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Abstract

PATH, a Program Transformation System for Haskell

Mark Anders Tullsen
2002

PATH (Programmer Assistant for Transforming Haskell) is a user-directed program trans-

formation system for Haskell. This dissertation describes PATH and the technical contri-

butions made in its development.

PATH uses a new method for program transformation in which 1) total correctness is pre-

served, i.e., transformations can neither introduce nor eliminate non-termination; 2) infinite

data structures and partial functions can be transformed; 3) generalization of programs can

be done as well as specialization of programs; 4) neither an improvement nor an approx-

imation relation is required to prove equivalence of programs—reasoning can be directly

about program equivalence. Current methods (such as fold/unfold, expression procedures,

and the tick calculus) all lack one or more of these features.

PATH uses a more expressive logic for proving equivalence of programs than previous

transformation systems. A logic more general than two-level horn clauses (used in the CIP

transformation system) is needed but the full generality of first order logic is not required.

This logic used in PATH lends itself to the graphical manipulation of program derivations

(i.e., proofs of program equivalence).

PATH incorporates a language extension which makes programs and derivations more

generic: programs and derivations can be generic with respect to the length of tuples; i.e.,

a function can be written that works uniformly on 2-tuples, 3-tuples, and etc.
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Chapter 1

Introduction

In order to automate and support software development via program transformation, I

have designed and implemented a program transformation system for the pure functional

language Haskell. This system is called PATH (Programmer Assistant for Transforming

Haskell). In this dissertation, I describe PATH and the technical contributions made in its

development. This chapter explains the need for program transformation, the obstacles to

program transformation, and the design decisions made in developing PATH; lastly, this

chapter gives an overview of the dissertation.

1.1 The Need for Program Transformation

Trade-offs between clarity and efficiency permeate the process of software development.

To write software that is clear, and easily verified, is usually done at the expense of ef-

ficiency. To write efficient software is nearly always done at the expense of clarity. See

Figure 1.1 for a Haskell program written for clarity and compare it to the program in Fig-

ure 1.2 which was written for efficiency: the functionality of the two programs is identical

1



2 CHAPTER 1. INTRODUCTION

wc h = do
xs ← hGetContents h
return (length xs, length (words xs))

Figure 1.1: Clear Code

wc h = wc h False 0 0
where
wc h inword cs ws =
do
eof ← hIsEOF h
if eof then

return (cs,ws)
else
do
c ← hGetChar h
if isSpace c then
wc h False (cs+1) ws
else
if inword
then wc h True (cs+1) ws
else wc h True (cs+1) (ws+1)

Figure 1.2: Efficient Code

(count the characters and words in file), the code greatly differs.

This example demonstrates the general principle that a clear program is more easily seen

to be correct, is faster to develop, and is easier to maintain. Likewise, an efficient program

is usually less clear, is slower to develop, and is harder to maintain.

However, in software development we want clarityand efficiency. There are two major

approaches to getting both. The first is the verification approach [22, 34]. In this approach,

the specification is developed after the implementation. The specification is often some

logic or specification language, usually non-executable; the implementation could be any

language, often a procedural language. The disadvantage of this approach is that, because

one starts with the implementation, the implementation may not meet theintendedspecifi-

cation. (More often than not it will satisfy an incorrect specification—writing code that is

both efficient and correct is difficult.)
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The other major approach to getting both clarity and efficiency is the transformational ap-

proach [57]. In this approach, onestartswith the specification. Then, by a sequence of

correctness preserving transformations, it is transformed into a program of acceptable effi-

ciency. This sequence of transformations is called theprogram derivation.Thus, one ends

with not only an efficient program but also a proof (the derivation) that the implementation

meets its specification. The advantage here is that there is no danger of a mismatch between

the specification and the implementation.

The specification language can be a non-executable specification language or a functional

language. The implementation language could be a functional language or a procedural

language. The specification and implementation language could be the same language.

The transformational approach has no inherent limits: one can take non-executable spec-

ifications to efficient algorithms, exponential algorithms to linear algorithms, and linear

algorithms to logarithmic. Although the objective of program transformation is usually to

make a program more efficient, program transformation can also support other tasks such

as reverse engineering and re-factoring.

1.2 Obstacles to Program Transformation

The program transformation paradigm appears to be an effective alternative to the standard

approach to software development:

• A executable specification can be generated rapidly (either as the first step or by

refining a non-executable specification).

• Testing and requirements debugging can be done early in the software development

process.
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• Efficiency concerns do not affect the functional design.

• Rather than having one program which attempts to be both clear and efficient (where

clarity usually defers to efficiency), we have two programs, guaranteed equivalent,

one clear and one efficient.

So, why is program transformation not used in practice? First, there is the issue of tools:

• There are few tools for doing program transformation. Most which exist are research

tools and not robust tools for languages used in practice.

• The tools that exist are in general hard to learn. They are primarily designed to be

used by those that developed them—researchers and programming language experts.

Generally they require an expertise and mathematical sophistication beyond that of a

typical programmer.

• The tools that exist are in general hard to use. Most are based on a textual user

interface.

Second, and more importantly, there are a number of problems, long recognized in the pro-

gram transformation community, related to the intrinsic complexity of program derivations:

• Program derivations are large and complex. Thus, derivations are tedious to con-

struct. It can be simpler to write an implementation from scratch even if a specifica-

tion is at hand from which it could be derived.

• Program derivations are difficult to comprehend. One cannot easily understand the

derivations others have constructed; this makes re-use and modification difficult.
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• Program derivations are fragile with respect to changes in the specification. Re-

quirements change and so do specifications. When the specification changes, the

derivation can break beyond repair or require a large effort to repair. Although it is

unrealistic to think that the specification can change without requiring changes to the

derivation, we would like small changes in the specification to require proportionally

small changes in the derivation.

Good tools are needed to make program transformation a feasible method of program de-

velopment, the easier to use the better; but the next generation of program transformation

systems also needs to be much better at dealing with the fundamental problem: reducing

and managing the complexity of derivations. This thesis describes a number of contribu-

tions which may not appear to be closely related, but each contribution is aimed at this

goal: reducing and managing the complexity of derivations.

1.3 The PATH Program Transformation System

The design space for a program transformation system is extremely large: Should the sys-

tem be user-directed or fully-automated? What language, or languages, should it trans-

form? Should it be, or work very similar to, a theorem-prover? Should a meta-language

describe transformations or can transformations be done via a graphical user interface?

Should it allow for incorrect transformations? And etc. This section describes the design

decisions that have defined PATH.



6 CHAPTER 1. INTRODUCTION

1.3.1 User-Directed

PATH is user-directed, not fully automated. Much work in program transformation is on

fully automatic methods, such as the work in partial evaluation [43], or the work on very

highly optimizing compilers [62]. These methods generally give constant time speed ups,

but user-directed methods are more powerful: algorithmic changes can be made that change

the complexity class of the algorithm, e.g., exponential algorithms can be transformed into

logarithmic algorithms. Also, user-directed methods are more general: the program can be

restructured or made more general (re-factored) and not just made more efficient.

Fully automated methods are like a double-edged sword, powerful but hard to control:

There is little control over the meta-program which transforms the program and there is no

feedback except the resulting program. And as automated methods become more sophisti-

cated, the harder they are to understand and use.

PATH is designed on the premise that although fully automated methods are useful for

automating many simple transformations, they should be used as a supplement to, and not

a replacement for, a user-directed system.

1.3.2 Aimed at Practitioners

Some do not understand why a program transformation system is required: a theorem

prover in which one embeds the semantics of the language can be used to prove equiva-

lences of programs. PATH does not adopt this approach because it requires understanding

of a theorem prover, its logic, and its meta-programming language; it requires sophisti-

cated knowledge of programming language semantics, either operational or denotational.

The goal is for PATH to be usable by a novice functional programmer. Thus, no knowl-

edge of logic or domain theory is required; no sophistication in mathematical reasoning is

required.
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1.3.3 Totally Correct

One of the most popular methods of program transformation is the fold/unfold method of

Burstall and Darlington [15]. It is a simple, intuitive, and powerful approach but unfortu-

nately it does not preserve total correctness: non-termination could inadvertently be intro-

duced into the program1. In the PATH system, preserving total correctness is considered

essential. This decision is motivated by these factors:

• PATH is user-directed and designed for programmers. Thus, the programmer should

have confidence that he is not introducing non-termination into his program due to

his inexperience. The programmer should not be required to produce proofs of ter-

mination (to guarantee total correctness).

• PATH should be scalable to large programs. Small programs transformed with

fold/unfold can often be seen to terminate by inspection, but this is not the case

with larger programs. The programmer should be able to transform large programs

without concern that non-termination might be introduced in some obscure corner of

the program.

1.3.4 Designed for Changing Specifications

Specifications change in the real world; often they changeafter the implementation has

been developed. To ensure that a new implementation is correct with respect to a revised

specification we must derive a new implementation from the new specification. The orig-

inal derivation may be able to be re-used to some degree. In order to support changing

specifications, PATH has been designed to maximize the re-use of previous derivations.

1If the language was strict, one would need to worry aboutremovingnon-termination from the program.
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This is done in two ways: derivations are made generic and derivations are made manipu-

lable.

Derivations (and programs) are generic.

The key to writing robust software is abstraction, but genericity is often needed to use

abstraction: to write a generic sort routine, genericity over types is needed (i.e., polymor-

phism); to write a generic fold (a function inductively defined over an inductive data struc-

ture), genericity overtype constructors(e.g.,List andTree whereList a andTree a

are types) is needed—this is often called polytypism.

In program transformation the need for genericity is amplified. For example, in a monomor-

phic language, one cannot write a polymorphicsort but must writesortInt, sortFloat,

and etc. One will have laws aboutsortInt andsortFloat instead of just one law about

a genericsort; also, one must transformsortInt andsortFloat separately, even if the

program derivations are identical. So, the ability to write a generic function,sort, reduces

not only program size, but also the number of laws and the length of program derivations.

Consequently, the program transformation community—notably the Squiggol (or Bird-

Meertens Formalism) community [11, 48, 49]—has been working to make programs more

generic: not just polymorphic, but polytypic [41, 42, 46, 47]. However, the genericity pro-

vided by polymorphism and polytypism is still not adequate to achieve certain abstractions;

another form of genericity is often needed—genericity over the length of tuples. Chapter 8

describes this form of genericity and how it can be achieved in a typed language.
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Derivations are manipulable.

Historically, user-directed program transformation systems have worked as follows: the

current state of the program (or part of it) can be viewed by the user and the user gives

commands for applying transformation rules which change the program. The sequence

of commands (the derivation) is usually stored for replay but it is implicit and is not dis-

playable in a understandable form, only the current program is displayable.

The PATH approach is as follows: the user sees a program derivation, he changes it by

applying a transformation rule which is added to the derivation. The original program, the

final program, and the steps to transform the former into the latter are all in view.

There are two advantages to making derivations explicit: first, they become easier to un-

derstand because the user is accustomed to reading them, derivations are what he is ma-

nipulating; second, a visual representation of a program derivation allows it to be adapted

more easily to a changing specification.

1.3.5 Simple

Whenever possible, PATH is made as simple as possible. The main contributions in this

dissertation, described in Chapters 4, 5, and 8, were motivated by the desire to simplify the

system as much as possible. I have attempted to make PATH simple to use and simple in

theory: a meta-language is not used or required; the smallest set of primitive laws has been

chosen; program derivations are based on the simplest logic possible; etc.

The following two design choices were motivated by this desiderata of simplicity.
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A single language is transformed.

The seminal CIP system [8, 9] used a wide-spectrum language CIP-L which had three

levels: specification, functional, and procedural. It was effectively three languages, a spec-

ification language, a functional language, and a procedural language, although they shared

a common syntax. The idea was to start by writing programs at the specification level,

transform them to the functional level where many transformations would be done, and

then, if necessary, the functional program would be transformed into a procedural program

for further optimization.

Although this is a very general approach, it is complex. There is a separate set of language

constructs and a corresponding catalog of laws for each of the three levels. The user must

use what amounts to three languages. PATH takes a more minimalist approach. All trans-

formations in PATH are done on a single language PATH-L, a purely functional language

similar to Haskell [38, 60]. This gains us much in simplicity but little is lost in generality:

• Although PATH-L has no non-deterministic or non-executable constructs as the spec-

ification sub-language of CIP-L does, PATH-L can express specification-like algo-

rithms using standard features of a lazy functional language [85].

• PATH-L allows for writing procedural code, but it does so without sacrificing the se-

mantically clean framework of a purely functional language. PATH-L accomplishes

this in the same manner as Haskell, by using a monad for performing IO operations

[84].

The language transformed is not Haskell.

The goal of PATH is to transform Haskell, but it achieves this goal indirectly: first, Haskell

programs are translated into the PATH-L language (described in Chapter 2), then PATH-L
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programs are transformed, and lastly, PATH-L programs are translated back into Haskell.

PATH-L is similar to Haskell: it is a statically typed, non-strict, purely functional language.

The differences between Haskell and PATH-L consist in (1) a number of syntactic differ-

ences, e.g., recursion is explicit in PATH, and (2) some semantic extensions: the addition

of unlifted tuples and the addition of tuples which are generic over the length of the tuple.

Using a language similar to, but not identical to, Haskell, is done for two reasons: first, the

description of the system, the language, and its laws can be done more clearly in PATH-L

without the unnecessary syntactic sugar of Haskell; the second reason is that in PATH-L

laws are more easily expressed and derivations are more easily done.

1.4 Overview of the Dissertation

The rest of this dissertation describes the PATH program transformation system and the

technical contributions made in the system. The dissertation is structured as follows:

• Chapter 2 introduces the language that is being transformed: a Haskell-like func-

tional language.

• Chapter 3 discusses the two major approaches to program transformation, the gener-

ative set approach and the schematic approach. The advantages and disadvantages of

these two incompatible approaches are discussed.

• Chapter 4 demonstrates how the two approaches to program transformation can be

integrated. In particular, it is shown how the schematic approach can achieve the

expressiveness of a powerful generative set approach if the right set of primitive laws

is chosen.
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• Chapter 5 discusses the underlying logic used in PATH: The form of a transformation

law is explained (i.e., the formulas in the logic) as is the form of a program derivation

(i.e., the proofs in the logic). The primitive laws are explained.

• Chapter 6 discusses the user interface aspects of PATH.

• Chapter 7 presents a number of examples of program derivations done in PATH.

• Chapter 8 discusses a new form of genericity, genericity over the length of tuples. It

is explained why this form of genericity is useful in a program transformation system

and how it can be achieved in a typed language.

• Chapter 9 summarizes the contributions, discusses related work, and points out future

directions.

• Appendix A contains the predefined definitions in the PATH language.

• Appendix B contains the primitive transformation rules and laws.

• Appendix C contains a catalog of derived transformation laws along with their deriva-

tions.



Chapter 2

The PATH Language, PATH-L

In this chapter, the PATH-L1 language used in PATH is described. PATH-L is similar to

Haskell: it is a statically typed, non-strict, purely functional programming language. The

following sections describe the syntax and semantics of PATH-L. The last section explains

why PATH-L, and not Haskell, is used as the transformation language in PATH.

2.1 Syntax

The syntax of the terms and types of PATH-L is in Figure 2.1. It is a typed lambda calculus

with products (tuples), sums, a fix point operator, and integers. It can be viewed as a

desugared Haskell.

The terms of the language are described by the syntactic classe. Functions, or lambda

abstractions, are written as “v: t 7→ e” (without a leading lambda) wheret is the type of the

variablev. Thev can be replaced by a tuple pattern,p. Tuples are written with angle brack-

ets rather than parentheses as in Haskell. PATH-L has a more general way of projecting

1PATH-L for “PATH Language.”

13
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e ::= v variables
| p: t 7→ e abstraction
| e1 e2 application
| 〈e1,e2, ...,en〉 constructor forn-tuples
| e.mn destructor forn-tuples (1≤m≤ n )
| In.mn constructors forn-sums (1≤m≤ n )
| case e destructor for sums
| µ fixed point operator
| m integer constant
| prim integer primitive
| ⊥t the undefined value

p ::= v variables
| 〈p1, p2, ...〉 tuple patterns

t ::= a type variables
| t1→ t2 functions
| ×〈t1, t2, ...〉 tuple type (products)
| +〈t1, t2, ...〉 sum type
| Int integer type

m,n ::= {natural numbers}

Figure 2.1: Syntax of PATH-L
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from tuples: ife is ann-tuple, thene.mn is them-th element ofe. For instance,

〈x1,x2,x3 〉.23 = x2

The following program is ill-typed because a projection for a 4-tuple is being applied to a

3-tuple2:

〈x1,x2,x3 〉.24

PATH-L has sums: the constructors being of the formIn.mn (them-th constructor for an

n-sum)3, the destructor for sums iscase. Thecase expression is different from that in

Haskell in these ways: 1) the order of arguments: alternatives come first, the sum comes

second; 2) the alternatives are written as a tuple of functions; and 3) no nested patterns are

allowed. An example of acase reduction is as follows:

case 〈e1,e2,e3 〉 (In.23 x) ⇒ e2 x

PATH-L has an explicit fixed-point operatorµ. It has integers and numerous strict primitive

operators (denoted by the meta-variableprim ). It also has an explicit undefined element,

⊥t , which corresponds to a non-terminating program of typet.

The types of the language are described by the syntactic classt. A type can be a function

t1→ t2, a product×〈t1, t2, ...〉, a sum+〈t1, t2, ...〉, or an integer type. Discussing the type

system of PATH-L will be postponed until Chapter 8, in which an extension of the language

described here is discussed.

2A “projection” (such as 23) is said to be “applied” to a tuple using the “.” operator.
3The reason for this odd syntax for constructors will be seen in Chapter 8.
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Syntactic Conventions. A number of syntactic conventions will be used henceforth. The

type annotations are often dropped, the projectionmn is sometimes written as justm, and

the constructorIn.mn is sometimes written as justIn.m. Function application is left-

associative:

abcd≡ (((ab)c)d)

Lambda abstractions andµ’s extend as far as possible to the right. So, we have this equiva-

lence:

µx 7→ y 7→ z 7→ e≡ µ(x 7→ (y 7→ (z 7→ e)))

Function composition, written “f ◦g”, is defined as “f ◦g = x 7→ f (gx)”.

As in Haskell, the variable “_” will sometimes be used to bind an unused variable.

Syntactic Sugar. There are also thelet andletrec constructs which are merely syntac-

tic sugar:

let p:t=e in y ≡ (p:t 7→ y) e

letrec x1:t1 = e1; ...; xn:tn = en in m
≡
let 〈x1,...,xn 〉=µ〈x1,...,xn 〉:×〈t1,...,tn 〉 7→ 〈e1,...,en 〉 in m

Also, in let expressionsf x = e is syntactic sugar forf = x 7→ e. Some laws are more clearly

written usingµand other laws are more clearly written usingletrec, the two notations will

be used interchangeably.

We also have

if b then t else f ≡ if b t f
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c ::= p: t 7→ e
| 〈e1,e2, ...〉
| In.mn e
| m (integer)
| ⊥t

Figure 2.2: Canonical Forms

Appendix A contains the PATH-L prelude: a list of the predefined values used in programs

and derivations. Thedata declarations forList, Bool, etc. in the prelude define sum types

(possibly recursive) and induce some syntactic sugar. For instance theEither type,

data Either a b = Left a | Right b

induces the following syntactic sugar

Left ≡ In.12
Right ≡ In.22

case 〈Left x: e1, Right x: e2 〉 ≡ case 〈x 7→ e1,x 7→ e2 〉

Note thatLeft is not a primitive, it is syntactic sugar for a sum. Nullary constructors are

treated specially, as in theList type:

data List a = Nil | Cons ×〈a,List a〉

Nil ≡ In.12 〈 〉
Cons ≡ In.22

case 〈Nil: e1, Cons〈x,y〉: e2 〉 ≡ case 〈 〈 〉 7→ e1 ,〈x,y〉 7→ e2 〉

No nested patterns are allowed in the sugaredcase expressions.

2.2 Semantics

The semantics of PATH-L is given operationally; we saye⇓c to signify that the well-typed

closed expressione evaluates to the canonical formc. The notatione⇓ signifies that there
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(p 7→ e1) e2 ⇒ e1{e2/p}

〈e1,...,en 〉.jn ⇒ ej

case 〈e1,e2,...,en 〉 (In.in x) ⇒ ei x

µp 7→ f ⇒ f{µp 7→ f / p}

prim 〈c1,...,cn 〉 ⇒ [[prim 〈c1,...,cn 〉]]

Figure 2.3: Reduction Rules

exists ac such thate⇓c. Figure 2.2 defines canonical forms;c ranges over canonical forms.

The evaluation relation is defined using the notion of a reduction context [20]. A context,

C, is an expression with one or more holes,[], embedded in it.C[e] is the contextC with

its holes filled with the expressione. A reduction context,R, is a context with a single

hole which indicates the place at which the next expression is to be reduced. The reduction

contexts of PATH-L are defined inductively as follows:

R = [] (hole)
| Re
| R.mn

| case e R
| µR
| prim 〈c1,c2, ...,R,e1,e2, ...〉

Evaluation does not occur inside functions, inside tuples, or in the arguments of construc-

tors. The one step reduction relation,⇒, is the least relation satisfying the reduction rules

(given in Figure 2.3) and the following rule (i.e., it is closed under reduction contexts):

R[e1]⇒ R[e2] if e1⇒ e2

Multi-step reduction,⇒∗, is the transitive, reflexive closure of⇒. Evaluation,⇓, is defined

as follows: e⇓ c if and only if e⇒∗ c. The notatione{x/p} used in Figure 2.3 signifies

capture free substitution ofx for p in the expressione. Sincep could be a tuple pattern, the
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notion of substitution is extended as follows:

e{x/〈p1, p2, ..., pn〉} = e{x.1n/p1}{x.2n/p2}...{x.nn/pn}

e{x/v} = capture free substitution ofx for v in e

Haskell is lazy, or call-by-need, but the operational semantics given here is call-by-name.

There is no need to add the extra complexity of call-by-need [2] because the theory of

program equivalence used in PATH is call-by-name. PATH uses call-by-name because it is

more expressive than call-by-need: it allows for both removing and introducing the sharing

of computation in transformations.

Supporting a call-by-value functional language such as ML4 [50] could be easily done by

small changes to the semantics and the transformation laws.

2.3 PATH-L vs. Haskell

Instead of Haskell, PATH-L is used as the transformation language. Although PATH-L can

almost be viewed as a desugared Haskell, a few changes were considered essential:

1. In PATH-L recursion is explicit (using eitherµ or letrec). In Haskell, recursion

is implicit: any definition can be recursive or be mutually recursive with any other

definition in the program. Making recursion explicit makes laws about recursive

functions simpler and more concise. E.g., we have the law

µF = µ(F◦F)

rather than the law

let f = F f in e = let f = F(F f) in e

4Though supporting the impure features of ML would not be as straightforward.
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2. PATH-L has unlifted products, for which it uses〈e1,e2, ...〉 to distinguish them from

Haskell’s lifted products(e1,e2, ...). Haskell only has lifted products. Unlifted prod-

ucts enjoy many more laws than lifted products and there is no loss of expressiveness

as a lifted product can be had by simply wrapping a constructor around a unlifted

product.

3. PATH-L extends Haskell with genericity over the length of both tuples and sums.

The currentcase form is based, not on Haskell, but on this extension which will be

introduced in Chapter 8.

4. PATH-L has a simplecase construct rather than complex pattern-matching facilities.

This makes the language and laws simpler5, although at the expense of certain pro-

grams which are more easily expressed using pattern-matching. Rather than adding

pattern-matching to PATH-L, I believe that a better approach is to add “first class pat-

terns” [77]: extending PATH-L to use first class patterns is deferred to future work.

Other differences between Haskell and PATH-L are merely cosmetic6:

• Putting the alternatives first and the sum argument second incase. This allows for

a higher order programming style as the second argument, of sum type, can often be

left implicit.

• PATH-L uses “p 7→e” rather than Haskell’s “\p->e” notation for functions.

Though the meaning of PATH could be revised to be “Programmer Assistant for Trans-

forming aHaskell-like-language,” the goal is really to transform Haskell, but I believe this

5Refer to the chapter on pattern matching in [21] for the complexity that is added to a transformation
system by the existence of Haskell-like pattern-matching.

6These differences exist merely because the author desired to experiment with alternative syntax.
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is easier done transforming anextensionof the Haskell-language. (Differences 2 and 3 are

extensions of Haskell; when first class patterns are added, difference 4 will be an exten-

sion.)
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Chapter 3

Approaches to Program Transformation

Using laws about language primitives and laws derived from the operational semantics, the

following transformation can be done:

length(Cons〈a,Cons〈b,xs〉 〉)
= {def. length; reduce case}
1 + length(Cons〈b,xs〉)

= {def. length; reduce case}
1 + (1 + length xs)

= {associativity of +}
(1 + 1) + length xs

= {def. +}
2 + length xs

(The definition oflength is in the PATH-L prelude, cf. Appendix A.) However, there

are many transformations between recursive programs which cannot be performed using

these primitive laws, e.g., “map f ◦ map g” cannot be transformed into “map (f ◦ g)”.

In order to do such transformations, more powerful laws or methods are needed. There is

no lack of such methods: the problem is to choose which of a number of methods is most

appropriate for the PATH system.

There are numerous methods for transforming functional programming languages. In their

survey paper [56], Partsch and Steinbrueggen classify various methods for program trans-

23
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formation into two basic approaches: (1) the generative set approach, which is based on a

small set of simple rules which in combination are very expressive and (2) the schematic

approach which is based on using a large catalog of laws, each performing a significant

transformation. Fold/unfold [15] and expression procedures [69] are examples of the for-

mer. The Bird-Meertens Formalism (or Squiggol) [11, 48, 49] is an example of the latter.

In this chapter I will discuss these two basic approaches to program transformation and

compare them.

3.1 The Generative Set Approach

This section discusses various methods which take the generative set approach. The meth-

ods discussed here transform functional programs written as a set of recursive equations.

So, the examples in this section are written as recursion equations but with a syntax other-

wise the same as PATH-L.

3.1.1 Fold/Unfold

One of the most well known methods of program transformation is Burstall and Darling-

ton’s fold/unfold[15]. This methodology is extremely effective at a broad range of program

transformations. It is based on six rules: (1)unfold: the unfolding of function calls by re-

placing the call with the body of the function where actual parameters are substituted for

formal parameters; (2)laws: the use of laws about the primitives of the language; (3)in-

stantiation: adding an “instance” of a function definition in which a parameter is replaced

by a constant or pattern on both sides of the definition; (4)fold: the replacement of an

expression by a function call when the function’s body can be instantiated to the given
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ones = Cons〈1,ones〉

map f = case 〈Nil : Nil
,Cons〈x,xs〉: Cons〈f x, map f xs〉
〉

(1) twos = map plus1 ones
⇒ {unfold ones}

(2) twos = map plus1 (Cons〈1,ones〉)
⇒ {unfold map}

(3) twos = case 〈Nil : Nil
,Cons〈x,xs〉: Cons〈plus1 x, map plus1 xs〉
〉
(Cons〈1,ones〉)

⇒ {case reduce}
(4) twos = Cons〈plus1 1, map plus1 ones〉)

⇒ {laws}
(5) twos = Cons〈2, map plus1 ones〉

⇒ {fold}
(6) twos = Cons〈2, twos〉

Figure 3.1: The “twos” Derivation Using Fold/Unfold

expression with suitable actual parameters—this fold can be done with anypreviousdef-

inition of the function; (5)definition: the addition of a new function definition; and (6)

abstraction: the introduction of awhere clause. Fold/unfold was intended to transform

recursively defined functions but can also transform recursively defined data structures (for

languages which allow for them).

An example of a fold/unfold derivation is in Figure 3.1. The definitions ofones andmap

are fixed and the definition oftwos is transformed. The original program is on line 1.

The definition ofones is unfolded to get the program on line 2. The next steps unfold

map, evaluate thecase, and apply a primitive law, giving the program on line 5. Note

here that “map plus1 ones” is a previous definition oftwos (from line 1); a fold can now

be performed: the expression is replaced bytwos, giving the program on line 6. This

derivation has removed an intermediate data structure from the definition oftwos.

The fold rule is what gives the method its power, but it is also the rule that makes the
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method unsafe1. For example, consider the program

twos = map plus1 ones

Since the expression “map plus1 ones” is an instance of the right-hand-side oftwos, it

can be replaced withtwos, yielding

twos = twos

which results in a non-terminating definition fortwos. Although this example is simplis-

tic, similar situations can arise in more subtle contexts, and thus non-termination can be

introduced inadvertently.

