1)d, j1, j2 . . . jn, is an enumeration of the
index set Im, and h is the frequency spacing. Column p of X is a complex exponential (basis
function) tabulated at the data points. That is, Xi,p = φp(xi). We observe that X∗X can
be factorized as

X∗X = DX ′
∗
X ′D (23)

where X ′ is the N × (2m+ 1)d matrix defined by

X ′ =

e2πhi〈j1,x1〉 . . . e2πhi〈jn,x1〉

e2πhi〈j1,x2〉 . . . e2πhi〈jn,x2〉

...
...

e2πhi〈j1,xN 〉 . . . e2πhi〈jn,xN 〉

 (24)

8

and D is the diagonal (2m+ 1)d × (2m+ 1)d matrix

D =

√
hdk̂(hj1)

. . . √
hdk̂(hjn)

 . (25)

Since we are using an equispaced discretization, the (2m+ 1)d × (2m+ 1)d matrix X ′∗X ′ is
a d dimensional Kronecker product of (2m+ 1)× (2m+ 1) Toeplitz matrices with

(X ′
∗
X ′)p,` =

N∑
n=1

e2πhi〈(jp−j`),xn〉 . (26)

which can be applied to a vector in O(md logmd) operations using the FFT (see e.g. [7]).
Solving (21) can therefore be efficiently solved with iterative methods such as conjugate
gradient [7], provided that the matrix is not too poorly conditioned. In order to apply
X ′∗X ′ in O(md logmd) operations, we first need to precompute its unique elements, given
by

vj =
N∑
n=1

e2πih〈j,xn〉 (27)

for j = Im 	 Im, where A 	 B is the set of unique elements (a − b) with a ∈ A and b ∈ B.
Note that there are 2|Im| − 1 elements in Im 	 Im. The quantities vj can be computed via
a non-uniform fast Fourier transform using, for example, [2], in O((N + md) log (N +md))
operations.

We now describe a numerical algorithm for evaluating the posterior mean of Gaussian
process regression using equispaced Fourier discretizations and fast algorithms.

Algorithm 1 (GP regression via equispaced Fourier modes).

1. Given a tolerance ε, determine m,h such that k̃ is an ε-accurate approximation of k.
We postpone the estimation of m,h that satisfies this criterion to Section 4.

2. Use the non-uniform FFT to evaluate the sums v` defined by formula (27).

3. Evaluate X∗y using a non-uniform FFT.

4. Use conjugate gradient to solve linear system

(X∗X + σ2I)β̂ = X∗y (28)

where X = X ′D is defined in (22). Since X ′∗X ′ is d dimensional Kronecker product
of Toeplitz matrices, the matrix of linear system (28) can be applied in O(md logmd)
operations using the precomputed v`.

9

5. Evaluate the posterior mean, µws (see (10)) at points z1, ..., zq using a nonuniform FFT
in O((q +md) log (q +md)) operations.

Remark 3.1. In many applications, hyperparameters of the covariance function are fit to
the data using methods that require the gradient of the Gaussian process likelihood function
in addition to the determinant of the matrix K + σ2I. Methods for the evaluation of these
quantities is the subject of a large literature including, for example, [11,18,29]. We leave the
evaluation of these quantities using equispaced Fourier representations to future work.

4 Error analysis

The error in the posterior mean computed using k̃ relative to the posterior mean computed
using k is related to the Frobenius norm of K−K̃ where K and K̃ are the covariance matrices
sampled at the data points x1, . . . xN . The Frobenius norm in turn can be estimated through
the L2 or L∞ error between k and k̃ on [−1, 1]d. In this section we provide analytical tools
for approximating the error introduced by the equispaced Fourier discretization as well as
the numerical errors and convergence rates of conjugate gradient. In addition to having
desirable computational properties, equispaced Fourier modes have well-known and useful
analytical properties that we use in this section for estimating approximation errors.

4.1 Discretization error

In the following we provide a formula for the error in the covariance function of a Gaussian
process approximation using equispaced Fourier expansions.

Proposition 4.1 (Accuracy of GP approximation). Suppose that k : Rd → R is an absolutely
integrable function with Fourier transform k̂. Then for all h > 0 and x ∈ Rd we have

k̃(x)− k(x) = hd
∑
j∈Im

k̂(jh)e2πhi〈j,x〉 − k(x) =
∑
j∈Zd

j 6=0

k

(
x+

j

h

)
− hd

∑
j∈Zd

j 6∈Im

k̂(jh)e2πhi〈j,x〉 (29)

where k̃ is the effective covariance kernel of the equispaced Fourier Gaussian process (see
(16)).

Proof. The result follows from the periodic version of the Poisson summation formula given
by

hd
∑
j∈Zd

k̂(jh)e2πhi〈j,x〉 =
∑
j∈Zd

k

(
x+

j

h

)
(30)

for all x ∈ Rd and h > 0.

Proposition 4.1 provides a formula for the pointwise difference between the kernel of
a Gaussian process and the effective kernel of a Gaussian process approximated with an

10

equispaced Fourier expansion. The first term in the error estimate is often referred to as the
aliasing error, and the latter is referred to as the truncation error. The frequency-spacing h
is chosen to ensure that the aliasing error is small, and given h, m is chosen to ensure that
the truncation error is small.

Let G(x, `) denote the d-dimensional squared exponential kernel with length scale `, given
by

G(x, `) = exp

(
−|x|

2

2`2

)
. (31)

Let Cν(x, `) denote the Matérn kernel with parameter ν and length scale ` given by

Cν(x, `) =
21−ν

Γ(ν)

(√
2ν
|x|
`

)ν
Kν

(√
2ν|x|
`

)
, (32)

where Kν is the modified Bessel function of the second kind and ν ≥ 1/2.
For the squared exponential kernel, both the kernel in the real space and the Fourier

space decay extremely rapidly. In this situation, it is easy to show that choosing h =
min (O(1), O(1/(`

√
log(1/ε))) suffices to bound the aliasing error, and m = O(log 1/ε

`
) is

sufficient to bound the truncation error. The restriction of h being at least O(1) arises from
the fact that the first aliased copy of the kernel should be outside the domain of x, i.e.
[−1, 1]d, independent of how small ` is. The O(1/(`

√
log(1/ε))) constraint then comes from

the fact that the Fourier transform of the squared exponential kernel is, up to a constant,
bounded by exp (−8π2h2`2m2). When h = O(1), we see that m has to be m = O(log 1/ε

`
) to

achieve the desired accuracy.
In the following lemma, we state error estimates for the aliasing and the truncation errors

for the Matérn kernel. The proofs of these results are included in Appendix B.

