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Abstract

The dependence analysis and testing problem has been well studied in parallelizing
compilers. All of the existing dependence decision algorithms, however, are conservative
in considering data dependence between statements occurring in conditional branches.
By conservative we mean that a true dependence does not exist due to the presence of the
conditional yet the dependence test may come out positive. We propose a new decision
algorithm which can obtain more accurate dependence information when statements
have conditionals. Experimently, this decision algorithm is quite efficient. This decision
algorithm can also be used in cycle breaking and in testing dependences for functional
programs.

1 Introduction

The grand challenge of trans-teraflop computing requires innovative software technologies
for realizing the full capability of the new generation of massively parallel computers. By
now it is widely recognized that the direct programming of this class of machines by ex-
plicit communication or synchronization can be tedious, error-prone, and often unwieldy for
producing and maintaining efficient application code.

The Crystal approach to programming massively parallel machines [5] is to begin with a
machine-independent, high-level problem specification. We then apply a sequence of trans-
formations, either suggested by the programmer or incorporated into the compiler, to the
source specification. Some of these transformations are specific to particular machine archi-
tectures so that efficient target code with explicit communication or synchronization can be
generated. ’




One of the central issues in discovering parallelism automatically is to generate correct
parallel control structures that can take advantage of the large number of processors. This
dependence analysis and testing problem has been well studied in parallelizing compilers
[1,2,3, 4,12, 13).

All of the existing dependence decision algorithms, however, are conservative in consider-
ing data dependence between statements occurring in conditional branches. By conservative
we mean that a true dependence does not exist due to the the presence of the conditional
yet the dependence test may come out positive. The reasons for not considering exact de-
pendence test for conditional statements in the past may be that (1) the decision algorithm
may at the least involve integer programming, which was considered expensive, (2) some
of the early vectorizing compilers do not even parallelize conditional statements and hence
there is no point getting a more accurate test, and (3) the payoff in speedup as a result of
more accurate dependence test may not be significant for small scale (tens of processors)
shared-memory multi-computers.

In attempting to parallelize certain algorithms for execution on the Connection Machine
which consists of tens of thousands of processors, we realize that the potential speedup can be
of orders of magnitude due to a more accurate test for conditional statements. We are thus
motivated to devise a decision algorithm which can gain large scale parallelism in practice
and yet be fast enough to be used in a parallelizing compiler.

In the following, we first review the concepts and terminology appearing in the dependence
test literature. We then formulate precisely the problem of testing data dependence between
conditional statements in Section 3. A new dependence decision algorithm called subdomain
dependence test is described in Section 4. In Section 5, we discuss how to do subdomain
dependence test when some loop bounds are unknown. Finally, we describe the application
of subdomain dependence test to the problem of “dependence cycle breaking” [2] and the
use of subdomain dependence test in functional programs.

2 Previous Work

Throughout this paper, programming examples are written in a Fortran-like notation. In
order to make this paper self-contained, we first review the terminology and concepts of
dependence analysis.

Let S; and S; be two statements of a program. A flow dependence exists from S; to S,
if S, writes data that can subsequently be read by S;. An anti-dependence exists from S,
to Sy if Sy reads data that Sy can subsequently write. An output dependence exists from Sy
to Sp if S; writes data that S; can subsequently write. We use the notation (S; = S2) to
denote a dependence from S; to S;.

The dependences between n statements of a program can be represented as a graph, called
the dependence graph, consisting of n nodes, each node labeled by one statement. For each




dependence from statement S to statement S,, there is an arc from node S; to node S, in
the graph.

In this paper, we discuss flow dependence only. Anti-dependence and output dependence
can be treated similarly.

We define an index domain (also called an iteration space in [12]) of a d-nested do loop

DO (41 =lh,u){
DO (22 = 12, U,z){
) }

to be the Cartesian product of d interval domains of integers I <7 < uy for 1 < k < d.

