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Abstract
PATH, a Program Transformation System for Haskell

Mark Anders Tullsen
2002

PATH (Programmer Assistant for Transforming Haskell) is a user-directed program trans-
formation system for Haskell. This dissertation describes PATH and the technical contri-

butions made in its development.

PATH uses a new method for program transformation in which 1) total correctness is pre-
served, i.e., transformations can neither introduce nor eliminate non-termination; 2) infinite
data structures and partial functions can be transformed; 3) generalization of programs can
be done as well as specialization of programs; 4) neither an improvement nor an approx-
imation relation is required to prove equivalence of programs—reasoning can be directly
about program equivalence. Current methods (such as fold/unfold, expression procedures,

and the tick calculus) all lack one or more of these features.

PATH uses a more expressive logic for proving equivalence of programs than previous
transformation systems. A logic more general than two-level horn clauses (used in the CIP
transformation system) is needed but the full generality of first order logic is not required.
This logic used in PATH lends itself to the graphical manipulation of program derivations

(i.e., proofs of program equivalence).

PATH incorporates a language extension which makes programs and derivations more
generic: programs and derivations can be generic with respect to the length of tuples; i.e.,

a function can be written that works uniformly on 2-tuples, 3-tuples, and etc.
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Chapter 1

Introduction

In order to automate and support software development via program transformation, |
have designed and implemented a program transformation system for the pure functional
language Haskell. This system is called PATH (Programmer Assistant for Transforming
Haskell). In this dissertation, | describe PATH and the technical contributions made in its
development. This chapter explains the need for program transformation, the obstacles to
program transformation, and the design decisions made in developing PATH; lastly, this

chapter gives an overview of the dissertation.

1.1 The Need for Program Transformation

Trade-offs between clarity and efficiency permeate the process of software development.
To write software that is clear, and easily verified, is usually done at the expense of ef-

ficiency. To write efficient software is nearly always done at the expense of clarity. See

Figure[I:] for a Haskell program written for clarity and compare it to the program in Fig-

ure[L2 which was written for efficiency: the functionality of the two programs is identical
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wc h = do
xS <«— hGetContents h
return (length xs, length (words xs))

Figure 1.1: Clear Code

wc h = wc h False 0 0
where
wc h inword cs ws =
do
eof <« hIsSEOF h
if eof then
return (cs,ws)
else
do
¢ < hGetChar h
if isSpace c then
wc h False (cs+l) ws
else
if inword
then wc h True (cs+l) ws
else wc h True (cs+l) (ws+l)

Figure 1.2: Efficient Code

(count the characters and words in file), the code greatly differs.

This example demonstrates the general principle that a clear program is more easily seen
to be correct, is faster to develop, and is easier to maintain. Likewise, an efficient program

is usually less clear, is slower to develop, and is harder to maintain.

However, in software development we want cla@yd efficiency. There are two major
approaches to getting both. The first is the verification appraachi22, 34]. In this approach,
the specification is developed after the implementation. The specification is often some
logic or specification language, usually non-executable; the implementation could be any
language, often a procedural language. The disadvantage of this approach is that, because
one starts with the implementation, the implementation may not meettdrededspecifi-

cation. (More often than not it will satisfy an incorrect specification—writing code that is

both efficient and correct is difficult.)
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The other major approach to getting both clarity and efficiency is the transformational ap-
proach [57]. In this approach, orstartswith the specification. Then, by a sequence of
correctness preserving transformations, it is transformed into a program of acceptable effi-
ciency. This sequence of transformations is calledotiegram derivation.Thus, one ends

with not only an efficient program but also a proof (the derivation) that the implementation
meets its specification. The advantage here is that there is no danger of a mismatch between

the specification and the implementation.

The specification language can be a non-executable specification language or a functional
language. The implementation language could be a functional language or a procedural
language. The specification and implementation language could be the same language.
The transformational approach has no inherent limits: one can take non-executable spec-
ifications to efficient algorithms, exponential algorithms to linear algorithms, and linear

algorithms to logarithmic. Although the objective of program transformation is usually to

make a program more efficient, program transformation can also support other tasks such

as reverse engineering and re-factoring.

1.2 Obstacles to Program Transformation

The program transformation paradigm appears to be an effective alternative to the standard

approach to software development:

e A executable specification can be generated rapidly (either as the first step or by

refining a non-executable specification).

e Testing and requirements debugging can be done early in the software development

process.
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e Efficiency concerns do not affect the functional design.

e Rather than having one program which attempts to be both clear and efficient (where
clarity usually defers to efficiency), we have two programs, guaranteed equivalent,

one clear and one efficient.

So, why is program transformation not used in practice? First, there is the issue of tools:

e There are few tools for doing program transformation. Most which exist are research

tools and not robust tools for languages used in practice.

e The tools that exist are in general hard to learn. They are primarily designed to be
used by those that developed them—researchers and programming language experts.
Generally they require an expertise and mathematical sophistication beyond that of a

typical programmer.

e The tools that exist are in general hard to use. Most are based on a textual user

interface.

Second, and more importantly, there are a number of problems, long recognized in the pro-

gram transformation community, related to the intrinsic complexity of program derivations:

e Program derivations are large and complex. Thus, derivations are tedious to con-
struct. It can be simpler to write an implementation from scratch even if a specifica-

tion is at hand from which it could be derived.

e Program derivations are difficult to comprehend. One cannot easily understand the

derivations others have constructed; this makes re-use and modification difficult.



1.3. THE PATH PROGRAM TRANSFORMATION SYSTEM 5

e Program derivations are fragile with respect to changes in the specification. Re-
guirements change and so do specifications. When the specification changes, the
derivation can break beyond repair or require a large effort to repair. Although it is
unrealistic to think that the specification can change without requiring changes to the
derivation, we would like small changes in the specification to require proportionally

small changes in the derivation.

Good tools are needed to make program transformation a feasible method of program de-
velopment, the easier to use the better; but the next generation of program transformation
systems also needs to be much better at dealing with the fundamental problem: reducing
and managing the complexity of derivations. This thesis describes a number of contribu-
tions which may not appear to be closely related, but each contribution is aimed at this

goal: reducing and managing the complexity of derivations.

1.3 The PATH Program Transformation System

The design space for a program transformation system is extremely large: Should the sys-
tem be user-directed or fully-automated? What language, or languages, should it trans-
form? Should it be, or work very similar to, a theorem-prover? Should a meta-language
describe transformations or can transformations be done via a graphical user interface?
Should it allow for incorrect transformations? And etc. This section describes the design

decisions that have defined PATH.



6 CHAPTER 1. INTRODUCTION

1.3.1 User-Directed

PATH is user-directed, not fully automated. Much work in program transformation is on
fully automatic methods, such as the work in partial evaluation [43], or the work on very
highly optimizing compilers([62]. These methods generally give constant time speed ups,
but user-directed methods are more powerful: algorithmic changes can be made that change
the complexity class of the algorithm, e.g., exponential algorithms can be transformed into
logarithmic algorithms. Also, user-directed methods are more general: the program can be

restructured or made more general (re-factored) and not just made more efficient.

Fully automated methods are like a double-edged sword, powerful but hard to control:
There is little control over the meta-program which transforms the program and there is no
feedback except the resulting program. And as automated methods become more sophisti-

cated, the harder they are to understand and use.

PATH is designed on the premise that although fully automated methods are useful for
automating many simple transformations, they should be used as a supplement to, and not

a replacement for, a user-directed system.

1.3.2 Aimed at Practitioners

Some do not understand why a program transformation system is required: a theorem
prover in which one embeds the semantics of the language can be used to prove equiva-
lences of programs. PATH does not adopt this approach because it requires understanding
of a theorem prover, its logic, and its meta-programming language; it requires sophisti-
cated knowledge of programming language semantics, either operational or denotational.
The goal is for PATH to be usable by a novice functional programmer. Thus, no knowl-
edge of logic or domain theory is required; no sophistication in mathematical reasoning is

required.
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1.3.3 Totally Correct

One of the most popular methods of program transformation is the fold/unfold method of
Burstall and Darlingtoni15]. It is a simple, intuitive, and powerful approach but unfortu-
nately it does not preserve total correctness: non-termination could inadvertently be intro-
duced into the prograln In the PATH system, preserving total correctness is considered

essential. This decision is motivated by these factors:

e PATH is user-directed and designed for programmers. Thus, the programmer should
have confidence that he is not introducing non-termination into his program due to
his inexperience. The programmer should not be required to produce proofs of ter-

mination (to guarantee total correctness).

e PATH should be scalable to large programs. Small programs transformed with
fold/unfold can often be seen to terminate by inspection, but this is not the case
with larger programs. The programmer should be able to transform large programs
without concern that non-termination might be introduced in some obscure corner of

the program.

1.3.4 Designed for Changing Specifications

Specifications change in the real world; often they chaaifter the implementation has

been developed. To ensure that a new implementation is correct with respect to a revised
specification we must derive a new implementation from the new specification. The orig-
inal derivation may be able to be re-used to some degree. In order to support changing

specifications, PATH has been designed to maximize the re-use of previous derivations.

LIf the language was strict, one would need to worry alsemtovingnon-termination from the program.
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This is done in two ways: derivations are made generic and derivations are made manipu-

lable.

Derivations (and programs) are generic.