Lemma 1 (Aliasing and truncation error for the Matérn covariance kernel). Suppose k(x) =
Cν(x, `), then the aliasing error is given by∣∣∣∣∣∣∣∣

∑
j∈Zd

j 6=0

k

(
x+

j

h

)∣∣∣∣∣∣∣∣ ≤ α(d, ν)C0 exp

(
−
√

2ν

`

(
1

h
− |x|

))
, (33)

for all x ∈ [−1, 1]d where C0 is the value of the Matérn kernel at the origin. The L2 and L∞

truncation errors are given by∣∣∣∣∣∣∣∣h
d
∑
j∈Zd

j 6∈Im

k̂(jh)e2πhi〈j,x〉

∣∣∣∣∣∣∣∣
L∞[−1,1]d

≤ α̂∞(d, ν)

(√
2ν

h`m

)2ν

,

∣∣∣∣∣∣∣∣h
d
∑
j∈Zd

j 6∈Im

k̂(jh)e2πhi〈j,x〉

∣∣∣∣∣∣∣∣
L2[−1,1]d

≤ α̂2(d, ν)
√
m
d

(√
2ν

h`m

)2ν

.

(34)

11

Here α(d, ν) is a constant independent of h, and α̂2(d, ν), α̂∞(d, ν) are constants independent
of (h,m).

The above estimate indicates that in both L2 and L∞, in order to achieve an accuracy
of ε, we have h = min (2/

√
d,O(

√
ν/(` log (1/ε)))) up to a constant that depends in a mild

manner on d. On the other hand, the number of modes m satisfies m = O(log (1/ε)/ε1/(2ν))
in L∞ and m = O(log(2ν/(2ν+d/2)) (1/ε)/ε1/(2ν+d/2)) in L2.

4.2 Accuracy of posterior mean

While thus far we have focused on the accuracy of Fourier approximations to a Gaussian
process distribution, in this section we describe the downstream errors of those approxima-
tions in Gaussian process regression. In particular, we bound the difference between the
true posterior mean of Gaussian process regression (exact inference) and the approximate
Gaussian process posterior mean using the methods of this paper. We are primarily focused
on the scaling of the errors as a function of N , the number of data points, for a fixed domain.
This subject has been the focus of a large literature (e.g. [24,25,27]).

In the following proposition, we bound the Frobenius norm of the difference between an
exact covariance matrix and an approximation.

Proposition 4.2. Let k : [0, 1]d × [0, 1]d → R be a covariance kernel and let k̃ : [0, 1]d ×
[0, 1]d → R be an approximation to k. Suppose that |k(x)− k(x̃| < ε for all x ∈ [−1, 1]d. For
any collection of points x1, ..., xN on [0, 1]d, let K be the N ×N matrix Ki,j = k(xi, xj) and
K̃ to be the N ×N matrix K̃ = k̃(xi, xj). Then

‖K −KF‖ ≤ Nε . (35)

Suppose further that the points x1, x2 . . . xN are uniformly distributed on [0, 1]d and let∫
[−1,1]d

|k(x)− k̃(x)|2dx < ε̃2 , (36)

then

‖K − K̃‖F = Nε̃
(

1 +O(1/
√
N)
)
. (37)

Proof. If the L∞ error estimate holds for the approximation of k using k̃, then equation 35
follows trivially using the entrywise estimate in K − K̃. For the L2 estimate, we first note
that ∫

[0,1]d

∫
[0,1]d
|k(x, y)− k̃(x, y)|2 dx dy ≤

∫
[−1,1]d

|k(x)− k̃(x)|2 dx = ε̃2 (38)

Moreover,

‖K − K̃‖2F =
N∑

i,j=1

(k(xi, xj)− k̃(xi, xj))
2 (39)

= N2

(
1

N2

N∑
i,j=1

(k(xi, xj)− k̃(xi, xj))
2

)
. (40)

12

That is, 1
N2‖K − K̃‖2F is a Monte Carlo approximation of ε̃2. Substituting the half-order

convergence of Monte Carlo, we have

‖K − K̃‖2F = N2ε̃2
(

1 +O

(
1√
N2

))
. (41)

Remark 4.1. When using the L∞ estimate for the approximate kernel, no assumption needs
to be made on the distribution of the data points x1, . . . xN . On the other hand, the L2

estimate approximates the Frobenius norm of the error in the covariance matrix, only if
the data points x1, . . . xN are uniformly distributed on [0, 1]d. The L2 estimate even though
restrictive is particularly useful when approximating the Matérn 1/2 kernel due to the O(1/m)
decay in the L∞ truncation error independent of dimension. This would imply O(1/εd) points
in the Fourier domain are required to approximate this kernel. However, the L2 error bound
is more forgiving, particularly in higher dimensions, and would require O(1/ε(1+d/2)) points
along each dimension which is a significant improvement.

We now turn our attention to estimating the error in the posterior mean computed via
the approximated covariance kernel. The following lemma bounds the difference between
the exact solution to the Gaussian process linear system, and the solution to an approximate
linear system.

Lemma 1. Let y ∈ RN and let K, K̃ be N ×N matrices such that

(K + σ2I)α = y, (K̃ + σ2I)α̃ = y (42)

for some σ > 0 where α, α̃ ∈ RN . Then,

‖α̃− α‖ ≤ ‖K − K̃‖‖(K − σ2I)−1‖‖α‖ (43)

where ‖ · ‖ denotes the `2-norm for vectors and the spectral norm for matrices.