In addition to this problem with partial correctness, fold/unfold has a significant incon-

venience in practice: a history must be kept of all versions of the program as it is being

transformed (or the user must specify which versions to keep). This history is essential

because previous definitions of functions are used to give folding its power.

3.1.2 Totally Correct Fold/Unfold

One way to understand the partial correctness of fold/unfold is to characterize it denota-

tionally. The essence of fold/unfold is captured by this equation2:

M w µF if M = F M

That is, we start with a programM and transform it until we see the “old definition”M

in “F M”. Then we replaceM with a call to the current function (by replacingF M with

“µx 7→ F x”, or just “µF”). So, this equation states that ifM is a fixed-point ofF , thenµF

1The instantiation rule of Burstall and Darlington is also unsafe, but it can be easily corrected by adding
a strictness condition [65, 66].

2WhereNvM signifies thatN approximatesM or N is less defined thanM; the non-terminating program
⊥ is less defined than all programs.
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(the least fixed point ofF) is less-defined thanM. So, if we replaceM with µF we may

have a less-defined program:µF may fail to terminate whereM terminates.

Several approaches have been proposed to solve the problem of partial correctness. One

is to suitably constrain the use of fold, as proposed by Kott [44]. Unfortunately, Kott’s

method sufficiently constrains the form of program derivations, primitive laws, and func-

tion definitions so as to make his method unusable in practice [21, 68].

Another approach is to provide a separate proof of termination. Equationally,

M = µF if M = F M, total(µF)

I.e., a proof is added thatµF is never undefined. The disadvantages of this approach are

one, infinite data structures and partial functions cannot be transformed (as neither can be

proved total) and two, proving the totality of functions can be tedious or difficult.

Yet another approach is the tick algebra of Sands [68] which uses an improvement relation

between programs,D. His method can be loosely characterized as follows:

M = µF if
√

M D F (
√

M)

The
√

is a tick which represents a computation step. This method is the most general way

of ensuring the correctness of fold/unfold, but showing improvement can be onerous due

to the manipulation of ticks involved.

A simpler approach which is similar to the tick algebra in ensuring improvement is expres-

sion procedures. This approach is described in the following section.

3.1.3 Expression Procedures

Motivated by the problems with fold/unfold, Scherlis proposedExpression Procedures

(EPs) [69, 70]. (More recently Sands [66] extended this work to a higher-order non-strict
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language.) Scherlis’s key innovation was a new procedure definition mechanism in which

the left hand side of an expression procedure definition can be an arbitrary expression: thus

the name “expression procedure”. In addition to laws about primitive functions and anin-

stantiationrule (as in fold/unfold), three rules are used to transform programs:abstraction,

which introduces new procedures;composition, which introduces new expression proce-

dures; andapplication, which replaces a procedure call or expression procedure call with

its definition (like theunfold rule).

Thecompositionrule allows us to add an expression procedure to a list of recursion equa-

tions. Given the definition

f = F f

and ifC is a strict context, an expression procedure can be added giving

f = F f
C f =ep= C(F f)

The second line is an expression procedure: the left hand side is not just a function symbol

applied to variables and patterns, it is an arbitrary expression. (= is used for a regular

definition and=ep= for an expression procedure definition.)

In Figure 3.2, expression procedures are used to, again, transform the definition oftwos.

Given the definition ofones andmap, we transform the definition oftwos. We can view

this transformation as creating a new version of the recursive definition ofones which is

specialized to the strict context “map plus1 []”. The first step is to use thecomposition

rule to introduce an expression procedure for this context, by filling in the hole,[], with

each side of the definition ofones giving the following expression procedure in step 2:

map plus1 ones =ep= map plus1(Cons〈1,ones〉)
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ones = Cons〈1,ones〉

map f = case 〈Nil : Nil
,Cons〈x,xs〉: Cons〈f x, map f xs〉
〉

(1) twos = map plus1 ones
⇒ {compose}

(2) twos = map plus1 ones
map plus1 ones =ep= map plus1 (Cons〈1,ones〉)

⇒ {unfold map}
(3) twos = map plus1 ones

map plus1 ones =ep=
case 〈Nil : Nil

,Cons〈x,xs〉: Cons〈plus1 x, map plus1 xs〉
〉
(Cons〈1,ones〉)

⇒ {case reduce}
(4) twos = map plus1 ones

map plus1 ones =ep= Cons〈plus1 1, map plus1 ones〉
⇒ {laws}

(5) twos = map plus1 ones
map plus1 ones =ep= Cons〈2, map plus1 ones〉

⇒ {abstraction}
(6) twos = map plus1 ones

map plus1 ones =ep= twos’
twos’ = Cons〈2, map plus1 ones〉

⇒ {apply}
(7) twos = map plus1 ones

map plus1 ones =ep= twos’
twos’ = Cons〈2, twos’〉

⇒ {apply}
(8) twos = twos’

twos’ = Cons〈2, twos’〉

Figure 3.2: The “twos” Derivation Using Expression Procedures
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The next steps unfoldmap, evaluate thecase, and apply a primitive law, giving the program

in step 5. The expression procedure “map plus1 ones” now occurs recursively in its own

definition. Next, a new function definition is introduced using theabstractionrule giving

the program in step 6. Finally, we use theapplicationrule to apply the expression procedure

(replacing the left side with the right side) in the definition oftwos’ giving the program

in step 7, where the intermediate data structure has been eliminated. Now the expression

procedure is also applied in the definition oftwos giving the program in step 8.

For the derivation to be correct, it would need to be confirmed that the context “map plus1

[]” is strict. Showing that this context is strict cannot be done with expression procedures

but the strictness condition can often be satisfied by syntactic inspection of the context.

On the one hand, expression procedures are strictly less powerful than fold/unfold (they

can be simulated by fold/unfold); however, in practice, the great majority of fold/unfold

transformations can be done as well by expression procedures. I am not aware of any

useful3 andtotal correctness preservingfold/unfold transformations which cannot be done

by expression procedures either directly or indirectly (by finding a common “ancestor”

from which to derive the two programs we wish to show equivalent). It should be noted

that it is rather unfair to compare the expressiveness of a totally correct method with the

expressiveness of a partially correct method because the partially correct method can derive

anything (fold/unfold can show that any program is equivalent to⊥).

On the other hand, expression procedures have two key advantages over fold/unfold: (1)

each of the transformation rules preserves total correctness, and (2) no history needs to

be maintained, as all needed information is embedded in the expression procedures; and

when compared to various methods of ensuring total correctness in fold/unfold, expression

3An example of a non-useful transformation is as follows [15, 88]: “f x = 0” can be transformed to
"f x = if x == 0 then 0 else f (x-1)” in unfold/fold, but the reverse transformation cannot be done.
Expression procedures cannot transform in either direction.
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procedures are both easier to use and more expressive:

• Fold/unfold followed by a proof of termination: Expression procedures are simpler

as they need no separate proof of termination. They are more expressive as they can

transform infinite data structures and partial functions.

• Fold/unfold augmented with Sands tick calculus: Expression procedures derivations

are simpler as there is not the added complication of ticks (and laws for manipulat-

ing them). Expression procedures also appear to be more expressive than Sands’s

original tick calculus4.

Besides the technical improvements, in practice expression procedures have a simpler and

more intuitive method of program derivation: with fold/unfold, the ability to add a new

“eureka” definition to a program is essential; but with expression procedures, the analogous

operation is selecting a recursive function and some context in which to specialize it. Thus,

entering eureka definitions by hand is replaced by selecting contexts in the program.

3.1.4 The Reversibility Problem

Although expression procedures are an improvement over fold/unfold, they have one sig-

nificant shortcoming: it is easy to specialize a function, but it is not always possible to

generalize a function. This problem, shared with fold/unfold, comes about because the

transformation rules are not reversible: in particular thecompositionandapplicationrules

are inherently one-directional5. (In fold/unfold the fold rule is inherently one-directional;

4Sands’s original tick calculus couldn’t prove the correctness of expression procedures: this seems to have
been the motivation for his paper on expression procedures [66].

5Instantiation is only used in one direction in EPs and fold/unfold but the reverse of this rule could be
added to the system.
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it can fold using anypreviousdefinition of the function—the reverse of this would involve

knowing thefuturedefinition of the function: a bit awkward!)

Let P1⇒ep P2 signify that the programP2 can be derived fromP1 using some sequence of

expression procedure rules. The relation⇒ep is not symmetric, nor is⇒ f u, the comparable

derives relation for fold/unfold. Even when bothP1⇒ep P2 andP2⇒ep P1, the derivation

associated withP1⇒ep P2 may give no insight into how to find a derivation forP2⇒ep P1.

For instance, given this definition ofmap:

map f = case 〈Nil : Nil
,Cons〈y,ys〉: Cons〈f y, map f ys〉
〉

it is easy to go from

g = map plus1

to

g = case 〈Nil : Nil
,Cons〈y,ys〉: Cons〈plus1 y, g ys〉
〉

using expression procedures but it is not possible to derive the first program from the sec-

ond. This is not surprising because expression procedures were designed forspecialization

not generalization of functions.

Reversibility is important for two reasons: First, adding reversibility makes the system

more expressive: as in the previous example, we often want to make programs shorter

or more modular. Also, even when a more efficient program is wanted, we sometimes

need to make it less efficient before making it more efficient (such transformations are

impossible with a method—such as expression procedures—in which every transformation
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step preserves or increases some measure of efficiency). Secondly, reversibility is important

because the system becomes simpler if each rule is reversible: the user can learn one law

and use it in two directions.

To get reversibility, a rule could be added such as this: “ifP2⇒ P1 thenP1⇒ P2.” Burstall

and Darlington added such a rule, calledredefinition, to fold/unfold to get around this

problem. The disadvantage of this approach is that if one hasP1 and wants to transform

it, one needs to know the end result,P2 before beginning—it cannot be derived directly

or incrementally fromP1; also, the addition of this ad hoc rule makes the system more

complex6. Instead of adding a rule, it would be preferable to modify the rules to make

them all reversible. The following chapter shows how to do exactly that.

3.1.5 Summary of Generative Set Methods

So, fold/unfold is simple, intuitive, and powerful but lacks total correctness and requires

a history of transformations. The expression procedure method is nearly as simple and

powerful but preserves total correctness and requires no transformation history.

Were it not for the reversibility problem just discussed, expression procedures would be

considered an excellent method for doing transformations in the PATH system.

However, there is one additional problem with the generative set methods: as they use a

fixed set of rules there is no ability to abstract over common sequences of transformation

steps and add more powerful rules to the system. Rather, the user is always transform-

ing at the level ofcomposition, laws, andapplication(or with fold/unfold: unfold, laws,

fold). In contrast, the schematic approach allows the user to build up a useful catalog of

6In a partially correct method such as fold/unfold, the addition ofredefinitioncompounds the correctness
problem. Without redefinition, we have∀p. p⇒ f u ⊥ (any programp can be transformed into the undefined
program), but with redefinition, we have∀p1, p2. p1⇒ f u p2 (that is, any program can be transformed into
any other program).
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transformation laws which can be re-used. This approach is discussed in the following

section.

3.2 The Schematic Approach

The second major approach to program transformation is the schematic, or catalog, ap-

proach. In this approach, all transformation rules are expressed by laws about program

schemes [39]. For instance, a law could be of the following form (wherepi are program

schemes,= is program equivalence, and⇒ is implication):

∀x1,x2, ... . p1 = p2 ⇒ p3 = p4

Although one starts with a primitive catalog of laws, this catalog can be extended by adding

laws derived by the user. All laws are symmetric and can be applied in either direction,

thus there is no problem with reversibility. (Thus, in this approach= is used for derives

rather than the asymmetric symbol⇒7.) Also, there is no intrinsic problem with partial

correctness as long as all primitive laws preserve total correctness. However, as will be

seen, the schematic approach has disadvantages of its own.

3.2.1 Large Catalog

The seminal Munich CIP system is an example of the schematic approach, it uses a large

catalog of laws to reason about recursive programs. Refer to Figure 3.3 for an example of

how the derivation oftwos might be done with this approach. Here, recursion is explicit.

The variableones is replaced with its definition giving the program in line 2. Now, the law

Map-Inf-List

7Which is now used for implication.
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ones = µones 7→ Cons〈1,ones〉

(1) map plus1 ones
= {def. ones}

(2) map plus1 (µones 7→ Cons〈1,ones〉)
= {Map-Inf-List}

(3) (µtwos 7→ Cons〈plus1 1,twos〉)
= {def. plus1}

(4) (µtwos 7→ Cons〈2,twos〉)

Figure 3.3: The “twos” Derivation Using the Large Catalog Approach

∀ f ,x. map f (µa 7→Cons〈x,a〉) = µa 7→Cons〈 f x,a〉

is applied to this program giving the program in line 3 which is then simplified to the

program in line 4. We have a short and elegant derivation; the derivation is reversible as

every law is reversible; and the result of this derivation is a new law which could be added

to the catalog of laws.

However, there is one problem: where did theMap-Inf-List law come from? If it is not a

primitive law, it may not be derivable from the primitive laws; thus, the disadvantage of the

large catalog approach: its expressiveness totally depends on the primitive laws in the cata-

log. Many systems using this approach have dozens of primitive laws about recursive pro-

grams [9, 35, 39]. Although it has numerous primitive laws, the CIP system adds the ability

to use fold/unfold with a proof of termination. Although this addition is understandable—

the expressiveness of the primitive laws is difficult to quantify but fold/unfold has proved

to be extremely expressive in practice—it is unfortunate because it brings the disadvan-

tages of fold/unfold (with a proof of termination) wherever fold/unfold is used: (1) partial

functions and infinite data structures cannot be transformed, (2) a transformation history is

required, and (3) derivations are not reversible.

Besides the potential lack of expressiveness, this approach lacks the simplicity and intu-

itiveness of fold/unfold (or expression procedures): With fold/unfold, one does not need
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to search for applicable laws because the strategy for transforming recursive functions is

virtually always the same: unfold the definition, simplify until there is an opportunity to

do the folding, and do the fold step. So, one can always do basic transformations at the

simplest level without any dependence on a catalog of laws.

3.2.2 Squiggol

Another example of the schematic approach to program transformation is the Squiggol

method, otherwise known as BMF (Bird-Meertens Formalism); Bird and Meertens [12, 13,

48] were the pioneers of this approach which focuses on deriving programs by calculation.

This approach is characterized by the use of a small set of recursion schemes (instead

of general recursion) and a corresponding set of fusion laws for reasoning about these

recursion schemes [11, 49].

Much of this work has focused on programming with total functions and giving the user

recursion schemes which are primitive recursive (such as catamorphisms, which perform

their computation inductively over some finite data type). By restricting the programs that

can be written to total functions the laws become simpler: there are no strictness side-

conditions. However, Meijer et al. [49] have shown how the approach can be extended to

allow for partial functions and infinite data structures, although at some loss of simplicity.

Two of the primary recursion schemes used are catamorphisms and anamorphisms (or just

cata andana). Definitions of these are in Figure 3.4. Catamorphisms allow for defining

functions defined inductively over lists. Anamorphisms are dual to catamorphisms, they

allow for defining functions which construct lists by repeatedly “decomposing” a base value

into either nothing (givingNil) or a pair of values (giving the head of the list and a new

base value). Catamorphisms and anamorphisms can be defined for other recursive data

types besides lists.
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cata = µcata 7→ 〈f,b〉 7→ case 〈Nil : b
,Cons〈y,ys〉: f〈y, cata 〈f,b〉 ys〉
〉

ana = µana 7→ f 7→ case 〈Nothing : Nil
,Just〈a,b〉: Cons〈a,ana f b〉
〉

◦ f

Figure 3.4: Definition of Catamorphism (cata) and Anamorphism (ana)

(1) map plus1 (ana (x 7→ Just〈1,x〉) 〈 〉)
= {Map-Ana}

(2) ana (case〈Nothing: Nothing, Just〈a,b〉: Just〈plus1 a,b〉 〉
◦ (x 7→ Just〈1,x〉))
〈 〉

= {def. ◦}
(3) ana (x 7→ case〈Nothing: Nothing, Just〈a,b〉: Just〈plus1 a,b〉 〉

(Just〈1,x〉))
〈 〉

= {case reduce}
(4) ana (x 7→ Just〈plus1 1,x〉 〉

〈 〉
= {def. plus1}

(5) ana (x 7→ Just〈2,x〉) 〈 〉

Figure 3.5: The “twos” Derivation Using Squiggol

∀f,g,b.
map f (ana g b)

=
ana (case 〈Nothing: Nothing, Just〈a,b〉: Just〈f a,b〉 〉 ◦ g) b

Figure 3.6: The derived lawMap-Ana
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In Figure 3.5 is the derivation oftwos again, but here the derivation differs significantly

from the previous derivations oftwos. In the first place, an infinite list cannot be directly

written using a fixed-point operator but is constructed usingana. The infinite list of ones is

now written as follows:

ana (x 7→ Just〈1,x〉) 〈 〉

The first step is to apply the lawMap-Ana(cf. Figure 3.6), giving program 2. Then in

the following three steps the program is simplified by inlining◦, doing case reduction, and

applying a primitive. One might ask whereMap-Anacomes from. Can it be derived from

the primitive laws? In contrast to the large catalog approach, the answer is a definite yes.

In Squiggol, there are laws for doing structural induction over each data type and universal

properties (or fusion laws) for each recursion scheme (giving a computational induction

principle). It is safe to say that the primitive laws are sufficiently expressive for programs

written using the recursion schemes.

So, using Squiggol, there is no problem with the expressiveness of the primitive laws. The

problem is in the expressiveness of the recursion schemes themselves. They can express a

great many functions but not every algorithm for those functions is expressible. Although

many programs can be written quite clearly using these recursion schemes and many trans-

formations can be done elegantly, giving away general recursion is a tough price to pay.

3.2.3 Theorem Proving

A third approach would be to use a theorem prover (e.g., [58]) into which the semantics

is embedded to prove equivalences of programs. Although research in theorem proving is

generally outside the boundaries of research in program transformation, theorem proving is
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often used to prove properties of programs and it is similar in goals to the work in program

transformation.

A theorem proving approach has the following advantages: 1) it is the most general and

expressive approach; 2) automatic proof search is available; and 3) strategies and tactics

are extensible using a meta-language. But the disadvantages to using a theorem prover are

the following: 1) the user needs to be expert in the theorem prover, its logic, and its meta-

language; 2) the user needs to be expert in the semantics of the language and must usually

reason using an approximation relation,v , and be familiar with domain theory; and 3)

most theorem provers provide a primitive interface.

So, a theorem prover seems to be more appropriate for the language designer than for the

language user. Even were this approach taken, a front end would be wanted that hides the

complexity, providing a specialized theorem prover for proving equivalences of Haskell

programs. PATH would be an appropriate front end.

3.3 The Approaches Compared

3.3.1 Rules vs. Laws

In this chapter I have carefully discriminated between the termslaw andrule. A law rep-

resents a program transformation that can be expressed logically or schematically, i.e., in a

form such as the following:

∀x1,x2, ... . p3 = p4

By definition a law is reversible. The generative set approach allows for laws about prim-

itives but does not use laws to transform recursive programs. In the schematic approach,
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every transformation is expressed as a law, and recursion must be explicit, otherwise no

interesting transformations could be achieved.

A rule, in contrast, cannot in general be expressed as alaw. A rule specifies a transfor-

mation but is more ad hoc. In the generative set approach, it is not a single rule but it is

the set of rules in combination that gives a method its power. Rules in general will not be

reversible.

In the schematic approach, laws are our currency. As a result we can abstract over trans-

formations because we can develop new laws. We can make a system more powerful by

adding new axioms (in the form of laws) to the system. This approach is like logic: If

we want to extend a logic with another axiom, it is sufficient to prove the correctness of

the new axiom in the underlying model without worrying about it conflicting with other

axioms.

But in the generative set approach, we have both laws (about primitives) and rules (which

give the method its power). We cannot abstract over the laws to get new laws (without

some difficulty, cf. the following section) and we cannot abstract over the rules to get new

rules. The rule set of a generative set approach is quite fragile: we cannot dispense with

one without losing power, if we add a rule we need to show that the complete set of rules

is still sound.

3.3.2 Laws and the Generative Set Approach

It is essential to note that thelawsreferred to in the discussions of fold/unfold and expres-

sion procedures are laws about theprimitives, e.g., associativity of integer addition. One

cannot use laws about the definitions of functions without risk of sacrificing correctness.

For example, assume we have this lemma about thepower function (which could be proved
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with induction on the natural numbers):

power x m * power x n = power x (m+n)

We can use this lemma to perform the following EP derivation

power 〈x,n〉 = if n 0 then 1 else x * power 〈x,n-1〉
⇒ {x = power〈x,1〉}
power 〈x,n〉 = if n 0 then 1 else power〈x,1〉 * power 〈x,n-1〉

⇒ {power-Lemma}
power 〈x,n〉 = if n 0 then 1 else power〈x,1+n-1〉

⇒ {arithmetic laws}
power 〈x,n〉 = if n 0 then 1 else power〈x,n〉

Thus we have transformedpower into a function that is non-terminating on all inputs ex-

cept zero. This is why laws are only allowed for the primitive operators. The problem in

the above derivation is that a law aboutpower is being used in the definition ofpower. This

makes even expression procedures unsafe. If we want to extend EPs to use laws about pro-

gram definitions, we need to ensure that laws about a definitionf are not used to transform

f or any definition that depends onf.

This problem does not arise in the schematic approach because the recursion is explicit: we

would have the following definition ofpower

µpower 7→ 〈x,n〉 7→ if n 0 then 1 else x * power 〈x, n-1〉

and there is no way to apply laws aboutpower inside the definition ofpower because the

inner “power” is just a lambda bound variable.

Chin and Darlington [17] explain how to integrate laws, or schematic rules, into fold/unfold

but totally ignore the correctness issue; though this is understandable since fold/unfold

ignores the correctness issue.

Structural induction is a powerful proof principle which can be easily formulated in the

schematic approach but cannot be done in fold/unfold or EPs. (In Scherlis’s dissertation he
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uses the associativity of list append—which can be proved with structural induction—in

various derivations but conveniently list append is a primitive whose associativity is as-

sumed.) So, could one add a proof rule for structural induction to a generative set approach

such as expression procedures? One could use structural induction to prove things about

definitions (as long as these laws are used safely, as noted above). But this use of structural

induction happens outside of EPs: structural induction and EP derivations occur totally

independently. Whether there is some way in which the expression rules and a structural

induction rule could be integrated seems doubtful.

3.3.3 Summary

Neither the generative set nor the schematic approach is clearly better or more appropriate

than the other. The generative set methods, such as fold/unfold or expression procedures,

are simple and very expressive. Using expression procedures, partial functions and infinite

data structures can be transformed correctly. However, these methods are asymmetric—

they work well for specializing programs but not generalizing—and they do not allow for

abstracting over transformation steps. The schematic approach is more concise and al-

lows for the development of powerful laws which can represent major transformations; all

transformation laws are symmetric. However, in this approach one either gives up gen-

eral recursion (with an expressive set of primitive laws) or one has general recursion with a

large catalog of laws, the expressiveness of these laws being unclear. Another disadvantage

of this large catalog approach is that the user needs to search the catalog to find applicable

laws.

The following chapter describes a way of integrating these two approaches to get the ad-

vantages of each.



Chapter 4

The PATH Approach

In this chapter I show how the essence of the expression procedure method can be distilled

into one reversible rule called Fixed Point Fusion (Section 4.1). I then show the need for

another law for reasoning aboutµ (Section 4.2). I give some examples of the expressiveness

of these laws (Section 4.3). I then show how the expressiveness of expression procedures

can be achieved using the schematic approach (Section 4.4) and discuss the advantages and

limitations of this approach (Section 4.5).

4.1 From Expression Procedures to Fixed Point Fusion

As discussed in Section 3.1.4, expression procedures (EPs) lack a desirable property: re-

versibility. Could expression procedures be made reversible? Thecompositionandapplica-

tion rules are inherently one-directional, but what if all the steps involved in a prototypical

expression procedure transformation could be merged into one step? There are just four

key steps (as seen in the example in Section 3.1.3):

1. theintroductionof the expression procedure (composition),

43
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2. thetransformationof the body of the expression procedure,

3. the use ofabstractionto capture the resulting recursion, and

4. applicationof the expression procedure.

These four steps can be merged as follows. We begin with a strict functionC and a function

definitionf = F f. Introductionof the expression procedure gives

C f =ep= C(F f)

which is thentransformedinto the recursive expression procedure

C f =ep= G(C f)

for someG. After abstractionwe arrive at

C f =ep= g
g = G(C f)

Finally, applicationof the expression procedure yields

C f =ep= g
g = G g

The above steps can be merged into one rule, (expressing the values off andg as the

fixed-pointsµF andµG respectively)

C(µF) ⇒ep µG if ∀f.C(F f) ⇒ep G(C f), C strict

The quantifier∀f is used because no use is made of the definition off in the transformation

of the expression procedure body. So, this one rule replaces the three expression procedure

rules—composition, abstraction, andapplication. We do not have reversibility yet, but if

we replace⇒ep with = in the above rule we would have the reversible law,

C(µF) = µG if ∀f.C(F f) = G(C f), C strict
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a theorem of Stoy [75]. So, I join the company of many who have rediscovered or used this

theorem [3, 28, 49]. Interestingly, it is a free theorem [82] of the fixed point operatorµ.

Also, µ, the leastfixed point operator, is the only fixed point operator which satisfies this

equation [28]. Its name, Fixed-Point Fusion (FPF), is taken from Meijer et al. [49] where

the theorem is exploited considerably: most of their transformations are instances of this

one general theorem.

Fixed-Point Fusion can be used in both directions:

C(µF) ⇒ µG specialization (fusion)

µG ⇒ C(µF) generalization (fission)

To do fusion,C andF are known, andG is desired; so the premise is proved by finding a

derivationC(F f)⇒ G(C f), G is discovered in so doing. To do fission,G is known, the

user providesC, andF is desired; so the premise is proved by finding a derivationG(C f)

⇒ C(F f), F is discovered in so doing. (Had an extra “redefinition” rule been added to

expression procedures, the user would also need to know the answer,F, before proceeding.)

This connection with expression procedures can give an intuition forFPF. Another intu-

ition for FPF is provided in Figure 4.1. We start withC(µF) in line 1 and in line 2 expand

theµF. In lines 3 and 4,C is moved pastF using the premise. We eventually end with line

5; the strictness ofC gives line 6; contracting theG’s gives line 7.

4.2 Fixed Point Expansion

With expression procedures the following transformation can be done

f = F〈f,f〉
⇒ {apply f}
f = F〈f,F〈f,f〉 〉
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(1) C(µF)
=

(2) C(F(F(F(...F(⊥)))))
=

(3) G(C(F(F(...F(⊥)))))
=

(4) G(G(C(F(...F(⊥)))))
=

...
=

(5) G(G(G(...G(C(⊥)))))
=

(6) G(G(G(...G( ⊥ ))))
=

(7) µG

Figure 4.1: Intuition for Fixed Point Fusion (FPF)

which cannot be done with theFPF law. To see why we cannot accomplish this transfor-

mation usingFPF: note two things

• We cannot change the value under aµ using the primitive laws.

• FPF is only applicable when we have a strict context andF is not strict.

A law which allows us to do the above transformation is Fixed Point Expansion (FPE)

∀F. µf 7→ F〈f,f〉 = µf 7→ F〈f,F〈f,f〉 〉

which enables us to expand, or inline, the definition of a recursive definition inside itself;

but this law also allows us to “reverse inline” recursive definitions by applying it right to

left. Note that expression procedures cannot do this “reverse inline” transformation:

f = F〈f,F〈f,f〉 〉
⇒
f = F〈f,f〉

To demonstrate that expression procedures cannot do this “reverse inline” transformation,

I will show that fold/unfold (which is strictly more powerful than expression procedures)
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cannot do the transformation “µ(F ◦F)⇒ µF”: We assume that fold/unfold can be charac-

terized by the following law (cf. Section 3.1.2)

M ⇒ µF if M ⇒ F M

To proveµ(F ◦F)⇒ µF, we must instantiateM with F ◦F , giving this:

µ(F ◦F) ⇒ µF if µ(F ◦F) ⇒ F (µ(F ◦F))

But using laws we cannot satisfy the condition on the right: The only rule about recursive

functions is “unfolding”, i.e.,µ(F ◦F) ⇒ (F ◦F)(µ(F ◦F)), and using this rule,µ(F ◦F)

can only be transformed into a program with an even number of occurrences ofF outside

theµ. Thus, we see thatµ(F ◦F)⇒ µF cannot be done with fold/unfold.