Since indices of nested do loops are used throughout the paper, we use I and J as the
tuples of indices (71,%2,...) and (j1,J2,...) respectively. For a nested do loop with index
domain D, we use the notation

DO (I:D){
!

as a shorthand for
DO (i1 =...){
DO (iz=...){

We now define relations on elements I and J of a d dimensional index domain. We define
“<” to be the lexicographical ordering: we say (I < J) if there exists k, 1 < k < d, such
that (4 = g;) for all [, I < k, and (ix < jx). We define “<” to be an element-wise ordering
of “<” and say (I < J) if (¢x < ji) for all k, 1 < k < d. Similarly, “=" is defined to be
(tr =gx) forall b, 1 <k <d Wesay (I 2J)if (I <J)or (I=1J),and (I <J)if (I<J)
or (I =1J). ‘

In this paper, we use the following perfectly nested loop as a generic example, where D
is a d dimensional index domain and 7[a] is an expression containing a:

Program G (Generic)
DO (I:D){

éllﬂﬂm)Aau»=m

Sy IF(By(I)) B(2(1)) = 7[A(Y(1))]
}




For statement S; to compute the value B(Z(J)) at iteration J, the value A(Y(J)) is
needed. If A(Y(J)) is computed from statement S; at iteration I, i.e. (A(Y(J)) = A(X(1))),

then we say S at iteration J is flow dependent on S; at iteration I, denoted by (S;@I =
S,Q@QJ).

We are interested in the relationship of two iterations I and J such that (S;@QI = S,@QJ).
Let sig be a function mapping from the set of integers Z to the set of ordering relations “<”,

“=”, a;nd “>”:
z2<0— “<”
sig(z) = z2=0— “="
z > 0 — “>”
For any two iterations I and J such that the dependence relation (S;@I = S;@J) holds,
we call the tuple (ey,...,eq), where e = sig(tx — jk), a direction vector associated with the
dependence. We use “¢” as a shorthand for (“<” or “=" or “>").

Traditional dependence tests for Program G is formulated as: There is a flow dependence
from S; to S; if and only if there exist integer indices I and J satisfying Equations (1),(2),
(3) and (4). Note that the presence of conditional expressions is ignored:

I €D, (1)
J € D, (2)
X(I) =Y(J), and (3)
(I 2 J (for flow dependence), or (4)
I = J (for anti-dependence)). (5)

Equation (4) implies that (d 4 1) direction vectors must be considered. For example, if the
dimension d is 3, then the direction vectors are (<, *, %), (=, <, %), (=,=, <), and (=,=,=).
Similarly, Equation (5) for testing anti-dependence implies d direction vectors.

Let Z¢ be the d-dimensional Cartesian product of Z. Let [;; and u;; be rational constants
where 2 < ¢ <dand 1< j<d-—1. Let P and @ be two d-tuples of constant rational
numbers, and L and U be two constant matrices:

[0 0 0 ...0) [0 0 0
121 0 0 O U21 0 0
L= 131 132 0 ...0 ,U= U31 U32 0 ...0

o
e

o

\ldl ld2 ld3...0/ \udl Ud2 udg...O/

A subspace of Z¢ that can be expressed as {I | (P < I < @)} is called a rectangle [3]. A
subspace of Z% that can be expressed as {I | (LIT)T+ P < I < (UIT)T 4+ Q)} is called a

trapezoid [3].




Traditional dependence tests [3] restrict that an index domain of a do loop be either a
rectangle or a trapezoid, or a union of such domains. For the purpose of a dependence
test, each member domain of the union can be considered separately. Hence we can further
restrict, without loss of generality, that an index domain of a do loop be a rectangle or a
trapezoid. Conventional dependence tests also restrict all subscript functions, e.g. X, Y and
Z in Program G, to be affine functions of the indices.

The methods used [3, 12, 13] to determine if there exist I and J that satisfy Equations
(1),(2),(3) and (4), are summarized as follows:

1. For a single level (one dimensional) loop, exact dependence is obtained by Wolfe’s
method [12], which requires linear time with respect to the dimensionality of the arrays.

2. For one dimensional arrays occurring in a loop with nested levels, the Banerjee-Wolfe
test[12] determines if there exist rationalindices. Wolfe’s method [13] determines further
if integer indices exist. Both tests only apply to index domains that are rectangles or
trapezoids. Furthermore, Wolfe’s integer test requires exponential time with respect to
the dimensionality of the index domain. :

3. A multi-dimensional array occurring in a loop with nested levels is linearized as a one
dimensional array so as to use the methods described in 2. Shostack’s loop residues
algorithm [4, 11] and linear programming algorithms [8] can be used to determine if
rational indices exist. Exact test for the existence of integer indices needs to be obtained
by integer programming.