The key to writing robust software is abstraction, but genericity is often needed to use
abstraction: to write a generic sort routine, genericity over types is needed (i.e., polymor-
phism); to write a generic fold (a function inductively defined over an inductive data struc-

ture), genericity ovetype constructor¢e.g.,List andTree whereList a andTree a

are types) is needed—this is often called polytypism.

In program transformation the need for genericity is amplified. For example, in a monomor-
phic language, one cannot write a polymorphiet but must writesortInt, sortFloat,

and etc. One will have laws abosiirt Int andsortFloat instead of just one law about

a genericsort; also, one must transforgvrt Int andsortFloat separately, even if the
program derivations are identical. So, the ability to write a generic funciior,, reduces

not only program size, but also the number of laws and the length of program derivations.

Consequently, the program transformation community—notably the Squiggol (or Bird-
Meertens Formalism) community J171,1 48] 49]—has been working to make programs more
generic: not just polymorphic, but polytypic 4T, 42] 46, 47]. However, the genericity pro-
vided by polymorphism and polytypism is still not adequate to achieve certain abstractions;
another form of genericity is often needed—genericity over the length of tuples. Cfapter 8

describes this form of genericity and how it can be achieved in a typed language.
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Derivations are manipulable.

Historically, user-directed program transformation systems have worked as follows: the
current state of the program (or part of it) can be viewed by the user and the user gives
commands for applying transformation rules which change the program. The sequence
of commands (the derivation) is usually stored for replay but it is implicit and is not dis-

playable in a understandable form, only the current program is displayable.

The PATH approach is as follows: the user sees a program derivation, he changes it by
applying a transformation rule which is added to the derivation. The original program, the

final program, and the steps to transform the former into the latter are all in view.

There are two advantages to making derivations explicit: first, they become easier to un-
derstand because the user is accustomed to reading them, derivations are what he is ma-
nipulating; second, a visual representation of a program derivation allows it to be adapted

more easily to a changing specification.

1.3.5 Simple

Whenever possible, PATH is made as simple as possible. The main contributions in this
dissertation, described in Chaptgr§l4, 5, @nd 8, were motivated by the desire to simplify the
system as much as possible. | have attempted to make PATH simple to use and simple in
theory: a meta-language is not used or required; the smallest set of primitive laws has been

chosen; program derivations are based on the simplest logic possible; etc.

The following two design choices were motivated by this desiderata of simplicity.
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A single language is transformed.

The seminal CIP system![8] 9] used a wide-spectrum language CIP-L which had three
levels: specification, functional, and procedural. It was effectively three languages, a spec-
ification language, a functional language, and a procedural language, although they shared
a common syntax. The idea was to start by writing programs at the specification level,
transform them to the functional level where many transformations would be done, and
then, if necessary, the functional program would be transformed into a procedural program

for further optimization.

Although this is a very general approach, it is complex. There is a separate set of language
constructs and a corresponding catalog of laws for each of the three levels. The user must
use what amounts to three languages. PATH takes a more minimalist approach. All trans-
formations in PATH are done on a single language PATH-L, a purely functional language

similar to Haskell [38/:60]. This gains us much in simplicity but little is lost in generality:

¢ Although PATH-L has no non-deterministic or non-executable constructs as the spec-
ification sub-language of CIP-L does, PATH-L can express specification-like algo-

rithms using standard features of a lazy functional language [85].

e PATH-L allows for writing procedural code, but it does so without sacrificing the se-
mantically clean framework of a purely functional language. PATH-L accomplishes
this in the same manner as Haskell, by using a monad for performing 1O operations

[84].

The language transformed is not Haskell.

The goal of PATH is to transform Haskell, but it achieves this goal indirectly: first, Haskell

programs are translated into the PATH-L language (described in Chiapter 2), then PATH-L
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programs are transformed, and lastly, PATH-L programs are translated back into Haskell.

PATH-L is similar to Haskell: it is a statically typed, non-strict, purely functional language.
The differences between Haskell and PATH-L consist in (1) a number of syntactic differ-
ences, e.g., recursion is explicit in PATH, and (2) some semantic extensions: the addition

of unlifted tuples and the addition of tuples which are generic over the length of the tuple.

Using a language similar to, but not identical to, Haskell, is done for two reasons: first, the
description of the system, the language, and its laws can be done more clearly in PATH-L
without the unnecessary syntactic sugar of Haskell; the second reason is that in PATH-L

laws are more easily expressed and derivations are more easily done.

1.4 Overview of the Dissertation

The rest of this dissertation describes the PATH program transformation system and the

technical contributions made in the system. The dissertation is structured as follows:

e ChapterR introduces the language that is being transformed: a Haskell-like func-

tional language.

e ChaptefB discusses the two major approaches to program transformation, the gener-
ative set approach and the schematic approach. The advantages and disadvantages of

these two incompatible approaches are discussed.

e Chaptef4 demonstrates how the two approaches to program transformation can be
integrated. In particular, it is shown how the schematic approach can achieve the
expressiveness of a powerful generative set approach if the right set of primitive laws

is chosen.
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CHAPTER 1. INTRODUCTION

Chapterp discusses the underlying logic used in PATH: The form of a transformation
law is explained (i.e., the formulas in the logic) as is the form of a program derivation

(i.e., the proofs in the logic). The primitive laws are explained.
Chaptelp discusses the user interface aspects of PATH.
ChaptefJ7 presents a number of examples of program derivations done in PATH.

Chaptel B discusses a new form of genericity, genericity over the length of tuples. It
is explained why this form of genericity is useful in a program transformation system

and how it can be achieved in a typed language.

ChapterP summarizes the contributions, discusses related work, and points out future

directions.
Appendix A contains the predefined definitions in the PATH language.
Appendix B contains the primitive transformation rules and laws.

Appendix C contains a catalog of derived transformation laws along with their deriva-

tions.



Chapter 2

The PATH Language, PATH-L

In this chapter, the PATH{.language used in PATH is described. PATH-L is similar to
Haskell: it is a statically typed, non-strict, purely functional programming language. The
following sections describe the syntax and semantics of PATH-L. The last section explains

why PATH-L, and not Haskell, is used as the transformation language in PATH.

2.1 Syntax

The syntax of the terms and types of PATH-L is in Figure 2.1. It is a typed lambda calculus
with products (tuples), sums, a fix point operator, and integers. It can be viewed as a

desugared Haskell.

The terms of the language are described by the syntactic elaBsinctions, or lambda
abstractions, are written as:'t — €’ (without a leading lambda) whetds the type of the
variablev. Thev can be replaced by a tuple pattepn,Tuples are written with angle brack-

ets rather than parentheses as in Haskell. PATH-L has a more general way of projecting

LPATH-L for “PATH Language.”

13
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pt—e

(e1,e,...,€n)
em

In.myp

case e

U

m

prim

Lt

p = v

(P1, P2, ..)
a

th -t

X (t1,t2,...)

+<t1,t2,...>
Int

m,n = {natural numbers}

CHAPTER 2. THE PATH LANGUAGE, PATH-L

variables

abstraction

application

constructor fom-tuples
destructor fom-tuples (1< m<n)
constructors fon-sums (I<m<n)
destructor for sums

fixed point operator

integer constant

integer primitive

the undefined value

variables
tuple patterns

type variables
functions

tuple type (products)
sum type

integer type

Figure 2.1: Syntax of PATH-L
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from tuples: ifeis ann-tuple, there.m, is them-th element ok. For instance,

(x1,%2,%3) .23 = Xo

The following program is ill-typed because a projection for a 4-tuple is being applied to a

3-tupled:

(x1,%2,%3) .24

PATH-L has sums: the constructors being of the farmm, (the m-th constructor for an
n-sumj, the destructor for sums isase. The case expression is different from that in
Haskell in these ways: 1) the order of arguments: alternatives come first, the sum comes
second; 2) the alternatives are written as a tuple of functions; and 3) no nested patterns are

allowed. An example of aase reduction is as follows:

case (ei,eg,e3) (In.23 x) = ey x

PATH-L has an explicit fixed-point operatpr It has integers and numerous strict primitive
operators (denoted by the meta-variapten ). It also has an explicit undefined element,

L, which corresponds to a non-terminating program of type

The types of the language are described by the syntactictcldss/pe can be a function
ty — to, a productx(ty,tp,...), a sumty,to,...), or an integer type. Discussing the type
system of PATH-L will be postponed until Chapfér 8, in which an extension of the language

described here is discussed.

2A “projection” (such as 2) is said to be “applied” to a tuple using the “.” operator.
3The reason for this odd syntax for constructors will be seen in Chﬁpter 8.
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Syntactic Conventions. A number of syntactic conventions will be used henceforth. The
type annotations are often dropped, the projectigns sometimes written as just, and
the constructorin.m, is sometimes written as justh.m. Function application is left-

associative:

abcd= (((ab)c)d)

Lambda abstractions aqs extend as far as possible to the right. So, we have this equiva-

lence:

X— Y= 2= e = Y(X = (Y= (2 €)))

Function composition, writtenf‘c g”, is defined as f og=x+— f(gX)".

As in Haskell, the variable " will sometimes be used to bind an unused variable.