4.3 Examples

Henceforth program derivations will be written in a form that is more like that used in the

PATH system. The precise form of program derivations is treated in the next chapter, but

here I discuss the conventions used in the derivations in this chapter. Derivation steps are

written as a sequence of steps such as

p1

= {r}
p2

or

p1 ={r} p2

which signifies thatp1 is equivalent top2 by applying a law namedr to some subexpression

of p1. This notation is extended to allow for a lawr that hasn premises as follows: the

derivation step
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∀x,y,... .
P1: p1=p2

; P2: p3=p4
; P3: p5=p6
; ...
⇒

e1
= {P1}

e1’
= {r}

...
= {r}

e2’
= {red}

e2

Figure 4.2: The Form of a Derivation

p1

= {r
d1

; ...
; dn

}
p2

signifies thatp1 is equivalent top2 by applying ruler top1 (or some sub-expression thereof)

whered1,...,dn are then derivations that prove the premises ofr. A law may be of the form

∀x,y,... .
p1=p2; p3=p4; p5=p6; ... ⇒ e1=e2

in which we have universal quantification and in which the equivalence “e1=e2” is condi-

tional on the premises before the⇒. A derivation, or proof, of such a law would look like

the derivation in Figure 4.2, in which names are given to the premises (in order that they

may be applied by name), and the “e1=e2” is replaced by a sequence of steps that prove this.

The rule names inside the{}’s could be either the name of a premise (e.g.,P1) the name of

a law proved elsewhere (e.g.,r) or the name of some primitive rule (such asred—e.g.,e2’
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(1) map plus1 (µones 7→ Cons〈1,ones〉)
= {FPF

∀ones’.
(2) map plus1 (Cons〈1,ones’〉)

= {def. map}
(3) case 〈Nil : Nil

,Cons〈x,xs〉: Cons〈plus1 x, map plus1 xs〉
〉
(Cons〈1,ones’〉)

= {case reduce}
(4) Cons〈plus1 1, map plus1 ones’〉

= {laws}
(5) Cons〈2, map plus1 ones’〉

}
(6) µtwos 7→ Cons〈2,twos〉

Figure 4.3: The “twos” Derivation UsingFPF

reduces toe2). The rule{def.v} signifies the inlining of the prelude variablev. The rule

{SS} (for Syntactic Sugar) signifies that the two programs are equivalent up to syntactic

sugar. Rules are applied left to right but the prefix “R” before a rule name signifies that it is

to be applied right to left. For further explanation of the primitive rules available in PATH,

refer to Appendix B.

Also, the notationC{e1=e2} is used as a shortcut for the lawC[e1]=C[e2], whereC is any

program context. This can be of great use whenC is a large context.

4.3.1 The “twos” Derivation

The derivation of “twos” using FPF can be found in Figure 4.3. The original program,

using the explicit fix point operatorµ, is on line 1. As the function “map plus1” is strict,

FPF can be applied here with the following instantiation of the free variables ofFPF

(although at first it is not known what G will be):

C = map plus1
F = ones 7→ Cons<1,ones>
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G = twos 7→ Cons<2,twos>

To prove the premise ofFPF, we start with the program on line 2, corresponding to

“C(F f)”. It is then transformed until we have brought the function “map plus1” against

ones’ in line 5 (corresponding to “G(C f)”). At this step, the premise is satisfied and we

have discoveredG, giving the result in line 6.

Note the similarity between this derivation and the expression procedure derivation shown

in Section 3.1.3: applyingFPF corresponds to introducing the expression procedure; trans-

forming “C(F f)” in the premise corresponds to transforming the expression procedure

definition; the end of theFPF premise derivation corresponds to the abstraction and apply

steps. This derivation is also comparable to the fold/unfold derivation shown in Section

3.1.1: applyingFPF corresponds to unfolding the definition ofones; transforming “C(F

f)” in the premise corresponds to transforming the new definition oftwos; the end of

theFPF premise derivation corresponds to the fold step. By quantifying overones’ it is

ensured that an unsafe fold step cannot be done.

The strictness condition forFPF is left out of this derivation in order to highlight the

similarity to the expression procedure derivation. The following sub-derivation, for the

premise “C ⊥=⊥”, would need to be added:

map plus1 ⊥
= {def. map}
case 〈Nil : Nil

,Cons〈x,xs〉: Cons〈f x, map plus1 xs〉
〉 ⊥

= {case strict}
⊥

Note the advantages of this approach over expression procedures: the functionC is shown to

be strictin the system(whereas in expression procedures, it must be shown strict outside of
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the system); also the derivation is reversible, one could start with “µtwos 7→Cons<2,twos>”

and derive the original program from it.

Another advantage that can now be seen is that derivations are structured in a goal-directed

fashion. Derivations are structured as 1)goal: a function and its context are specified; and

2) sub-goal: the derivation is developed which satisfies the sub-goal (thereby synthesizing

the new definition). Besides clearly indicating the goal of each transformation, this allows

all the sub-goals of an unreachable goal to be removed easily if the goal is removed. With

fold/unfold and expression procedures the derivations can be much more unstructured.

4.3.2 Regarding Strictness Conditions

Two of the most useful laws,FPF andInst, have strictness conditions. Can these conditions

be avoided? There are three possibilities to eliminate the need for these: 1) the Squiggol

approach where only total functions are allowed (thus,⊥ doesn’t exist); or 2) these con-

ditions are dropped and partially correct transformations are allowed; or 3) the strictness

conditions are replaced by a totality condition on the result1. Neither of these methods

was considered an option for PATH, and thus the strictness conditions remain. However, in

actual use the strictness condition is very often satisfied automatically in PATH. Note that

the contexts defined byS, an extension of reduction contextsR, are strict.

S = [] (hole)
| Se
| S.mn

| case 〈nil: e1, cons: e2〉 S
| µS
| prim 〈e1,e2, ...,S, ...,en〉

1Refer to Section 5.3.4 for a further discussion of this option.
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4.3.3 Introducing Mutual Recursion

The prototypical use of expression procedures (composition, laws, abstraction, andappli-

cation) can obviously be done usingFPF. Although the great majority of derivations using

expression procedures do follow this pattern2, what about the derivations which do not fol-

low this pattern? What follows is an example of a derivation which does not follow the

pattern but can be done easily withFPF.

Assuming that we can do the following derivations

∀f,g. C(F〈f,g〉) ⇒ A 〈C f, D g〉
∀f,g. D(G〈f,g〉) ⇒ B 〈C f, D g〉

we can do the expression procedure derivation seen in Figure 4.4. This derivation appears

problematic to do withFPF because the uses ofcomposition, abstraction, andapplication

are completely intertwined. However, this derivation can be done as easily usingFPF by

explicitly representing the mutual recursion (see Figure 4.5).

4.4 Expression Procedures Equationally

The lawsFPF andFPE appear to give us the expressiveness of expression procedures. But

could the schematic approach, using these two laws aboutµ, accomplishanyderivation pos-

sible with expression procedures? Section 4.1 showed howFPF can derive programs that

would be done by the sequence ofcomposition, laws, abstraction, andapplicationin EPs.

Section 4.2 showed howFPE can accomplish what is done by functionapplicationin ex-

pression procedures. And Section 4.3 gave a program derivation which was accomplished

by a rather tangled ordering of the expression procedure rules:composition, composition,

2Likewise, FPF also captures the most common pattern in fold/unfold: unfold the definition one time,
transform it, and then fold.
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let
f = F〈f,g〉
g = G〈f,g〉

in
C f =ep= C(F〈f,g〉)
D g =ep= D(G〈f,g〉)

⇒ {assumption}
C f =ep= A〈C f, D g〉
D g =ep= B〈C f, D g〉

⇒ {abstract twice}
C f =ep= f’
D g =ep= g’
f’ = A〈C f, D g〉
g’ = B〈C f, D g〉

⇒ {apply "C f" twice}
C f =ep= f’
D g =ep= g’
f’ = A〈f’, D g〉
g’ = B〈f’, D g〉

⇒ {apply "D g" twice}
C f =ep= f’
D g =ep= g’
f’ = A〈f’,g’〉
g’ = B〈f’,g’〉

Figure 4.4: Introducing Mutual Recursion with Expression Procedures
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let
〈f,g〉 = µ〈f,g〉 7→ 〈F〈f,g〉,G〈f,g〉 〉

in
〈C f, D g〉

= {R red}
(〈f,g〉 7→ 〈C f, D g〉) 〈f,g〉

= {FPF
∀f,g.

(〈f,g〉 7→ 〈C f, D g〉) 〈F〈f,g〉,G〈f,g〉 〉
= {red}
〈C(F〈f,g〉), D(G〈f,g〉)〉

= {assumption}
〈A〈C f, D g〉, B〈C f, D g〉 〉

= {R red}
(x 7→ 〈A x, B x〉) 〈C f, D g〉

= {R red}
(x 7→ 〈A x, B x〉) ((〈f,g〉 7→ 〈C f, D g〉) 〈f,g〉)

}
µx 7→ 〈A x,B x〉

= {eta}
µ〈f’,g’〉 7→ 〈A〈f’,g’〉, B〈f’,g’〉 〉

= {SS}
letrec f’ = A〈f’,g’〉 and g’ = B〈f’,g’〉 in 〈f’,g’〉

Figure 4.5: Introducing Mutual Recursion withFPF
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laws, laws, abstraction, abstraction, application, andapplication. Although many com-

mon EP derivations can be done usingFPF andFPE, it is not clear whether, using these

two laws aboutµ, one can do any derivation possible using EPs: i.e., derivations in which

there may be arbitrary nesting and tangling of the rules. In this section, I demonstrate that

PATH (with just two primitive laws aboutµ3) can give us the expressiveness of a powerful

restriction of expression procedures.

4.4.1 Restricted Expression Procedures

PATH can do any expression procedure derivation which can be structured as a sequence

of the following transformations:

• functionapplication(replacing a function call by its definition)

• laws(application of primitive laws)

• abstraction

• a composition-laws-application transformation

PATH clearly allows for the first three transformations: functionapplication(with FPE),

laws, andabstraction(with reverse reduction). This section describes the fourth transfor-

mation and the next section proves that PATH can derive such transformations.

In the composition-laws-application transformation, thecomposition(creating new EPs)

andapplicationof EPs cannot be done in an arbitrary order. Such a transformation proceeds

as follows: We start with this program

3As will be explained in the following chapter, the two primitive laws aboutµ are notFPF andFPE but
Scott-InductandFPD, from whichFPF andFPE can be derived.
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f = F〈f,g〉
g = G〈f,g〉

The definitionf is a tuple of all the definitions which are to be composed over. The defi-

nition g is a tuple of all the other definitions in the program. Then we have a sequence of

compositions overf, giving the EP program (where each of theCi must be strict):

f = F〈f,g〉
g = G〈f,g〉
C1 f =ep= C1(F〈f,g〉)
C2 f =ep= C2(F〈f,g〉)
...
Cn f =ep= Cn(F〈f,g〉)

Then we transform the bodies of the EPs using primitive laws,applicationof g (but not

applicationof f), and abstraction. In particular, EPapplicationis not allowed. This gives

the following program:

f = F〈f,g〉
g = G〈f,g〉
C1 f =ep= H1 〈f,g〉
C2 f =ep= H2 〈f,g〉
...
Cn f =ep= Hn 〈f,g〉

Now a sequence of abstractions are made, resulting in the following:

f = F〈f,g〉
g = G〈f,g〉
C1 f =ep= h1
C2 f =ep= h2
...
Cn f =ep= hn

h1 = H1 〈f,g〉
h2 = H2 〈f,g〉
...
hn = Hn 〈f,g〉
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Now, the definitions off, g, andhi are re-written so that where we want to apply the EPs is

made evident:

f = F’〈C1 f, C2 f, ..., Cn f, f,g〉
g = G’〈C1 f, C2 f, ..., Cn f, f,g〉

h1 = H1’〈C1 f,C2 f,...,Cn f, f,g〉
h2 = H2’〈C1 f,C2 f,...,Cn f, f,g〉
...
hn = Hn’〈C1 f,C2 f,...,Cn f, f,g〉

Now, we perform a sequence of EP applies, giving the following (and dropping the EPs):

f = F’〈h1, h2, ..., hn, f,g〉
g = G’〈h1, h2, ..., hn, f,g〉

h1 = H1’〈h1,h2,...,hn, f,g〉
h2 = H2’〈h1,h2,...,hn, f,g〉
...
hn = Hn’〈h1,h2,...,hn, f,g〉

The above sequence of steps, a composition-laws-application transformation, constitutes

the only way in whichcompositionand EPapplicationare allowed in the derivation. Al-

though all useful EP derivations are structured similarly to this (firstcomposition, then

laws or other rules,abstraction, and lastly EPapplication)4, what is being disallowed is

the following two transformation rules in the transformation of the body of an EP: 1) the

applicationof the functionf (f being the definition “composed over”) and 2)application

of an EP to itself multiple times (it can only be done once, at the end), i.e., the results of an

EPapplicationcannot be transformed and be the subject of another EPapplication. As an

example, the following derivation cannot be done using the restriction here:

4Without abstraction and EPapplicationno gains could be made from the expression procedure created
with composition.
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C f =ep= C(F f)
(1) ⇒ {laws...}

C f =ep= H1 〈f,C f,C f〉
(2) ⇒ {EP apply}

C f =ep= H1 〈f,C f,H1 〈f,C f,C f〉 〉
(3) ⇒ {laws...}

C f =ep= H2 〈f,C f〉
(4) ⇒ {abstract, EP apply}

C f =ep= h
h = H2 〈f,h〉

This is because the result of applying an EP in step (2) is transformed and is the subject of

a second EPapplicationin step (4).

4.4.2 Restricted Expression Procedures Using PATH

This section shows how PATH can achieve the composition-laws-application transforma-

tion described in the previous section. That transformation corresponds directly to the law

given in Figure 4.6. We can quantify overf as there is no dependence upon the definition

of f anywhere in the derivation (this is becauseapplicationof f is disallowed). The form

of this law can be simplified to the lawComposition-Laws-Applicationgiven in Figure 4.7.

This is done by representing all the functionsCi as one functionC, all thehi functions as a

tupleh, and introducing new definitionsF, G, andH as follows:

C x = 〈C1 x, C2 x, ..., Cn x〉
h = H〈h,f,g〉

F〈h,f,g〉 = F’〈h.1,h.2,...,h.n, f,g〉
G〈h,f,g〉 = G’〈h.1,h.2,...,h.n, f,g〉
H〈h,f,g〉 = 〈H1’〈h.1,h.2,...,h.n, f,g〉

,H2’〈h.1,h.2,...,h.n, f,g〉
...
,Hn’〈h.1,h.2,...,h.n, f,g〉
〉

Note thatC is strict iff each of theCi is strict; for a proof of this refer to the lawsTuple-

Strict-Implies-Components-StrictandComponents-Strict-Implies-Tuple-Strictin Appendix
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C1 ⊥ = ⊥
; C2 ⊥ = ⊥
; ...
; Cn ⊥ = ⊥
; ∀f. letrec g = G’〈C1 f, C2 f, ..., Cn f, f, g〉

in { C1(F〈f,g〉) = H1’〈C1 f,C2 f,...,Cn f, f, g〉 }
; ∀f. letrec g = G’〈C1 f, C2 f, ..., Cn f, f, g〉

in { C2(F〈f,g〉) = H2’〈C1 f,C2 f,...,Cn f, f, g〉 }
; ...
; ∀f. letrec g = G’〈C1 f, C2 f, ..., Cn f, f, g〉

in { Cn(F〈f,g〉) = Hn’〈C1 f,C2 f,...,Cn f, f, g〉 }
⇒
letrec f = F’〈C1 f, C2 f, ..., Cn f, f, g〉

g = G’〈C1 f, C2 f, ..., Cn f, f, g〉
in g
=
letrec f = F’ 〈h1,h2,...,hn, f, g〉

g = G’ 〈h1,h2,...,hn, f, g〉
h1 = H1’〈h1,h2,...,hn, f, g〉
h2 = H2’〈h1,h2,...,hn, f, g〉
...
hn = Hn’〈h1,h2,...,hn, f, g〉

in g

Figure 4.6:Composition-Laws-Application-ExpandedLaw

C ⊥ = ⊥
; ∀f.

letrec g = G〈C f,f,g〉 in { C(F〈C f,f,g〉) = H〈C f,f,g〉 }
⇒

letrec g = G〈C f,f,g〉; f = F〈C f,f,g〉 in g
= letrec g = G〈h ,f,g〉; f = F〈h ,f,g〉; h = H〈h,f,g〉 in g

Figure 4.7:Composition-Laws-ApplicationLaw
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C. This is true because PATH-L has true products, in which⊥= 〈⊥,⊥〉.5

So, showing that PATH is as expressive as Restricted EPs is simply a matter of proving the

law Composition-Laws-Application, this proof is in Figure 4.8; it relies onLemma-1

∀C,F,G,H.
C ⊥ = ⊥

; ∀f. letrec g=G〈g,C f〉 in { C(F〈f,g〉) = H〈g,C f〉 }
⇒
letrec g=G〈g,C f〉; f=F〈f,g〉 in g = letrec g=G〈g,h〉; h=H〈g,h〉 in g

which follows easily from the lawFPF-Ext6:

∀C,F,G,H.
C ⊥ = ⊥

; ∀f. letrec g=G〈f,g,C f〉 in { C(F〈f,g〉) = H〈f,g,C f〉 }
⇒
letrec f=F〈f,g〉; g=G〈f,g,C f〉 in 〈f,g〉

= letrec f=F〈f,g〉; g=G〈f,g,h〉; h=H〈f,g,h〉 in 〈f,g〉

Refer to the proof ofFPF-Ext (and the laws it requires) in Appendix C.

In order to simplify the presentation, I have neglected to show how one would apply the

abstract rule in the middle of a composition-laws-application transform. In expression

procedures, one can abstract simultaneously over a common subexpression in the EP, the

composed function, and the rest of the program (i.e., one can bring the subexpression out

of the definitions off, g, andh simultaneously). We can simulate this in PATH by creating

identical abstractions inF, G, andH giving us

F〈h,f,g〉 = let x=X〈h,f,g〉 in F’〈h,f,g,x〉
H〈h,f,g〉 = let x=X〈h,f,g〉 in H’〈h,f,g,x〉
G〈h,f,g〉 = let x=X〈h,f,g〉 in G’〈h,f,g,x〉

so that instead of usingComposition-Laws-Applicationto get this program

5Haskell has lifted products for which this is not true.
6If we instantiateFPF-Ext to functions wheref does not occur in the definition ofg or h and we apply

(.2) to each side, we getLemma-1.
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P1: C ⊥ = ⊥
; P2: ∀f.

letrec g = G〈C f,f,g〉 in { C(F〈C f,f,g〉) = H〈C f,f,g〉 }
⇒
let

D f = 〈C f,f〉
F’〈 〈a,b〉,c〉 = F〈a,b,c〉
G’〈 〈a,b〉,c〉 = G〈a,b,c〉
H’〈 〈a,b〉,c〉 = H〈a,b,c〉

in
{

letrec g = G〈C f,f,g〉; f = F〈C f,f,g〉
= {def. D, G’}
letrec g = G’〈D f,g〉; f = F〈C f,f,g〉

= {Lemma-1
C ⊥ ={P1} ⊥

; ∀f.
letrec g =G’〈D f,g〉 in
{
D(F〈C f,f,g〉)

= {def. D}
〈C(F〈C f,f,g〉), F〈C f,f,g〉 〉

= {P2}
〈H〈C f,f,g〉 , F〈C f,f,g〉 〉

= {def. F’,H’}
〈H’〈 〈C f,f〉,g〉, F’〈 〈C f,f〉,g〉 〉

= {def. D}
〈H’〈D f,g〉, F’〈D f,g〉 〉

}
}
letrec g = G’〈i,g〉; i = 〈H’〈i,g〉,F’〈i,g〉 〉

= {R Inline-Bndg}
letrec g = G’〈i,g〉; i = 〈h,F’〈i,g〉 〉; h = H’〈i,g〉

= {R Inline-Bndg}
letrec g = G’〈i,g〉; i = 〈h,f〉; h = H’〈i,g〉; f=F’〈i,g〉

= {Inline-Bndg}
letrec g = G’〈 〈h,f〉,g〉; h = H’〈 〈h,f〉,g〉; f=F’〈 〈h,f〉,g〉

= {def. F’,G’,H’}
letrec g = G〈h,f,g〉 ; h = H〈h,f,g〉 ; f=F〈h,f,g〉

}

Figure 4.8:Composition-Laws-ApplicationProof
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letrec g = G〈h,f,g〉; f = F〈h,f,g〉; h = H〈h,f,g〉 in g

we would get this program

letrec g = let x=X〈h,f,g〉 in G’〈h,f,g,x〉
; f = let x=X〈h,f,g〉 in F’〈h,f,g,x〉
; h = let x=X〈h,f,g〉 in H’〈h,f,g,x〉

in g

And this can be transformed to remove the duplicate abstractions:

letrec g = G’〈h,f,g,x〉
; f = F’〈h,f,g,x〉
; h = H’〈h,f,g,x〉
; x = X〈h,f,g〉

in g

Note that the majority of the proof that PATH can achieve the expressiveness of Restricted

EPs is done in PATH itself, in the proofs ofComposition-Laws-ApplicationandFPF-Ext.

4.5 Evaluation of the PATH Approach

Although the restricted expression procedures seems to be a significant limitation to the

form of possible derivations, I am aware of no EP derivation that is not already in the

above restricted form (either from Scherlis [69, 70], Sands [66], or my own work). Thus,

in practice, PATH appears to be as expressive as Expression Procedures (which appear to

be as expressive in practice as fold/unfold used safely).

Many EP derivations which aren’t in the restricted form could be transformed into the

restricted form easily. The two rules that cannot be used inside an EP can often be moved

outside the EP:



4.5. EVALUATION OF THE PATH APPROACH 63

• An “apply f in EP” can often be moved before the composition. I.e., this EP deriva-

tion

f = F f
⇒ {compose}
f = F f
C f =ep= C(F f)

⇒ {C ◦ F = G}
C f =ep= G f

⇒ {apply f}
C f =ep= G (F f)

can be transformed into this EP derivation

f = F f
⇒ {apply f}
f = F (F f)

⇒ {compose}
C f =ep= C(F(F f))

⇒ {C ◦ F = G}
C f =ep= G (F f)

• An “apply EP in EP” can often be moved after the application. I.e., this EP derivation

C f =ep= H(C f)
⇒ {apply C f}
C f =ep= H(H(C f))

⇒ {abstract and apply}
C f =ep= h
h = H(H h)

can be transformed into this EP derivation

C f =ep= H(C f)
⇒ {abstract and apply}
C f =ep= h
h = H h

⇒ {apply h}
h = H(H h)

But unfortunately, it does not always appear possible to get around the restriction. Note the

following law
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∀C,F,H1,H2.
∀f. C(F f) = H1 〈f,C f,C f〉
∀f. H1 〈f,C f,H1 〈f,C f,C f〉 〉 = H2 〈f,C f〉
⇒
C(µF) = µh 7→ H2 〈µF,h〉

It can be derived using EPs (cf. Section 4.4.1). Unfortunately, I have been unable to either

prove it using PATH or to demonstrate that it cannot be proved using PATH. I conjecture

that it cannot be proved using PATH. (And it would follow from this conjecture that re-

stricted EPs are strictly less powerful than EPs.)

It would certainly be possible to extend PATH to come closer to or give the full power of

EPs. Two possibilities are the following:

• Add an improvement relation,D, such as that in Sands [67]. This approach is very

expressive but unfortunately still not as expressive as expression procedures [66, 68];

to achieve the expressiveness of expression procedures, the improvement relation

must be extended to a weighted improvement relation. This further complicates an

already complex approach.

• Add another law to the system which would give us more expressiveness. One can-

didate for such a law would be the following:

C ⊥ = ⊥
; ( ∀i : Nat . fi = F fi+1

⇒
C(F f0) = H〈fj,fk,...,C fj,C fk,...〉

)
⇒

C(letrec f = F f in f)
=
letrec h = H〈f,f,...,h,h,...〉; f = F f in h

This is similar in spirit to Sands’s approach. It ensures that an improvement is being

made and allows for theapplication, or inlining, of the functionf in the “expression
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procedure”. Such a law, though more expressive thanFPF andFPE is one directional

in its nature: it is easy to use left to right but difficult to use right to left. Because

PATH uses the schematic approach, adding a new primitive law such as this is as

simple as adding it to the primitive rule catalog.

Either of these approaches could be used to increase the expressiveness of the PATH sys-

tem. However, this has not been done in the current version of PATH as the need has not

arisen for more expressiveness than that achieved with the primitives in PATH.

Although in some respects PATH appears less expressive than full EPs, in other respects

it is more expressive: PATH has a law for structural induction on lists,List-Induct, which

allows for many transformations impossible with EPs7 and thanks to reversibility, PATH

can do many transformations directly which cannot be done with EPs.

4.6 Conclusion

This chapter has expanded on the author’s work in [79]. As discussed in Chapter 3, the

schematic approach and the generative set approach each have their advantages and disad-

vantages. Some previous attempts have been made to integrate these two approaches:

• Extend fold/unfold with schematic rules: Chin and Darlington [17] added schematic

rules to fold/unfold along with a method to generate new schematic rules using

fold/unfold.

• Extend the schematic approach with fold/unfold: The CIP system takes this ap-

proach, laws can be derived using fold/unfold plus a proof of termination.

7See Section 3.3.2 for a discussion regarding the difficulty of extending generative set methods with laws
such asList-Induct.
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However, these attempts are primarily acombinationof the approaches rather than an in-

tegration. The resulting systems are more complex and the disadvantages of fold/unfold

are still present when fold/unfold is used. It would be preferable to have the advantages

of both approaches—simplicity, expressiveness, symmetry, and abstraction over transfor-

mation rules—and the disadvantages of neither. This chapter has shown a better way to

integrate the two approaches: a powerful generative set approach (expression procedures)

is subsumed into the schematic approach. This gives a method with the following advan-

tages:

• Simple and intuitive: There are only two primitive rules for reasoning about recur-

sive definitions. FPF can be understood intuitively as a common pattern used in

fold/unfold or expression procedures.

• Expressive: The method is strictly more expressive than “Restricted expression pro-

cedures” as presented here.

• History independent: As with expression procedures, no history is required.

• Totally correct: Total correctness is preserved without proof of termination. Thus,

the method is able to correctly transform partial functions and infinite data structures.

• Extensible: New program equivalence laws can be derived. Note how this has been

used to good effect in this chapter, where numerous additional laws about recursion

have been developed.

• Symmetric: Programs can be generalized as well as specialized; derivations can be

reversed.

In comparison to expression procedures, the advantages of the PATH method are the fol-

lowing:
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• There is a symmetric derives relation; no ad hoc rules, such asredefinition, are needed

to get reversibility. Thus the system is simpler than expression procedures would be

with such an extra rule: there isonerule which the user uses to both specialize and

generalize, rather than an extra rule added to a set of “one directional” rules. Also,

the somewhat ad hoccompositionandapplicationrules are no longer needed, but are

implicit in theFPF law.

• Transformations can be done directly which cannot be done directly with expression

procedures. With expression procedures, there is sometimes a need to derive pro-

grams indirectly: e.g., in order to show thatp1 is equivalent top3, one must do the

two derivationsp1⇒ p2 andp3⇒ p2.

• The base language does not need to be extended with expression procedures. Al-

though expression procedures would not need to be implemented in the language

(they are removed in the final program), a semantics would need to be given to ex-

pression procedure definitions.

• Derivations are structured in a goal-directed fashion. It is clear what the goal is, what

the sub-goals are, and where the sub-derivations are that support that goal.

PATH has achieved a number of advantages over methods such as fold/unfold and ex-

pression procedures but there is still the issue of expressiveness, intrinsic to the schematic

approach:

• Fold/unfold, although partially-correct, can do transformations that neither PATH nor

expression procedures can do and can do so with the fewest restrictions on the form

of derivations.
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• Expression procedures appear to be strictly more expressive than the restricted ex-

pression procedures which PATH can do. Clarifying the difference in expressiveness

here is an area for further research.