3 Subdomain Dependence Test

We will now formulate the same problem with conditionals taken into consideration. Since
expressions of domain indices appearing as guards in conditional statements can be thought
of as conditions that divide an index domain into subdomains, we call such a dependence
test a subdomain dependence test.

3.1 Example

We now use a simple example to show the importance of subdomain dependence test. Con-
sider the following program:




Program 1

DO (i =2,n){
DO (j =2,n){
Si: A(,5)=B(,j—1)+i
S2: B(,5)=A(G0)+5  }}

A flow dependence from S; to Sy exists because of array A, and another from S; to S; due
to array B. The cyclic dependence as shown in the dependence graph Figure 1(a) prevents
the inner loop from being parallelized. Now consider the same program except S; and S,
are modified as conditional statements:

Program 2

DO (i=2,n){
DO (j =2,n){
Si: IF(i>j) A(,j)=B(,j—1)+i
Sy: IF(e<j) B(i,j)=A(,j5)+5 }}

All conventional dependence test would test Program 2 the same way as Program 1 where
a cyclic dependence between S; and S, exists. But in reality, the data read by S; is not
written by Sz, nor is the data read by Sz written by S;. Therefore, no flow dependence
between S; and Sy exists and the dependence graph is shown in Figure 1(b). Both levels
of the loop in Program 2 can thus be fully parallelized. Note that even the cycle breaking
techniques discussed by Banerjee [2, 13] cannot break this cycle.

3.2 Notation and Definitions

Let hyx and c be rational constants where 1 < k < d. Let H be a d-tuple (hy, h2,...,hq). A
subspace of Z¢ that can be expressed as {I | HIT = c} is called a hyperplane. A subspace
of Z? that can be expressed as {I | HIT < c}, is called a half space. The intersection of a
finite number of hyperplanes and half spaces is called a polyhedron. A bounded polyhedron
is called a polytope [10].

A conditional expression is said to be in disjunctive normal form if it is the disjunction
(or) of conjunctions (and) of predicates. It is well-known that any conditional expression
can be transformed into disjunctive normal form.
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(b) S and Sz of Program 2 do not have cyclic flow dependence when
the index domain is partitioned

Figure 1: Effect of subdomain dependence test

Consider a statement S with a conditional expression P in a loop over index domain D:

DO (I:D){

S5 IF(P)
}

We define the index domain of statement S to be D under the restriction of P, denoted by
(DLP).
3.3 Problem Formulation

Now consider Program G. A subdomain dependence test is formulated as: A flow dependence
from S; to S, exists if and only if there exist integer index tuples I and J satisfying

I € (D), (6)
J € (DlP,), (7)
X(I) =Y(J), and ‘ (8)




(I X J (for flow dependence), or (9)
I = J (for anti-dependence)). (10)

As usual, we restrict the form of a conditional expression to be an affine expression of the
indices. Under this restriction, a predicate in the disjunctive normal form of a conditional
expression is either an equality (HIT = c¢) or an inequality (HIT < c¢). Therefore, a conjunc-
tion of predicates specifies a polyhedron and a disjunction specifies a union of polyhedrons.
Since we can test multiple polyhedrons one by one, it suffice to consider predicates that spec-
ify a polyhedron. To summarize, the index domain of a statement in a conditional branch
generated by predicate P is (D|P) which is the intersection of a rectangle or a trapezoid
with a polyhedron, which is, in general, a polytope.

Note that a rectangle or a trapezoid is a polytope, but not vice versa. This is another
way of seeing that, in the presence of conditional expressions, the Banerjee-Wolfe test [12]
and Wolfe’s integer test [13] are too conservative, because the tests are applied to rectangle
or trapezoid that encloses the polytope in question.

Since Equations (6),(7) and (8) specify a polytope while Equations (9) requires the con-
sideration of (d + 1) direction vectors, the union of (d + 1) polytopes must be considered. A
flow dependence from statement S; to statement S, exists in Program G if and only if the
(d + 1) polytopes contain integer points. Similarly, in the anti-dependence case, Equations
(6),(7),(8) and (10) specify the union of d polytopes.