Proof. Using (42), we have

‖α̃− α‖ = ‖(K̃ + σ2I)−1y − (K + σ2I)−1y‖
= ‖((K̃ + σ2I)−1 − (K + σ2I)−1)y‖.

(44)

Using the identity

A−1 −B−1 = A−1(B − A)B−1, (45)

for any invertible matrices A,B, we have

‖α− α̃‖ ≤ ‖((K̃ + σ2I)−1(K − K̃)(K + σ2I)−1y‖
≤ ‖((K̃ + σ2I)−1‖‖K − K̃‖‖(K + σ2I)−1y‖
= ‖((K̃ + σ2I)−1‖‖K − K̃‖‖α‖.

(46)

13

The following theorem is the primary analytical tool of this section. It bounds the error
of the posterior mean at data points when using an approximate Gaussian process algorithm.
We measure errors in the posterior mean relative to the l2-norm of the observed data.

Theorem 1. Let y ∈ RN and let K, K̃ be N ×N matrices such that

(K + σ2I)α = y, (K̃ + σ2I)α̃ = y (47)

for some σ > 0 where α, α̃ ∈ RN . Then,

‖Kα− K̃α̃‖
‖y‖

≤ ‖K − K̃‖
σ2

(48)

where ‖ · ‖ denotes the `2 norm for vectors and the spectral norm for matrices. The vectors
Kα, K̃α̃ ∈ RN are the posterior means at the data points using an exact algorithm and an
approximate one.

Proof. Using (47), we know

‖Kα− K̃α̃‖
‖y‖

=
‖(y − σ2α)− (y − σ2α̃)‖

‖y‖

=
‖σ2(α̃− α)‖
‖y‖

=
‖σ2(α̃− α)‖
‖(K + σ2I)α‖

.

(49)

Applying Lemma 1 to (49) we obtain

‖Kα− K̃α̃‖
‖y‖

≤ σ2‖K − K̃‖‖(K + σ2I)−1‖ ‖α‖
‖(K + σ2I)α‖

. (50)

We obtain (48) by applying to (50) the bounds

‖(K + σ2I)−1‖ ≤ 1

σ2
and

‖α‖
‖(K + σ2I)α‖

≤ 1

σ2
. (51)

4.3 Conditioning of Gaussian process covariance matrices

In this section we gather upper and lower bounds on κ(K + σ2I), the condition number
of the GP weight-space system matrix. The spatial kernel k(x, y) = k(x − y) is assumed
convolutional, non-negative and bounded by k(x) ≤ k(0) = k0 its diagonal value, for all
x ∈ Rd. k0 is interpreted as the GP prior variance.

Lemma 2 (Upper bound). Let K be the N × N kernel matrix between the points {xj}Nj=1,
with prior variance k0, and σ > 0. Then

κ(K + σ2I) ≤ N

η
+ 1 +

η

2
(52)

where η := σ2/k0 is the measurement-to-prior variance ratio.

14

Proof. Let σ1 ≥ σ2 ≥ · · · ≥ σN be the singular values of K + σ2I. Diagonal entries of
K + σ2I are bounded by k0 + σ2 and off-diagonal by k0. Thus we bound the spectral norm
by the Frobenius norm [12, (2.3.7)],

σ1 ≤ ‖K + σ2I‖F ≤
√
N2k20 +N(2k0σ2 + σ4) ≤ Nk0

√
1 +

2η + η2

N

≤ Nk0(1 +
η + η2/2

N
) = Nk0 + σ2(1 + η/2) (53)

The condition number is by definition κ = σ1/σN , and since K is SPD, σN ≥ σ2.

This shows that κ = O(N) for the case of fixed kernel k and fixed σ, as the number of
data points N → ∞. The case of constant kernel k ≡ 1, where σ2 = σ3 = · · · = σN = σ2,
shows that this N -growth (including the prefactor) is tight. This can be viewed as the limit
where all points are much closer than the kernel width. Tightness of the N -independent
corrections has been dropped for simplicity.

For any fixed N , there is a kernel such that κ(K + σ2I) = 1, showing ideal conditioning:
this is achieved by making the kernel width parameter ` much smaller than any distance
between data points, so that K → k(0)I, a multiple of the identity.

Lemma 2 can be used with the standard convergence rate of conjugate gradient to obtain
a convergence estimate for solving the weight-space linear systems. Specifically, if β̂ is the
exact solution to linear system (28) and β̂n is the approximate solution after n iterations of
conjugate gradient then

‖β̂n − β̂‖ = O

((√
κ(K + σ2I)− 1√
κ(K + σ2I) + 1

)n)
(54)

where κ(K + σ2I) is defined in (52).

4.4 Empirical condition number

The plots in Figures 1 and 2 compare the empirical conditional number of the covariance
matrix of the Gaussian process likelihood with the theoretical bound we establish in Lemma
2. These plots demonstrate that even for reasonably uniform data, the theoretical upper
bound differs from the empirical condition number by only a factor of roughly 2.

For both figures, we used the squared-exponential kernel with a timescale of ` = 0.1.
We generated points x1, ..., xN uniformly on the interval [0, 1] for various N and compare
the condition number of the N × N matrix Ki,j = k(xi, xj) to the theoretical bound in
Lemma 2. The determinant of K was computed by first using Algorithm 1 to construct
the N × m matrix X such that XX∗ approximates K to high accuracy. Since for the
squared-exponential kernel, m is significantly smaller than N , κ(K + σ2I) can be efficiently
computed, even for large N , using for example the SVD or X.

In Figure 1, we plot both the bound given in Lemma 2 and the empirical condition
number for σ2 = 0.09. In Figure 2 we compare the empirical condition to the theoretical
bound for various N and σ2.

15

1 2 3 4 5 6
1

2

3

4

5

6

7

log10 N
lo

g
1
0
κ

(K
+
σ
2
I
)

Empirical κ
Upper bound (52)

Figure 1: Condition numbers of the Gaussian process covariance matrix as a function of the
number of data points, N . The data points are distributed uniformly on [0, 1], the kernel is
the squared-exponential kernel with ` = 0.1, and σ2 = 0.09.