However, it should be noted that PATH, with structural induction, can do transformations

that fold/unfold and expression procedures cannot.

Some areas for future work are the following: determining transformations that require

the extra expressiveness of full EPs; clarifying the expressiveness of restricted expression

procedures in a more satisfying manner; and finding the simplest way to make PATH as

expressive as full expression procedures.



Chapter 5

A Logic for Program Transformation

Previously, program derivations have been presented somewhat informally; but in this

chapter the exact syntax and semantics of laws and program derivations will be elucidated.

With the generative set approach there is no logic, only a set of rules by which closed

programs are transformed into closed programs; but with the schematic approach, we are

proving lawsabout programs. What logic should be used in PATH? Pepper [59] describes

the logic which was developed for use in the CIP transformation system [8, 9] and argues

that a logic for program transformation should be simpler than that needed in a general

purpose theorem prover. Although agreeing with Pepper’s argument, I have developed a

different logic for PATH—one that improves on the infelicities of the CIP logic. The goals

for the design of the PATH logic were the following:

• It should be at least as expressive as the CIP logic.

• It should be able to express parametricity laws.

• It should be as simple as possible.

69
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t ::= α | t1→ t2 | ×〈t1, t2, ...〉 | +〈t1, t2, ...〉 | Int types
e ::= v | v: t 7→ e | e1 e2 | ... expressions
f ′ ::= v | v: t 7→ f ′ | f ′1 f ′2 | ... | {e1 = e2} expr. equivalence
p′ ::= v | v: t 7→ p′ | p′1 p′2 | ... | {p′1 ={ j} p′2} proof of expr. equivalence
f ::= ∀v1 : t1, v2 : t2, ... . [ f1; f2; ...] ⇒ f ′ formula
p ::= ∀v1 : t1, v2 : t2, ... . [r1 : f1; r2 : f2; ...] ⇒ p′ proof / derivation
j ::= j ′ | R j ′ | ? justifications
j ′ ::= red| eta| r 〈e1,e2, ...〉 [p1; p2; ...] rules

r ∈ names of rules (premises & known laws)
v ∈ names of variables

Figure 5.1: The PATH Logic

• Proofs in the logic (i.e., program derivations) should be small, easy to read, and lend

themselves to a graphical display.

A note on the terminology used in this chapter: Anexpressionis a term of the PATH-L

language. Aformula is a syntactically valid statement of program equivalence. Alaw is a

formula that is semantically sound: this includes both primitive laws and derived laws. A

primitive rule is like a primitive law but a rule uses meta-notation (it cannot be expressed

as a formula). Aderivationfor a law is a proof that the law is valid. (I will useproof and

derivationinterchangeably.)

5.1 The Syntax of Formulas and Proofs

The syntax of formulas and proofs in PATH is given in Figure 5.1. The syntactic categories

e and t are expressions and types as given in Chapter 2. The syntactic categoryf ′ is a

statement of program equivalence, it allows for writing “contextual equivalences”, i.e., em-

bedding equivalences,{e1=e2} inside program contexts, allowing one to writeC{e1=e2} as

a shortcut forC[e1]=C[e2]. The syntactic categoryp′ is a proof of an expression equivalence

f ′. A proof of the expression equivalenceC{e1=e2} might have this form:
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C{e1 ={red} {e3 ={red} e2}}

that is,e1 reduces toe3 ande3 reduces toe2. The syntactic categoriesf andp correspond

to formulas and proofs thereof. A formula consists of a sequence of typed quantified vari-

ables, a sequence of premises “f1; f2; ...” (each of which is a formula), followed by the

conclusion, which is a statement of program equivalence. The form of a proofp is similar

except that the premises are named and there is a proof of expression equivalence,f ′, to

the right of the⇒.

Each step,{p′1 ={ j} p′2}, in a proof of expression equivalence must be given some justi-

fication j. A justification can be aj ′, which is the name of a primitive rule—i.e.,red or

eta—or the application of another rule (either a premise or known law). When one applies

a rule, values for each of the quantified variables must be provided,〈e1,e2, ...〉, and proofs

for each of the rule’s premises must be provided:[p1; p2; ...]. The justification {R j} allows

for the rule to be applied right to left instead of left to right1. The justification {?} is not

essential to the logic but is an essential part of the user interface, it is a placeholder for an

unproved part of the proof.

All laws in PATH follow a particular variable convention which is rather extreme, but sim-

ple: No bound variable (withlet or 7→) can be free in any quantified variable. So, for

instance, ifF is a quantified variable, we have the following step which is always valid, we

need not say thatx is free inF:

(x 7→ F x) y ={red} F y

Note theFPE law for expanding out a recursive definition:

∀F. µf 7→ F〈f,f〉 = µf 7→ F〈f,F〈f,f〉 〉

1“R” signifies reverse.
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∀C,D,F,G.
C ⊥ = D ⊥

; ∀x,y . {C x = D y} ⇒ {C(F x) = D(G y)}
⇒
C(µF) = D(µG)

Figure 5.2:FPI Law

The functionF here cannot have a freef, this is why we useF〈f,f〉 and not “F f”: if FPE

was written thus

∀F. µf 7→ F f = µf 7→ F(F f)

we would have a law of less generality, in this caseeveryoccurrence off would be re-

placed by “F f”. In the originalFPE we have two occurrences off: one to represent the

occurrences off that are unchanged and the other to represent the occurrences off that are

expanded. This convention can make certain laws, such asFPE, more onerous to write,

but it makes laws clearer and greatly simplifies performing derivations: one need not be

concerned with conditions such as “v not free inE.” Also, this variable convention means

that there is no need for meta-notation for substitution in PATH laws.

Figure 5.2 gives an example of a PATH law,FPI (Fixed Point Induction). Figure 5.3 gives

an example of a derivation that proves the lawFPF using the lawFPI. In order to make

derivations more readable than this example, derivations in this dissertation are generally

written less formally. They are simplified in the following ways:

• Brackets are dropped.

• Empty lists of premises and empty lists of sub-derivations are dropped.

• Types are dropped when not essential.

• Instantiation lists are dropped.
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∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
]
⇒
{ C (µ F)
={FPI 〈C,id,F,G〉
[ { C ⊥ ={P1} ⊥ ={R red} id ⊥ }
; ∀x, y.
[P3: {C x = id y}] ⇒
{ C (F x)
={P2 〈x〉}

G { C x ={P3} id y ={red} y }
={R red}

id (G y)
}

]}
id (µ G)

={red}
µ G

}

Figure 5.3: Full Derivation ofFPF

• The simple lawGC is sometimes applied implicitly.

• A sequence of{red} steps is sometimes written as a single{red*} step.

• The exact place where the rule is applied is not manifest but the whole program is

repeated on each line. (Although making it less clear what part of the program has

been changed, this makes it easier to see the complete program which is available for

transformation.)

To see what the derivation ofFPF looks like in the easier to read form, refer to its derivation

in Appendix C.

All formulas and proofs must be well-typed to be valid. But it is not enough for a syntac-

tically valid proof to be well-typed, it must also be valid in the sense that every step,{e1

={r} e2}, in the derivation must be a valid application of the ruler. A precise definition
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of what it means for a derivation to be valid is the subject of the following section.

5.2 From Proofs to Laws

I have described the syntax of the PATH logic, but to use the language of logic, What are

the “inference rules” for constructing new theorems from known theorems? Usually the

answer to this question would be a set of natural deduction style rules. However, PATH

takes a slightly different perspective on this: We start with trivialderivationsand build

largerderivationsfrom them. That is, we start with a trivial derivation of the form

∀x1,x2,x3,... . [p1: f1, p2: f2, ...] ⇒ e

(where e is just an expression, i.e., a derivation without any{e1={r}e2} steps) and then we

create larger derivations by modifying them in such ways as

• Apply a premise somewhere in the consequent.

• Add a premise.

• Remove quantified variables by instantiating them.

• Join derivations: e.g.,∀a.[ f1]⇒ q1 and∀b.[ f2]⇒ q2 are joined into∀a,b.[ f1, f2]⇒

〈q1,q2〉.

So, we always have a valid derivation of some program equivalence and we want to extend

it till it is a valid derivation of what we want. The rules for modifying derivations are

straightforward (and done automatically by PATH—cf. Chapter 6). I will not discuss

the rules for modifying derivations but I will specify in this section what it means for a

derivation to be valid. All rules for modifying PATH derivations preserve validity.
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A derivation p is valid if it proves a formulaf . The notationA;Γ ` p ↪→ f signifies that

the derivationp proves the formulaf given the laws in the law environmentA and the

types in the type environmentΓ. This notation is overloaded to also work on expression

equivalence and proofs thereof (i.e., syntactic classesf ′ andp′). The proves relation (onf

andp) is defined in terms of the proves relation onf ′ andp′:

A,r1: f1,...,rm: fm ; Γ,v1:t1,...,vn:tn ` p′ ↪→ q
A; Γ ` (∀v1:t1,...,vn:tn . [r1: f1,...,rm: fm]⇒ p′) ↪→ (∀v1:t1,...,vn:tn . [ f1,..., fm]⇒q)

(The variableq is used for elements of the syntactic classf ′.) The relation↪→ on f ′ andp′

is defined inductively on the structure of the proofs and is given in Figure 5.4; it uses the

valid relation which is defined by the rules in Figure 5.5 and the following axioms:

valid(A, Γ, (p 7→ e1) e2 , {red}, e1{e2/p} )
valid(A, Γ, 〈e1,...,en 〉.jn , {red}, ej )
valid(A, Γ, (case 〈e1,...,en 〉 (In.in x), {red}, (ei x) )
valid(A, Γ, (µp 7→ f) , {red}, f{µp 7→ f / p} )
valid(A, Γ, (prim 〈c1,...,cn 〉) , {red}, [[prim 〈c1,...,cn 〉]] )
valid(A, Γ, (⊥ e) , {red}, ⊥ )
valid(A, Γ, (⊥.mn) , {red}, ⊥ )
valid(A, Γ, (case e ⊥) , {red}, ⊥ )
valid(A, Γ, (prim 〈e1,...,⊥,...,en 〉) , {red}, ⊥ )
valid(A, Γ, (µ ⊥) , {red}, ⊥ )

The valid relation uses the relationΓ ` e :: τ which signifies thate has typeτ in type

environmentΓ. The equality in the rules is alpha-equivalence. The functionsfirst and

final extract expressions (syntactic classe) from expression equivalences (syntactic class

f ′). Their definitions are as follows:

first( {e1 = e2} ) = e1
first( e1 e2 ) = (first e1) (first e2)
first( p 7→ e ) = p 7→ first e
first( 〈e1,e2,...〉 ) = 〈first e1,first e2, ...〉
...



76 CHAPTER 5. A LOGIC FOR PROGRAM TRANSFORMATION

A; Γ,x : τ ` e ↪→ q
A; Γ ` (x : τ 7→ e) ↪→ (x : τ 7→ q)

A; Γ ` e1 ↪→ q1, A; Γ ` e2 ↪→ q2

A; Γ ` e1e2 ↪→ q1q2

A; Γ ` ei ↪→ qi

A; Γ ` 〈e1,e2, ...,en〉 ↪→ 〈q1,q2, ...,qn〉
A; Γ ` e ↪→ q

A; Γ ` e.mn ↪→ q.mn

A; Γ ` e ↪→ q
A; Γ ` casee ↪→ caseq

e∈ {In.mn,µ,m,prim ,⊥}
A; Γ ` e ↪→ e

A; Γ ` e1 ↪→ q1, A; Γ ` e2 ↪→ q2, valid(A,Γ,final(q1), r,first(q2))
A; Γ ` {e1 ={r}e2} ↪→ {first(q1) = final(q2)}

Figure 5.4: The↪→ (Proves) Relation

valid(A,Γ,e2,{ j},e1)
valid(A,Γ,e1,{R j},e2)

Γ ` e :: t1→ t2, xnot free ine
valid(A,Γ,e,{eta},x 7→ ex)

Γ ` e :: +〈t1, ...,tn〉
valid(A,Γ,e,{eta},case〈In.1n, ..., In.nn〉e)

Γ ` e :: ×〈t1, ...,tn〉
valid(A,Γ,e,{eta},〈e.1n, ...,e.nn〉)

A, r : l ; Γ ` p j ↪→ f j{i1/x1, ..., in/xn}
q′ = q{i1/x1, ..., in/xn}
e1 = first(q′)
e2 = final(q′)
l = ∀v1 : t1, ...,vn : tn . [ f1, ..., fm]q)
valid((A, r : l),Γ,e1,{r 〈i1, ..., in〉 [p1, ..., pm]},e2)

Figure 5.5: The “valid” Relation

final( {e1 = e2} ) = e2
final( e1 e2 ) = (final e1) (final e2)
final( p 7→ e ) = p 7→ final e
final( 〈e1,e2,...〉 ) = 〈final e1,final e2, ...〉
...

Note that conjectures,{?}, are not used in the definition ofvalid, this is because deriva-

tions with conjectures are not valid.
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5.3 The Design of the Logic

In this section I will describe why the logic has been designed as it is and compare it to

other logics.

5.3.1 More expressive than the CIP logic

In [59], Pepper describes the logic used in the CIP transformation system. The CIP logic is

basically two-level Horn Clause Logic. I.e., formulas are of the following form,

[[p,p,...]`p,[p,p,...]`p,...]
|=
[p,p,...]`p

wherep is comparable to a statement of program equivalence( f ′ in Figure 5.1). In CIP

there are no explicit quantifiers, all quantifiers are implicit at the top level. This might

suggest that one could not expressFPF, which contains a nested quantifier:

∀C,F,G.
C ⊥ = ⊥

; ∀x. C(F x) = G(C x)
⇒
C(µF) = µG

But CIP could expressFPF as follows

c ⊥ = ⊥ , c(f x̂) = g(c x̂)
|=
c(µf) = µg

using a special class of “indeterminate” variables (x̂, ŷ, ...) which allow it to handle one

nested quantifier (but no more). So, CIP allows up to two levels of implication and up

to two levels of quantifiers, while PATH allows for arbitrary nesting of implications and

quantifiers.



78 CHAPTER 5. A LOGIC FOR PROGRAM TRANSFORMATION

By allowing for arbitrary nesting of implications and quantifiers, PATH has gained two

advantages over the CIP logic: first, it becomes simpler as there are not two kinds of “im-

plication” (one for each of the two levels allowed) and there are not two kinds of variables

(quantified variables and indeterminate variables); second, it can express laws that cannot

be expressed in the CIP logic (laws that are “third order”2 and higher). Are such “higher

order” laws necessary? They are necessary to meet the goal of being able to express all

parametricity laws: parametricity theorems forn-th order functions are laws of ordern−1.

Although such higher order laws don’t occur often3, they easily arise when dealing with

functions of high order. For instance, if we have the following function,

app :: ×〈a→b,a〉 → b
app 〈f,x〉 = f x

and convert it to Continuation Passing Style (CPS) [64] we get this:

appk :: ×〈×〈a, b→c〉 → d, (×〈a,b→c〉 → d) → e〉 → e

appk = let f1(f,k) =
(let f2(x,k2) = (let r x = k2 x in f(x,r)) in k f2)

in f1

Now, the fourth order functionappk satisfies the third order law in Figure 5.6 (which is the

free theorem forappk). Granted, this example may appear contrived and the law complex,

but the law is valid and high order laws do arise naturally when high order code is involved

(such as when using CPS).

5.3.2 Simpler than CIP Logic

In CIP, a number of syntactic predicates are also used in the premises of a law; these

predicates are as follows:

2The order of a law being the depth of nested implications in it.
3No examples in this dissertation use more than two levels of implications or quantifiers.
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∀a,b,c,d,e,f,f’,k,k’.
∀x,k2,k2’.
∀y. c (k2 y) = k2’ (b y)
⇒
d (f (x, k2)) = f’ (a x, k2’)

; ∀g,g’.
(∀x,k2,k2’.
∀y. c (k2 y) = k2’ (b y)
⇒
d (g (x, k2)) = g’ (a x, k2’)

)
⇒
e (k g) = k’ g’

⇒
e (appk (f, k)) = appk (f’, k’)

Figure 5.6: Parametricity Theorem forappk

1. m=Type[E] (The termE has typem.)

2. New[v] (The variablev does not occur in any of the terms in the given law.)

3. Occurs[v,E], NotOccurs[v,E] (The variablev occurs in programE, does not occur

in programE.)

4. F =Declaration[ f ] (The identifier f has the termF as the right-hand side of its

declaration.)

In PATH none of these syntactic predicates are necessary: Predicate 1 is not necessary

because PATH is a typed logic working on a typed language, any typing constraints are

implicit in the types of the quantified variables. Predicates 2 and 3 are not necessary be-

cause of the variable convention in PATH. Predicate 4 becomes unnecessary due to both

the variable convention and the use of an explicit fix point operator in path. E.g., in CIP,

one would use a side condition such as

F[f]=Declaration[f]
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in order to refer to the defining equation for a recursive f. In PATH, one simply can write

laws about the recursive function “µf 7→ F f” without referring to a notion of declaration.

5.3.3 Making the Logic as Simple As Possible

Note the syntactic categoryf of formulas in Figure 5.1. This corresponds to first order

logic without negation (¬) and disjunction (∨) but with implication (⇒) and conjunction

(here “;”). For the purposes of programtransformation, negation is not needed as we do not

want to prove programs unequal, only equal. Disjunction is also dropped: laws of the form

f ⇒ (e1 = e2∨e3 = e4) are not directly useful (we need to know which of the equivalences

is valid); a law of the form(e1 = e2∨e3 = e4)⇒ e5 = e6 is easily replaced by the equivalent

two laws:e1 = e2⇒ e5 = e6 ande3 = e4⇒ e5 = e6.

There are additional syntactic restrictions imposed by the definition off : No quantifiers

are allowed except at the outermost position in a formula and conjunction (using “;”) is

only allowed in the antecedent of the⇒. The reason for these syntactic restrictions (no

expressiveness is lost by them4) is to simplify theapplicationof laws. Since the consequent

is always an expression equivalence (f ′), a law is always applied in the same manner:

giving an instantiation of the quantified variables and a sequence of sub-derivations, one

for each premise. (Compare this to the situation where conjunctions or general formulas

could be in the consequent, one would need different ways to apply different forms of

laws.)

As a result of the above restrictions, the form of derivations (or proofs,p) become simple

and directly follow the form of the formula to be proved. The syntactic form of formulas

and proofs have been made nearly identical. Another result is that derivations become

4The formulaa⇒∀x.b can be reformulated as∀x.a⇒ b (x not free ina). The formulaa⇒ (b∧c) could be
reformulated as the two formulasa⇒ b, a⇒ c. Alternatively, one could reformulatea⇒ (e1 = e2∧e3 = e4)
asa⇒ 〈{e1 = e2},{e3 = e4}〉.
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straightforward to read and write. Note also that when a law that has premises is applied

the proof of the premises is proved right where the law is applied and is not distant in the

derivation.

The equality relation between programs is transitive, reflexive, and compatible (that is,

for all C, e1 = e2⇒C[e1] = C[e2]); but the user doesn’t need to think about or use such

laws: these are implicit in how the user manipulates and constructs derivations, described

in Chapter 6.

5.3.4 Predicates

From Figure 5.1 it can be seen that there is only one predicate in the PATH logic,=. This

is in contrast to the five predicates in the CIP logic:

1. Equivalent[e1,e2] (i.e.,e1 = e2)

2. Descendant[e1,e2]

3. Determinate[e]

4. LessDefined[e1,e2] (Or, e1v e2)

5. Defined[e]

The first is simply the program equivalence used in PATH. The second and third are use-

ful in the CIP system because of its non-deterministic constructs but are not applicable to

PATH-L as it has lacks non-deterministic constructs. The fourth and fifth allow for reason-

ing about the denotational meanings of programs [71, 28], i.e.,LessDefined[e1,e2] states

that the domain theoretic meaning ofe1 is less defined than, or approximates, the mean-

ing of e2. (Or we could formulateLessDefined operationally: LessDefined[e1,e2] if
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for all C, C[e1] ⇓⇒C[e2] ⇓.) In CIP, the predicateDefined[e] is overloaded: ife is in a flat

domain, it signifies thate 6= ⊥, if f is a function,Defined[ f ] signifies∀x.Defined[ f x],

i.e., that f is total. For the purpose of clarity in what follows, I will useTotal to refer to

the second use ofDefined.

These last two semantic predicates allow for reasoning which PATH cannot do: PATH only

allows for reasoning about program equivalence. PATH certainlycouldbe extended to al-

low for additional semantic relations besides program equivalence; however, the argument

against this is the same as the argument in Section 4.5 for not adding Sands’s improvement

relation: it makes the system more complex and in practice the extra expressiveness has

not been needed: the primitive laws, which use only equivalence, have been sufficient to

achieve all desired transformations to which PATH has so far been applied to. The goal of

reasoning about eitherLessDefined orD (improvement) is to eventually prove programs

equivalent, and if proving two programs equivalent can be done directly, so much the better.

PATH has demonstrated a surprising expressiveness for a system that has only two primitive

laws aboutµ and uses only program equivalence. This would not have been discovered

had I not stuck to my original design principles (one being that PATH should not require

knowledge of domain theory).

CIP can make the statementDefined[e] (i.e., e 6= ⊥). PATH can express that a program

is undefined, but because it does not have inequality it cannot state that a program isnot

undefined. (CIP does not have inequality either, just theDefined predicate.) This lack of

ane 6=⊥ predicate in PATH has pervasively influenced PATH: Many of the laws in the CIP

system are littered withDefined predicates5; on the contrary, many of the laws in PATH

are littered with strictness conditions. For example, noteFPF:

∀C,F,G. [ C ⊥ = ⊥ ; ∀x. C(F x) = G(C x) ] ⇒ C(µF) = µG

5And it needs numerous laws in order to be able to proveDefined[e].
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One might have had this law instead

∀C,F,G. [ Total(µG) ; ∀x. C(F x) = G(C x) ] ⇒ C(µF) = µG

where a strictness condition on the context is replaced with aTotal condition on the result.

The strictness condition seems preferable for two reasons: one, a strictness condition is

often simple to prove (totality of functions may be much harder to prove); two, reasoning

about infinite data structures and partial functions (neither of which is “Total”) is possible.

However, there may be cases where one would want to useFPF in a non-strict context and

the alternativeFPF law would be what is needed. Determining what expressiveness might

be gained with the alternativeFPF is a matter of further research.

So, to summarize the differences between PATH and CIP: the logic of PATH is more ex-

pressive than thelogic of CIP (i.e., it can express formulas that CIP cannot). It is also

simpler because it does not require ad hoc syntactic predicates. However, PATH is less ex-

pressive than CIP with respect to the available semantic predicates: PATH has= but does

not havev andDefined. However, there is nothing (but the desire for simplicity) that

would keep PATH from being extended with these predicates.

Extending the system with theDefined predicate may not gain us as much as we think:

Pepper in [59] makes the statement “Defined . . . [is] less amenable to treatment within

the framework . . . Therefore one often uses corresponding syntactic predicates . . . to

guarantee the desired semantic properties . . . Defined [is frequently guaranteed] by the

absence of recursion/iteration.”

5.3.5 Semantics of Expression Equivalence (=)

What precisely is the meaning of the predicate=? It corresponds to observational equiva-

lence at base types. More formally, we say two programs are equivalent (e1 = e2) if for all
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contextsC whereC[e1] andC[e2] are ofInt type,C[e1] ⇓ iff C[e2] ⇓. The before-mentioned

laws are sound (but not complete) with respect to observational equivalence.

As noted in Chapter 2, PATH uses a call-by-name equivalence rather than call-by-need.

This is because call-by-name is more expressive: it allows for both removing and introduc-

ing the sharing of computation in transformations. The semantics and the primitive rules

could be easily adapted (as in [2, 52]) to support call-by-need; however, if call-by-need was

needed, it would be preferable to extend PATH to allow for multiple program relations such

as=name(equivalent under call-by-name),≤name(equivalent under call-by-name with less

sharing),=need (equivalent under call-by-need, i.e., the intersection of≤nameand≥name)

so as to allow for both the greater expressiveness of call-by-name and the ability to rea-

son about sharing in call-by-need. However, under call-by-need, many of the derived laws

would no longer be derivable from the primitive laws but would need to be primitive laws

themselves (e.g.,GC, Inline-Bndg, Inline-Self, Inline-Body, etc.). This results because un-

der call-by-need the reduction rule

(p 7→ e1) e2 ={red} e1{e2/p}

becomes the less general rule (wherec is a canonical form):

(p 7→ e1) c ={red} e1{c/p}

5.4 Primitive Rules

This section describes the primitive rules in the PATH logic. Note that these arerules,

not laws, they cannot be expressed as formulas in PATH but require meta-notation, such

as that needed for substitution or “...”. Note also that these rules do not follow the PATH

variable convention. First, there are the reduction rules which correspond to the operational

semantics of PATH-L (the variablec is for canonical forms):



5.4. PRIMITIVE RULES 85

(p 7→ e1) e2 ={red} e1{e2/p}

〈e1,...,en 〉.jn ={red} ej

case 〈e1,...,en 〉 (In.in x) ={red} ei x

µp 7→ f ={red} f{µp 7→ f / p}

prim 〈c1,...,cn 〉 ={red} [[prim 〈c1,...,cn 〉]]

In order to satisfy various strictness conditions, we need facts about strictness, thus there

are the following rules about the strictness of the basic language constructs (note that

prim represents integer primitives):

⊥ e ={red} ⊥
⊥.mn ={red} ⊥

case e ⊥ ={red} ⊥
prim 〈e1,...,⊥,...,en 〉 ={red} ⊥

µ ⊥ ={red} ⊥

These are the minimal set of rules about strictness. From these are derived other laws about

strictness, e.g., the lawCase-Strict:

∀E. case ⊥ E = ⊥

The primitive rule{red} is used for both reduction and strictness properties. Note that

these rules for strictness are similar to the definition of reduction contexts (cf. Section 2.2).

It follows from these laws that reduction contexts are strict. Generally types have been

dropped for clarity, but the rules for type directed expansion give an example where the

types are essential:

∀x:a→b . x ={eta} v 7→ x v (v not free in x)
∀x:×〈t1,t2,...,tn 〉 . x ={eta} 〈x.1n, x.2n, ... , x.nn 〉
∀x:+〈t1,t2,...,tn 〉 . x ={eta} case 〈In.1n,In.2n,...,In.nn 〉 x

These allow for expansion or contraction of expressions based on their type. All three of

these rules will be referred to aseta. There is also theletrecrule:
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letrec f1=F1;f2=F2;...;fn=Fn; g1=G1;g2=G2;...;gm=Gm in M
={letrec}
letrec f1=F1;f2=F2;...;fn=Fn; 〈g1,g2,...,gm 〉=〈G1,G2,...,Gm 〉 in M

This rule allows for laws aboutletrec to be more general than they first appear. For

instance, note the lawInline-Bndg:

∀C,F,G. letrec f=F〈f,g〉; g=G〈f,{ f=F〈f,g〉 },g〉 in C〈f,g〉

It appears that this only applies when aletrec has exactly two bindings. But this law is

actually more general as it allows the inlining of a binding in aletrec with any number of

bindings. This is true because by usingletrec, theg binding can representall the bindings

except thef binding to be inlined. In most derivations theletrec is done implicitly when

applying these laws. I have not treated this rule as one of the key laws (or rules) aboutµ

because every instance of it can be derived usingFPF. See Appendix C for a derivation of

the lawLetrec-Equiv:

∀F,G1,G2.
letrec f=F〈f,g1,g2 〉;〈g1,g2 〉=〈G1 〈f,g1,g2 〉,G2 〈f,g1,g2 〉 〉 in 〈f,g1,g2 〉

=
letrec f=F〈f,g1,g2 〉; g1=G1 〈f,g1,g2 〉; g2=G2 〈f,g1,g2 〉 in 〈f,g1,g2 〉

This is letrec for the case whenn = 1 andm = 2. (Similar derivations could be done for

anyn andm.) So, theletrecrule does not add more expressiveness to PATH, it just makes

all the other rules aboutletrec more easily applied.

There are a few “rules” used in derivations which are not actual rules or laws in PATH

because they are effectively “no-ops”. For instance, there is{rename} which allows us to

change variable names, e.g.,

x 7→ F x ={rename} y 7→ F y
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and there is{SS} (Syntactic Sugar) which allows for conversion between syntactic repre-

sentations, e.g.,

let x=e in C x ={SS} (x 7→ C x) e

and there is also{def.v} which inlines the definition ofv from the PATH-L prelude.