Syntactic Sugar. There are also thest andletrec constructs which are merely syntac-

tic sugar:
let p:t=e in y = (p:t—vy) e
letrec xq4:ty = €1} ...; Xpitn = e inm
let (X1, .verxXp)=M(X1, .o, xp):X(ty, ..., tn) — (€1,...,ep) in m

Also, in let expression§x = eis syntactic sugar fof = x+— e. Some laws are more clearly
written usingu and other laws are more clearly written usirg rec, the two notations will

be used interchangeably.
We also have

if b then t else f = if b t £
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= pit—e

| (ene..)

|  Inmme

| m (integer)
| L

Figure 2.2: Canonical Forms

Appendix[A contains the PATH-L prelude: a list of the predefined values used in programs
and derivations. Theata declarations for.ist, Bool, etc. in the prelude define sum types

(possibly recursive) and induce some syntactic sugar. For instangetther type,

data Either a b = Left a | Right b

induces the following syntactic sugar

Left = In.ls
Right = In.29

case (Left x: ey, Right x: ey) = case (x+>ej,x+— eg)

Note thatLeft is not a primitive, it is syntactic sugar for a sum. Nullary constructors are

treated specially, as in the st type:

data List a = Nil | Cons X(a,List a)

Nil = 1In.1lp ()
Cons = 1In.29
case (Nil: ey, Cons(x,y): es) = case (()—es ,(x,¥)—ea)

No nested patterns are allowed in the sugared: expressions.

2.2 Semantics

The semantics of PATH-L is given operationally; we sdjc to signify that the well-typed

closed expressioaevaluates to the canonical foren The notatiore |} signifies that there
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(pr—e1) ex = eifea/p}
(e1r.v.r€n).dn = €j
case (eg1,e2,...,en) (In.ip x) = e; x
Mp+—f = f{up— £ / p}
prim (c1,...,cn) = [[Prim (ci,...,cn)]

Figure 2.3: Reduction Rules

exists ac such thael c. Figure[Z.2 defines canonical forntsianges over canonical forms.

The evaluation relation is defined using the notion of a reduction confext [20]. A context,
C, is an expression with one or more holgsembedded in itC[e] is the contexC with

its holes filled with the expressiom A reduction contextR, is a context with a single

hole which indicates the place at which the next expression is to be reduced. The reduction

contexts of PATH-L are defined inductively as follows:

R I (hole)

| Re

| Rmy,

| caseeR

| MR

| prim (c1,Cp,...,R €1,€2,...)

Evaluation does not occur inside functions, inside tuples, or in the arguments of construc-
tors. The one step reduction relaties, is the least relation satisfying the reduction rules

(given in Figurg Z]3) and the following rule (i.e., it is closed under reduction contexts):

Re]=Re] if ege=e

Multi-step reduction="*, is the transitive, reflexive closure gf. Evaluation,|, is defined
as follows: e |} c if and only if e=* c. The notatiore{x/p} used in Figurd 2]3 signifies

capture free substitution affor pin the expressior. Sincep could be a tuple pattern, the
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notion of substitution is extended as follows:

e{X/(p1; P2;--.,pn)} = e{XLn/p1}{X2n/P2}...{XNn/pn}

e{x/v} = capture free substitution affor vin e
Haskell is lazy, or call-by-need, but the operational semantics given here is call-by-name.
There is no need to add the extra complexity of call-by-néed [2] because the theory of
program equivalence used in PATH is call-by-name. PATH uses call-by-name because it is
more expressive than call-by-need: it allows for both removing and introducing the sharing

of computation in transformations.

Supporting a call-by-value functional language such ag] [#0] could be easily done by

small changes to the semantics and the transformation laws.

2.3 PATH-L vs. Haskell

Instead of Haskell, PATH-L is used as the transformation language. Although PATH-L can

almost be viewed as a desugared Haskell, a few changes were considered essential:

1. In PATH-L recursion is explicit (using eitheror letrec). In Haskell, recursion
is implicit: any definition can be recursive or be mutually recursive with any other
definition in the program. Making recursion explicit makes laws about recursive

functions simpler and more concise. E.g., we have the law

WE = p(FOF)

rather than the law

let £ =F fine = 1let f =F(F £f) in e

4Though supporting the impure features of ML would not be as straightforward.
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2. PATH-L has unlifted products, for which it usés, e, ...) to distinguish them from
Haskell’s lifted productge;, e, ...). Haskell only has lifted products. Unlifted prod-
ucts enjoy many more laws than lifted products and there is no loss of expressiveness
as a lifted product can be had by simply wrapping a constructor around a unlifted

product.

3. PATH-L extends Haskell with genericity over the length of both tuples and sums.
The currentase form is based, not on Haskell, but on this extension which will be

introduced in Chaptdi 8.

4. PATH-L has a simplease construct rather than complex pattern-matching facilities.
This makes the language and laws sinflaithough at the expense of certain pro-
grams which are more easily expressed using pattern-matching. Rather than adding
pattern-matching to PATH-L, | believe that a better approach is to add “first class pat-

terns” [77]: extending PATH-L to use first class patterns is deferred to future work.

Other differences between Haskell and PATH-L are merely cosfhetic

e Putting the alternatives first and the sum argument seconddsi®. This allows for
a higher order programming style as the second argument, of sum type, can often be

left implicit.

e PATH-L uses p+— €’ rather than Haskell's \'p->€” notation for functions.

Though the meaning of PATH could be revised to be “Programmer Assistant for Trans-

forming aHaskell-like-languagg the goal is really to transform Haskell, but | believe this

SRefer to the chapter on pattern matchinglinl [21] for the complexity that is added to a transformation
system by the existence of Haskell-like pattern-matching.
5These differences exist merely because the author desired to experiment with alternative syntax.
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is easier done transforming artensiorof the Haskell-language. (Differences 2 and 3 are
extensions of Haskell; when first class patterns are added, difference 4 will be an exten-

sion.)
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Chapter 3

Approaches to Program Transformation

Using laws about language primitives and laws derived from the operational semantics, the
following transformation can be done:
length (Cons(a,Cons(b,xs)))
= {def. length; reduce case}
1 + length(Cons(b,xs))
= {def. length; reduce case}
1 + (1 + length xs)
= {associativity of +}
(1 + 1) + length xs
_ {def. +}
2 + length xs
(The definition oflength is in the PATH-L prelude, cf. Appendix]A.) However, there
are many transformations between recursive programs which cannot be performed using
these primitive laws, e.g.jiap £ o map g” cannot be transformed intanap (f o g)”.
In order to do such transformations, more powerful laws or methods are needed. There is
no lack of such methods: the problem is to choose which of a number of methods is most

appropriate for the PATH system.

There are numerous methods for transforming functional programming languages. In their

survey paper[56], Partsch and Steinbrueggen classify various methods for program trans-

23
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formation into two basic approaches: (1) the generative set approach, which is based on a
small set of simple rules which in combination are very expressive and (2) the schematic
approach which is based on using a large catalog of laws, each performing a significant
transformation. Fold/unfoldT15] and expression procedures [69] are examples of the for-
mer. The Bird-Meertens Formalism (or Squiggal) [ILT, 48, 49] is an example of the latter.
In this chapter | will discuss these two basic approaches to program transformation and

compare them.

3.1 The Generative Set Approach

This section discusses various methods which take the generative set approach. The meth-
ods discussed here transform functional programs written as a set of recursive equations.
So, the examples in this section are written as recursion equations but with a syntax other-

wise the same as PATH-L.

3.1.1 Fold/Unfold

One of the most well known methods of program transformation is Burstall and Darling-
ton’'sfold/unfold[15]. This methodology is extremely effective at a broad range of program
transformations. It is based on six rules: (hfold the unfolding of function calls by re-
placing the call with the body of the function where actual parameters are substituted for
formal parameters; (daws the use of laws about the primitives of the language;irf3)
stantiation adding an “instance” of a function definition in which a parameter is replaced
by a constant or pattern on both sides of the definition;f¢4): the replacement of an

expression by a function call when the function’s body can be instantiated to the given
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ones = Cons(l,ones)
map f = case (Nil : Nil
,Cons(x,xs): Cons(f x, map f xs)
)
(1) twos = map plusl ones
= {unfold ones}
(2) twos = map plusl (Cons(l,ones))
= {unfold map}
(3) twos = case (Nil : Nil
,Cons(x,xs): Cons(plusl x, map plusl xs)
)
(Cons(1,ones))
= {case reduce}
(4) twos = Cons(plusl 1, map plusl ones))
= {laws}
(5) twos = Cons(2, map plusl ones)
= {fold}
(6) twos = Cons(2, twos)

Figure 3.1: The twos” Derivation Using Fold/Unfold

expression with suitable actual parameters—this fold can be done witprampusdef-

inition of the function; (5)definition the addition of a new function definition; and (6)
abstraction the introduction of aihere clause. Fold/unfold was intended to transform
recursively defined functions but can also transform recursively defined data structures (for

languages which allow for them).

An example of a fold/unfold derivation is in Figure[3.1. The definitions:0fs andmap

are fixed and the definition afwos is transformed. The original program is on line 1.
The definition ofones is unfolded to get the program on line 2. The next steps unfold
map, evaluate thecase, and apply a primitive law, giving the program on line 5. Note
here that fhap plusl ones”is a previous definition otwos (from line 1); a fold can now

be performed: the expression is replacedthys, giving the program on line 6. This

derivation has removed an intermediate data structure from the definitiomn of

The fold rule is what gives the method its power, but it is also the rule that makes the
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method unsafe For example, consider the program

twos = map plusl ones

Since the expressiomép plusl ones” is an instance of the right-hand-side ofos, it

can be replaced withwos, yielding

twos = twos

which results in a non-terminating definition foros. Although this example is simplis-
tic, similar situations can arise in more subtle contexts, and thus non-termination can be

introduced inadvertently.