σ

lo
g
1
0
(N

)

(a) log10 κ(K + σ2I)

σ

(b) log10 of bound (52)

σ

(c) Ratio of κ to bound (52)

Figure 2: Condition numbers of the covariance matrix of Gaussian process regression for
various N and σ2 in addition to the theoretical bounds and the ratio between the two. The
squared-exponential kernel with ` = 0.1 was used.

5 Numerical experiments

We implemented Algorithm 1 (EFGP) in MATLAB version 2021b on a 2.6 GHz 6-Core Intel
Core i7 MacBook Pro. We describe the performance of EFGP in detail on a number of
Gaussian process regression tasks with both synthetic data and an applied problem. We also
compare EFGP to well-known implementations of related algorithms.

5.1 EFGP time and accuracy for various N

In Table 2 we present the detailed performance of EFGP in accuracy and compute time for
Gaussian process regression problems in 1, 2, and 3 dimensions with varying numbers of
data points and two different kernels.

In Table 2 all data was simulated. In Tables 2a and 2b, data was generated according to
yi = cos(6πxi + 1.3) + εi with ε ∼ N (0, 0.32I) for x1, ..., xN uniformly sampled points on the
interval [0, 1]. For Tables 2c and 2d, data was generated according to yi = cos(2π〈xi, ω〉 +

16

1.3)+ εi where ω = [4 3]t and εi ∼ N (0, 0.32I) for x1, ..., xN uniformly sampled points on the
square [0, 1]2. The data used for GP regression in Tables 2e and 2f was generated according to
yi = cos(2π〈xi, ω〉+ 1.3) + εi where ω = [3 7 2]t and εi ∼ N (0, 0.32I) for x1, ..., xN uniformly
sampled points on the cube [0, 1]3.

In Table 2, the column “m” denotes the m of Algorithm 1, the number of non-negative
frequencies used in each dimension. That is, for a d-dimensional problem, the total number
of frequencies is (2m+1)d. In Table 2, the column “precomp (s)” represents the total precom-
putation time – discretization of the Gaussian process distribution, using the non-uniform
FFT to construct the right-hand-side of the weight-space linear system, and precomputation
for applying the Toeplitz matrix. The column labeled “CG (s)” denotes the total time spent
on conjugate gradient for solving the linear system. “mean (s)” presents the time spent
on evaluating the posterior mean. For the d-dimensional problem, the posterior mean was
evaluated at 100 points in each dimension on [0, 1]d. For example, with d = 2, we evaluated
the posterior mean on a 100× 100 grid on the square [0, 1]2. The column labeled “total (s)”
denotes the total time of Gaussian process regression and evaluation of the posterior mean.
The total number of iterations required for conjugate gradient is provided in “CG iters” and
the L2 or root mean squared error (RMSE) of the posterior mean is provided in “RMSE.”
Specifically, RMSE denotes the quantity(∫

D

(µ(x)− µ̃(x))2dx

)1/2

(55)

where D = [0, 1]d in d dimensions, µ : Rd → R denotes the true posterior mean, and
µ̃ : Rd → R the approximate posterior mean evaluated with EFGP. This error was computed
using as a benchmark EFGP with a high level of accuracy (i.e. 10−12 for squared exponential
kernel).

5.2 Accuracy vs. time

In Figure 3 we compare four Gaussian process algorithms. For each algorithm, we evaluate
the amount of time required to obtain a certain level of accuracy of the posterior mean. We
measure accuracy via the L2 difference between the exact posterior mean and the approxi-
mate posterior mean (see (55) obtained with each method. We perform with simulated data
in 1, 2, and 3 dimensions and two kernels – squared exponential and Matérn 1/2.

The timings in Figure 3 reflect total time for evaluating the posterior mean at points on
an equispaced grid on [0, 1]d in d dimensions. For the 1-dimensional problem, the posterior
mean was tabulated at 100 equispaced points. In 2-dimensions, the posterior mean was
evaluated on a 100 × 100 equispaced grid on the square [0, 1]2. The posterior mean of the
3-dimensional problems was tabulated on a 30× 30× 30 equispaced grid on the cube [0, 1]3.

We used simulated data for these experiments with N = 105 points chosen uniformly
at random on [0, 1]d in d dimensions. The residual variance was σ2 = 0.25 for all experi-
ments. In 1 dimension, the data was generated according to yi = cos(6πxi + 1.3) + εi where
εi ∼ N(0, 0.52) was generated iid. For the 2-dimensional experiments, data was generated
according to yi = cos(2π〈x, ω〉 + 1.3) + εi where ω = [4 3] and εi ∼ N(0, 0.52). In the 3-
dimensional experiments, data was generated according to yi = cos(2π〈x, ω〉+1.3)+εi where
ω = [2 3 5] and εi ∼ N(0, 0.52).

17

We compare EFGP to three algorithms – structured kernel interpolation (SKI) [30]
method, RLCM of [4], and a fast spatial Gaussian process maximum likelihood estimation
via skeletonization factorizations (FLAM), [18]. We chose these algorithms as a comparison
due to their desirable theoretical properties and efficient, user-friendly, publicly available
implementations. All three comparison algorithms, and indeed nearly all of the literature,
are function-space approaches. That is, they solve the N ×N linear systems in (5).

SKI [30] falls broadly in the class of Gaussian process algorithms known as inducing point
methods. In SKI, inducing points fall on an equispaced grid, which facilitates a fast matrix-
vector multiply of the approximate covariance matrix using FFTs. Tradeoff of accuracy and
runtime was achieved by altering the number of grid points. We use the implementation of
GPyTorch [11].

In FLAM, low-rank interactions between well-separated points is exploited for efficient
matrix factorization and inversion in O(N) operations. We used the implementation of [17].
Higher accuracy was accomplished by reducing the error tolerance input.

RLCM constructs a hierarchical factorization of a covariance matrix in linear time (in
the number of data points) that allows application of the inverse of the covariance matrix
in O(N) operations. The factorization is so-called hierarchically low-rank – the covariance
matrix is represented as a block diagonal plus low-rank where each block diagonal has the
same structure. The accuracy of this method was adjusted by changing the maximum rank
of the low-rank terms of the decomposition. We used the authors’ implementation found at
https://github.com/jiechenjiechen/RLCM .