These are effectively “no-ops” because in PATH none of these rules change the program:

programs equivalent up to renaming are considered equal, programs equivalent up to syn-

tactic sugar are considered equal6, and prelude variables are treated as equivalent to their

definitions, so there is no need to inline prelude variables. In addition, programs equivalent

up to re-ordering of bindings in aletrec are considered equal.

5.5 Primitive Laws

Besides the primitive rules just described, PATH has five primitive laws. I.e., the rule

catalog starts out with these laws. These arelaws: they can be expressed in the PATH logic

but cannot be derived from the primitive rules. Before describing these laws, I will explain

a notation used in some of these laws; the notation〈i C[i]〉 represents an n-tuple, the

meaning of which is as follows:

〈i C[i]〉 = 〈C[1n],C[2n],...,C[nn]〉

The reader could view n-tuples as meta-notation but in fact it will be shown in Chapter 8

how n-tuples can be a standard construct in the language. The law,Inst (Instantiation),

∀F,H,X.
H ⊥ = ⊥
⇒
H(case 〈i y 7→ F.i y〉 X) = case 〈i y 7→ H(F.i y)〉 X

6The various syntactic equivalences are listed in Appendix B.
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is used to move a strict function (H⊥=⊥) into the branches of acase. This is a useful law

which happens to be the free theorem [82] forcase. A rule similar toInst is also part of

both fold/unfold and expression procedures but is only used left-to-right in those systems.

Although I focused on the lawsFPF andFPE in Chapter 4, they are not primitive laws

in PATH. The two primitive laws of PATH for reasoning aboutµ are FPI (Fixed Point

Induction) andFPD (Fixed Point Duplication). TheFPI law

∀C,D,F,G.
C ⊥ = D ⊥

; ∀x,y . {C x = D y} ⇒ {C(F x) = D(G y)}
⇒
C(µF) = D(µG)

gives us a form of fixed point induction, or Scott induction, for PATH (thus the name).FPI

can be proved by fixed point induction with the predicateP(x,y) = Cx = Dy. This law,

like FPF, is a free theorem forµ (FPF is the free theorem forµ generated from a binary

relation,FPI is the free theorem generated from a ternary relation).FPI is more general

thanFPF: it can prove two programs equivalent even when the recursion does not appear

in a strict context (FPF is basicallyFPI with D instantiated toid). The second primitive

law for µ is FPD,

∀F,G.
letrec f=F〈f,g〉; g=G〈f,g〉 in f

=
letrec f=(letrec g=G〈f,g〉 in F〈f,g〉) in f

which allows for mutual recursion to be expressed as two fixed points [10, 51, 87]. This is

also known as Bekic’s Theorem, proofs can be found in Bekic [10] and Winskel [87].

There is a law for induction on lists,List-Induct,

∀ C : List a → b, D : List a → b, xs : List a.
C ⊥ = D ⊥

; C Nil = D Nil
; ∀x,xs. C xs = D xs ⇒ C( Cons〈x,xs〉 ) = D( Cons〈x,xs〉 )
⇒
C xs = D xs
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and a law for eta expansion of n-tuples,N-Tuple-Eta:

∀x:×a . x = 〈i x.i〉

The reader may refer to Appendix B for a listing of all the primitive rules and laws. No

mention has been made of laws for the primitive functions as they are of little theoretical

interest. However, a practical transformation system needs a large number of laws about

the primitive functions (e.g., associativity of integer addition).
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Chapter 6

The PATH User Interface

In the previous chapter I discussed the PATH logic; in this chapter I hope to demonstrate

its aptness for displaying and manipulating derivations.

One could type in the derivation of FPF (as written in Figure 5.3) and ask PATH to verify it;

PATH will either print the law which it proves (in this caseFPF) or return an error message

stating where it is wrong. As useful as this may be, we would rather construct a proof

which is guaranteed to be valid. This chapter describes the user interface to PATH which

helps the user to create valid proofs.

6.1 The User Interface—Overview

The PATH user interface is implemented inside of the Emacs text editor using various

Emacs Lisp functions and an external Haskell program. The user chooses functions to

be performed or a law to be applied using a pop-up menu. Emacs, via Lisp functions,

annotates the derivation and invokes a Haskell program that processes the annotation and

returns a new derivation.

91
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The Haskell program that does the bulk of the work has three main entry points, each one

inputs a derivation:

get-formula Outputs the formula that the derivation derives or outputs an error mes-

sage if it is not a valid derivation.

simplify Removes conjectures as follows: if any conjecture in the derivation can be

satisfied by a primitive rule or by a premise, the premise is replaced with the

corresponding rule.

meta-eval Processes an annotated derivation and applies the indicated rule, law, or

meta-program to the selected sub-derivation.

The PATH user interface is just an Emacs mode in which certain functions and menus are

enabled; this mode knows nothing of the syntax of derivations. The user works by selecting

sub-derivations and choosing functions from menus. The user selects sub-derivations or

expressions by moving the cursor to the end of the desired expression1.

The functions available to the user via Emacs menus are the following:

get-formula Displays the formula derived by the derivation in a second window.

simplify Simplifies the derivation as described above. This is rarely used as all

other functions that change the derivation automatically callsimplify .

apply-rule Applies one of the primitive rules (red, eta, R eta) to the selection.

apply-law Applies a law from the rule catalog (Inst, FPF, FPI, FPD, ...) to the

selection.

apply-premise Applies a premise from the derivation to the selection.

1This could require inserting parentheses when the desired expression is inside a larger expression; but in
most cases, just a single mouse click is needed to select a region.
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apply-mp Applies one of three meta-programs (norm, eval, eval’) to the selection.

(These meta-programs are described in Section 6.3.)

meta-eval Applies the Haskellmeta-evalfunction to the annotated derivation. This

requires that the user inserts the annotations by hand. This is needed at times,

particularly when theR redrule is applied (the new program must be entered).

meta-eval-no-simplify Calls meta-eval but does not simplify the derivation.

The next section provides further details by showing how to create a derivation using PATH.

6.2 Deriving FPF using PATH

Here I will show how we can create the derivation ofFPF in Figure 5.3. We enter the trivial

derivation in Figure 6.1 as a starting point. To ensure that no errors have been made in the

entry of this derivation, we pressget-formula and PATH displays in a separate window

the law that this derivation derives:

∀C,F,G.
[ {C ⊥ = ⊥}
; ∀x. {C (F x) = G (C x)}
] ⇒
C (µF)

This might look odd because there is a program, not an equality, in the consequent. How-

ever, this is correct because an expression context without any{p1=p2} holes is also a

valid expression equivalence:C(µF) just corresponds to the equalityC(µF)=C(µF). Note

that the law is virtually identical to the derivation at this point. The next step is to move

the cursor to the end of expressionC(µF) (i.e., selecting it) and picksFPI (from a pop-up

menu) which results in the derivation in Figure 6.2. (In this sequence of figures underlines

will represent the selected expression; the boxed text represents the action applied to the
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selection; and the character ’+’ will mark the lines in the subsequent derivation that were

changed or new as a result of the last operation.)

PATH has successfully matched againstFPI and applied this law to the program, giving

us the programx(µy). It has filled in the instantiation〈C,x,F,y〉 and given us templates

for all sub-derivations required forFPI. If necessary, PATH changes the names of variables

(quantified, let, or lambda bound) to avoid variable conflict problems.

PATH must return a valid derivation, one with the result of the application in the program;

but since the result of applyingFPI is not known, PATH has created two unknown variables,

x andy, and brought them into the derivation using theulet (unknown let) construct, which

is a placeholder for an unknown value. These unknowns will be either filled in by the user

or filled in by PATH automatically. Note the={?} in the templates for the sub-derivations,

this kind of derivation step is called a conjecture and acts as a placeholder for an unfinished

derivation.

Now at this point, the derivation is syntactically correct, but it is not valid (in the sense

that it derives a law) due to the presence of conjectures and unknowns, so if we press

get-formula, we get

Error: bad step:
C ⊥ ={?} x ⊥

conjecture present

We know whatx should be—it should be the empty context—but sinceFPI expects a

function here, we can use the identity function, “z7→z”. So, we fill in the value, giving the

derivation in Figure 6.3. Theulet was changed into anmlet, anmlet (for meta-let) is like

a let but it exists only in the program derivation, not in the program. The program being

transformed is the program with allmlet’s expanded out. Thus, we cannot inline a variable
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bound bymlet, it is the value bound bymlet. We have specifiedx, but we do not need to

know the value ofy before proceeding, we will determiney as we go2.

Sincex is known, we see two opportunities for simplification, we reduce the applications

of x: select “x(µy)” and pressnormalize then select “x⊥” and pressnormalize. These

actions result in the derivation in Figure 6.4.

Applying normalize to “x⊥” caused the derivation to go “backward” (i.e., right to left). A

rule can be applied to any “apply point.” An apply point is a point in one of the following

four regions: the start of the derivation, the end of the derivation, the right of a conjecture,

and the left of a conjecture. When a rule is applied to the start of the derivation or the

right of a conjecture, the rule is applied and then reversed. Thus, the user can work from

whatever direction is easiest, not necessarily from left to right.

The normalize function invokes a built-in PATH meta-program3: it applies the rulered as

many times as possible (even under lambdas, but it does not reduceµ redexes).

After “x⊥” was replaced by “⊥ ={R red}x⊥”, PATH detected that the conjecture “C ⊥

={?} ⊥” was satisfied by the premise labeledP1 and changed the conjecture toP1. Any

conjecture that can be replaced by a premise or primitive rule is automatically removed.

So, the first premise ofFPI is satisfied, let’s turn our focus to the second conjecture. The

“C(F a)” matches the left hand side of premiseP2, so we select it and pressP2 , giving

the derivation in Figure 6.5.

Now we see an opportunity to apply the premiseP3, so with two mouse clicks we have

the derivation in Figure 6.6. Just as program equalities can be nested inside expressions, so

also program derivations can be nested inside expressions. Note how this is used: above the

2In this case we know whaty should be, but often one does not know the program one is aiming for. I
will leavey unspecified for illustrative purposes.

3A meta-program here being a program (implemented in Haskell) that takes a derivation and transforms
it into another derivation.
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∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
] ⇒
C(µF) FPI

Figure 6.1: DerivingFPF (1)

conjecture, we have G{ C a ={P3} x b}, the “right side” of this derivation corresponds to

the program “G(x b)”, so, what we are left to prove is “G(x b)=x(y b)”. We immediately see

two opportunities for reductions (applying x). Doing that we get the derivation in Figure

6.7.

Now we are left with the conjecture “G b={?}y b”, and it is easy to see what we need to

do: we give the unknown y the value G and presssimplify (simplify is done automatically

after other actions: it replaces conjectures with applicable rules) and we get the complete

derivation forFPF in Figure 6.8. To confirm this we pressget-formula, giving

∀C,F,G.
[ {C ⊥ = ⊥}
; ∀x. {C (F x) = G (C x)}
] ⇒
{C (µF) = µG}

Note that themlet’s have disappeared. One thing to note about this derivation is that after

the initial derivation was entered virtually no text was entered (just the text “z7→z” and the

text “G”). Many derivations require little textual entry but others require more.

6.3 Meta-programs in PATH

Although it is a user-directed system, PATH should still automate as much of the tedious

work of program transformation as possible. This is done primarily through the use of
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∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
] ⇒

+ ulet y = ? in
+ ulet x = ? in edit

{ C (µF)
+ ={FPI 〈C,x,F,y〉
+ [ { C ⊥ ={?} x ⊥ }
+ ; ∀a,b.
+ [P3: {C a = x b}] ⇒
+ { C (F a) ={?} x (y b) }
+ ]}
+ x (µy)
+ }

Figure 6.2: DerivingFPF (2)

∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
] ⇒
ulet y = ? in

+ mlet x = z 7→ z in
{ C (µF)
={FPI 〈C,x,F,y〉

[ { C ⊥ ={?} x ⊥ } normalize
; ∀a,b.

[P3: {C a = x b}] ⇒
{ C (F a) ={?} x (y b) }

]}
x (µy) normalize

}

Figure 6.3: DerivingFPF (3)
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∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
] ⇒
ulet y = ? in
mlet x = z 7→ z in
{ C (µF)
={FPI 〈C,x,F,y〉

+ [ { C ⊥ ={P1} ⊥ ={R red} x ⊥ }
; ∀a,b.

[P3: {C a = x b}] ⇒
{ C (F a) ={?} x (y b) } P2

]}
x (µy)

+ ={red}
+ µy

}

Figure 6.4: DerivingFPF (4)

∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
] ⇒
ulet y = ? in
mlet x = z 7→ z in
{ C (µF)
={FPI 〈C,x,F,y〉
[ { C ⊥ ={P1} ⊥ ={R red} x ⊥ }
; ∀a,b.

[P3: {C a = x b}] ⇒
+ { C (F a) ={P2 〈a〉} G (C a) ={?} x (y b) } P3

]}
x (µy)

={red}
µy

}

Figure 6.5: DerivingFPF (5)
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∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
] ⇒
ulet y = ? in
mlet x = z 7→ z in
{ C (µF)
={FPI 〈C,x,F,y〉

[ { C ⊥ ={P1} ⊥ ={R red} x ⊥ }
; ∀a,b.

[P3: {C a = x b}] ⇒
{ C (F a)
={P2 〈a〉}

+ G { C a ={P3} x b } red
={?}
x (y b) red

}
]}
x (µy)

={red}
µy

}

Figure 6.6: DerivingFPF (6)
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∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
] ⇒
ulet y = ? in edit simplify
mlet x = z 7→ z in
{ C (µF)
={FPI 〈C,x,F,y〉
[ { C ⊥ ={P1} ⊥ ={R red} x ⊥ }
; ∀a,b.

[P3: {C a = x b}] ⇒
{ C (F a)
={P2 〈a〉}

+ G { C a ={P3} x b ={red} b }
={?}

+ y b
+ ={R red}

x (y b)
}

]}
x (µy)

={red}
µy

}

Figure 6.7: DerivingFPF (7)
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∀C,F,G.
[ P1: {C ⊥ = ⊥}
; P2: ∀x. {C (F x) = G (C x)}
] ⇒

+ mlet y = G in
mlet x = z 7→ z in
{ C (µF)
={FPI 〈C,x,F,y〉

[ { C ⊥ ={P1} ⊥ ={R red} x ⊥ }
; ∀a,b.

[P3: {C a = x b}] ⇒
{ C (F a)
={P2 〈a〉}
G { C a ={P3} x b ={red} b }

={R red}
x (y b)

}
]}
x (µy)

={red}
µy

}

Figure 6.8: DerivingFPF (8)

meta-programs (a meta-program is a built-in program that applies multiple rules to a deriva-

tion based on some strategy). PATH currently has three built-in meta-programs:normalize,

eval, andeval’. These meta-programs can be applied to any selection in the derivation.

Normalizeapplies the ruleredas many times as possible with a leftmost-outermost strategy

until no more redexes are left. It performs reductions even under lambdas. In order to avoid

non-termination when applied to programs withµ, it does not reduceµ redexes.

The second meta-program iseval: it appliesredat reduction contexts until a canonical form

is reached. Unlike the standard evaluator, it need not be applied to a closed expression but

it allows for free variables in the term it is applied to. The third meta-program,eval’, is a

variant ofeval that stops after a set number of steps (this keeps PATH from going into an

infinite loop when the user tries to evaluate a non-terminating program). Usingeval, PATH

can be used as a simple evaluator. E.g., if we applyevalto this program
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plus (succ (succ 3)) (succ 5)

we get the following derivation:

{ plus { succ (succ 3)
={red}

plus 1 { succ 3 ={red} plus 1 3 ={red} 4 }
={red}

5
} { succ 5 ={red} plus 1 5 ={red} 6 }

={red}
11

}

The resulting derivation gives us a complete execution trace of the evaluation. Viewing

such a trace can be useful in understanding the order of evaluation in PATH-L. In the next

version of PATH I plan to allow for selective displaying and hiding of parts of the program

or of the derivation. Together with theeval meta-program, this would allow PATH to be

used as an effective debugger for functional languages: we applyevalbut only display the

final result, then the user can explore whatever parts of the execution trace he chooses.

Although these three meta-programs have been found extremely useful, it would certainly

be useful to allow for others. It is planned to allow the user to specify meta-programs

by providing a set of laws (laws without premises) which will be applied with a left-most

outermost strategy until none can be applied to the program. A further extension would be

to allow the user to write their own strategies.

6.4 Dealing with Changes in Specifications

What does the user do when the program changes after we have already transformed it? It

is not to be expected that the old derivation will automatically work on the new program.
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But it might be hoped that small changes in the program will result in small changes to the

derivation. With the approach where the derivation is stored as a script of commands, the

best we can do is replay the script until it breaks and then continue by hand from there;

trying to figure out how and when the original script can be re-used is very difficult. In the

PATH approach, there seems to be more promise of reusing derivations because derivations

are displayable and manipulable.

Here is an example that gives a sketch of how one might proceed when the original program

(or specification) changes. Let’s assume a program derivation starts as follows

{
〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs〉

={R red}
{ xs 7→ 〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs〉
= {Cata-Merge-2}
cata 〈 〈y,z〉 7→ 〈f1 〈y,z.1〉, f2 〈y,z.2〉 〉, 〈b1,b2 〉 〉

} xs
=
...

}

and that the initial program is changed to be the following program:

〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs, cata〈f3,b3 〉 xs〉

What we can do is add this new program to the top of the derivation using a conjecture,

giving this derivation:

{
〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs, cata〈f3,b3 〉 xs〉

={?}
〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs〉

={R red}
{ xs 7→ 〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs〉
={Cata-Merge-2}
cata 〈 〈y,z〉 7→ 〈f1 〈y,z.1〉, f2 〈y,z.2〉 〉, 〈b1,b2 〉 〉

} xs
=
...

}
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The objective is to remove the conjecture. We first “push” the conjecture through the first

{R red} step giving the new derivation:

{
〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs, cata〈f3,b3 〉 xs〉

={R red}
{ xs 7→ 〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs, cata〈f3,b3 〉 xs〉
={?}
(xs 7→ 〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs〉

={Cata-Merge-2}
cata 〈 〈y,z〉 7→ 〈f1 〈y,z.1〉, f2 〈y,z.2〉 〉, 〈b1,b2 〉 〉

} xs
=
...

}

Now we see that we cannot push the conjecture through the{Cata-Merge-2} unlessCata-

Merge-2could be applied to the expression above the conjecture. SinceCata-Merge-2

merges a 2-tuple ofcata applies, we need to generalizeCata-Merge-2to Cata-Merge-N4,

which merges an n-tuple ofcata applies. If we do this generalization and apply the more

general law, we get the following derivation

{
〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs, cata〈f3,b3 〉 xs〉

={R red}
{ xs 7→ 〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs, cata〈f3,b3 〉 xs〉
={?}
(xs 7→ 〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs〉

={Cata-Merge-N}
cata 〈 〈y,z〉 7→ 〈f1 〈y,z.1〉, f2 〈y,z.2〉 〉, 〈b1,b2 〉 〉

} xs
=
...

}

where nothing has changed except the rule name, but we have a more general derivation.

Now we can push the conjecture through the{Cata-Merge-N} step giving this derivation:

4See Cata-Merge in Appendix C.
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{
〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs, cata〈f3,b3 〉 xs〉

={R red}
{ xs 7→ 〈cata〈f1,b1 〉 xs, cata〈f2,b2 〉 xs, cata〈f3,b3 〉 xs〉
={Cata-Merge-N}
cata 〈 〈y,z〉 7→ 〈i f1 〈y,z.1〉, f2 〈y,z.2〉, f3 〈y,z.3〉 〉

, 〈b1,b2,b3 〉
〉

} xs
={?}

...
}

Modifying the derivation proceeds until we have removed all conjectures. If the next step

in the derivation does not depend on the structure of the argument tocata, then pushing

the conjecture through that step is trivial. So, we don’t necessarily have to modify the

complete derivation. There is no guarantee how easy it will be to completely develop a new

derivation, but at least there is a chance to re-use a large portion of the original derivation.

6.5 The Advantages of Manipulable Derivations

In Section 1.3.4, it was mentioned that previous transformation systems allow the user

to view the current state of the transformed program but the derivation itself is hidden

from the user, possibly stored as a script of commands. Hopefully some of the advantages

of manipulatingderivations, not programs, can seen from the above examples. Here the

advantages will be elucidated.

Derivations are more robust.

Having manipulable derivations makes PATH more robust in the face of changing specifi-

cations: As seen in Section 6.4, having a derivation that we can see and change allows us

to modify it to work on a new specification.
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Many aspects become visible.

Besides the fact that the derivation itself becomes visible, many things are now visible to

the user which otherwise would not be:

• All the valid premises are kept in view.

• All unfinished derivations are kept in view.

• The goal of the transformation is kept in view.

Derivations can be developed non-linearly.

The user is no longer stuck developing derivations linearly, from left-to-right, but has far

more freedom to explore and to transform in any order desired:

• One can transform either left to right or right to left.

• One can transform in the presence of unknown variables.

• An exploratory style is easily accommodated: if it is seen that the application of a

law is not working (i.e., its premises cannot be derived), it is trivial to know exactly

where to “back up” to: we just delete the application (and all its sub-derivations).

For example, another approach one could take to the derivation in Section 6.2 would have

been to start with the derivation

∀C,F,G.
[P1: {C ⊥ = ⊥};
P2: ∀x. {C (F x) = G (C x)}]
⇒
C(µF)

={?}
µG



6.6. CONCLUSION 107

applyFPI, fill in the unknowns with “z7→z” andG, and then work from both sides in. The

original approach was taken to illustrate the typical case in which the goal is unknown.

One can load a program into PATH5 and start transforming it: if the transformation is

stuck at some point, one could just add a conjecture there and continue. One could later

come back to the conjecture and prove it; or maybe one may want to add a premise to the

derivation which corresponds to this conjecture. The point is that one can derive programs

in any order one wants.

6.6 Conclusion

I hope this chapter has given some evidence that the PATH logic does indeed lend itself to

the graphical display and editing of program derivations. There are numerous directions in

which the work described here could be improved upon:

• Programs that Transform Derivations

– A more sophisticated proof search would be desirable: PATH should replace

{?} with valid proofs when possible or indicate that no proof is possible when

that can be determined.

• Meta-programs

– User-defined meta-programs could be added to PATH.

– An extension of the PATH logic which would make derivations more robust is

to allow not just for the application of rules in derivations but the application of

5Note: a program is just a special case of a derivation, one in which there are no quantifiers, no premises,
and no rule applications.
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meta-programs (i.e., instead of the meta-program being executed statically to

create a derivation, it would be executed dynamically—whenever the program

changes to which it is applied).

• User Interface. PATH could be extended to take more advantage of a visual interface

to derivations:

– Selectively display and hide parts of the program or derivation.

– Control the layout of the derivation.

– Navigate the program in a manner similar to an outline editor.

– Give visual feedback when and where laws would be applicable.



Chapter 7

Applications of PATH

This chapter gives some examples of the derivations possible in the PATH system.

7.1 Filter-Iterate

An example from Sands [66], used to demonstrate expression procedures, is theFilter-

Iterate law:

p 7→ f 7→ x 7→ filter p (iterate f x)
=

µg 7→ p 7→ f 7→ x 7→ if p x
then Cons〈x, g p f (f x)〉
else g p f (f x)

It can be derived simply using one application ofFPF, see Figure 7.1. This is the most com-

mon method of transformation (and of usingFPF): we have a recursive function (iterate

here) and some context in which to specialize it; by specializing it, we hope to create a

single recursive definition which performs fewer steps. The strictness condition is handled

primarily by a series of reductions. The main premise ofFPF is accomplished also by

109
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p 7→ f 7→ x 7→ filter p (iterate f x)
= {FPF

p 7→ f 7→ x 7→ filter p (⊥ f x) =
= {red*}

p 7→ f 7→ x 7→ ⊥
= {R Func-Bot,R Func-Bot,R Func-Bot}
⊥

;
∀iterate.

p 7→ f 7→ x 7→ filter p ((f 7→ x 7→ Cons〈x, iterate f (f x)〉) f x)
= {red}

p 7→ f 7→ x 7→ filter p (Cons〈x, iterate f (f x)〉)
= {red*}

p 7→ f 7→ x 7→ if p x
then Cons〈x,filter p (iterate f (f x))〉
else filter p (iterate f (f x))

= {R red}
p 7→ f 7→ x 7→ if p x

then Cons〈x,(p 7→ f 7→ x 7→ filter p (iterate f x)) p f (f x)〉
else (p 7→ f 7→ x 7→ filter p (iterate f x)) p f (f x)

}
µg 7→ p 7→ f 7→ x 7→ if p x

then Cons〈x, g p f (f x)〉
else g p f (f x)

Figure 7.1: Derivation ofFilter-Iterate
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a series of reductions until we see two instances of the original “filter p (iterate f

x)”. So, we need to abstract, {R red}, in order to get the exact context we need. The end

result of this transformation is that we have performed deforestation: the intermediate list

which was generated by iterate has disappeared.

There is a certain convention used whenever possible in PATH: All rules and laws are

written so that the right hand side is more efficient than the left hand side. This makes it

easier to remember which direction to apply a law. Also, as a result of this, proofs are most

easily achieved left to right (or top down): if the law is making a program more efficient,

then the derivation will most likely have more reduction steps than reverse reduction steps;

the former are easier to do than the latter as reverse reduction steps require user input (many

terms may reduce to a particular term).

7.2 Map-Iterate

Here is a law,Map-Iterate, that has been used as an example of the usefulness of co-

inductive proofs [63, 26]:

∀f,x. map f (iterate f x) = iterate f (f x)

Here it can be derived simply with just two applications ofFPF, the second in the reverse

direction: see Figure 7.2. The whole derivation is bracketed by an abstraction overx and an

application tox. This is required to create a context “x7→map f ([] f x)” which would

be sufficiently general enough (we do not want to specialize wherex is constant, we want

a function where it is a parameter) In both applications ofFPF, the whole derivation pro-

ceeded by reductions except for one step in which we need to give PATH some assistance by

entering a Reverse reduction step. It is often difficult to work through a reverse application

of FPF, but in performing this derivation, we started with the incomplete derivation
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∀f,x.
map f (iterate f x)

= {R red}
(x 7→ map f (iterate f x)) x

= {FPF
x 7→ map f (⊥ f x) ={red*} ⊥

;
∀iterate.

x 7→ map f ((f 7→ x 7→ Cons〈x, iterate f (f x)〉) f x)
= {red}
x 7→ map f (Cons〈x, iterate f (f x)〉)

= {red}
x 7→ Cons〈f x, map f (iterate f (f x))〉

= {R red}
x 7→ Cons〈f x, (x 7→ map f (iterate f x)) (f x)〉

}
(µ g 7→ x 7→ Cons〈f x, g (f x)〉) x

= {R FPF
x 7→⊥ f (f x) ={red*} ⊥

;
∀iterate.

x 7→ (f 7→ x 7→ Cons〈x, iterate f (f x)〉 ) f (f x)
= {red}
x 7→ Cons〈f x, iterate f (f (f x))〉

= {R red}
x 7→ Cons〈f x, (x 7→ iterate f (f x)) (f x)〉

}
(x 7→ iterate f (f x)) x

= {red}
iterate f (f x)

Figure 7.2: Derivation ofMap-Iterate
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∀f,x.
map f (iterate f x)

= {?}
iterate f (f x)

and then appliedFPF directly to the top program and the bottom program and attempted

(successfully) to derive a common program in the middle.

7.3 Tupling

Here is the standard, two pass, program to compute the average of a list (sum andlength

defined in the prelude):

ys7→divide〈sum ys, length ys〉

Let’s derive a program which computes this result in one traversal of the list. The first thing

to do is expose the function which returns the sum and length of the list. This is done with

the following two transformation steps:

ys 7→ divide〈sum ys, length ys〉
= {R red}
ys 7→ let 〈s,l〉 = 〈sum ys, length ys〉 in divide〈s,l〉

= {R red}
ys 7→ let 〈s,l〉 = (ys 7→ 〈sum ys, length ys〉) ys in divide〈s,l〉

Now the function which we want to transform into a one-pass recursive function has been

exposed:

ys7→〈sum ys, length ys〉

FPF is not directly applicable to this program because neithersum norlength is in a strict

context1. However, the context in whichbothof these recursive functions occurs is strict:

1Thus, it appears that expression procedures cannot do this derivation because it requires a strict context
and can only specialize one function at a time.
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ys 7→ 〈⊥ ys, ⊥ ys〉
= {red,red}
ys 7→ 〈⊥, ⊥〉

= {R Prod-Bot}
ys 7→ ⊥

= {R Func-Bot}
⊥

So, if we could merge these two recursive calls into one function then we could applyFPF.