In addition to this problem with partial correctness, fold/unfold has a significant incon-
venience in practice: a history must be kept of all versions of the program as it is being
transformed (or the user must specify which versions to keep). This history is essential

because previous definitions of functions are used to give folding its power.

3.1.2 Totally Correct Fold/Unfold

One way to understand the partial correctness of fold/unfold is to characterize it denota-

tionally. The essence of fold/unfold is captured by this equBtion
MIWF if M=FM

That is, we start with a program and transform it until we see the “old definitioivl
in “FM”. Then we replaceV with a call to the current function (by replacigM with

“Ux— F X', or just “UF”). So, this equation states thathf is a fixed-point ofF, thenpuF

1The instantiation rule of Burstall and Darlington is also unsafe, but it can be easily corrected by adding
a strictness conditiori{b5,166].

2WhereN C M signifies thatN approximate or N is less defined thakl; the non-terminating program
1 is less defined than all programs.
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(the least fixed point oF) is less-defined thaW. So, if we replaceM with uF we may

have a less-defined prograpiF- may fail to terminate wher®l terminates.

Several approaches have been proposed to solve the problem of partial correctness. One
is to suitably constrain the use of fold, as proposed by Koit [44]. Unfortunately, Kott’s
method sufficiently constrains the form of program derivations, primitive laws, and func-

tion definitions so as to make his method unusable in practice [21, 68].
Another approach is to provide a separate proof of termination. Equationally,
M=uF if M=FM, total(uF)

l.e., a proof is added thatF is never undefined. The disadvantages of this approach are
one, infinite data structures and partial functions cannot be transformed (as neither can be

proved total) and two, proving the totality of functions can be tedious or difficult.

Yet another approach is the tick algebra of Sands [68] which uses an improvement relation

between programs:;. His method can be loosely characterized as follows:
M=pF if YM>F(M)

TheV is a tick which represents a computation step. This method is the most general way
of ensuring the correctness of fold/unfold, but showing improvement can be onerous due

to the manipulation of ticks involved.

A simpler approach which is similar to the tick algebra in ensuring improvement is expres-
sion procedures. This approach is described in the following section.
3.1.3 Expression Procedures

Motivated by the problems with fold/unfold, Scherlis propodexpression Procedures

(EPs) [69,70]. (More recently Sands[66] extended this work to a higher-order non-strict
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language.) Scherlis’s key innovation was a new procedure definition mechanism in which
the left hand side of an expression procedure definition can be an arbitrary expression: thus
the name “expression procedure”. In addition to laws about primitive functions aimd an
stantiationrule (as in fold/unfold), three rules are used to transform prograinsraction

which introduces new proceduresymposition which introduces new expression proce-
dures; andapplication which replaces a procedure call or expression procedure call with

its definition (like theunfoldrule).

Thecompositiorrule allows us to add an expression procedure to a list of recursion equa-

tions. Given the definition

and if C is a strict context, an expression procedure can be added giving

f=Ff
C f =ep= C(F 1)

The second line is an expression procedure: the left hand side is not just a function symbol
applied to variables and patterns, it is an arbitrary expressieris (sed for a regular

definition and=ep= for an expression procedure definition.)

In Figure[3.R, expression procedures are used to, again, transform the definitioss of
Given the definition obnes andmap, we transform the definition afwos. We can view
this transformation as creating a new version of the recursive definitioneaf which is
specialized to the strict contextdp plusl []”. The first step is to use theomposition
rule to introduce an expression procedure for this context, by filling in the hojeyith

each side of the definition ahes giving the following expression procedure in step 2:

map plusl ones =ep= map plusl(Cons(l,ones))
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(1)

(7)

=

=

=

=

=

=

=

ones = Cons(l,ones)

map f = case (Nil : Nil
,Cons(x,xs): Cons(f x, map f xs)

)

twos = map plusl ones
twos = map plusl ones
map plusl ones =ep= map plusl (Cons(l,ones))

twos = map plusl ones
map plusl ones =ep=
case (Nil : Nil
,Cons(x,xs): Cons(plusl x, map plusl xs)

)

(Cons(1,ones))

twos = map plusl ones
map plusl ones =ep= Cons(plusl 1, map plusl ones)

twos = map plusl ones
map plusl ones =ep= Cons(2, map plusl ones)

twos = map plusl ones
map plusl ones =ep= twos’
twos’ = Cons(2, map plusl ones)

twos = map plusl ones
map plusl ones =ep= twos’
twos’ = Cons(2, twos’)

twos = twos’
twos’ = Cons(2, twos’)

29

{compose}

{unfold map}

{case reduce}

{laws}

{abstraction}

{apply}

{apply}

Figure 3.2: The twos” Derivation Using Expression Procedures
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The next steps unfoldap, evaluate thease, and apply a primitive law, giving the program

in step 5. The expression procedur@p plusl ones” NOW Occurs recursively in its own
definition. Next, a new function definition is introduced using #festractionrule giving

the program in step 6. Finally, we use tggplicationrule to apply the expression procedure
(replacing the left side with the right side) in the definitiont@bs’ giving the program

in step 7, where the intermediate data structure has been eliminated. Now the expression

procedure is also applied in the definitiontefos giving the program in step 8.

For the derivation to be correct, it would need to be confirmed that the comntextlusl
[1”is strict. Showing that this context is strict cannot be done with expression procedures

but the strictness condition can often be satisfied by syntactic inspection of the context.

On the one hand, expression procedures are strictly less powerful than fold/unfold (they
can be simulated by fold/unfold); however, in practice, the great majority of fold/unfold
transformations can be done as well by expression procedures. | am not aware of any
usefufl andtotal correctness preservirfgld/unfold transformations which cannot be done

by expression procedures either directly or indirectly (by finding a common “ancestor”
from which to derive the two programs we wish to show equivalent). It should be noted
that it is rather unfair to compare the expressiveness of a totally correct method with the
expressiveness of a partially correct method because the partially correct method can derive

anything (fold/unfold can show that any program is equivalent o

On the other hand, expression procedures have two key advantages over fold/unfold: (1)
each of the transformation rules preserves total correctness, and (2) no history needs to
be maintained, as all needed information is embedded in the expression procedures; and

when compared to various methods of ensuring total correctness in fold/unfold, expression

3An example of a non-useful transformation is as follows [15, 88]:x* = 0” can be transformed to
"f x = if x == 0 then 0 else f (x-1)”inunfold/fold, but the reverse transformation cannot be done.
Expression procedures cannot transform in either direction.
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procedures are both easier to use and more expressive:

¢ Fold/unfold followed by a proof of termination: Expression procedures are simpler
as they need no separate proof of termination. They are more expressive as they can

transform infinite data structures and partial functions.

e Fold/unfold augmented with Sands tick calculus: Expression procedures derivations
are simpler as there is not the added complication of ticks (and laws for manipulat-
ing them). Expression procedures also appear to be more expressive than Sands’s

original tick calculuf.

Besides the technical improvements, in practice expression procedures have a simpler and
more intuitive method of program derivation: with fold/unfold, the ability to add a new
“eureka” definition to a program is essential; but with expression procedures, the analogous
operation is selecting a recursive function and some context in which to specialize it. Thus,

entering eureka definitions by hand is replaced by selecting contexts in the program.

3.1.4 The Reversibility Problem

Although expression procedures are an improvement over fold/unfold, they have one sig-
nificant shortcoming: it is easy to specialize a function, but it is not always possible to
generalize a function. This problem, shared with fold/unfold, comes about because the
transformation rules are not reversible: in particulardbmpositiorandapplicationrules

are inherently one-directiorfal (In fold/unfold the fold rule is inherently one-directional:

4Sands’s original tick calculus couldn’t prove the correctness of expression procedures: this seems to have
been the motivation for his paper on expression proced(ires [66].

SInstantiation is only used in one direction in EPs and fold/unfold but the reverse of this rule could be
added to the system.
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it can fold using anyreviousdefinition of the function—the reverse of this would involve

knowing thefuture definition of the function: a bit awkward!)

Let P, =€P P, signify that the progran®, can be derived fron®; using some sequence of
expression procedure rules. The relatiofiP is not symmetric, nor is> !, the comparable
derives relation for fold/unfold. Even when bd®h =-¢P P, andP, =P Py, the derivation
associated wittP, =-¢P P, may give no insight into how to find a derivation fiey =P P;.

For instance, given this definition atp:

map £ = case (Nil : Nil
,Cons(y,ys): Cons(f y, map f ys)

it is easy to go from

map plusl

Q
Il

to

case (Nil : Nil
,Cons(y,ys): Cons(plusl y, g ys)

Q
Il

using expression procedures but it is not possible to derive the first program from the sec-
ond. This is not surprising because expression procedures were desigspéedatization

not generalization of functions.