5.3 Spatial Gaussian process regression with satellite data

We demonstrate the performance of EFGP on a standard large-scale Gaussian process prob-
lem in spatial statistics. The observed data, [19], consists of over 1.4 million satellite mea-
surements of XCO2 (average CO2 in an atmospheric column) taken during the period of
August 1, 2015 - August 17, 2015. In [6], the author describes this dataset in detail in
addition to the data-generating process, the sources of noise in the data, and the applied
significance of performing efficient Gaussian process regression on this data.

In accordance with standard practice, we use longitude-latitude coordinates as locations
on a 2-dimensional plane. We ran Gaussian process regression using EFGP with the squared
exponential kernel and several values of `. For ` = 5, 50, we compute the posterior mean
in 7 and 0.5 seconds with RMSE of 0.0005 and 0.001. As in previous experiments, RMSE
denotes the L2 error of the posterior mean (see 55). In Figure 4 we plot the posterior means
on a 300× 300 grid.

6 Generalizations and conclusions

In this paper, we present a class of algorithms for Gaussian process regression and related
tasks. Our methods use an equispaced Fourier expansion to represent a Gaussian process
distribution, which has two primary advantages – accurate and compressed approximations
of the Gaussian process, and the use of fast algorithms for inference.

18

In addition to introducing numerical algorithms, we also present several formulae and
analytical tools. In particular, we give a bound on the condition number of a Gaussian process
covariance matrix, we provide a formula for the error of equispaced Fourier discretizations
in L2 and L∞, and we bound the error of the posterior mean evaluated at the data points
for general approximate Gaussian process methods.

The performance of our algorithms was tested with numerical experiments on real and
simulated data. We compared our algorithms with several state-of-the-art methods for Gaus-
sian process regression in the speed and accuracy of evaluation of the posterior mean. In
general, our algorithms compared favorably to other methods on a range of problems in 1,
2, and 3 dimensions.

In future work we plan to address the evaluation of gradients of the Gaussian process
posterior for training of hyperparameters as well as the efficient evaluation of the determinant
of the Gaussian process likelihood.

A Equivalence of weight-space and function-space

Suppose that φ1, ..., φm : D → C are a collection of fixed basis functions. We denote by g
the Gaussian process distribution defined by

g ∼ β1φ1 + ...+ βmφm (56)

where β1, ..., βm are iid standard normal Gaussian random variables. Then the effective
covariance kernel of g, which we denote kg, is defined by

kg(x, y) = E[g(x)g(y)] =
m∑
j=1

m∑
j′=1

E[βjβj′]φj(x)φj′(y) =
m∑
j=1

φj(x)φj(y) (57)

where φi(y) denotes the complex conjugate of φi(y) [26]. The weight-space and function-
space approaches are equivalent when using the same covariance structure. That is, for any
x̃ ∈ D, the posterior mean and variance of the weight-space approach (10) with Gaussian
process g is equivalent to the posterior mean and variance of the function-space approach
(5) with covariance kg.

Under these conditions, the N ×N posterior covariance of the function-space approach,
K, satisfies

K = XX∗ (58)

and the posterior mean, µ, and variance, s, at any point x̃ ∈ Rd are given by

µ(x̃) = f tX∗(XX∗ + σ2I)−1y

s(x̃) = f ∗f − (Xf)∗(XX∗ + σ2I)−1(Xf)
(59)

where f ∈ Cm is defined by f = [φ1(x̃)φ2(x̃) ... φm(x̃)]t.
The equivalence of the weight-space and function-space approaches can be seen by first

multiplying both sides of the function-space linear system, by X∗ to obtain

(X∗XX∗ + σ2X∗)α = X∗y. (60)

19

Factoring out X∗ we have

(X∗X + σ2I)(X∗α) = X∗y. (61)

Substituting in the posterior mean of the weight-space approach, we obtain the equivalence
of the function-space and weight-space views:

µws(x̃) = f tβ̂ = f t(X∗X + σ2I)−1X∗y = f tX∗α = µ(x̃). (62)

The posterior variance of the function-space approach satisfies

s(x̃) = f ∗f − (Xf)∗(XX∗ + σ2I)−1Xf

= f ∗(I −X∗(XX∗ + σ2I)−1X)f.

Denoting the singular value decomposition of X by X = UDV ∗, we have

s(x̃) = f ∗(I − V DU∗(U(D2 + σ2I)U∗)−1UDV ∗f

= f ∗(I − V D2

D2 + σ2
V ∗)f

= f ∗V
σ2

D2 + σ2
V ∗f

= f ∗(
1

σ2
X∗X + I)−1f

= sws(x̃).

In the following proposition we provide a formula that relates the solution to the weight-
space linear system to that of the function-space system.

Proposition A.1. Let α ∈ RN satisfy

(XX∗ + σ2I)α = y (63)

for some N ×m matrix X, σ2 > 0 and y ∈ RN . Let β̂ ∈ Rm satisfy

(X∗X + σ2I)β̂ = X∗y. (64)

Then

α =
1

σ2
(y −Xβ̂) (65)

Proof. Substituting (65) into equation (63), we observe that equation (65) holds if and only
if

(XX∗ + σ2I)(y −Xβ̂)− σ2y = 0. (66)

Expanding the left side of equation (66), we obtain

(XX∗ + σ2I)(y −Xβ̂)− σ2y = XX∗y + σ2y −XX∗Xβ̂ − σ2Xβ̂ − σ2y

= X(X∗y −X∗Xβ̂ − σ2β̂)

= X(X∗y − (X∗X + σ2I)β̂).

(67)

Equation (66) follows immediately from combining (64) and (67).