This strategy is encapsulated in theFPF-N law (refer to its derivation in Appendix C):

∀C,F,G.
C ⊥ = ⊥

; ∀x . C〈i F.i x.i〉 = G(C x)
⇒
C〈i µ(F.i)〉 = µG

Or to instantiate this general form to the case of a 2-tuple:

∀C,F1,F2,G.
C ⊥ = ⊥

; ∀x1,x2. C〈F1 x1, F2 x2 〉 = G(C〈x1,x2 〉)
⇒
C〈µ F1, µ F2 〉 = µG

So now we can use this law,FPF2, to achieve tupling: see Figure 7.3. The key step is the

application of theAbideslaw which converts a tuple ofcase’s into a singlecase. This

strategy of combining results together to eliminate multiple traversals is called (unsurpris-

ingly) “tupling” [37].

7.4 Mix

The lawMix (here theletrec version)

∀F,M.
letrec f = F〈_ f〉 in 〈_ f〉

=
letrec f.i = F〈j f.(M.i.j)〉 in f
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ys 7→ 〈sum ys, length ys〉
=
{FPF-2
ys 7→ 〈⊥ ys, ⊥ ys〉 ={...} ⊥

;
∀sum,length.

ys 7→ 〈case 〈Nil: 0, Cons〈x,xs〉: x + sum xs〉 ys
,case 〈Nil: 0, Cons〈x,xs〉: 1 + length xs〉 ys〉

= {R Abides}
ys 7→ case 〈Nil: 〈0,0〉

,Cons〈x,xs〉: 〈x + sum xs, 1 + length xs〉
〉 ys

= {R eta}
case 〈Nil: 〈0,0〉

,Cons〈x,xs〉: 〈x + sum xs, 1 + length xs〉
〉

= {R red}
case 〈Nil: 〈0,0〉

,Cons〈x,xs〉: let 〈s,l〉 = 〈sum xs, length xs〉
in 〈x + s, 1 + l〉

〉
= {R red}

case 〈Nil: 〈0,0〉
,Cons〈x,xs〉: let 〈s,l〉 = (ys 7→ 〈sum ys,length ys〉) xs

in 〈x + s, 1 + l〉
〉

}
µsumlen 7→ case 〈Nil: 〈0,0〉

,Cons〈x,xs〉: let 〈s,l〉 = sumlen xs in 〈x+s,1+l〉
〉

Figure 7.3: Tupling Derivation
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can be a bit difficult to understand; viewed from the right to left perspective, this law

allows for the coalescing of multiple recursive definitions which are identical up to names

of functions . As an example, refer to the following derivation which usesMix-Letrec, a

law derived fromMix:

letrec f = F〈f,f,f〉 in f
= {Mix-Letrec}
letrec 〈f1,f2 〉.i = F〈j 〈f1,f2 〉.(M.i.j)〉 in 〈f1,f2 〉.j

= {letrec}
letrec f1 = F〈j 〈f1,f2 〉.(M.1.j)〉

; f2 = F〈j 〈f1,f2 〉.(M.2.j)〉
in 〈f1,f2 〉.j

= {eta,eta}
letrec f1 = F〈 〈f1,f2 〉.(M.1.1),〈f1,f2 〉.(M.1.2),〈f1,f2 〉.(M.1.3)〉

; f2 = F〈 〈f1,f2 〉.(M.2.1),〈f1,f2 〉.(M.2.2),〈f1,f2 〉.(M.2.3)〉
in 〈f1,f2 〉.j

We start with a recursive definition off in the first line, in the last line we have two mutually

recursive functions.M could be any two dimensional matrix containing the projections

{12,22} and j can be any projection. So, by choosing the appropriate value ofM, we

can choose betweenf1 andf2 in each of the arguments toF. So, for example, we could

instantiateM andj in order to derive the following law:

letrec f = F〈f,f,f〉 in f
=
letrec f1 = F〈f1,f2,f2 〉

; f2 = F〈f2,f2,f1 〉
in f1

The lawMix is as expressive as Ariola and Blom’s "copy" rule [1]. They need additional

meta-notation and meta-concepts to express the rule, but here we have a simple rule, written

without meta-notation. However, I do require n-tuples used in full generality. The non-

letrec version ofMix is

∀F,M. 〈_ µf 7→ F〈_ f〉 〉 = µf 7→ 〈i F〈j f.(M.i.j)〉 〉
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and its derivation is one of the shortest in this dissertation:

∀F,M.
〈i µf 7→ F〈j f〉 〉

= {FPF
〈i ⊥〉

= {R Prod-Bot}
⊥

;
∀f.
〈i F〈j f〉 〉

= {R red}
〈i F〈j 〈i f〉.(M.i.j)〉 〉

}
µf 7→ 〈i F〈j f.(M.i.j)〉 〉

7.5 Assertions

In his thesis [69] Scherlis noted that expression procedures allow us to specialize recursive

functions in a syntactic context, but do not allow us to specialize functions based on non-

syntactic information. For instance, expression procedures can specializef in the syntactic

context “f x 0” but cannot take advantage of “x > y” in the specialization of “f x y”.

To take advantage of the non-syntactic information available, Scherlis extended his system

to support “qualified expression procedures.” A qualified expression procedure looks like

this

{p} e1 =ep= e2

in whichp is a boolean valued expression similar to a pre-condition. In the transformation

of the definition, we can assumep is true; the qualified expression procedure may only be

applied where the qualifier is true.

Due to the non-strict semantics of PATH-L and the schematic approach to expression pro-

cedures, we can achieve the power of qualified expression procedures without adding ad
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Introducing/Eliminating Assertions

e = assert True e

if p then {a = assert p a} else b

if p then a else {b = assert (not p) b}

Manipulating Assertions

assert(if p then p2 else p3)
{if p then a else b = if p then assert p2 a else assert p3 b}

C ⊥ = ⊥ ⇒ assert p (C e) = C(assert p e)

assert p (assert q e) = assert q (assert p e)

Using Assertions

assert (e1 e2) C{e1 = e2}

assert p (C{ if p then a else b = a })

assert p (C{ if not p then a else b = b })

Figure 7.4: Laws Regardingassert

hoc constructs to the language or adding additional primitive laws. We define anassert

function as follows:

assert p e = if p then e else ⊥

With assert and some simple laws we can derive about it, we get the power of qualified

expression procedures. We can changee to “assert p e” where we know p is true and

where we have “assert p e”, we can transforme with the knowledge thatp is true. Since

the context “assert p []” is strict, we can specialize function calls in this context. Some

easily proved laws regarding assertions are in Figure 7.4.

Let the functioncheck be defined thus:

check p x = assert (p x) x
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The lawPreconditionallows us to prove and use invariant properties of recursive functions:

∀F,F’,P.
P ⊥ = ⊥

; ∀f. {F f = F’ f} ◦ check P
; ∀f. F {f = f ◦ check P} ◦ check P
⇒
{µF = µF’} ◦ check P

The invariant is the (strict) predicateP. What this law is saying is this: if the invariant allows

us to transform “F f” into “ F’ f”, and if the invariant is preserved across all recursive calls,

then we can transformµF to µF’ in contexts where the invariant is satisfied.

7.6 Conclusion

A number of the laws proved in PATH are listed in Figures 7.5 and 7.6. Derivations of these

and other laws can be found in Appendix C. One derivation particularly worth noting is

FPF-Partial. In its derivation a bit of insight is required to determine the context in which

one ought to specialize.

As all the derivations presented in this chapter and in the Appendix fit on one page or less,

does this imply that PATH will not scale? No. There is no reason to expect that PATH

cannot do derivations of arbitrary length. However, one of the goals of PATH is to make

derivations short: thus, we have laws that are very generic and laws which we can prove

once and reuse multiple times. Just as functional programming languages scale to large

programs even though most functions are small, I expect PATH to scale to large programs

with most derivations being small (contingent of course on the user writing modular deriva-

tions).
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Cata-Merge:

∀F,B. xs 7→ 〈i cata 〈F.i,B.i〉 xs〉 = cata 〈 〈y,z〉 7→ 〈i F.i 〈y,z.i〉 〉, B〉

FPE:

∀F. µf 7→ F〈f,f〉 = µf 7→ F〈f,F〈f,f〉 〉

FPF-Ext:

∀C,F,G,H.
C ⊥ = ⊥

; ∀f. letrec g=G〈f,g,C f〉 in { C(F〈f,g〉) = H〈f,g,C f〉 }
⇒
letrec f=F〈f,g〉; g=G〈f,g,C f〉 in 〈f,g〉

= letrec f=F〈f,g〉; g=G〈f,g,h〉; h=H〈f,g,h〉 in 〈f,g〉

FPF-N:

∀C,F,G.
C ⊥ = ⊥

; ∀x . C〈i F.i x.i〉 = G(C x)
⇒
C〈i µ(F.i)〉 = µG

FPF-Partial:

∀C,F,G.
C ⊥ = ⊥

; ∀f. C(F〈f,C f〉) = G〈f,C f〉
⇒
C(letrec f=F〈f,C f〉 in f) = letrec f=F〈f,g〉; g=G〈f,g〉 in g

Inline-Self:

∀C,F,G. letrec f=F〈f,{ f=F〈f,f,g〉 },g〉; g=G〈f,g〉 in C〈f,g〉

Lambda-Mu-Switch:

∀F. µf 7→ x 7→ F〈f x,x〉 = x 7→ µf 7→ F〈f,x〉

Figure 7.5: Laws from the PATH Catalog
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Letrec-Equiv:

∀F,G1,G2.
letrec f=F〈f,g1,g2 〉;〈g1,g2 〉=〈G1 〈f,g1,g2 〉,G2 〈f,g1,g2 〉 〉 in 〈f,g1,g2 〉

=
letrec f=F〈f,g1,g2 〉; g1=G1 〈f,g1,g2 〉; g2=G2 〈f,g1,g2 〉 in 〈f,g1,g2 〉

Letrec-Exp:

∀F,G,C.
letrec f=F〈f,g〉; g=G〈f ,f,g〉 in 〈f,g〉

=
letrec f=F〈f,g〉; g=G〈letrec f=F〈f,g〉 in f,f,g〉 in 〈f,g〉

Partial-Mu-Reduce:

∀F,G. µ(F ◦ G) = F(µ(G ◦ F))

Split:

∀F. µx 7→ 〈i F.i x.i〉 = 〈i µ F.i〉

Trivial-Fusion:

∀F,H,I.
H ⊥ = ⊥

; ∀x. I(H x) = x
⇒
H(µF) = µg 7→ H(F(I g))

Tuple-Strict-Implies-Components-Strict:

∀F. { (x 7→ 〈i F.i x〉) ⊥ = ⊥ } ⇒ 〈i {F.i ⊥ = ⊥}〉

Unused-Parameter-Elimination:

∀A,B,C,D,F.
(µf 7→ 〈x,y〉 7→ F〈 〈i f 〈C.i x, D.i〈f,x,y〉 〉,x〉) 〈A,B〉

=
(µf 7→ x 7→ F〈 〈i f (C.i x)〉 ,x〉) A

Figure 7.6: Laws from the PATH Catalog, continued
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Chapter 8

Genericity with N-Tuples

This chapter describes an extension of PATH-L that adds n-tuples, a construct that allows

for programs generic over the length of tuples. Section 8.1 explains why the genericity

provided by n-tuples is needed. Section 8.2 describes the syntax and semantics of n-tuples.

Section 8.3 returns to the examples in Section 8.1 and shows what programs, laws, and

program derivations look like using n-tuples. Section 8.4 describes a higher order typed

lambda calculus which gives us n-tuples. Section 8.5 then concludes.

In a number of the examples in this chapter, Haskell syntax will be used, not PATH-L

syntax. Because these examples are directly from the Haskell prelude and libraries, I have

thought it best to write them as Haskell, not convert to PATH-L syntax. I hope that with

this forewarning, the reader will not be confused by the use of both Haskell and PATH-L in

the following examples.

123
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8.1 The Need for N-Tuples

An n-tuple is a tuple whose length is unknown. This section argues for the usefulness of

n-tuples: similar to the genericity provided by polymorphism and polytypism (cf. Section

1.3.4), n-tuples result in more general programs (Section 8.1.1), more general laws about

those programs (Section 8.1.2), and more general program derivations (Section 8.1.3).

8.1.1 More General Programs

The following family ofzip functions are defined in the Haskell Prelude and Libraries1:

zip :: ([a],[b]) → [(a,b)]
zip3 :: ([a],[b],[c]) → [(a,b,c)]
...
zip7 :: ([a],[b],[c],[d],[e],[f],[g]) → [(a,b,c,d,e,f,g)]

There is also thezipWith family of functions

zipWith :: ((a,b)→c) → ([a],[b]) → [c]
zipWith3 :: ((a,b,c)→d) → ([a],[b],[c]) → [d]
...
zipWith7 :: ((a,b,c,d,e,f,g)→h) → ([a],[b],[c],[d],[e],[f],[g]) → [h]

and theunzip family of functions:

unzip :: [(a,b)] → ([a],[b])
unzip3 :: [(a,b,c)] → ([a],[b],[c])
...
unzip7 :: [(a,b,c,d,e,f,g)] → ([a],[b],[c],[d],[e],[f],[g])

Although writing thezip, zipWith, andunzip families of functions is not difficult, it is

tedious and error-prone. Clearly, it is preferable to abstract over these families and write

one genericzip, one genericzipWith, and one genericunzip.

1Actually, it is their curried counterparts which are defined, but the uncurried versions ofzip andzipWith
are used here for illustrative purposes.
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8.1.2 More General Laws

Note the free theorem [82] (or parametricity theorem) forzip:

let cross 〈f,g〉 〈x,y〉 = 〈f x,g y〉 in {
map(cross〈f,g〉) ◦ zip = zip ◦ cross〈map f,map g〉

}

The free theorem forzip3 is

let cross3 〈f,g,h〉 〈x,y,z〉 = 〈f x,g y,h z〉 in {
map(cross3〈f,g,h〉) ◦ zip3 = zip3 ◦ cross3〈map f,map g,map h〉

}

As before, to generate these laws is not difficult but tedious and error-prone. To formulate

this familyof laws yet another family of functions is needed:

cross, cross3, cross4, ...

Another family of laws are the laws for expansion of tuples:

∀x:×〈a1,a2 〉 . x = 〈x.12,x.22 〉
∀x:×〈a1,a2,a3 〉 . x = 〈x.13,x.23,x.33 〉
...

We would like to generalize over thesefamiliesof laws. Having fewer and more generic

laws is good in a program transformation system: there are fewer laws to learn, fewer laws

to search, and program derivations are more robust (i.e., they are more likely to remain

valid when applied to a modified input program).

8.1.3 More General Derivations

Program derivations of the following form (where the two “...” derivations are nearly iden-

tical) are common:
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e ={eta} 〈 e.12 ={r} ... ={r} e1
, e.22 ={r} ... ={r} e2
〉

This derivation gives the law

e = 〈e1,e2〉

When doing proofs or derivations informally we can do the derivation for the first case

and then say “similarlye.22 = e2.” However, in PATH this “similarly” step must be

done without hand waving; we would also like to do this step without duplicating the

derivation. How can this duplication be avoided? Note that in general the form of〈e1,e2〉

is 〈C[12],C[22]〉2. So, we would like to merge the two similar derivations

e.12 ={r} ... ={r} C[12]
e.22 ={r} ... ={r} C[22]

into a single derivation:

e.i ={r} ... ={r} C[i]

However, this cannot be done because thei in e.i must be a projection constant and

cannot be a variable or expression (current type inference methods cannot handle such an

extension). There are two ways of allowing fori to be a variable (in a typed language):

• The variable i could be a meta-variable, not a variable in the language. We move the

problem to a meta-language or meta-logic. Then we could express the above law in

the meta-language like this:∀n.∀i<n. e.in = C[in]. The disadvantage here is that a

meta-language is needed to express program laws.

2WhereC[e] represents a program contextC with its holes filled by expressione.
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• Increase the expressiveness of the type system to allowi to be a variable. Unfor-

tunately, the only type systems which allow this expressiveness are dependent type

systems, which do not have type inference.

The latter approach is what is taken here (without using dependent types).

8.2 N-tuples

To get n-tuples, a number of changes must be made to the PATH-L language as described

in Chapter 2. In the syntax of terms, where before we had

| e.mn

we now have

| e1.e2

| mn

| 〈ve〉

Projections become first class elements of the language. The last construct is an n-tuple, it

abstracts over a projection variablev which can be used inside the body of the n-tuple. An

n-tuple works much like a function parameterized over a projection (where “.” is applica-

tion) but the typing is different. We also have n-sums. Where before we had the various

constructors forn-sums:

| In.mn

we now have a tuple of all the constructors forn-sums

| Inn

To which we can apply a projection to get them-th constructor:
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Inn.mn

To give some intuition for the semantics of n-tuples, note these equivalences:

〈i f x.i〉 = 〈f x.1, f x.2, ..., f x.n〉
〈i 〈f,g〉.i 〈x,y〉.i〉 = 〈f x, g y〉

In the latter, the tuples〈f,g〉 and〈x,y〉 are “zipped” together. The types,t, must become

significantly more complex: where before we had

| × 〈t1, t2, ...〉
| + 〈t1, t2, ...〉

we now have

| × t
| + t
| 〈t1, t2, ...〉
| t1.t2
| mn

| 〈v:d e〉
| v

and a new syntactic categoryd (in the n-tuple construct) to represent “dimension variables”:

d ::= a variables of dimension kind
| nd dimension (1≤ n )

The result is that we have tuplesandn-tuples at the type level. We now have types such as

×α; in this type, the type variableα must have a different kind, a kind that indicates thatα

is not a type but a tuple of types. The kind system will be discussed in Section 8.4.

8.3 Examples of N-Tuples

This section provides examples of the usefulness of n-tuples.
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Syntactic Conventions.

Some syntactic shortcuts are used in the following: As previously, the “:t” is dropped

in functions andm is put for the projectionmn. The following conventions are used for

variables:i, j,k for projection variables (at both the term and type level);t,a,b,c for regular

type variables; andI ,J,K for type variables of dimension kind.

8.3.1 More General Programs

An uncurriedzip3 is as follows in Haskell:

zip3 :: ([a],[b],[c]) → [(a,b,c)]
zip3 (a:as,b:bs,c:cs) = (a,b,c) : zip3 (as,bs,cs)
zip3 _ = []

If Haskell had n-tuples3, one could write a genericzip as follows:

zip :: ×〈i:I [a.i]〉 → [×a]
zip 〈i x.i : xs.i〉 = x : zip xs
zip _ = []

Note here that an n-tuple is part of a pattern. Note also that the type variablea in the above

represents a tuple of types. A genericzipWith would be similar to the above. Haskell’s

unzip3

unzip3 :: [(a,b,c)] → ([a],[b],[c])
unzip3 ((a,b,c):xs) = let (as,bs,cs) = unzip xs in (a:as,b:bs,c:cs)
unzip3 [] = ([],[],[])

could be written generically as follows:

unzip :: [×a] → ×〈i:I [a.i]〉
unzip (x:xs) = 〈i x.i : (unzip xs).i 〉
unzip [] = 〈_ []〉
3Or if PATH-L had patterns, which it doesn’t have at the present.
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8.3.2 More General Laws

The free theorem forzip3 is

let cross3 〈f,g,h〉 〈x,y,z〉 = 〈f x,g y,h z〉 in {
map(cross3〈f,g,h〉) ◦ zip3 = zip3 ◦ cross3〈map f,map g,map h〉

}

but it can be generalized to the free theorem for the genericzip:

let cross f x = 〈i f.i x.i〉 in {

map(cross f) ◦ zip = zip ◦ cross〈i map f.i〉
}

And the laws for the expansion of tuples

∀x:×〈a1,a2 〉 . x = 〈x.12,x.22 〉
∀x:×〈a1,a2,a3 〉 . x = 〈x.13,x.23,x.33 〉
...

can be generalized to theN-Tuple-Etalaw:

∀x:×a . x = 〈i x.i〉

Note also the primitive lawInst, which is generic over sums of any length:

∀F,H,X.
H ⊥ = ⊥
⇒
H(case 〈i y 7→ F.i y〉 X) = case 〈i y 7→ H(F.i y)〉 X

Using n-tuples this law can be written as a law without meta-notation. Theeta rule for

sums,

∀x:+〈t1,t2,...,tn 〉 . x ={eta} case 〈In.1n,In.2n,...,In.nn 〉 x

can also now be written without meta-notation and with more concision:

∀x:+t . x ={eta} case In x
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8.3.3 More General Derivations

This section shows how n-tuples can make derivations simpler and more generic. Previ-

ously, we had the following derivation, where the two “...” derivations are nearly identical:

e ={eta} 〈e.12 ={r} ... ={r} C[12]
,e.22 ={r} ... ={r} C[22]
〉

Using n-tuples we can merge these two sub-derivations into a single derivation:

e ={N-Tuple-Eta} 〈i e.i ={r} ... ={r} C[i]〉

So, we have a derivation that is both shorter and more generic, and there is no need for

meta-notation.

Here is a law,Abides-2, which combines twocase expressions in a 2-tuple, eachcase

takes a 2-sum:

case 〈x 7→ 〈F1 x,G1 x〉, x 7→ 〈F2 x,G2 x〉 〉 e
=
〈case 〈F1,F2 〉 e, case 〈G1,G2 〉 e〉

Its derivation is in Figure 8.1. Now, here is a generic version ofAbides-2, it combinesn

case expressions in ann-tuple, eachcase takes anm-sum:

case 〈i y 7→ 〈j F.i.j y〉 〉 x = 〈j case〈i F.i.j〉 x〉

Its derivation, in Figure 8.2, corresponds directly to the non-generic derivation. The generic

derivation is shorter:Inst is only applied once (not twice),red once (not four times), and

“R eta” once (not four times). If we did the derivation in the reverse direction (from bot-

tom to top), we would see another advantage to the generic approach: in the non-generic

derivation, to do the{red, 4 times} step requires the input of four expressions4 and all

4To do reverse reduction requires user input.
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case 〈x 7→ 〈F1 x,G1 x〉, x 7→ 〈F2 x,G2 x〉 〉 e
= {eta}
〈(case 〈x 7→ 〈F1 x,G1 x〉, x 7→ 〈F2 x,G2 x〉 〉 e).1
,(case 〈x 7→ 〈F1 x,G1 x〉, x 7→ 〈F2 x,G2 x〉 〉 e).2
〉

= {Inst, 2 times}
〈(case 〈x 7→ 〈F1 x,G1 x〉.1, x 7→ 〈F2 x,G2 x〉.1〉 e)
,(case 〈x 7→ 〈F1 x,G1 x〉.2, x 7→ 〈F2 x,G2 x〉.2〉 e)
〉

= {red, 4 times}
〈(case 〈x 7→ F1 x, x 7→ F2 x〉 e)
,(case 〈x 7→ G1 x, x 7→ G2 x〉 e)
〉

= {R eta, 4 times}
〈case 〈F1,F2 〉 e, case 〈G1,G2 〉 e〉

Figure 8.1: Derivation ofAbides-2

case 〈i y 7→ 〈j F.i.j y〉 〉 x
= {N-Tuple-Eta}
〈j (case 〈i y 7→ 〈j F.i.j y〉 〉 x).j〉

= {Inst}
〈j case 〈i y 7→ 〈j F.i.j y〉.j〉 x〉

= {red}
〈j case 〈i y 7→ F.i.j y〉 x〉

= {R N-Tuple-Eta}
〈j case 〈i F.i.j〉 x〉

Figure 8.2: Derivation ofAbides
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four of these expressions must be entered properly in order to allow for{Inst, 2 times}

in the next step and{eta} in the following step; in the generic derivation, only one reverse

reduction step needs to be done.

8.3.4 Nested N-Tuples

Informal notations for representing vectors (or n-tuples) are generally ambiguous: e.g., one

writes f x for the vector〈 f x1, ..., f xn〉 but g( f x) could signify either〈g( f x1), ...,g( f xn)〉

or g〈 f x1, ..., f xn〉. These notations do not extend to nested vectors. With n-tuples one

can easily manipulate nested n-tuples (i.e., matrices). For example, the application of a

function to every element of a three-dimensional matrix is coded as follows (note that〈_x〉

is a tuple of identical elements):

map3Dmatrix :: (a→b)→×〈_:I ×〈_:J ×〈_:K a〉〉〉→×〈_:I ×〈_:J ×〈_:K b〉〉〉
map3Dmatrix = f 7→m7→〈i 〈j 〈k f m.i.j.k〉〉〉

In the definition ofmap3Dmatrix, the expression〈i 〈j 〈k f m.i.j.k〉〉〉 is a 3-dimensional

matrix where “f m.i.j.k” is the value of the.i.j.k-th element, which here isf applied

to the corresponding value of the original matrixm.i.j.k. Matrix transposition is straight-

forward:

transpose :: ×〈i:I ×〈j:J a.i.j〉〉 → ×〈j:J ×〈i:I a.i.j〉〉
transpose x = 〈j 〈i x.i.j〉〉

The transpose is done by switching the subscripts ofx. Note that the type variablea above

is amatrix of types. An application oftranspose would be reduced as follows:

(transpose〈 〈x1,x2 〉,〈y1,y2 〉,〈z1,z2 〉 〉) .2.3

={red} 〈j 〈i 〈 〈x1,x2 〉,〈y1,y2 〉,〈z1,z2 〉 〉.i.j〉 〉.2.3
={red} 〈i 〈 〈x1,x2 〉,〈y1,y2 〉,〈z1,z2 〉 〉.i.2〉 .3
={red} 〈 〈x1,x2 〉,〈y1,y2 〉,〈z1,z2 〉 〉.3.2
={red} 〈z1,z2 〉 .2
={red} z2
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Note the various ways one can transform a two dimensional matrix:

〈i 〈j m.i.j〉〉 m

〈j 〈i m.i.j〉〉 the transpose ofm

〈i 〈j f m.i.j〉〉 f applied to each element ofm

〈i f〈j m.i.j〉〉 f applied to each “row” ofm

〈j f〈i m.i.j〉〉 f applied to each “column” ofm

Clearly this notation extends to matrices of higher dimensions. Some laws about the trans-

pose function are as follows:

(transpose m).j.i = m.i.j

transpose(transpose m) = m

Here is a proof of the latter:

transpose(transpose m)
= {red}

transpose〈j 〈i m.i.j〉 〉
= {red}
〈l 〈k 〈j 〈i m.i.j〉 〉.k.l〉 〉

= {red}
〈l 〈k 〈i m.i.k〉 .l〉 〉

= {red}
〈l 〈k m.l.k 〉 〉

= {R N-Tuple-Eta}
〈l m.l 〉

= {R N-Tuple-Eta}
m

8.3.5 Generic Catamorphisms

It is obvious that Haskell’szip family of functions could benefit from n-tuples; but inter-

estingly, catamorphisms [47, 46, 49] can also benefit from n-tuples, giving catamorphisms
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over mutually recursive data structures. Let’s assume we have a fix point operator for

types, alsoµ. A recursive type,µF, is the fixed point of a type functorF. The kind ofµ is

(?→ ?)→ ? (i.e., it takes a functor of kind?→ ? and returns a type). We have two poly-

typic primitives,inF andoutF, for explicitly getting values into and out of the recursive

type. Their types are as follows:

inF :: F(µF)→µF

outF :: µF→F(µF)

But we can extend these operators as follows: the kind ofµ becomes the following

(×〈_:I?〉 → ×〈_:I?〉)→×〈_:I?〉

i.e., it takes a functor transformingI -tuples of types and returns anI -tuple of types. So,µF

is a tuple of recursive types. The primitivesin andout are also extended to be n-tuples of

functions:

inF :: ×〈i:I (F(µF)).i→(µF).i〉

outF :: ×〈i:I (µF).i→(F(µF)).i〉

The polytypic functioncata is also extended; compare the original and the n-tuple versions

of cata5:

cataF :: (F a→a)→(µF→a) (original)

cataF :: ×〈i:I (F a).i→a.i〉→×〈i:I (µF).i→a.i〉 (n-tuple)

cataF φ = µf7→ φ ◦ (F f) ◦ outF (original)

cataF φ = µf7→〈i φ.i ◦ (F f).i ◦ outF.i〉 (n-tuple)

5This assumes that there is some form of polytypism—note the application of the functorF to a term.
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So,cataF takes and returns an n-tuple of functions. All laws (such as cata-fusion) can now

be generalized. Also, the standard functor laws for a functor F of kind?→ ?

id = F id

F f ◦ F g = F (f ◦ g)

can be generalized to functors of kind×〈_:I?〉 → ×〈_:J?〉:

〈_ id〉 = F 〈_ id〉

〈j (F f).j ◦ (F g).j〉 = F 〈i f.i ◦ g.i 〉

The original functor laws can be derived from these by instantiating the n-tuples to 1-tuples

and then making use of the isomorphism×〈a〉 ≈ a (the bijections beingx 7→ x.11 and

x 7→ 〈x〉).