Reversibility is important for two reasons: First, adding reversibility makes the system
more expressive: as in the previous example, we often want to make programs shorter
or more modular. Also, even when a more efficient program is wanted, we sometimes
need to make it less efficient before making it more efficient (such transformations are

impossible with a method—such as expression procedures—in which every transformation
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step preserves or increases some measure of efficiency). Secondly, reversibility is important
because the system becomes simpler if each rule is reversible: the user can learn one law

and use it in two directions.

To get reversibility, a rule could be added such as thisP>iEs- P, thenP; = P,.” Burstall

and Darlington added such a rule, callediefinition to fold/unfold to get around this
problem. The disadvantage of this approach is that if onePhasd wants to transform

it, one needs to know the end resu®, before beginning—it cannot be derived directly
or incrementally fromP;; also, the addition of this ad hoc rule makes the system more
complef]. Instead of adding a rule, it would be preferable to modify the rules to make

them all reversible. The following chapter shows how to do exactly that.

3.1.5 Summary of Generative Set Methods

So, fold/unfold is simple, intuitive, and powerful but lacks total correctness and requires
a history of transformations. The expression procedure method is nearly as simple and

powerful but preserves total correctness and requires no transformation history.

Were it not for the reversibility problem just discussed, expression procedures would be

considered an excellent method for doing transformations in the PATH system.

However, there is one additional problem with the generative set methods: as they use a
fixed set of rules there is no ability to abstract over common sequences of transformation
steps and add more powerful rules to the system. Rather, the user is always transform-
ing at the level ofcompositionlaws andapplication (or with fold/unfold: unfold, laws,

fold). In contrast, the schematic approach allows the user to build up a useful catalog of

61n a partially correct method such as fold/unfold, the additiored&finitioncompounds the correctness
problem. Without redefinition, we havé. p =¥ L (any progranp can be transformed into the undefined
program), but with redefinition, we hawy, po. p1 =¥ p, (that is, any program can be transformed into
any other program).
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transformation laws which can be re-used. This approach is discussed in the following

section.

3.2 The Schematic Approach

The second major approach to program transformation is the schematic, or catalog, ap-
proach. In this approach, all transformation rules are expressed by laws about program
schemesl[[39]. For instance, a law could be of the following form (wipeage program

schemess= is program equivalence, ané is implication):
VX1,X2,.... P1 = P2 = P3 = Pa

Although one starts with a primitive catalog of laws, this catalog can be extended by adding
laws derived by the user. All laws are symmetric and can be applied in either direction,
thus there is no problem with reversibility. (Thus, in this approacis used for derives
rather than the asymmetric symbelf].) Also, there is no intrinsic problem with partial
correctness as long as all primitive laws preserve total correctness. However, as will be

seen, the schematic approach has disadvantages of its own.

3.2.1 Large Catalog

The seminal Munich CIP system is an example of the schematic approach, it uses a large
catalog of laws to reason about recursive programs. Refer to Higuire 3.3 for an example of
how the derivation ot wos might be done with this approach. Here, recursion is explicit.
The variableones is replaced with its definition giving the program in line 2. Now, the law

Map-Inf-List

"Which is now used for implication.
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ones = Hones +— Cons(1,ones)

(1) map plusl ones

= {def. ones}
(2) map plusl (Hones — Cons(1l,ones))

= {Map-Inf-List}
(3) (Utwos — Cons(plusl 1,twos))

= {def. plusl}
(4) (Utwos — Cons (2, twos))

Figure 3.3: The twos” Derivation Using the Large Catalog Approach

Vf,Xx. map f (Ma—Cons(x,a)) = pa—Cons(fXx,a)

is applied to this program giving the program in line 3 which is then simplified to the
program in line 4. We have a short and elegant derivation; the derivation is reversible as
every law is reversible; and the result of this derivation is a new law which could be added

to the catalog of laws.

However, there is one problem: where did ¥eap-Inf-Listlaw come from? If it is not a
primitive law, it may not be derivable from the primitive laws; thus, the disadvantage of the
large catalog approach: its expressiveness totally depends on the primitive laws in the cata-
log. Many systems using this approach have dozens of primitive laws about recursive pro-
grams [9/35-39]. Although it has numerous primitive laws, the CIP system adds the ability
to use fold/unfold with a proof of termination. Although this addition is understandable—
the expressiveness of the primitive laws is difficult to quantify but fold/unfold has proved
to be extremely expressive in practice—it is unfortunate because it brings the disadvan-
tages of fold/unfold (with a proof of termination) wherever fold/unfold is used: (1) partial
functions and infinite data structures cannot be transformed, (2) a transformation history is

required, and (3) derivations are not reversible.

Besides the potential lack of expressiveness, this approach lacks the simplicity and intu-

itiveness of fold/unfold (or expression procedures): With fold/unfold, one does not need
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to search for applicable laws because the strategy for transforming recursive functions is
virtually always the same: unfold the definition, simplify until there is an opportunity to
do the folding, and do the fold step. So, one can always do basic transformations at the

simplest level without any dependence on a catalog of laws.

3.2.2 Squiggol

Another example of the schematic approach to program transformation is the Squiggol
method, otherwise known as BMF (Bird-Meertens Formalism); Bird and Meertens |12, 13,
48] were the pioneers of this approach which focuses on deriving programs by calculation.
This approach is characterized by the use of a small set of recursion schemes (instead
of general recursion) and a corresponding set of fusion laws for reasoning about these

recursion schemes]11,149].

Much of this work has focused on programming with total functions and giving the user
recursion schemes which are primitive recursive (such as catamorphisms, which perform
their computation inductively over some finite data type). By restricting the programs that
can be written to total functions the laws become simpler: there are no strictness side-
conditions. However, Meijer et al_{49] have shown how the approach can be extended to

allow for partial functions and infinite data structures, although at some loss of simplicity.

Two of the primary recursion schemes used are catamorphisms and anamorphisms (or just
cata andana). Definitions of these are in Figufe B.4. Catamorphisms allow for defining
functions defined inductively over lists. Anamorphisms are dual to catamorphisms, they
allow for defining functions which construct lists by repeatedly “decomposing” a base value
into either nothing (givingiil) or a pair of values (giving the head of the list and a new
base value). Catamorphisms and anamorphisms can be defined for other recursive data

types besides lists.
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cata = Hcata — (f,b) — case (Nil : b
,Cons(y,ys): £(y, cata (£f,b) ys)
)
ana = Hana — f +— case (Nothing : Nil
,Just(a,b): Cons(a,ana f b)
)
o f

Figure 3.4: Definition of Catamorphism4ta) and Anamorphismana)

(1) map plusl (ana (x+— Just(l,x)) ())
- {Map-Ana}
(2) ana (case(Nothing: Nothing, Just(a,b): Just(plusl a,b))
o (x> Just(l,x)))
()
= {def. o}
(3) ana (x +— case(Nothing: Nothing, Just(a,b): Just(plusl a,b))
(Just(1,x)))
()
= {case reduce}
(4) ana (x + Just(plusl 1,x))
()
- {def. plusl}
(5) ana (x+— Just(2,x)) ()

Figure 3.5: The twos” Derivation Using Squiggol

Vf,q,b.
map f (ana g b)

ana (case (Nothing: Nothing, Just(a,b): Just(f a,b)) o g) b

Figure 3.6: The derived laMap-Ana
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In Figure[3.5 is the derivation afwos again, but here the derivation differs significantly
from the previous derivations afios. In the first place, an infinite list cannot be directly
written using a fixed-point operator but is constructed usitgy The infinite list of ones is

now written as follows:

ana (x+ Just(1l,x)) ()

The first step is to apply the laMap-Ana(cf. Figure[3.6), giving program 2. Then in

the following three steps the program is simplified by inliningloing case reduction, and
applying a primitive. One might ask whekéap-Anacomes from. Can it be derived from

the primitive laws? In contrast to the large catalog approach, the answer is a definite yes.
In Squiggol, there are laws for doing structural induction over each data type and universal
properties (or fusion laws) for each recursion scheme (giving a computational induction
principle). It is safe to say that the primitive laws are sufficiently expressive for programs

written using the recursion schemes.

So, using Squiggol, there is no problem with the expressiveness of the primitive laws. The
problem is in the expressiveness of the recursion schemes themselves. They can express a
great many functions but not every algorithm for those functions is expressible. Although
many programs can be written quite clearly using these recursion schemes and many trans-

formations can be done elegantly, giving away general recursion is a tough price to pay.

3.2.3 Theorem Proving

A third approach would be to use a theorem prover (e.gl, [58]) into which the semantics
is embedded to prove equivalences of programs. Although research in theorem proving is

generally outside the boundaries of research in program transformation, theorem proving is
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often used to prove properties of programs and it is similar in goals to the work in program

transformation.

A theorem proving approach has the following advantages: 1) it is the most general and
expressive approach; 2) automatic proof search is available; and 3) strategies and tactics
are extensible using a meta-language. But the disadvantages to using a theorem prover are
the following: 1) the user needs to be expert in the theorem prover, its logic, and its meta-
language; 2) the user needs to be expert in the semantics of the language and must usually
reason using an approximation relatian,, and be familiar with domain theory; and 3)

most theorem provers provide a primitive interface.

So, a theorem prover seems to be more appropriate for the language designer than for the
language user. Even were this approach taken, a front end would be wanted that hides the
complexity, providing a specialized theorem prover for proving equivalences of Haskell

programs. PATH would be an appropriate front end.