20

B Discretization error estimates for the Matérn kernel

In this section we provide proofs for the aliasing error and truncation error estimates for the
Matérn kernel. Recall that the Matérn kernel and its Fourier transform are given by

Cν(x, `) =
21−ν

Γ(ν)

(√
2ν
|x|
`

)ν
Kν

(√
2ν|x|
`

)
,

Ĉν(ξ, `) = ĉd,ν

(
`√
2ν

)d (
2ν + |2π`ξ|2

)−ν−d/2
,

(68)

where ĉd,ν is given by

ĉd,ν =
2dπd/2(2ν)νΓ(ν + d/2)

Γ(ν)
. (69)

In order to prove the estimate for the aliasing error we state some properties of the modified
Bessel function, see [13] for example. For z > 0, and fixed ν, the modified Bessel functions
Kν(z) are monotonically decreasing and positive. For fixed z, the modified Bessel functions
are monotonically increasing in ν, i.e. Kν(z) ≤ Kµ(z) for µ ≥ ν. Moreover,

d

dz
(zνKν(z)) = −zνKν−1(z) (70)

Note that the positivity of Kν−1(z) implies that zνKν(z) is also a monotonically decreasing
function of z. The monotonicity properties and the positivity of Kν also imply that

1

Kν(z)

d

dz
(zνKν(z)) ≤ −1 . (71)

Integrating the equation in z, we get

zνKν(z)

wνKν(w)
≤ e−(z−w) , 0 ≤ w ≤ z . (72)

In the following lemma we prove the estimate for the aliasing error.

Lemma 3 (Matérn kernel aliasing error). Let the Matérn kernel parameters be ν ≥ 1/2,
` > 0. Then the aliasing error with equispaced Fourier parameter h > 1/

√
d is given by∣∣∣∣∣∣∣∣

∑
j∈Zd

j 6=0

Cν

(
x+

j

h
, `

)∣∣∣∣∣∣∣∣ ≤ α(d, ν)C0 exp

(
−
√

2ν

`

(
1

h
− |x|

))
. (73)

Proof. First, we note that the sum over j ∈ Zd \ 0, is bounded by 2d half spaces of the form
n ≥ 1, q ∈ Zd−1. Owing to the radial symmetry of the kernel all of those half spaces can
be bounded using the same estimate. Moreover, since the Cν(x, `) are positive functions, we
have ∣∣∣∣∣∣∣∣

∑
j∈Zd

j 6=0

Cν

(
x+

j

h
, `

)∣∣∣∣∣∣∣∣ ≤ 2d
∑
n≥1

∑
q∈Zd−1

Cν

(
x+

(n, q)

h
, `

)
. (74)

21

Since x ∈ [−1, 1]d, and h > 1
√
d, using the monotonicity of zνKν(z), and property (72), we

get∣∣∣∣∣∣∣∣
∑
j∈Zd

j 6=0

Cν

(
x+

j

h
, `

)∣∣∣∣∣∣∣∣ ≤ 2dC0 exp

(
−
√

2ν

`

(
1

h
− |x|

))∑
n≥1

∑
q∈Zd−1

exp

(
−
√

2ν

h`

(√
n2 + |q|2 − 1

))
.

(75)
The sum over the lattice can be bounded by 1 on

√
n2 + |q|2 ≤

√
d for example, and using

the estimate
√
n2 + |q|2 ≤ n√

d
+
∑d−1

j=1 |qj|/
√
d on the rest, with the understanding that

at least one of the indices is greater than
√
d which allows one to bound the lattice sum

independent of h. In particular

∑
n≥1

∑
q∈Zd−1

exp

(
−
√

2ν

h`

(√
n2 + |q|2 − 1

))
≤ Vd(d

√
de)+

2d
∑

n=d
√
de

∑
q=Zd−1

exp

(
−
√

2ν

h`

((
n√
d
− 1)

)
+

d−1∑
m=1

qm√
d

))

≤ Vd(d
√
de) + 2d

 1

1− exp
(
−
√
2ν
h`

)
d

≤ Vd(d
√
de) + 2d

 1

1− exp
(
−
√
2νd
`

)
d

.

(76)

Here Vd(R) is the volume of the ball of radius R centered at the origin, and the last equality
follows from the assumption that h < 1√

d
.

In order to prove the estimate for the truncation error, we need the following lemma
bounding lattice sums

Lemma 4.

I(d, ν,m) =
∑
n>m

∑
q∈Zd−1

(
n2 + |q|2

)−ν−d/2 ≤ β(d, ν)
1

m−2ν
(77)

with prefactor

β(d, ν) =

{
1
2ν
, d = 1(

4 + 2
2ν+d−1

)
β(d− 1, ν) d > 1

(78)

Proof. Let m ≥ 1 (this will hold throughout the following) then for d = 1,∑
n>m

n−2ν−1 ≤
∫ ∞
m

y−2ν−1dy =
m−2ν

2ν
(79)

where monotonic decrease was used to bound the sum by an integral.

22

For higher d,∑
n>m

∑
q∈Zd−1

(
n2 + |q|2

)−ν−d/2
=
∑
n>m

∑
w∈Zd−2

∑
q∈Z

(
n2 + |w|2 + q2

)−ν−d/2
(80)

We split the innermost sum into q ≤ d
√
n2 + |w|2e, where dxe denotes the smallest integer

not less than x, which contains at most 2(
√
n2 + |w|2 + 1) + 1 < 4

√
n2 + |w|2 terms, each

bounded by the constant (n2 + |w|2)−ν−d/2. The two-tailed remainder of this sum is bounded
by 2

∫√
n2+|w|2 y

−2ν−ddy = (2ν + d − 1)−1(n2 + |w|2)−ν−(d−1)/2. Combining both of these

estimates, we get

I(d, ν,m) =
∑
n>m

∑
w∈Zd−2

∑
q∈Z

(
n2 + |w|2 + q2

)−ν−d/2
,

≤
(

4 +
2

2ν + d− 1

)∑
n>m

∑
w∈Zd−2

(
n2 + |w|2

)−ν−(d−1)/2
,

=

(
4 +

2

2ν + d− 1

)
I(d− 1, ν,m)

(81)

Recursing down in d, we get the desired result.

In the following lemma we prove the estimate for the truncation error.