8.4 An Explicitly Typed Calculus with N-Tuples

So, n-tuples seem quite useful, but the difficulty is in developing a sound type system for

them. This section presents a higher order, explicitly typed lambda calculus with n-tuples

and n-sums. This calculus was introduced by the author in [78] as the “Zip Calculus.” This

calculus starts as Fω—though in the form of a Pure Type System (PTS) [7, 61]. To this is

added a construct for n-tuples and then n-sums are added. As the syntax of terms and types

are very close (because tuples exist at the type level), the choice of a PTS seemed natural:

in a PTS, terms, types, and kinds are all written in the same syntax. Also, the generality

of a PTS makes for fewer typing rules. However, the generality of a PTS can make a type

system harder to understand: it is difficult to know what is a valid term, type, and kind

without understanding the type checking rules.
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e ::= v variables
| λv: t.e abstraction
| e1e2 application
| Πv: t1. t2 type of abstractions
| ? type of types

| 〈e1,e2, ...〉 tuple
| mn projection (1≤m≤ n )
| nd dimension (1≤ n )
| D type of dimensions

| +d t sum type
| Ind constructors for+d

| cased destructor for+d

i ::= e projections (of typend)
d ::= e dimensions (of type D)
t ::= e types and kinds (of type? or�)

m,n ::= {natural numbers}

Figure 8.3: Syntax

8.4.1 Syntax and Semantics

The syntax of the terms of the zip calculus is in Figure 8.3. The pseudo syntactic classesi,

d, andt are used to provide intuition for what is enforced by the type system (but not by the

syntax). The first five terms in Figure 8.3 correspond to Fω, encoded as a PTS (although

one needs to see the typing rules in the following section to get the full story). In a PTS,

terms and types are merged into a single syntax. The correspondence between Fω in the

standard formulation and as a PTS is as follows:

standard PTS
λx:α.e λx:α.e value abstraction
Λα.e λα :?.e type abstraction
α→ β Πv:α.β (v not free inβ) function type
∀α.B Πα :?.B quantification
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So, lambda abstractions are used both for value abstractions and type abstractions;Π terms

are used for the function type and quantification;? represents the type of types. (For a more

leisurely introduction to Pure Type Systems, see [61].)

To this base are added the following: (1) Tuples which are no longer restricted to the term

level but also exist at the type level. (2) Projection constants (mn - get them-th element of

ann-tuple), their types (nd - dimensions, wheremn : nd; “d” here is the literal character),

and “D” the type of thesend (“D” has a role analogous to?). And (3)n-sums made vian-

tuples: forn-sums (+nd〈t1, ...,tn〉) the constructor family,Innd, is ann-tuple of constructors

and the destructorcasend takes ann-tuple of functions.

Since one can write tuples of types, one must distinguish between〈t1, t2〉 (a tuple of types,

having kindΠ_ :2d→ ?)6 and×2d〈t1, t2〉 (a type, i.e., something with kind?).

A 3-tuple such as〈e1,e2,e3〉 is a function whose domain is the set{13,23,33} (the projec-

tions with type 3d). To get the second element of a 3-tuple, one applies the 23 projection

to it; thus “〈e1,e2,e3〉 23” reduces toe2. The type of the tuple is a “dependent type” (aΠ

term): for instance,〈e1,e2,e3〉 has type “Πi :3d .〈E1,E2,E3〉 i” whereei :Ei . Genericity over

tuple length is achieved because we can write functions such as “λd :D.λi :d.e” in which

d can be any dimension (1d,2d,. . . ). Although tuples are functions, the following syntactic

sugar is used to syntactically distinguish tuple functions from standard functions:

〈i:I e〉 ≡ λi:I. e
e.i ≡ e i
×dt ≡ Πi:d .t i

Also, in what follows,a→ b is used as syntactic sugar forΠ_ :a.b; in this case, aΠ type

corresponds to a normal function. Translating the (β reduce) law into the above syntactic

sugar gives this law:

6Note that the variable “_” is used for unused variables.
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(λv: t.e1)e2 = e1{e2/v} (β reduce)
〈e1, ...,en〉 in = ei (× reduce)

cased e(Ind.i e′) = e.i e′ (+ reduce)

Figure 8.4: Reduction Rules

〈i:de〉. j = e{ j/i} (n-tuple reduce)

The semantics is given operationally, similarly to Section 2.2. Reduction contexts are de-

fined inductively as follows:

R = [] (hole)
| Re
| case e R

The one step reduction relation,⇒, is the least relation satisfying the reduction rules (given

in Figure 8.4) and the following rule (i.e., it is closed under reduction contexts):

R[e1]⇒ R[e2] if e1⇒ e2

Multi-step reduction,⇒∗, is the transitive, reflexive closure of⇒. Evaluation,⇓, is defined

as follows:e⇓ c if and only if e⇒∗ c.

8.4.2 The Type System

The terms of a PTS consist of the first four terms of Figure 8.3 (variables, lambda abstrac-

tions, applications, andΠ terms) plus a set of constants,C . The specification of a PTS is

given by a triple (S ,A ,R ) whereS is a subset ofC called the sorts,A is a set of axioms of

the form “c : s” wherec∈ C , s∈ S , andR is a set of rules of the form(s1,s2,s3) where

s1,s2,s3∈ S . The typing judgments for a PTS are as in Figure 8.5. In a PTS, the definition

of =β in the judgment (conv) is beta-equivalence (alpha-equivalent terms are identified).

In the zip calculus, the set of sorts isS ={1d,2d, ...}∪ {?,�,D}, the set of constants is

C = S ∪{mn|1≤m≤ n}, and the axiomsA and rulesR are as follows:
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Γ ` a : A, Γ ` B : s, A =β B

Γ ` a : B
(conv)

c : s∈ A
` c : s

(axiom)

Γ ` A : s
Γ,x : A ` x : A

(var)
Γ ` b : B Γ ` A : s

Γ,x : A` b : B
(weak)

Γ ` f : (Πx : A.B), Γ ` a : A
Γ ` f a : B{a/x}

(app)
Γ,x : A` b : B, Γ ` (Πx : A.B) : t

Γ ` (λx : A.b) : (Πx : A.B)
(lam)

Γ ` A : s, Γ,x : A` B : t, (s, t,u) ∈ R
Γ ` (Πx : A.B) : u

(pi)

Figure 8.5: Type Judgments for a Pure Type System

∀ j∈{1..n}.Γ ` a j : A j , Γ ` (Πi :nd.〈A1, . . . ,An〉 i) : t

Γ ` 〈a1, ...,an〉 : Πi :nd.〈A1, . . . ,An〉 i
(tuple)

Figure 8.6: Additional Type Judgments for the Zip Calculus

A axioms R rules
? :� (?,?,?) λve: t .e

mn : nd (�,?,?) λvt :T .e
nd : D (�,�,�) λvt :T . t
D :� (D,D,?) λvi :d . i

(D,?,?) λvi :d .e
(D,�,�) λvi :d . t

The R rules, used in the (pi) rule, indicate what lambda abstractions are allowed (which

is the same as saying whichΠ terms are well-typed). Here we have sixR rules which

correspond to the six allowed forms of lambda abstraction. The expression to the right

of each rule is an intuitive representation of the type of lambda abstraction which the rule

represents (e - terms,t - types,T - kinds, i - projections,d - dimensions,vx - variable in

classx). For instance, the(D,D,?) rule means that lambda abstractions are allowed of form

λvi :d . i whered : D (i.e., d is a dimension such as 3d) and thusvi represents a projection

such as 23 and the bodyi must have type D, and the type of the type of this whole lambda

expression is?.
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In the zip calculus there is an additional term,〈e1,e2, ...〉, which cannot be treated as a

constant in a PTS (ignoring sums for the moment). The addition of this term requires two

extensions to the PTS: one, an additional typing judgment (Figure 8.6) and two, the=β

relation in the (conv) judgment must be extended to include not just (β reduce) but also (×

reduce) and an additional law (× eta):

〈e1n, ... ,enn〉 = e if e :: Πi :nd.A (× eta)

To get generic sums, one needs only add+ as a constant and the following two primitives

In :: ΠI:D. Πa:×I〈_:I ?〉. ×I〈i:I a.i→+I a〉
case :: ΠI:D. Πa:×I〈_:I ?〉. Πb:?. ×I〈i:I a.i→b〉 → (+I a→b)

whereIn is a generic injection function: e.g., for the sum+2d〈a,b〉 the two injection func-

tions are “(In 2d 〈a,b〉).12” and “(In 2d 〈a,b〉).22”.

8.4.3 Type Checking

There are numerous properties, such as subject reduction, which are true of Pure Type Sys-

tems in general [7]. There are also known type checking algorithms for certain subclasses

of PTSs. Although the zip calculus is not a PTS, it is hoped that most results for PTSs will

carry over to the “almost PTS” zip calculus.

A PTS is functional when the relationsA andR are functions (c : s1 ∈ A andc : s2 ∈ A

imply s1 = s2; (s, t,u1) ∈ R and (s, t,u2) ∈ R imply u1 = u2). In the zip calculus,A

andR are functions. If a PTS is functional there is an efficient type-checking algorithm

as given in Figure 8.7 (cf. [61] and [81]), where the type judgments of Figure 8.5 have

been restructured to make them syntax-directed. The judgment (red) defines the relation

“Γ ` x :� X” and�β is beta-reduction.
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Γ ` f :� (Πx : A.B), Γ ` a : A′, A =β A′

Γ ` f a : B{a/x}
(app)

x : A ∈ Γ
Γ ` x : A

(var)

Γ,x : A` b : B, Γ ` (Πx : A.B) : t
Γ ` (λx : A.b) : (Πx : A.B)

(lam)
c : s∈ A
` c : s

(axiom)

Γ ` A :� s, Γ,x : A` B :� t, (s, t,u) ∈ R
Γ ` (Πx : A.B) : u

(pi)
Γ ` a : A, A�β B

Γ ` a :� B
(red)

Figure 8.7: Syntax Directed Type Judgments for a Functional PTS

∀ j∈{1..n}.Γ ` a j :� A j , Γ ` (Πi :nd.〈A1, . . . ,An〉 i) : t

Γ ` 〈a1, ...,an〉 : Πi :nd.〈A1, . . . ,An〉 i
(tuple1)

∀ j∈{1..n}.Γ ` a j :� A

Γ ` 〈a1, ...,an〉 : Π_ :nd.A
(tuple2)

Γ ` f :�C, Γ ` a :� A, C =η Πx : A.B

Γ ` f a : B{a/x}
(app′)

Γ ` a : A, A�βδ B

Γ ` a :� B
(red′)

Figure 8.8: Syntax Directed Type Judgments for the Zip Calculus
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This algorithm can be modified as in Figure 8.8. The rules (tuple1) and (tuple2) replace

(tuple) from Figure 8.6. The rules (app′) and (red′) replace the (app) and (red) judgments

of Figure 8.7. Here�βδ is�β extended with (× reduce) and=η is equality up to (× eta)

convertibility. The reason for the change of (app) is becausef may evaluate to

〈Πx : a1.b1, ...,Πx : an.bn〉.i

and application should be valid when, for instance, this is equivalent to a type of the form

Πx:(〈a1, ...,an〉.i) .〈b1, ...,bn〉.i

A proof of the soundness and completeness of this algorithm should be similar to that in

[81].

8.5 Conclusion

8.5.1 Type Inference

The simply typed language PATH-L, given in Chapter 2, clearly allows for type inference.

Does the zip calculus of the previous section allow for type inference? And would the zip

calculus extended withµ and integer primitives allow for type inference? Currently, I have

implemented an algorithm for PATH which infers most general types (up to=η) for all

the programs shown in this thesis, so I expect that it indeed can be shown to be sound and

complete. An exposition of the algorithm and such proofs are left for future work.



144 CHAPTER 8. GENERICITY WITH N-TUPLES

8.5.2 Limitations

An n-tuple is similar to a heterogeneous array (or heterogeneous finite list); but although

one can map over n-tuples, zip n-tuples together, and transpose nested n-tuples, one cannot

inductover n-tuples. So, n-tuples are clearly limited in what they can express. As a result,

one could not define the following functions in a Haskell extended with n-tuples (although

they could be provided as primitives):

tupleToList :: ×〈_ a〉 → [a]

seqTupleL,seqTupleR :: Monad m => ×〈i a.i→m b.i〉 → ×a→m(×b)

However, ifseqTupleL andseqTupleR were provided as primitives, we get a great deal

of expressiveness (without the need to extend n-tuples to allow some form of induction):

• Each of these families of Haskell functions could be generalized to a generic func-

tion:

zip, zip3, ...
zipWith, zipWith3, ...
unzip, unzip3, ...
liftM1, liftM2, ...

• There are a number of list functions in Haskell that work “uniformly” on lists—they

act on lists without permuting the elements or changing the length:zip, zipWith,

unzip, map, sequence, mapM, transpose, mapAccumL, mapAccumR. We can write a

tuple version of each of these.

Other functions cannot be given a type in the zip calculus. For instance, there is thecurry

family of functions but there is no way to give a type to a genericcurry:

curry2 :: ((a,b)→c) → (a→b→c)
curry3 :: ((a,b,c)→d) → (a→b→c→d)
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8.5.3 Related Work

Polytypic programming [47, 46, 49] has similar goals to this work (e.g., PolyP [41] and

Functorial ML [42]). (Intensional type analysis [30] is similar to polytypism, it gives the

same expressiveness, and sometimes more, at the expense of a heavier notation.) However,

n-tuples do not give us polytypism (nor does polytypism give us genericity over the length

of tuples); these are orthogonal language extensions:

• Polytypism allows for generalizing over type constructors (e.g., List, Maybe, Tree),

but does not allow for genericity over the length of tuples. E.g., polytypism general-

izes over

zipList2, zipMaybe2, zipTree2, ...

• N-tuples cannot generalize over type constructors, only over the length of tuples:

E.g., n-tuples generalizes over

zipList2, zipList3, zipList4, ...

As seen in Section 8.3.5, withbothpolytypism and n-tuples some very generic programs

and laws can be written.

Currently, projections have their dimension embedded (e.g., the projection “13” has di-

mension (or type) “3d”); to allow for projections that are “polymorphic” over dimensions

(e.g., projection 1 could be applied to a tuple of any size) would take us into the realm of

extensible records [24, 54, 86]. N-tuples and extensible records appear to be orthogonal

issues.

The following table is an attempt to summarize the differences between the genericity

provided by n-tuples, polytypism, and extensible records. Each allows for abstracting over

a differentx:
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Form of Genericity Context What is abstracted

n-tuples e.x x∈ {1n,2n, ...,nn}
polytypism x e x∈ {mapList, mapMaybe, mapTree, ...}

extensible records e.2x x∈{2d,3d,4d, ...}

With n-tuples, we can abstract over all the projections of a given arity; with polytypism,

we can abstract over the functor of type “(a→ b)→ (Fa→ Fb)” for each type functorF

(at least with one form of polytypism); with extensible records, we can abstract over the

dimension of the projection (in other words, we can overload the 2 projection).

It would be a simple and obvious extension to allow for finite sets other than the natu-

rals as projections, e.g., one could have strings as projections and finite sets of strings as

dimensions.

Two approaches that achieve the same genericity as n-tuples are the following: First, one

can forgo typed languages and use an untyped language to achieve this level of genericity:

e.g., in Lisp a list can be used as an n-tuple. Second, a language with dependent types

[4] could encode n-tuples (and more); though the disadvantages are that type checking is

undecidable (not to mention the lack of type inference) and the types are more complex.

N-tuples can be viewed as a way to add dependent types in a restricted way to a typed

language.

Related also is Hoogendijk’s thesis [36] in which he develops a notation (not a type system)

for n-tuple valued functors for program calculation; his notation is variable free, categori-

cal, and heavily overloaded.

Section 5.4 of Morrisett’s thesis [53] presents an extension of his explicitly typedλML
i

calculus which is similar in power to n-tuples. This extension allows for lists at the type

level and has an additional kind,k∗, for lists of types. Unfortunately no properties were

proved for this extension. This extension allows for inductive definitions of types (over a



8.5. CONCLUSION 147

list of types). The zip calculus cannot do induction over tuples of types. However, the zip

calculus provides a simpler and more elegant way—in my opinion—to express functions

at the type level that are commonly needed: e.g., matrix transpose, zipping tuples and

matrices, mapping functions across tuples and matrices, etc. Further exploring the relation

between the extendedλML
i and the zip calculus is an area for future work.

The recent work by Shao et al. [72] introduces a complex and expressive type system for

certified binaries. Their type system resembles the calculus of constructions [18] extended

with induction definitions. It appears feasible that the zip calculus can be embedded into

this system. Such an embedding would allow the zip calculus to inherit all the properties

already proved for their calculus: subject reduction, strong normalization, confluence, etc.

I plan to explore this in future work.

8.5.4 Summary

So, a new form of genericity has been developed for typed languages: genericity over the

length of tuples. We have seen that this genericity gives us shorter programs, fewer and

more general laws, and shorter derivations. Future work is to increase the expressiveness

of n-tuples (soseqTupleL, seqTupleR, andtupleToList can be defined in the language

andcurry could be given a type). Although it is questionable whether such an extended

system would allow for type-inference.
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Chapter 9

Conclusion

9.1 Contributions

In this dissertation, I have made the following contributions:

• Described the PATH program transformation system.

• Integrated the two major approaches to transformation—the generative set approach

and the schematic approach—by showing how we can achieve, using the schematic

approach, the expressiveness of a powerful generative set approach, expression pro-

cedures.

• Began developing a catalog of useful laws, all of which can be derived from a small

number of primitive rules and laws.

• Developed a logic for program transformation which is more expressive than two

level horn clauses but less general than first order logic. Given some examples of

how this logic lends itself to the graphical display of program derivations.

149
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• Developed a new form of genericity for typed languages: genericity over the length

of tuples. Developed an explicitly typed calculus for this.

9.2 Related Work

In the body of this work, PATH has been compared and contrasted in detail to previous

transformation systems and methods. In this section, a very broad survey of the work being

done in program transformation will be given. More detailed surveys of work in program

transformation can be found in [19] and [56].

There are many similarities between theorem proving [58] and program transformation. A

program transformation system can be viewed as a specialized theorem prover—a theorem

prover specialized for proving equivalences of a particular programming language. I will

not attempt to explore this connection further here but will proceed to survey the work in

program transformation per se. Work in program transformation can be categorized into

four broad categories: transformation systems, generative set methods, theories, and fully

automatic meta-programs.

Transformation Systems. Numerous systems have been built for supporting user di-

rected program transformation. One of the seminal systems is the Munich CIP project

[8, 9]. This system was based on the schematic approach, but with extensions to support

fold/unfold, a proof of termination being required to preserve correctness. This system used

a wide-spectrum language which had constructs for non-executable descriptions, functional

programming, and procedural programming. A recent system which builds on (and simpli-

fies) that work is the Ultra system [55]; it transforms a subset of a Haskell-like language.

Other transformation systems are Prospectra [35], Starship [21], and KIDS [73]. This is
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but a small sampling of a large number of systems; Firth [21] gives an overview and com-

parison of many more transformation systems.

Generative Set Methods. One of the oldest and most well known methods for trans-

forming functional programs is the fold/unfold approach of Burstall and Darlington [15].

In spite of its drawbacks, in particular its lack of total correctness, it is commonly used for

informal reasoning about functional programs and is the basis of some program transforma-

tion systems. Scherlis’s expression procedure method [69, 66] preserves total-correctness

and does not require the keeping of a transformation history as fold/unfold does. Unfor-

tunately this method has been largely ignored; this may be due to the lack of interest in

total-correctness in the transformation community. The tick algebra of Sands [67, 68] is a

very general and powerful approach. It has been extended to deal with sharing [52] and to

reason about space usage [29].

These generative set methods are asymmetric. This asymmetry is what gives these methods

their power and certainly is desired when we want to reason about things as improvement

(as with Sands’s Tick Algebra). However, the lack of symmetry can be undesirable, as

explained in Section 3.1.4.

Theories for Program Transformation. In the generative set approaches, there is an

emphasis on developing strategies and meta-programs for achieving transformation of pro-

grams, but in the schematic approaches, there is an emphasis on discovering new laws

one can use to transform programs. This discovery and development of sets of laws for

program transformation has been subject of much work. A important line of such work

was pioneered by Bird and Meertens [12, 13, 48] and has been carried on by many others

[11, 6, 23, 49, 25]. This approach to program transformation is called by many names:

the calculational approach, the Bird-Meertens Formalism (BMF), and Squiggol (due to its



152 CHAPTER 9. CONCLUSION

fondness for using new symbols—or squiggols). It is characterized by an emphasis on

developing powerful laws by which one can conduct linear, equational proofs of program

equivalence, without reverting to inductive proofs. Numerous laws, or theories, have been

developed for lists and various recursion schemes.

There is a growing interest in using this calculational approach in the development of

fully automated methods (e.g., deforestation [27, 76]) where previously generative set ap-

proaches were used [83, 16]. The advantages of using the calculational approach is that

there is no need to keep a history or to determine where to perform folding.

The BMF approach has focused on using a small set of recursion schemes and disallowing

general recursion. Thus, only total functions can be written—this makes reasoning simpler,

not having to deal with non-termination. This work has been extended to deal with partial

functions [49].

The disadvantage of BMF is that general recursion is disallowed. The motivation for the re-

sult in Chapter 4 was to maintain the elegance of the calculational approach while allowing

for general recursion.

Fully Automatic Meta-Programs. In contrast touser directedprogram transformation,

there arefully automatedmeta-programs in which major program transformations are ac-

complished using sophisticated algorithms. Some examples of these are deforestation

[83, 16], partial evaluation [14, 43], tupling [37], super-compilation [80, 74], and etc. When

the desired transformation is achieved, these methods can give dramatic results (though

only constant time improvements for most of these methods). The drawback is when the

desired transformation is not achieved: the meta-program rarely gives useful feedback and

allows for little control over the transformation process.

I believe that the best use of meta-programs is in the context of a user directed trans-
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formation system: The goal in PATH is not to achieve major transformations in a single

application of one complex meta-program to the whole program, but rather it is to allow

for simpler meta-programs to be applied—selectively and often—in conjunction with user-

directed transformations.

9.3 Future Directions

There are numerous areas for future research related to this work.

Language Extensions. As explained in Chapter 8, genericity is useful to have in the

language, but even more important in a transformation system. Adding polytypism [46, 47]

to the language is the next step toward increasing genericity. How best to add polytypism

to a typed language is still an area of active research [5, 40, 32, 33].

Currently PATH does not support Haskell’s type classes. As type classes are implemented

by dictionary passing, it would appear straightforward to support type classes by trans-

forming dictionary passing code. However, as polytypism overlaps with type classes [31],

another possibility is to support type classes using polytypism.

Haskell implementations allow for strictness annotations and perform some degree of strict-

ness analysis. If PATH is to evolve into a industrial-quality tool, it also needs to support

strictness annotations and be capable of strictness analysis at least as powerful as current

compilers. How is this strictness information to be encoded and used in PATH? One ap-

proach to doing so is using the approach taken by Launchbury and Paterson [45].

One area in which PATH has totally avoided the reality of Haskell is in the area of pattern-

matching. Haskell has numerous sophisticated pattern-matching constructs. These add to

the complexity of Haskell and make transformation much more complex. In the Starship
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system, great pains are taken to support transforming patterns at the source level [21] (this

in a Haskell-like language with simpler pattern-matching constructs). Another approach

is to use the author’s work on first class patterns [77]: the complex pattern-matching of

Haskell would be transformed into pattern-combinators which would then be the subject of

transformation.

Multiple Program Relations. Currently PATH supports reasoning about only a single

program relation: program equivalence. By supporting multiple program relations, PATH

could add more precision to program derivations (at the expense of some complexity).

For instance, to support reasoning about sharing, we would have two relations,=nameand

=need, the latter being used for transformations which preserve sharing properties and the

former being used for programs which may not preserve sharing [52]. Or, we could add a

non-symmetric improvement relation,D, for transformations which improve some measure

of efficiency [68].

Improving Meta-Programs. Currently PATH has a few simple built in meta-programs.

One area for further research here is in the continued development of such meta-programs

as deforestation, partial evaluation, and tupling for use in PATH. A second area of research

here is in extending PATH to allow for user-written meta-programs, as can be done in

theorem provers. Also, techniques for proof search could be borrowed from the theorem

proving community to be applied automatically in PATH.

GUI Design and Development. Currently PATH has a two-dimensional interface to the

program derivation. It is certainly an improvement over older systems that interface to the

user via textual commands and which have no user visible representation for the derivation

(only for the final program). However, the next step would be to improve this interface to
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one in which the user can 1) selectively display and hide parts of the program or derivation,

2) control the layout of the derivation, 3) navigate the program in a manner similar to an

outline editor, and 4) be given visual feedback when and where laws would be applicable.
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Appendix A

The PATH-L Prelude

data List a = Nil | Cons ×〈a,List a〉
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
data Bool = False | True

f ◦ g = x 7→ f(g x)

map = µmap 7→ f 7→ case 〈Nil : Nil
,Cons〈y,ys〉: Cons〈f y, map f ys〉
〉

length = µlength 7→ case 〈Nil: 0, Cons〈x,xs〉: 1 + length xs〉

sum = µsum 7→ case 〈Nil: 0, Cons〈x,xs〉: x + sum xs〉

iterate = µiterate 7→ f 7→ x 7→ Cons〈x, iterate f (f x)〉

filter = µfilter 7→ p 7→
case〈Nil : Nil

,Cons〈x,xs〉: if p x
then Cons〈x,filter p xs〉
else filter p xs

〉

cata = µcata 7→ 〈f,b〉 7→ case 〈Nil : b
,Cons〈y,ys〉: f〈y, cata 〈f,b〉 ys〉
〉

id = x 7→ x

if = b 7→ t 7→ f 7→ case 〈True: t, False: f〉 b

157
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Appendix B

Primitive Rules & Laws

B.1 Syntactic Sugar

let x:t=e in C x
={SS}
(x:t 7→ C x) e

letrec x1:t1 = e1; ...; xn:tn = en in C〈x1,...,xn 〉
={SS}
let 〈x1,...,xn 〉=µ〈x1,...,xn 〉:×〈t1,...,tn 〉 7→ 〈e1,...,en 〉 in C〈x1,...,xn 〉

let f x = F x in C f
={SS}
let f = x 7→ F x in C f

let f.i = F i in C f
={SS}
let f = 〈i F i〉 in C f

if p then t else f
={SS}
if p t f

159
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B.2 Primitive Rules

Reduction:

(p 7→ e1) e2 ={red} e1{e2/p}

〈e1,...,en 〉.jn ={red} ej

case 〈e1,...,en 〉 (In.in x) ={red} ei x

µp 7→ f ={red} f{µp 7→ f / p}

prim 〈c1,...,cn 〉 ={red} [[prim 〈c1,...,cn 〉]]

Strictness:

⊥ e ={red} ⊥
⊥.e ={red} ⊥

case e ⊥ ={red} ⊥
prim 〈e1,...,⊥,...,en 〉 ={red} ⊥

µ ⊥ ={red} ⊥

Eta:

∀x:a→b . x ={eta} v 7→ x v (v not free in x)
∀x:×〈t1,t2,...,tn 〉 . x ={eta} 〈x.1n, x.2n, ... , x.nn 〉
∀x:+〈t1,t2,...,tn 〉 . x ={eta} case 〈In.1n,In.2n,...,In.nn 〉 x

Letrec Equivalence:

letrec f1=F1;f2=F2;...;fn=Fn; g1=G1;g2=G2;...;gm=Gm in M
={letrec}
letrec f1=F1;f2=F2;...;fn=Fn; 〈g1,g2,...,gm 〉=〈G1,G2,...,Gm 〉 in M
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B.3 Law FPD (Fixed Point Duplication)

∀F,G.
letrec f=F〈f,g〉; g=G〈f,g〉 in f

=
letrec f=(letrec g=G〈f,g〉 in F〈f,g〉) in f

Alternatively, usingµ notation,

∀F,G. (µ〈f,g〉 7→ 〈F〈f,g〉,G〈f,g〉 〉).1 = µf 7→ F〈f,µg 7→ G〈f,g〉 〉

B.4 Law FPI (Fixed Point Induction)

∀C,D,F,G.
C ⊥ = D ⊥

; ∀x,y . {C x = D y} ⇒ {C(F x) = D(G y)}
⇒
C(µF) = D(µG)

B.5 Law Inst (Instantiation)

∀F,H,X.
H ⊥ = ⊥
⇒
H(case 〈i y 7→ F.i y〉 X) = case 〈i y 7→ H(F.i y)〉 X

B.6 Law List-Induct (Structural Induction on Lists)

∀ C : List a → b, D : List a → b, xs : List a.
C ⊥ = D ⊥

; C Nil = D Nil
; ∀x,xs. C xs = D xs ⇒ C( Cons〈x,xs〉 ) = D( Cons〈x,xs〉 )
⇒
C xs = D xs

B.7 Law N-Tuple-Eta

∀x:×a . x = 〈i x.i〉
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Appendix C

Derived Transformation Laws

This appendix contains a list of derived laws in PATH, along with their derivations.