3.3 The Approaches Compared

3.3.1 Rulesvs. Laws

In this chapter | have carefully discriminated between the tdawsandrule. A law rep-
resents a program transformation that can be expressed logically or schematically, i.e., in a

form such as the following:

VXl,Xz,.... P3 = pa

By definition a law is reversible. The generative set approach allows for laws about prim-

itives but does not use laws to transform recursive programs. In the schematic approach,
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every transformation is expressed as a law, and recursion must be explicit, otherwise no

interesting transformations could be achieved.

A rule, in contrast, cannot in general be expressed kasva A rule specifies a transfor-
mation but is more ad hoc. In the generative set approach, it is not a single rule but it is
the set of rules in combination that gives a method its power. Rules in general will not be

reversible.

In the schematic approach, laws are our currency. As a result we can abstract over trans-
formations because we can develop new laws. We can make a system more powerful by
adding new axioms (in the form of laws) to the system. This approach is like logic: If
we want to extend a logic with another axiom, it is sufficient to prove the correctness of
the new axiom in the underlying model without worrying about it conflicting with other

axioms.

But in the generative set approach, we have both laws (about primitives) and rules (which
give the method its power). We cannot abstract over the laws to get new laws (without
some difficulty, cf. the following section) and we cannot abstract over the rules to get new
rules. The rule set of a generative set approach is quite fragile: we cannot dispense with
one without losing power, if we add a rule we need to show that the complete set of rules

is still sound.

3.3.2 Laws and the Generative Set Approach

It is essential to note that thawsreferred to in the discussions of fold/unfold and expres-
sion procedures are laws about mamitives e.g., associativity of integer addition. One
cannot use laws about the definitions of functions without risk of sacrificing correctness.

For example, assume we have this lemma abouidher function (which could be proved
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with induction on the natural numbers):

power x m * power X n = power x (mt+n)

We can use this lemma to perform the following EP derivation

power (x,n) = if n — 0 then 1 else x * power (x,n-1)

= {x = power(x,1)}
power (x,n) = if n =— 0 then 1 else power(x,1) * power (x,n-1)

= {power-Lemma}
power (x,n) = if n = 0 then 1 else power(x,1l+n-1)

= {arithmetic laws}
power (x,n) = if n = 0 then 1 else power(x,n)

Thus we have transformegbwer into a function that is non-terminating on all inputs ex-

cept zero. This is why laws are only allowed for the primitive operators. The problem in
the above derivation is that a law ab@utier is being used in the definition @bwer. This

makes even expression procedures unsafe. If we want to extend EPs to use laws about pro-
gram definitions, we need to ensure that laws about a definitaoe not used to transform

£ or any definition that depends a@n

This problem does not arise in the schematic approach because the recursion is explicit: we

would have the following definition gfower

Hpower — (x,n) — 1f n =— 0 then 1 else x * power (x, n-1)

and there is no way to apply laws abautier inside the definition opower because the

inner “power” is just a lambda bound variable.

Chin and Darlington[17] explain how to integrate laws, or schematic rules, into fold/unfold
but totally ignore the correctness issue; though this is understandable since fold/unfold

ignores the correctness issue.

Structural induction is a powerful proof principle which can be easily formulated in the

schematic approach but cannot be done in fold/unfold or EPs. (In Scherlis’s dissertation he
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uses the associativity of list append—which can be proved with structural induction—in
various derivations but conveniently list append is a primitive whose associativity is as-
sumed.) So, could one add a proof rule for structural induction to a generative set approach
such as expression procedures? One could use structural induction to prove things about
definitions (as long as these laws are used safely, as noted above). But this use of structural
induction happens outside of EPs: structural induction and EP derivations occur totally
independently. Whether there is some way in which the expression rules and a structural

induction rule could be integrated seems doubtful.

3.3.3 Summary

Neither the generative set nor the schematic approach is clearly better or more appropriate
than the other. The generative set methods, such as fold/unfold or expression procedures,
are simple and very expressive. Using expression procedures, partial functions and infinite
data structures can be transformed correctly. However, these methods are asymmetric—
they work well for specializing programs but not generalizing—and they do not allow for
abstracting over transformation steps. The schematic approach is more concise and al-
lows for the development of powerful laws which can represent major transformations; all
transformation laws are symmetric. However, in this approach one either gives up gen-
eral recursion (with an expressive set of primitive laws) or one has general recursion with a
large catalog of laws, the expressiveness of these laws being unclear. Another disadvantage
of this large catalog approach is that the user needs to search the catalog to find applicable

laws.

The following chapter describes a way of integrating these two approaches to get the ad-

vantages of each.



Chapter 4

The PATH Approach

In this chapter | show how the essence of the expression procedure method can be distilled
into one reversible rule called Fixed Point Fusion (Secfioh 4.1). | then show the need for
another law for reasoning abqu¢Sectiorf42). | give some examples of the expressiveness

of these laws (Section 4.3). | then show how the expressiveness of expression procedures
can be achieved using the schematic approach (Séction 4.4) and discuss the advantages and

limitations of this approach (Sectign 4.5).

4.1 From Expression Procedures to Fixed Point Fusion

As discussed in Sectidn 3.1.4, expression procedures (EPs) lack a desirable property: re-
versibility. Could expression procedures be made reversible2dinpositiorandapplica-

tion rules are inherently one-directional, but what if all the steps involved in a prototypical
expression procedure transformation could be merged into one step? There are just four

key steps (as seen in the example in Sedtion]3.1.3):
1. theintroductionof the expression procedureompositio,

43
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2. thetransformationof the body of the expression procedure,
3. the use ofbstractionto capture the resulting recursion, and

4. applicationof the expression procedure.

These four steps can be merged as follows. We begin with a strict furtcéind a function

definitionf = F f. Introductionof the expression procedure gives

C f =ep= C(F f)

which is thentransformednto the recursive expression procedure

C f =ep= G(C f)

for someG. After abstractionwe arrive at

C f =ep=g
g = G(C £)

Finally, applicationof the expression procedure yields

Cf =ep=g
g==_Gg

The above steps can be merged into one rule, (expressing the valtiesndfg as the

fixed-pointspr andpG respectively)
C(ur) =P uc if VE.c(F £f) =®P G(C £f), C strict

The quantifief is used because no use is made of the definitidniothe transformation
of the expression procedure body. So, this one rule replaces the three expression procedure
rules—eomposition abstraction andapplication We do not have reversibility yet, but if

we replace=-¢P with = in the above rule we would have the reversible law,

C(WF) = ue if Vf.C(F f) = G(C f), C strict
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a theorem of Stoy[75]. So, | join the company of many who have rediscovered or used this
theorem [3/28/-49]. Interestingly, it is a free theorem [82] of the fixed point opepator
Also, |, theleastfixed point operator, is the only fixed point operator which satisfies this
equation [2B]. Its name, Fixed-Point FusidfPF), is taken from Meijer et al[149] where

the theorem is exploited considerably: most of their transformations are instances of this

one general theorem.
Fixed-Point Fusion can be used in both directions:

C(MF) = MG  specialization (fusion)

MG = C(MF) generalization (fission)

To do fusion,c andr are known, and is desired; so the premise is proved by finding a
derivationc (F f) = G(C f), G is discovered in so doing. To do fissianjs known, the
user provideg, andr is desired; so the premise is proved by finding a derivatign £)

= C(F f), F is discovered in so doing. (Had an extra “redefinition” rule been added to

expression procedures, the user would also need to know the anshefiore proceeding.)

This connection with expression procedures can give an intuitioRrRét. Another intu-
ition for FPF is provided in Figur¢ 4]11. We start with(ur) in line 1 and in line 2 expand
thepr. In lines 3 and 4¢ is moved pasrt using the premise. We eventually end with line

5; the strictness aof gives line 6; contracting thes gives line 7.

4.2 Fixed Point Expansion

With expression procedures the following transformation can be done

f = F(f, f)
= {apply £}
f =F(fF(£,£))
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(1) C (UF)
(2)  CFEEF(..FL)))
(3)  GCE(F(..FL)))))
() GIG(C(E(...F(L)))))
5)  6(6(6(...6(CL))))
(6)  G(G(G(...6(L 1))
0 ue

Figure 4.1: Intuition for Fixed Point FusioirPF)

which cannot be done with tHePF law. To see why we cannot accomplish this transfor-

mation using=PF: note two things

e We cannot change the value undqrasing the primitive laws.

e FPF is only applicable when we have a strict context ansl not strict.

A law which allows us to do the above transformation is Fixed Point ExpanBiBE)(

VE. uf'—>F<f,f> = p.fr—>F<f,F<f,f>>

which enables us to expand, or inline, the definition of a recursive definition inside itself;
but this law also allows us to “reverse inline” recursive definitions by applying it right to

left. Note that expression procedures cannot do this “reverse inline” transformation:

f
=
f

F(f,F(f,£f))

F(f, f)

To demonstrate that expression procedures cannot do this “reverse inline” transformation,

I will show that fold/unfold (which is strictly more powerful than expression procedures)
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cannot do the transformatiop(F o F) = pF": We assume that fold/unfold can be charac-

terized by the following law (cf. Sectign 3.1.2)
M=uF if M=FM

To provep(F o F) = pF, we must instantiat® with F o F, giving this:
WFoF)=pF if WFoF)=F(uFoF))

But using laws we cannot satisfy the condition on the right: The only rule about recursive
functions is “unfolding”, i.e.y(F o F) = (FoF) (U(F oF)), and using this rulg)F o F)
can only be transformed into a program with an even number of occurren€esuitide

the . Thus, we see that(F o F) = pF cannot be done with fold/unfold.