Lemma 5 (Matérn truncation error bound). Let the Matérn kernel parameters be ν ≥ 1/2,
` > 0. Then the truncation error with equispaced Fourier parameters h > 0 and m ≥ is given
by ∣∣∣∣∣∣∣∣h

d
∑
j∈Zd

j 6∈Im

Ĉν(jh, `)e
2πhi〈j,x〉

∣∣∣∣∣∣∣∣
L∞[−1,1]d

≤ α∞(d, ν)

(√
2ν

h`m

)2ν

,

∣∣∣∣∣∣∣∣h
d
∑
j∈Zd

j 6∈Im

Ĉν(jh, `)e
2πhi〈j,x〉

∣∣∣∣∣∣∣∣
L2[−1,1]d

≤ α2(d, ν)
√
m
d

(√
2ν

h`m

)2ν

,

(82)

Proof. For the L∞ estimate, dropping the phase and noting that k̂ is always positive gives
the simple uniform bound∣∣∣∣∣∣∣∣h

d
∑
j∈Zd

j 6∈Im

Ĉν(jh, `)e
2πhi〈j,x〉

∣∣∣∣∣∣∣∣ ≤ hd
∑

j∈Zd\Im

Ĉν(jh, `) = ĉd,ν(h`)
d
∑

j∈Zd\Im

(2ν + |2π`hj|2)−ν−d/2

≤ ĉd,ν(h`)
d
∑

j∈Zd\Im

|2π`hj|−2ν−d

≤ ĉd,ν
(2π)2ν+d

1

(`h)2ν
I(d, ν,m) . (83)

23

The last inequality follows from the noting that the sum over j ∈ Zd\Im is bounded by 2d
half spaces of the form n > m, q ∈ Zd−1.

The derivation of the L2 estimate follows in a similar manner.

Remark B.1. In most of the estimates above, the constants are not optimal, in particular
losing (asymptotically for large m) a factor of d due to double- or triple-counting most terms
in overlapping half-spaces. There is also some loss due to the sum splitting. We believe
that improving these would require awkward geometric work that would not add much to the
results.

References

[1] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg, and M. O’Neil. Fast
Direct Methods for Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell.,
38(2):252–265, 2016.

[2] A. H. Barnett, J. Magland, and L. af Klinteberg. A parallel nonuniform fast fourier
transform library based on an “exponential of semicircle” kernel. SIAM Journal on
Scientific Computing, 41(5):C479–C504, 2019.

[3] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi. Gaussian approximation po-
tentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett.,
104:136403, Apr 2010.

[4] J. Chen and M. Stein. Linear-cost covariance functions for gaussian random fields.
Journal of the American Statistical Association, 11 2017.

[5] N. Cressie. Statistics for Spatial Data, Revised Edition. Wiley-Interscience, Hoboken,
NJ, 2015.

[6] N. Cressie. Mission co2ntrol: A statistical scientist’s role in remote sensing of atmo-
spheric carbon dioxide. Journal of the American Statistical Association, 113(521):152–
168, 2018.

[7] G. Dahlquist and A. Bjork. Numerical Methods. Dover, Mineola, NY, 1974.

[8] A. Delaney and Y. Bresler. A fast and accurate fourier algorithm for iterative parallel-
beam tomography. IEEE Transactions on Image Processing, 5(5):740–753, 1996.

[9] A. Dutt and V. Rokhlin. Fast fourier transforms for nonequispaced data. SIAM Journal
on Scientific Computing, 14(6):1368–1393, 1993.

[10] D. Foreman-Mackey, E. Agol, S. Ambikasaran, and R. Angus. Fast and Scalable Gaus-
sian Process Modeling with Applications to Astronomical Time Series. The Astronom-
ical Journal, 154(6), 2017.

24

[11] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

[12] G. H. Golub and C. F. van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition,
1996.

[13] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Academic
press, 2014.

[14] L. Greengard, J.-Y. Lee, and S. Inati. The fast sinc transform and image reconstruction
from nonuniform samples in k-space. Communications in Applied Mathematics and
Computational Science, 1(1):121 – 131, 2006.

[15] P. Greengard. Efficient Fourier representations of families of Gaussian processes. arXiv,
stat.CO/2109.14081, 2021.

[16] J. Hensman, N. Durrande, and A. Solin. Variational Fourier Features for Gaussian
Processes. J. Mach. Learn. Res., 18(1):5537–5588, 2017.

[17] K. L. Ho. Flam: Fast linear algebra in matlab - algorithms for hierarchical matrices.
Journal of Open Source Software, 5(51):1906, 2020.

[18] V. Minden, A. Damle, K. L. Ho, and L. Ying. Fast Spatial Gaussian Process Maxi-
mum Likelihood Estimation via Skeletonization Factorizations. Multiscale Modeling and
Simulation, 15(4), 2017.

[19] OCO-2 Science Team/Michael Gunson, Annmarie Eldering. OCO-2 Level 2 bias-
corrected XCO2 and other select fields from the full-physics retrieval aggregated as
daily files, 2018. Retrospective processing V9r, Greenbelt, MD, USA, Goddard Earth
Sciences Data and Information Services Center (GES DISC), Accessed: 2021-11-19.

[20] C. J. Paciorek. Bayesian Smoothing with Gaussian Processes Using Fourier Basis Func-
tions in the spectralGP Package. Journal of Statistical Software, 19(2):1–38, 2007.

[21] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems, volume 20. Curran Associates, Inc., 2008.

[22] C. E. Rasmussen and C. L. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, Cambridge, MA, 2006.

[23] G. Riutort-Mayol, P.-C. Bürkner, M. R. Andersen, A. Solin, and A. Vehtari. Practical
hilbert space approximate bayesian gaussian processes for probabilistic programming,
2020.

25

[24] D. Sanz-Alonso and R. Yang. Finite Element Representations of Gaussian Processes:
Balancing Numerical and Statistical Accuracy. arXiv, stat.co/2109.02777, 2021.

[25] M. L. Stein. Bounds on the Efficiency of Linear Predictions Using an Incorrect Covari-
ance Function. The Annals of Statistics, 18(3):1116 – 1138, 1990.

[26] M. L. Stein. Interpolation of Spatial Data, Some Theory for Kriging. Springer, New
York, NY, 1999.