C.1 Abides

∀F. case 〈i y 7→ 〈j F.i.j y〉 〉 x = 〈j case〈i F.i.j〉 x〉

Derivation:

∀F.
case 〈i y 7→ 〈j F.i.j y〉 〉 x

= {N-Tuple-Eta}
〈j (case 〈i y 7→ 〈j F.i.j y〉 〉 x).j〉

= {Inst}
〈j case 〈i y 7→ 〈j F.i.j y〉.j〉 x〉

= {red}
〈j case 〈i y 7→ F.i.j y〉 x〉

= {R N-Tuple-Eta}
〈j case 〈i F.i.j〉 x〉

163
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C.2 Case-Strict

∀E. case ⊥ E = ⊥

Derivation:

∀E.
case ⊥ E

= {Prod-Bot}
case 〈i ⊥〉 E

= {Func-Bot}
case 〈i x 7→⊥ 〉 E

= {R red}
case 〈i x 7→⊥ 〈〉〉 E

= {R Inst}
⊥ (case 〈i x 7→ 〈〉 〉 E)

= {red}
⊥
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C.3 Cata-Merge

∀F,B. xs 7→ 〈i cata 〈F.i,B.i〉 xs〉 = cata 〈 〈y,z〉 7→ 〈i F.i 〈y,z.i〉 〉, B〉

Derivation:

∀F,B.
xs 7→ 〈i cata 〈F.i,B.i〉 xs〉

= {FPF-N
xs 7→ 〈i ⊥ 〈F.i,B.i〉 xs〉

= {red, red}
xs 7→ 〈i ⊥〉

= {R Func-Bot, R Prod-Bot}
⊥

; ∀cata.
xs 7→ 〈i (〈f,b〉 7→ case 〈Nil : b

,Cons〈y,ys〉: f〈y, cata 〈f,b〉 ys〉
〉) 〈F.i,B.i〉 xs 〉

= {red}
xs 7→ 〈i (case 〈Nil : B.i

,Cons〈y,ys〉: F.i〈y, cata 〈F.i,B.i〉 ys〉 〉 xs) 〉
= {Inst}
xs 7→ case 〈Nil : 〈i B.i〉

,Cons〈y,ys〉: 〈i F.i〈y, cata 〈F.i,B.i〉 ys〉 〉 〉 xs
= {R N-Tuple-Eta}
xs 7→ case 〈Nil : B

,Cons〈y,ys〉: 〈i F.i〈y, cata 〈F.i,B.i〉 ys〉 〉 〉 xs
= {R eta}
case 〈Nil : B

,Cons〈y,ys〉: 〈i F.i〈y, cata 〈F.i,B.i〉 ys〉 〉 〉
= {R red}
case 〈Nil : B

,Cons〈y,ys〉: 〈i F.i〈y, (〈i cata 〈F.i,B.i〉 ys〉.i〉 〉 〉
= {R red}
case 〈Nil : B

,Cons〈y,ys〉: 〈i F.i〈y, ((xs 7→ 〈i cata 〈F.i,B.i〉 xs〉)ys).i〉 〉 〉
}
µg 7→ case 〈Nil: B, Cons〈y,ys〉: 〈i F.i 〈y, (g ys).i〉 〉 〉

= {R red}
µg 7→ case 〈Nil: B, Cons〈y,ys〉: (〈y,z〉 7→ 〈i F.i 〈y,z.i〉 〉) 〈y,g ys〉 〉

= {R red}
(〈f,b〉 7→ µg 7→ case〈Nil: b, Cons〈y,ys〉: f〈y,g ys〉 〉)
〈 〈y,z〉 7→ 〈i F.i 〈y,z.i〉 〉, B〉

= {Lambda-Mu-Switch}
(µg 7→ 〈f,b〉 7→ case〈Nil: b, Cons〈y,ys〉: f〈y,g〈f,b〉 ys〉 〉)
〈 〈y,z〉 7→ 〈i F.i 〈y,z.i〉 〉, B〉

= {def. cata}
cata 〈 〈y,z〉 7→ 〈i F.i 〈y,z.i〉 〉, B〉
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C.4 Components-Strict-Implies-Tuple-Strict

∀F. 〈i {F.i ⊥ = ⊥}〉 ⇒ (x 7→ 〈i F.i x〉) ⊥ = ⊥

Derivation:

∀F.
P1: 〈i {F.i ⊥ = ⊥}〉
⇒
(x 7→ 〈i F.i x〉) ⊥

= {red}
〈i F.i ⊥〉

= {P1}
〈i ⊥〉

= {R Prod-Bot}
⊥

C.5 FPD’ (Fixed Point Duplication - Alternative)

∀F. µf 7→ F〈f,f〉 = µf 7→ F〈f,µf 7→ F〈f,f〉 〉

Derivation:

∀F.
µf 7→ F〈f,f〉

= {SS}
letrec f = F〈f,f〉 in f

= {Mix-Letrec}
letrec f = F〈f,f’〉; f’ = F〈f’,f’〉 in f

= {FPD}
letrec f = F〈f,letrec f’ = F〈f’,f’ 〉 in f’〉 in f

= {SS}
µf 7→ F〈f,µf 7→ F〈f,f〉 〉
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C.6 FPE (Fixed Point Expansion)

∀F. µf 7→ F〈f,f〉 = µf 7→ F〈f,F〈f,f〉 〉

Derivation:

∀F.
µf 7→ F〈f,f〉

= {SS}
letrec f=F〈f,f〉 in f

= {Mix-Letrec}
letrec f=F〈f,f’〉; f’=F〈f,f〉 in f

= {FPD}
letrec f=F〈f,letrec f’=F〈f,f〉 in f’〉 in f

= {Inline-Body}
letrec f=F〈f,letrec f’=F〈f,f〉 in F〈f,f〉 〉 in f

= {GC-let}
letrec f=F〈f,F〈f,f〉 〉 in f

= {SS}
µf 7→ F〈f,F〈f,f〉 〉
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C.7 FPF (Fixed Point Fusion)

∀C,F,G.
C ⊥ = ⊥

; ∀x. C(F x) = G(C x)
⇒
C(µF) = µG

Derivation:

∀C,F,G.
P1: C ⊥ = ⊥

; P2: ∀x. C(F x) = G(C x)
⇒

C (µF)
= {FPI

C ⊥ ={P1} ⊥ ={R red} id ⊥
; ∀x,y.

P3: C x = id y
⇒

C (F x)
= {P2}
G (C x)

= {P3}
G (id y)

= {red}
G y

= {R red}
id(G y)

}
=
id(µG)

= {red}
µG
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C.8 FPF-Ext (Fixed Point Fusion - Extended)

∀C,F,G,H.
C ⊥ = ⊥

; ∀f. letrec g=G〈f,g,C f〉 in { C(F〈f,g〉) = H〈f,g,C f〉 }
⇒
letrec f=F〈f,g〉; g=G〈f,g,C f〉 in 〈f,g〉

= letrec f=F〈f,g〉; g=G〈f,g,h〉; h=H〈f,g,h〉 in 〈f,g〉

Derivation:

∀C,F,G,H.
P1: C ⊥ = ⊥

; P2: ∀f. letrec g=G〈f,g,C f〉 in { C(F〈f,g〉) = H〈f,g,C f〉 }
⇒
letrec f=F〈f,g〉; g=G〈f,g,C f〉 in 〈f,g〉

=
Zooming in on "C f" (rules may apply to the larger context):

C f
= {Letrec-Exp}
C(letrec f=F〈f,g〉; g=G〈f,g,C f〉 in f)

= {FPD}
C(letrec f=(letrec g = G〈f,g,C f〉 in F〈f,g〉)in f)

=
{FPF-Partial
C ⊥ ={P1} ⊥

; ∀f’.
C(letrec g = G〈f’,g,C f’〉 in F〈f’,g〉)

= {Letrec-Ctxt}
letrec g = G〈f’,g,C f’〉 in C(F〈f’,g〉)

= {P2}
letrec g = G〈f’,g,C f’〉 in H〈f’,g,C f’〉

}
letrec f=(letrec g=G〈f,g,h〉in F〈f,g〉)

; h=(letrec g=G〈f,g,h〉in H〈f,g,h〉) in h
= {R FPD}
letrec f=F〈f,g〉; g=G〈f,g,h〉;

h=(letrec g=G〈f,g,h〉in H〈f,g,h〉) in h
= {R Letrec-Exp}
letrec f=F〈f,g〉; g=G〈f,g,h〉; h=H〈f,g,h〉 in h

=
letrec f=F〈f,g〉;

g=G〈f,g,letrec f=F〈f,g〉; g=G〈f,g,h〉; h=H〈f,g,h〉 in h〉 in 〈f,g〉
= {R GC}

letrec f=F〈f,g〉;
g=G〈f,g,letrec f=F〈f,g〉; g=G〈f,g,h〉; h=H〈f,g,h〉 in h〉
h=H〈f,g,h〉 in 〈f,g〉

= {R Letrec-Exp}
letrec f=F〈f,g〉; g=G〈f,g,h〉; h=H〈f,g,h〉 in 〈f,g〉
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C.9 FPF-N (Fixed Point Fusion - On N Mu’s)

∀C,F,G.
C ⊥ = ⊥

; ∀x . C〈i F.i x.i〉 = G(C x)
⇒
C〈i µ(F.i)〉 = µG

Derivation:

∀C,F,G.
P1: C ⊥ = ⊥

; P2: ∀x . C〈i F.i x.i〉 = G(C x)
⇒
C〈i µ(F.i)〉

= {Split}
C(µ(x 7→ 〈i F.i x.i〉))

= {FPF
C ⊥ ={P1} ⊥

; ∀x. C(〈i F.i x.i〉) ={P2} G(C x)
}
µG
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C.10 FPF-Partial (Fixed Point Fusion - Partial)

∀C,F,G.
C ⊥ = ⊥

; ∀f. C(F〈f,C f〉) = G〈f,C f〉
⇒
C(letrec f=F〈f,C f〉 in f) = letrec f=F〈f,g〉; g=G〈f,g〉 in g

Derivation:

∀C,F,G.
P1: C ⊥ = ⊥

; P2: ∀f. C(F〈f,C f〉) = G〈f,C f〉
⇒
mlet D x = 〈x,C x〉 in
{
C(letrec f=F〈f,C f〉 in f)

= {def. D, R red}
D(letrec f=F〈f,C f〉 in f) .2

=
{FPF

D ⊥
= {def. D}
〈⊥,C ⊥〉

= {P1}
〈⊥,⊥〉

= {R Prod-Bot}
⊥

; ∀f.
D(F〈f,C f〉)

= {def. D}
〈F〈f,C f〉 , C(F〈f,C f〉)〉

= {P1}
〈F〈f,C f〉 , G〈f,C f〉 〉

= {def. D}
〈F(D f) , G(D f) 〉

}
=
(µ h 7→ 〈F h,G h〉) .2

= {SS}
(letrec f=F〈f,g〉; g=G〈f,g〉 in 〈f,g〉).2

= {Letrec-Ctxt}
letrec f=F〈f,g〉; g=G〈f,g〉 in 〈f,g〉.2

= {red}
letrec f=F〈f,g〉; g=G〈f,g〉 in g

}
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C.11 Func-Bot

⊥[a→b] = x:a 7→⊥[b]

Derivation:

⊥[a→b]
= {eta}
x:a 7→⊥[a→b] x

= {red}
x:a 7→⊥[b]

C.12 GC (Garbage Collect Letrec)

∀F,G,C.
letrec f = F f; g=G〈f,g〉 in C f = letrec f = F f in C f

Derivation:

∀F,G,C.
letrec f = F f; g=G〈f,g〉 in C f

= {FPD}
letrec f = (letrec g=G〈f,g〉 in F f) in C f

= {SS}
letrec f = (let g=µg 7→ G〈f,g〉 in F f) in C f

= {GC-let}
letrec f = F f in C f

C.13 GC-Let(Garbage Collect Let)

∀X,M. let x = X in M = M

Derivation:

∀X,M.
let x = X in M

= {SS}
(x 7→ M) X

= {red}
M
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C.14 Inline-Bndg

∀C,F,G. letrec f=F〈f,g〉; g=G〈f,{ f=F〈f,g〉 },g〉 in C〈f,g〉

Derivation:

∀C,F,G.
letrec f=F〈f,g〉; g=G〈f,f,g〉 in C〈f,g〉

= {R Letrec-Ctxt}
C(letrec f=F〈f,g〉; g=G〈f,f,g〉 in 〈f,g〉)

= {SS}
C(µ〈f,g〉 7→ 〈F〈f,g〉, G〈f,f,g〉 〉)

= {R red}
C(µ〈f,g〉 7→ 〈F〈f,g〉, G〈f,〈f,g〉.1,g〉 〉)

= {FPE}
C(µ〈f,g〉 7→ 〈F〈f,g〉, G〈f,〈F〈f,g〉, G〈f,〈f,g〉.1,g〉 〉.1,g〉 〉)

= {red}
C(µ〈f,g〉 7→ 〈F〈f,g〉, G〈f,F〈f,g〉,g〉 〉)

= {SS}
C(letrec f=F〈f,g〉; g=G〈f,F〈f,g〉,g〉 in 〈f,g〉)

= {Letrec-Ctxt}
letrec f=F〈f,g〉; g=G〈f,F〈f,g〉,g〉 in C〈f,g〉

C.15 Inline-Body

∀F,G,C. letrec f=F〈f,g〉; g=G〈f,g〉 in C〈f,{ f=F〈f,g〉 },g〉

Derivation:

∀F,G,C.
mlet fg’ = µ〈f,g〉 7→ 〈F〈f,g〉,G〈f,g〉 〉 in
{
letrec f = F〈f,g〉; g=G〈f,g〉 in C〈f,f,g〉

= {SS}
let 〈f,g〉=fg’ in C〈f,f,g〉

= {R red}
let 〈f,g〉=fg’ in C〈f,〈f,g〉.1 ,g〉

= {Inline-Let}
let 〈f,g〉=fg’ in C〈f, fg’.1 ,g〉

= {red}
let 〈f,g〉=fg’ in C〈f,〈F fg’,G fg’〉.1 ,g〉

= {red}
let 〈f,g〉=fg’ in C〈f,F fg’ ,g〉

= {R Inline-Let}
let 〈f,g〉=fg’ in C〈f,F〈f,g〉 ,g〉

= {SS}
letrec f = F〈f,g〉; g=G〈f,g〉 in C〈f,F〈f,g〉,g〉

}
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C.16 Inline-Let

∀C,X. let x=X in C〈x,{x=X}〉

Derivation:

∀C,X.
let x=X in C〈x,x〉

= {SS}
(x 7→ C〈x,x〉) X

= {red}
C〈X,X〉

= {R red}
(x 7→ C〈x,X〉) X

= {SS}
let x=X in C〈x,X〉

C.17 Inline-Self

∀C,F,G. letrec f=F〈f,{ f=F〈f,f,g〉 },g〉; g=G〈f,g〉 in C〈f,g〉

Derivation:

∀C,F,G.
letrec f=F〈f,f,g〉; g=G〈f,g〉 in C〈f,g〉

= {R Letrec-Ctxt}
C(letrec f=F〈f,f,g〉; g=G〈f,g〉 in 〈f,g〉)

= {SS}
C(µ〈f,g〉 7→ 〈F〈f,f,g〉,G〈f,g〉 〉)

= {R red}
C(µ〈f,g〉 7→ 〈F〈f,〈f,g〉.1,g〉,G〈f,g〉 〉)

= {FPE}
C(µ〈f,g〉 7→ 〈F〈f,〈F〈f,〈f,g〉.1,g〉,G〈f,g〉 〉.1,g〉,G〈f,g〉 〉)

= {red}
C(µ〈f,g〉 7→ 〈F〈f, F〈f,〈f,g〉.1,g〉 ,g〉,G〈f,g〉 〉)

= {red}
C(µ〈f,g〉 7→ 〈F〈f, F〈f,f ,g〉 ,g〉,G〈f,g〉 〉)

= {SS}
C(letrec f=F〈f,F〈f,f,g〉,g〉; g=G〈f,g〉 in 〈f,g〉)

= {Letrec-Ctxt}
letrec f=F〈f,F〈f,f,g〉,g〉; g=G〈f,g〉 in C〈f,g〉
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C.18 Lambda-Mu-Switch

∀F. µf 7→ x 7→ F〈f x,x〉 = x 7→ µf 7→ F〈f,x〉

Derivation:

∀F.
µf 7→ x 7→ F〈f x,x〉

= {eta}
y 7→ (µf 7→ x 7→ F〈f x,x〉) y

= {FPF
⊥ y ={red} ⊥

; ∀f’.
((f 7→ x 7→ F〈f x,x〉) f’) y

= {red}
(x 7→ F〈f’ x,x〉) y

= {red}
F〈f’ y,y〉

}
y 7→ µf 7→ F〈f,y〉
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C.19 Let-Ctxt

∀C,D,X. C(let x=X in D x) = let x=X in C(D x)

Derivation:

∀C,D,X.
C(let x=X in D x)

= {SS}
C((x 7→ D x) X)

= {red}
C(D X)

= {R red}
(x 7→ C(D x)) X

= {SS}
let x=X in C(D x)

C.20 Letrec-Ctxt

∀C,D,F. C(letrec f = F f in D f) = letrec f = F f in C(D f)

Derivation:

∀C,D,F.
C(letrec f = F f in D f)

= {SS}
C(let f = µf 7→ F f in D f)

= {Let-Ctxt}
let f = µf 7→ F f in C(D f)

= {SS}
letrec f = F f in C(D f)
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C.21 Letrec-Equiv

∀F,G1,G2.
letrec f=F〈f,g1,g2 〉;〈g1,g2 〉=〈G1 〈f,g1,g2 〉,G2 〈f,g1,g2 〉 〉 in 〈f,g1,g2 〉

=
letrec f=F〈f,g1,g2 〉; g1=G1 〈f,g1,g2 〉; g2=G2 〈f,g1,g2 〉 in 〈f,g1,g2 〉

Derivation:

∀F,G1,G2.

mlet H〈f,g〉=〈f,g.1,g.2〉 in
{
letrec f=F〈f,g1,g2 〉;〈g1,g2 〉=〈G1 〈f,g1,g2 〉,G2 〈f,g1,g2 〉 〉 in 〈f,g1,g2 〉

= {SS}
letrec f=F〈f,g.1,g.2〉; g=〈G1 〈f,g.1,g.2〉,G2 〈f,g.1,g.2〉 〉 in 〈f,g.1,g.2〉

= {def. H}
letrec f=F〈f,g.1,g.2〉; g=〈G1 〈f,g.1,g.2〉,G2 〈f,g.1,g.2〉 〉 in H〈f,g〉

= {R Letrec-Ctxt}
H(letrec f=F〈f,g.1,g.2〉; g=〈G1 〈f,g.1,g.2〉,G2 〈f,g.1,g.2〉 〉 in 〈f,g〉

= {SS}
H(µ〈f,g〉 7→ 〈F〈f,g.1,g.2〉,〈G1 〈f,g.1,g.2〉,G2 〈f,g.1,g.2〉 〉)

={FPF
H ⊥

= {Prod-Bot}
H〈⊥,⊥〉

= {def. H}
〈⊥,⊥.1,⊥.2〉

= {red,red}
〈⊥,⊥,⊥〉

= {R Prod-Bot}
⊥

;
∀〈f,g〉.

H(〈F〈f,g.1,g.2〉,〈G1 〈f,g.1,g.2〉,G2 〈f,g.1,g.2〉 〉)
= {def. H}
〈F〈f,g.1,g.2〉, G1 〈f,g.1,g.2〉, G2 〈f,g.1,g.2〉 〉

= {def. H}
〈F(H〈f,g〉) , G1(H〈f,g〉) , G2(H〈f,g〉) 〉

}
µh 7→ 〈F h, G1 h, G2 h〉

= {eta}
µ〈f,g1,g2 〉 7→ 〈F〈f,g1,g2 〉,G1 〈f,g1,g2 〉,G2 〈f,g1,g2 〉 〉

= {SS}
letrec f=F〈f,g1,g2 〉; g1=G1 〈f,g1,g2 〉; g2=G2 〈f,g1,g2 〉 in 〈f,g1,g2 〉

}



178 APPENDIX C. DERIVED TRANSFORMATION LAWS

C.22 Letrec-Exp

∀F,G,C.
letrec f=F〈f,g〉; g=G〈f ,f,g〉 in 〈f,g〉
=
letrec f=F〈f,g〉; g=G〈letrec f=F〈f,g〉 in f,f,g〉 in 〈f,g〉

Derivation:

∀F,G,C.
letrec f=F〈f,g〉; g=G〈f ,f,g〉 in 〈f,g〉
= {Mix-Letrec}
letrec f=F〈f,g〉; g=G〈f’,f,g〉; f’=F〈f’,g〉; g’=G〈f’,f’,g’〉 in 〈f,g〉
= {GC}
letrec f=F〈f,g〉; g=G〈f’,f,g〉; f’=F〈f’,g〉 in 〈f,g〉
= {FPD}
letrec f=F〈f,g〉; g=(letrec f’=F〈f’,g〉 in G〈f’,f,g〉) in 〈f,g〉
= {Letrec-Ctxt}
letrec f=F〈f,g〉; g=G〈letrec f’=F〈f’,g〉 in f’,f,g〉 in 〈f,g〉
= {rename}
letrec f=F〈f,g〉; g=G〈letrec f=F〈f,g〉 in f,f,g〉 in 〈f,g〉

C.23 Mix

∀F,M. 〈_ µf 7→ F〈_ f〉 〉 = µf 7→ 〈i F〈j f.(M.i.j)〉 〉

Or, using letrec notation,

∀F,M.
letrec f = F〈_ f〉 in 〈_ f〉

=
letrec f.i = F〈j f.(M.i.j)〉 in f

Derivation:

∀F,M.
〈i µf 7→ F〈j f〉 〉

= {FPF
〈i ⊥〉

= {R Prod-Bot}
⊥

;
∀f.
〈i F〈j f〉 〉

= {R red}
〈i F〈j 〈i f〉.(M.i.j)〉 〉

}
µf 7→ 〈i F〈j f.(M.i.j)〉 〉
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C.24 Mix-Letrec

∀F,M,j.
letrec f = F〈_ f〉 in f

=
letrec f.i = F〈j f.(M.i.j)〉 in f.j

Derivation:

∀F,M,j.
letrec f = F〈_ f〉 in f

= {R red}
letrec f = F〈_ f〉 in 〈_ f〉.j

= {Letrec-Ctxt}
(letrec f = F〈_ f〉 in 〈_ f〉).j

= {Mix}
(letrec f.i = F〈j f.(M.i.j)〉 in f).j

= {R Letrec-Ctxt}
letrec f.i = F〈j f.(M.i.j)〉 in f.j

C.25 Partial-Mu-Reduce

∀F,G. µ(F ◦ G) = F(µ(G ◦ F))

Derivation:

∀F,G.
µ (F ◦ G)

= {SS}
letrec f = (F ◦ G) f in f

= {red}
letrec f = F (G f) in f

= {R GC}
letrec f = F (G f); g = G f in f

= {R Inline-Bndg}
letrec f = F g; g = G f in f

= {Inline-Body}
letrec f = F g; g = G f in F g

= {R Letrec-Ctxt}
F(letrec f = F g; g = G f in g)

= {Inline-Bndg, GC}
F(letrec g = G (F g) in g)

= {R red}
F(letrec g = (G ◦ F) g in g)

= {SS}
F(µ (G ◦ F))
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C.26 Prod-Bot

⊥[×a] = 〈i ⊥[a.i]〉

Derivation:

⊥[×a]
= {R eta}
〈i ⊥[×a].i〉

= {red}
〈i ⊥[a.i]〉

C.27 Split

∀F. µx 7→ 〈i F.i x.i〉 = 〈i µ F.i〉

Derivation:

∀F.
µx 7→ 〈i F.i x.i〉

= {N-Tuple-Eta}
〈j (µ(x 7→ 〈i F.i x.i〉).j 〉

= {FPF
⊥.j ={red} ⊥

;
∀y .

((x 7→ 〈i F.i x.i〉) y).j
= {red}
〈i F.i y.i〉.j

= {red}
F.j y.j

}
〈j µ(x 7→ F.j x)〉

= {R eta}
〈j µ F.j〉
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C.28 Trivial-Fusion

∀F,H,I.
H ⊥ = ⊥

; ∀x. I(H x) = x
⇒
H(µF) = µg 7→ H(F(I g))

Derivation:

∀F,H,I.
P1: H ⊥ = ⊥

; P2: ∀x. I(H x) = x
⇒
H(µF)

= {FPF
H ⊥

= {P1}
⊥

;
∀f.

H(F f)
= {R P2}
H(F(I(H f)))

}
µg 7→ H(F(I g))

C.29 Tuple-Strict-Implies-Components-Strict

∀F. { (x 7→ 〈i F.i x〉) ⊥ = ⊥ } ⇒ 〈i {F.i ⊥ = ⊥}〉

Derivation:

∀F.
P1: (x 7→ 〈i F.i x〉) ⊥ = ⊥
⇒
〈i F.i ⊥〉

= {R red}
(x 7→ 〈i F.i x〉) ⊥

= {P1}
⊥

= {Prod-Bot}
〈i ⊥〉
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C.30 Unused-Parameter-Elimination

∀A,B,C,D,F.
(µf 7→ 〈x,y〉 7→ F〈 〈i f 〈C.i x, D.i〈f,x,y〉 〉,x〉) 〈A,B〉

=
(µf 7→ x 7→ F〈 〈i f (C.i x)〉 ,x〉) A

Derivation:

∀A,B,C,D,F.
mlet fst = 〈x,y〉 7→ x in
{
(µf 7→ x 7→ F〈 〈i f (C.i x)〉 ,x〉) A

= {R red}
(µf 7→ x 7→ F〈 〈i f (C.i x)〉 ,x〉) 〈A,B〉.1

= {R red}
((µf 7→ x 7→ F〈 〈i f (C.i x)〉 ,x〉) . fst) 〈A,B〉

= { FPF
⊥ . fst

= {def. compose}
x 7→ ⊥ (fst x)

= {red}
x 7→⊥

= {R Func-Bot}
⊥

; ∀f.
(x 7→ F〈 〈i f (C.i x)〉 ,x〉) . fst)

= {red}
z 7→ F〈 〈i f (C.i (fst z)〉 , fst z〉

= {eta}
〈x,y〉 7→ F〈 〈i f(C.i (fst 〈x,y〉)〉 , fst 〈x,y〉 〉

= {red,red}
〈x,y〉 7→ F〈 〈i f(C.i x)〉 , x〉)

= {R red}
〈x,y〉 7→ F〈 〈i f(fst 〈C.i x, D.i〈f,x,y〉 〉 , x〉)

= {R red}
〈x,y〉 7→ F〈 〈i (f.fst) 〈C.i x, D.i〈f,x,y〉 〉 , x〉)

}
(µf 7→ 〈x,y〉 7→ F〈 〈i f 〈C.i x, D.i〈f,x,y〉 〉,x〉) 〈A,B〉

}
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