4.3 Examples

Henceforth program derivations will be written in a form that is more like that used in the
PATH system. The precise form of program derivations is treated in the next chapter, but
here | discuss the conventions used in the derivations in this chapter. Derivation steps are

written as a sequence of steps such as
p1

= {r}
p2

or
p1 ={r} p2
which signifies thap1 is equivalent t@» by applying a law namedto some subexpression

of p1. This notation is extended to allow for a lawthat hasn premises as follows: the

derivation step
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VX, Y, e
P1: p1=p2

i P2 p3=pa

i P3: P5=pPe

€1
= {Py}
61’
= {r}
= {r}
62’
= {red}
€2

Figure 4.2: The Form of a Derivation

P1

di

p2

signifies thap1 is equivalent t, by applying ruler to p1 (or some sub-expression thereof)
whereds,... dn are then derivations that prove the premisesrofA law may be of the form

VX, V,een
P1=P2; P3=P4; Ps5=Pe; ... = €1=€2

in which we have universal quantification and in which the equivaleages%” is condi-

tional on the premises before the. A derivation, or proof, of such a law would look like

the derivation in Figur€ 4.2, in which names are given to the premises (in order that they
may be applied by name), and the “e,” is replaced by a sequence of steps that prove this.
The rule names inside the’s could be either the name of a premise (eeg) the name of

a law proved elsewhere (e.g),or the name of some primitive rule (suchasi—e.g.,e7’
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(1) map plusl (Hones — Cons(1l,ones))
= {FPF
VYones' .
(2) map plusl (Cons(l,ones’))
= {def. map}
(3) case (Nil : Nil

,Cons(x,xs): Cons(plusl x, map plusl xs)

)

(Cons(1,ones’))
= {case reduce}

(4) Cons(plusl 1, map plusl ones’)
= {laws}
(5) Cons(2, map plusl ones’)
}
(6) Htwos — Cons (2, twos)

Figure 4.3: The twos” Derivation UsingFPF

reduces tap). The rule{def. v} signifies the inlining of the prelude variable The rule

{ss} (for Syntactic Sugar) signifies that the two programs are equivalent up to syntactic
sugar. Rules are applied left to right but the prefixbefore a rule name signifies that it is

to be applied right to left. For further explanation of the primitive rules available in PATH,

refer to AppendixXB.

Also, the notatiort {e1=e>} is used as a shortcut for the lawe;]=C[e2], wherec is any

program context. This can be of great use whésa large context.

4.3.1 The “twos” Derivation

The derivation of twos” using FPF can be found in Figur€4.3. The original program,
using the explicit fix point operatqy, is on line 1. As the functionrap plusl” is strict,
FPF can be applied here with the following instantiation of the free variableBR¥#

(although at first it is not known what G will be):

C
F

map plusl
ones +— Cons<1l, ones>



50 CHAPTER 4. THE PATH APPROACH

G = twos +— Cons<2,twos>

To prove the premise OFPF, we start with the program on line 2, corresponding to
“C(F f)". Itis then transformed until we have brought the functiaa plus1” against
ones’ in line 5 (corresponding toG(C £)”). At this step, the premise is satisfied and we

have discovered, giving the result in line 6.

Note the similarity between this derivation and the expression procedure derivation shown
in Sectio3.1]3: applyingPF corresponds to introducing the expression procedure; trans-
forming “C(F f)” in the premise corresponds to transforming the expression procedure
definition; the end of th&PF premise derivation corresponds to the abstraction and apply
steps. This derivation is also comparable to the fold/unfold derivation shown in Section
B.I.1: applying=PF corresponds to unfolding the definition efies; transforming ¢ (F

£)” in the premise corresponds to transforming the new definitionwofs; the end of

the FPF premise derivation corresponds to the fold step. By quantifying oves’ it is

ensured that an unsafe fold step cannot be done.

The strictness condition fofPF is left out of this derivation in order to highlight the
similarity to the expression procedure derivation. The following sub-derivation, for the

premise € 1 = 1", would need to be added:

map plusl L
= {def. map}
case (Nil : Nil
,Cons(x,xs): Cons(f x, map plusl xs)
) L
= {case strict}
il

Note the advantages of this approach over expression procedures: the fangsbown to

be strictin the systenfwhereas in expression procedures, it must be shown strict outside of
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the system); also the derivation is reversible, one could start witiic's—Cons<2, twos>”

and derive the original program from it.

Another advantage that can now be seen is that derivations are structured in a goal-directed
fashion. Derivations are structured aggbpl a function and its context are specified; and

2) sub-goal the derivation is developed which satisfies the sub-goal (thereby synthesizing
the new definition). Besides clearly indicating the goal of each transformation, this allows
all the sub-goals of an unreachable goal to be removed easily if the goal is removed. With

fold/unfold and expression procedures the derivations can be much more unstructured.

4.3.2 Regarding Strictness Conditions

Two of the most useful law&PF andinst, have strictness conditions. Can these conditions
be avoided? There are three possibilities to eliminate the need for these: 1) the Squiggol
approach where only total functions are allowed (thugjoesn’t exist); or 2) these con-
ditions are dropped and partially correct transformations are allowed; or 3) the strictness
conditions are replaced by a totality condition on the r@suNeither of these methods

was considered an option for PATH, and thus the strictness conditions remain. However, in
actual use the strictness condition is very often satisfied automatically in PATH. Note that

the contexts defined b, an extension of reduction conteX®sare strict.

S = | (hole)
| Se

| Sm,

| case(nil: e, cons:e) S

b

prim (e, e,...,S ...,en)

!Refer to Sectiof 5.3.4 for a further discussion of this option.
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4.3.3 Introducing Mutual Recursion

The prototypical use of expression procedu@si{positionlaws abstraction andappli-
cation) can obviously be done usirkPF. Although the great majority of derivations using
expression procedures do follow this patfenwhat about the derivations which do not fol-
low this pattern? What follows is an example of a derivation which does not follow the

pattern but can be done easily wkRF.

Assuming that we can do the following derivations
9)) = A (C I)
Mxe) = B (C g
we can do the expression procedure derivation seen in Hiqure 4.4. This derivation appears
problematic to do withFPF because the uses cdmpositionabstraction andapplication
are completely intertwined. However, this derivation can be done as easilykRBhy

explicitly representing the mutual recursion (see Fidure 4.5).

4.4 Expression Procedures Equationally

The lawsFPF andFPE appear to give us the expressiveness of expression procedures. But
could the schematic approach, using these two laws ahastomplistanyderivation pos-

sible with expression procedures? Secfion 4.1 showedHAtiwcan derive programs that
would be done by the sequenceaosimpositionlaws, abstraction andapplicationin EPs.
Section 42 showed howPE can accomplish what is done by functiapplicationin ex-
pression procedures. And Sectjon 4.3 gave a program derivation which was accomplished

by a rather tangled ordering of the expression procedure rotespositioncomposition

2Likewise, FPF also captures the most common pattern in fold/unfold: unfold the definition one time,
transform it, and then fold.
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let

in

53

{assumption}

{abstract twice}

{apply "C f" twice}

{apply "D g" twice}

Figure 4.4: Introducing Mutual Recursion with Expression Procedures
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let

(f.9) = W{f,9) = (F(£,9),6(f,9))

(C £, Dg)
= {R red}
((f,9) = (C £, D g)) (f,9)
= {FPF
vVf,g.
((£,9) = (C £, D g)) (F(f,9),6(f,q))
= {red}
(C(F(f,9)), D(G(f, g)))
= {assumption}
(p(Cc £, D g), B(C £, D g))
= {R red}
(x+— (A %, Bx)) (Cf, Dag)
= {R red}
(x— (A %, B x)) (((f,g)—(C £, Dg) (f,q))
}
px — (A x,B x)
= {eta}
u<f’,g'> = <A<f’,g’>, B<f’,g’>>
= {SS}

letrec £’ = A(f',g") and g’ = B(f’,g’) in (f',g")

Figure 4.5: Introducing Mutual Recursion wiitiPF
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laws, laws, abstraction abstraction application andapplication Although many com-

mon EP derivations can be done usiFF andFPE, it is not clear whether, using these

two laws aboutl, one can do any derivation possible using EPs: i.e., derivations in which
there may be arbitrary nesting and tangling of the rules. In this section, | demonstrate that
PATH (with just two primitive laws aboutf]) can give us the expressiveness of a powerful

restriction of expression procedures.

4.4.1 Restricted Expression Procedures

PATH can do any expression procedure derivation which can be structured as a sequence

of the following transformations:

functionapplication(replacing a function call by its definition)

laws (application of primitive laws)

abstraction

a composition-laws-application transformation

PATH clearly allows for the first three transformations: functapplication(with FPE),
laws andabstraction(with reverse reduction). This section describes the fourth transfor-

mation and the next section proves that PATH can derive such transformations.