[27] A. W. van der Vaart and J. H. van Zanten. Rates of contraction of posterior distributions
based on Gaussian process priors. The Annals of Statistics, 36(3):1435 – 1463, 2008.

[28] L. Wang, Y. Shkolnisky, and A. Singer. A Fourier-based Approach for Iterative 3D
Reconstruction from Cryo-EM Images. arXiv, math.na/1307.5824, 2013.

[29] J. Wenger, G. Pleiss, P. Hennig, J. P. Cunningham, and J. R. Gardner. Reducing the
variance of gaussian process hyperparameter optimization with preconditioning. CoRR,
abs/2107.00243, 2021.

[30] A. G. Wilson and H. Nickisch. Kernel Interpolation for Scalable Structured Gaussian
Processes (KISS-GP). In Proceedings of the 32nd International Conference on Inter-
national Conference on Machine Learning - Volume 37, ICML’15, page 1775–1784.
JMLR.org, 2015.

26

N m precomp (s) CG (s) mean (s) total (s) CG iters RMSE
104 16 0.002 0.001 0.001 0.003 43 1.5× 10−8

105 16 0.016 0.001 0.001 0.017 52 1.1× 10−7

106 16 0.076 0.001 0.001 0.077 69 4.9× 10−7

107 16 0.739 0.001 0.001 0.741 85 1.4× 10−6

(a) 1-dimension, Squared-exponential kernel, ` = 0.1.

N m precomp (s) CG (s) mean (s) total (s) CG iters RMSE
104 3791 0.005 0.248 0.001 0.254 202 2.0× 10−3

105 3791 0.010 0.540 0.001 0.552 456 5.3× 10−3

106 3791 0.066 0.874 0.001 0.941 735 9.4× 10−3

107 3791 0.697 1.279 0.001 1.977 1053 6.1× 10−3

(b) 1-dimension, Matérn 1/2 kernel, ` = 0.1

N m precomp (s) CG (s) mean (s) total (s) CG iters RMSE
104 17 0.007 0.106 0.007 0.120 341 1.6× 10−8

105 17 0.023 0.269 0.014 0.306 840 1.9× 10−8

106 17 0.222 0.618 0.087 0.926 1913 6.2× 10−8

107 17 1.924 1.200 1.001 4.126 3570 1.2× 10−6

(c) 2-dimensions, Squared-exponential kernel, ` = 0.1.

N m precomp (s) CG (s) mean (s) total (s) CG iters RMSE
104 108 0.033 0.824 0.004 0.861 117 1.5× 10−2

105 108 0.047 1.519 0.005 1.571 221 4.1× 10−2

106 108 0.164 1.669 0.007 1.840 210 5.4× 10−2

107 108 1.525 1.038 0.014 2.577 132 3.1× 10−2

(d) 2-dimensions, Matérn 1/2 kernel, ` = 0.1

N m precomp (s) CG (s) mean (s) total (s) CG iters RMSE
104 12 0.029 0.250 0.097 0.376 152 6.0× 10−5

105 12 0.051 0.779 0.123 0.953 477 9.9× 10−5

106 12 0.318 2.187 0.235 2.741 1379 2.1× 10−4

107 12 2.561 5.420 1.335 9.316 3395 4.0× 10−4

(e) 3-dimensions, Squared-exponential kernel, ` = 0.1.

N m precomp (s) CG (s) mean (s) total (s) CG iters RMSE
104 37 0.397 9.733 0.123 10.252 61 3.5× 10−2

105 37 0.529 33.109 0.172 33.810 180 3.5× 10−2

106 37 0.613 55.365 0.176 56.154 302 7.0× 10−2

107 37 2.422 31.601 0.145 34.168 213 4.4× 10−2

(f) 3-dimensions, Matérn 1/2 kernel, ` = 0.1

Table 2: Timing and accuracy for EFGP with simulated data.

27

−12−10−8−6−4−20

−2

−1

0

1

2

more accurate

fa
ste

r

log10 L
2 error

lo
g
1
0

ti
m

e
(s

)

EFGP
SKI

FLAM
RLCM

(a) 1d, squared-exponential kernel, ` = 0.1

−12−10−8−6−4−20

−2

−1

0

1

2

log10 L
2 error

lo
g
1
0

ti
m

e
(s

)

EFGP
SKI

FLAM
RLCM

(b) 1d, Matérn 1/2 kernel, ` = 0.1

−8−6−4−20

−2

−1

0

1

2

log10 L
2 error

lo
g
1
0

ti
m

e
(s

)

EFGP
SKI

FLAM
RLCM

(c) 2d, squared-exponential kernel, ` = 0.1

−8−6−4−20

−2

−1

0

1

2

log10 L
2 error

lo
g
1
0

ti
m

e
(s

)

EFGP
SKI

FLAM
RLCM

(d) 2d, Matérn 1/2 kernel, ` = 0.1

−6−4−20

0

1

2

log10 L
2 error

lo
g
1
0

ti
m

e
(s

)

EFGP
SKI

FLAM
RLCM

(e) 3d, squared-exponential kernel, ` = 0.1

−2−10

0

1

2

3

log10 L
2 error

lo
g
1
0

ti
m

e
(s

)

EFGP
SKI

FLAM
RLCM

(f) 3d, Matérn 1/2 kernel, ` = 0.1

Figure 3: Compute time to achieve various levels of accuracy for Gaussian process regression
in 1, 2, and 3 dimensions for four algorithms. For all problems N = 105 simulated data
points were used and σ2 = 0.25.

28

(a) XCO2 (ppm) measurements

(b) Squared-exponential kernel, ` = 50, L2-
error of 0.001 and 0.5 seconds total run time
for regression and evaluation of posterior
mean.

(c) Squared-exponential kernel, ` = 5, L2-
error of 0.0005 and 6.8 seconds total run
time for regression and evaluation of poste-
rior mean.

Figure 4: 2-dimensional Gaussian process regression on XCO2 data with N ≈ 1.4×106 using
squared-exponential kernel with two different time scales and prefactor (or output variance)
of 25. The data was demeaned and we used residual variance, σ2 = 1.

29