It appears that to obtain both flow and anti-dependence information, (2d + 1) polytopes
must be tested for each pair of statements S; and S; in Program G. This complexity can
be reduced by applying the techniques of hierarchical dependence test [4] so as to reduce
the number of direction vectors need to be examined and thus the number polytopes to be
tested.

We now want to show that subdomain dependence test is as hard as deciding whether
a general polytope contains integer points. By general we mean that the polytope can not
be characterized as a member of a special class such as rectangles or trapezoids. Consider
Program G. Suppose we want to know if there is any dependence between statements S; and
Sy due to references to array A. That is, we want to test whether the polytope P specified
by Equations (6),(7), and (8) contains integer points. We use the notation F(E) to mean
the set {F(I) | I € E} where F is an affine function and F is an index domain. From the
equality (X(I) =Y (J)), it is easy to see that polytope P can also be specified as

X(DLP) N Y (DLPy),

which can not be characterized as a member of a special class.




4  Algorithms for Subdomain Dependence Test

The known technique for testing whether a polytope contains integer points is by integer
programming. Since the dimensionality of the polytope is small in practice, we developed
the following algorithm based on the existing integer programming algorithms developed for
various special cases:

1. Base case: Two dimensional integer programming problems can be solved in O(n logn)
time by Feit’s algorithm where n is the number of constraints [6].

2. Reduction of dimensionality: If the dimension of a polytope P is greater than two, then
we can reduce the dimension by either of the following two methods. If the dimension
can be reduced to one or two, then we use Feit’s algorithms to test.

(a) Linearly Independent Equalities: Assume P is specified by n linearly independent
equalities. We can use the methods given in [3] to solve the diophantine equations
of these n equalities to decrease the dimension of P by n.

(b) Subspace: If a variable does not appear in a set of equalities and inequalities speci-
fying P, then this set specifies a polytope which is one dimensional less than P. If
this new polytope is empty, then P is empty.

3. General case: If the dimensionality can not be reduced to 2 or less, we use Lenstra’s
algorithm [7] and Scarf’s base reduction algorithm [9]. The time complexity of these
algorithms is polynomial in the number of equations that specify a polytope and expo-
nential in the dimensionality of a polytope.

We have coded the above algorithm and found that, experimently, testing a 3-dimensional
polytope takes 1 second, while testing a 12-dimensional polytope takes 20 seconds using
the base reduction algorithm on a Sparc station. Since most programs uses arrays with
dimensions no more than 3, the timing for subdomain dependence tests is quite acceptable.

5 Unknown Loop Bounds

At compile time, some loop bounds may be specified by unknown constants. In this case, we
will treat these unknown constants as extra variables. Therefore, a d dimensional polytope
P specified by v unknown constants can be considered as a (d+u) dimensional index domain
P’ without unknown constants. Since there is no bounds for these extra variables, P’ can be
a polyhedron. If the dimensionality of P’ can be reduced to 2, then Feit’s algorithm [6] can
decide whether P’ contains integer points even when P’ is a polyhedron. The base reduction
algorithm [9] can not test if a polyhedron is free of integer point but it can determine whether
P’ is a polytope or a polyhedron. If the dimensionality of P’ can not be reduced to 2 or less
and P’ is a polyhedron, then we assume that P’ contains integer points.
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6 Application of Subdomain Dependence Test

6.1 Cycle Breaking

Banerjee’s cycle breaking technique [2, 12, 13] is cappable of breaking a cycle consisting of a
flow and an anti-dependence between two statements in a single level loop of the following
form, where B is a one dimensional array and [, v and ¢ for 1 < k < 4 are integer constants:

Program 3
DO (i=1u){
S1: A(...)=B(at+c)
S2: B(C3i+04)=... }

This kind of cycle can always be removed because the flow and anti-dependences are over
disjoint sub-index domains of the two statements. The boundaries of the sub-index domains
can be computed only when ¢; and c¢; are not both zero [2], i.e. the inverse of either (¢12+c¢3)
or (cst + c4) is well defined. In the following program [13]:

Program 4

DO (i =1,101){
Si:  A(i) = B(101 — i)+
S,:  B(i) = E(i) }

The flow dependence (S;@Qj = S;@z¢) is over (¢ € [51,100]) and (5 € [1,50]); and the anti-
dependence (5:@i = S,Qj) is over (¢ € [1,50]) and (j € [51,100]). By splitting index
domain [1,101] into disjoint domains [1,50] and [51,101], the cycle is removed and the loop
can be fully parallelized as shown below:

Program 5

DOALL (i = 1,50) {
Syt A() = B(101 — i)+
Sy:  B(i) = E(i) }

DOALL (i =51,101){

Syt A() = B(101 —i) +i
Sy: B(i) = E(i) }

10




But subdomain dependence test break cycles for more general cases. It can break cycles
for any number of dependences between more than multiple statements in a multi-level loop
with reference to multi-dimensional arrays. We use the following example to show the power
of subdomain dependence test in breaking cycles:

Program 6
DO (I:D){
Si: IF(A(D) AX(D) = C(Y (D))
So: IF(P(I)) B(...)= A(Z(I))

Ss: IF(Ps(I)) C(W(I))=B(...)
}

Assume there are cyclic flow dependences (S; = S, = S3 = S1). We know that (5;@I =
S,@J) for I and J in the following polytope:

I e (Dlpl)> (11)
J € (D|Py), (12)
X(I) = Z(J), and (13)
I =< J (14)

Similarly, (S3@K = 5,@I) for I and K in the following polytope:

I € (D\R), | (15)
K € (D,l,P3), (16)
Y(I) = W(K), and (17)
I - K. (18)

Let D; be the domain containing all I satisfying Equations (11),(12),(13) and (14), and let D,
be the domain containing all I satisfying Equations (15),(16),(17) and (18). By subdomain
dependence test, we know whether integer tuples I, J and K exist which satisfy Equations
from (11) to (18). If I, J; and K; are such integer tuples, then (I; € D;) and (I € D,);
therefore, Dy and D, are not disjoint. Conversely, if no such integer tuples exist, then D,
and D, are disjoint, and we can decompose Sy into two sub-statements Si, and Syp:

Slai IF(IG (DlP])—.D2) A(X(I))=.
S : IF(I € (Dy)) AXD) =...

such that the flow dependences become (S;, = Sz = S3 = Su), and the cycle is removed.
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In order to obtain D,, the inverse of the subscript function W should be well defined,

same as in Banerjee’s celebrity technique. Let W1 be the inverse of W. Equation (17)
implies that (K = W~1(Y(I))) and it is clear that

Dy ={I|I € (DLR),(W(Y(])) € (DLP3)), and for (I = W (Y(I)))}.

With D,, statement S; can be decomposed and the cycle can be removed.

6.2 Use of Subdomain Dependence Test in Functional Programs

Subdomain dependence test is useful not only for imperative programs but also for functional
programs. We use the following notation to express a functional program, where A and B are
two function definitions, D and E are index domains, P, and P, are conditional expressions

and Y is an affine function:

B(I:E) = {P2 - T[A(Y(I))]}

Il

A(I:D)

If only dependences between function definitions, e.g. A and B, are considered, then no
dependence test is required to say that B dependeds on A. However, A and B can be
decomposed into sub-definitions according to conditional expressions as

Ay(I:(DLPy)) = ...
By (I:(ELR,)) = r[A(Y(]))]

More precise dependences can be obtained between these sub-definitions. To know if By
depends on A;, subdomain dependence test can be used to determine if the following polytope
contains integer points:

(DIP) N Y (ELP,).
Due to functionality, only one polytope, instead of (2d + 1), needs to be tested to obtain
dependence information between each pair of sub-definitions.

7 Conclusion

We describe in this paper a new dependence decision algorithm which gives a more accurate
test of dependence between conditional statements. The algorithm is practical and may
discover large scale parallelism in cases where previous decision algorithms fail.
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In the parallelizing compiler literature, the “loop skewing” technique can be used to
transform the loop body so as to generate parallelism in cases where dependence test gives
positive result. One remaining question is that can such loop skewing technique be improved
so as to generate massive parallelism? This result will be presented in a sequel.
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