In the composition-laws-application transformation, tdwnposition(creating new EPS)
andapplicationof EPs cannot be done in an arbitrary order. Such a transformation proceeds

as follows: We start with this program

3As will be explained in the following chapter, the two primitive laws abpaire notFPF andFPE but
Scott-InductandFPD, from whichFPF andFPE can be derived.
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The definitionf is a tuple of all the definitions which are to be composed over. The defi-
nition g is a tuple of all the other definitions in the program. Then we have a sequence of
compositions ovef, giving the EP program (where each of thenust be strict):

£ =F(f9)

g = 6(f,9)

C1 f =ep= C1 (F(f,g
Cy £ =ep= Ca (F(f,q))

Cn f =ep= Cp(F(£f,q))

Then we transform the bodies of the EPs using primitive lapglicationof g (but not
applicationof £), and abstraction. In particular, E#pplicationis not allowed. This gives
the following program:

£ = F(f,q)
g = 6(f,9)
Cy £ =ep= Hy(f,q)
Co f =ep= Ha(f,q)

Cn £ =ep= Hy(f,q)

Now a sequence of abstractions are made, resulting in the following:

f =F(£f,q)

g = G<frg>

C1 f =ep= h1

Co £ =ep= hy

Cn £ =ep= hy

hy = Hi(£,9)
= H2<frg>
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Now, the definitions of, g, andh; are re-written so that where we want to apply the EPs is

made evident;

f = F'<C1 £, Cy £, ; Co I, frg>
g = G'<C1 f/ C2 f/ ’ Cn f/ f/g>
h1 Hl <C1 fICQ fr lcn fl frg>
hy = H2,<C1 £,Cq £, +Cn L, frg>
hy, = Hn’<C1 £,Cy £, +Cn £, f,g>

f F <h11 h2r ’ hnr frg>
g = G <h11 h2r r hnr frg>
hy = H1’<h1/h2/ s hny flg>
hy = H2’<h11h21 s hny frg>
hy = Hy <hlrh21 s hn, frg>

The above sequence of steps, a composition-laws-application transformation, constitutes
the only way in whichcompositionand EPapplicationare allowed in the derivation. Al-
though all useful EP derivations are structured similarly to this (Goshposition then

laws or other rulesabstraction and lastly EPapplicationf], what is being disallowed is

the following two transformation rules in the transformation of the body of an EP: 1) the
applicationof the functionf (f being the definition “composed over”) and &)plication

of an EP to itself multiple times (it can only be done once, at the end), i.e., the results of an
EP applicationcannot be transformed and be the subject of anothexdphication As an

example, the following derivation cannot be done using the restriction here:

4Wwithout abstraction and E&pplicationno gains could be made from the expression procedure created
with composition
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C f =ep= C(F f)

(1) = {laws...}
C f =ep= Hy(f,C £,C £)

(2) = {EP apply}
C f =ep= Hy(f,C £,Hs(f,C £,C £))

(3) = {laws...}
C f =ep= Ho(f,C f)

(4) = {abstract, EP apply}
C f =ep=h
h = Ha(f,h)

This is because the result of applying an EP in step (2) is transformed and is the subject of

a second ERpplicationin step (4).

4.4.2 Restricted Expression Procedures Using PATH

This section shows how PATH can achieve the composition-laws-application transforma-
tion described in the previous section. That transformation corresponds directly to the law
given in Figurg 4]6. We can quantify overas there is no dependence upon the definition
of £ anywhere in the derivation (this is becawgm®licationof £ is disallowed). The form

of this law can be simplified to the la@omposition-Laws-Applicatiogiven in Figurg 4]7.

This is done by representing all the functianss one functiort, all theh; functions as a

tupleh, and introducing new definitiortg G, andd as follows:

Cx=(C x, Cag X, ..., Cp %)

h = H(h, f,q)

F(h,f,9) = F'(h.1,h.2, ,h.n, £,9)

G(h,f,9) = G’ (h.1,h.2, ,h.n, £,9)

H(h,£f,9) = (Hy'(h.1,h.2,...,h.n, £,q)
yHa' (h.1,h.2,...,h.n, £,9)
yHp' (h.1,h.2,...,h.n, £,9)

Note thatc is strict iff each of theg; is strict; for a proof of this refer to the lawkuple-

Strict-Implies-Components-StrishdComponents-Strict-Implies-Tuple-StrictAppendix
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Ci L =1
; Co L =1
; Chp L =1
; VE. letrec g =6G'(Cy £, Co £, ..., Co £, £, Q)
in { C1(F<f/g>) - H1’<C1 £,Cy £,. (Co £, £, g> }
; VE. letrec g = G'(Cy £, Co £, ..., Cy £, £, g)
in { Co(F(f,g)) = Ha'(C1 £,C2 £,...,Ca £, £, g) }

; VE. letrec g =6G'(Cy £, Co £, ..., Co £, £, Q)
in { Cu(F(f,q)) = Hy'(Cy £,Co f,...,Cq £, £, g) }

=
letrec £ = F'(Cy £, Co £, ..., Cp £, £, )
g = G’<C1 fr C2 f/ ’ Cn f/ fl g>
in g
letrec £ =F’ (hy,hg,...,hy, £, g)
g =G’ <h11h21 ../hp, £, g>
hl H1’<h11h21---rhnr fl g>
h2 - H2’<hlrh2/---rhnr fl g>
hn - Hn <h1/h2/ /hn/ f/ g>
in g
Figure 4.6:Composition-Laws-Application-Expandedw
clL=_1
; V.
letrec g = G(C f,£f,g) in { C(F(C £,f,9)) = H(C £,£,9) }
=
letrec g = G(C £,f,qg); £ = F(C £,f,9) in g
= letrec g = G(h ,f,9); £ =F(h ,f,9); h = H(h£f,9) in g

Figure 4.7:Composition-Laws-Applicatiobaw

59
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. This is true because PATH-L has true products, in which (1, 1)f

So, showing that PATH is as expressive as Restricted EPs is simply a matter of proving the

law Composition-Laws-Applicatigrthis proof is in Figur¢ 4]8; it relies dremma-1

veC,F,G,H.
cl=1
; VE. letrec g=G(g,C f) in { C(F(£f,q)) = H(g,C f) }
=
letrec g=G(g,C f); f=F(f,g) in g = letrec g=G(g,h); h=H(g,h) in g

which follows easily from the larPF-Exf:

vC,F,G,H.
cl=1
; VE. letrec g=G(f,qg,C f) in { C(F(f,g)) = H(f,g,C £) }
=
letrec f=F(f,q); g=G(f,g,C f) in (f,q)
= letrec f=F(f,qg); 9=G(f,qg,h); h=H(f,g,h) in (f,q)

Refer to the proof oF PF-Ext(and the laws it requires) in Appendix C.

In order to simplify the presentation, | have neglected to show how one would apply the
abstractrule in the middle of a composition-laws-application transform. In expression
procedures, one can abstract simultaneously over a common subexpression in the EP, the
composed function, and the rest of the program (i.e., one can bring the subexpression out
of the definitions oft, g, andh simultaneously). We can simulate this in PATH by creating

identical abstractions in, G, andd giving us

F(h,f,9) = let x=X(h,f,g) in F’(h,£f,q,x)
H(h,f,9) = let x=X(h,f,q) in H' (h,£f,qg,x)
G(h,f,g) = let x=x(h,f,g) in G’ (h,£,g,x)

so that instead of usingomposition-Laws-Applicatioto get this program

SHaskell has lifted products for which this is not true.
6If we instantiateFPF-Extto functions wheref does not occur in the definition afor h and we apply
(.2) to each side, we gétemma-1
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Py

; Po:

61

: CL=1
VE.
letrec g = G(C f,f,g) in { C(F(C £,f,g9)) = H(C £,£,9) }
t
D f=(Cf,f)
F'({a,b),c) = F(a,b,c)
G’ ({a,b),c) = G{a,b,c)
H' ({a,b),c) = H{a,b,c)
letrec g = G(C £,£f,9); £ =F(C £,£,9)
{def. D, G’}
letrec g = G'(D £f,9); £ =F(C £,f,9)
{Lemma-1
CJ_:{Pl} J_
; VE.
letrec g =G’ (D f,g) in
{
D(F(C £,£,9))
= {def. D}
(C(F(Cc £,£,q9)), F(C £,£,9))
= {P2}
(#(c £,£,9) , F(C £,£,9))
= {def. F',H"}
(B ((c £,£),9), F'({C £,£),9))
_ {def. D}
<H’ <D f,g>, F’<D f,g>>
}
}
letrec g = G'(i,g); 1 = (H' (i,9),F" (i, g))
{R Inline-Bndg}
letrec g = G'(i,g); i = (h,F’'(i,9)); h = H'(i,q)
{R Inline-Bndg}
letrec g = G'{(i,9); 1 = (h,£f); h = H' (i,q9); f=F'(i,q)
{Inline-Bndg}
letrec g = G’ ((h,£),9); h = H ((h,£),g); £=F'((h,£),9)
{def. F’',G',H"}
letrec g = G(h, f,qg) ; h =H(h£,q) ; £=F(h,f,q9)

Figure 4.8:Composition-Laws-ApplicatioRroof
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letrec g = G(h,f,g); £ = F(h,£,9); h = H(h,f,g9) in g

we would get this program

letrec g = let x=X(h,f,g) in G’ (h,f,qg,x)
; £ = let x=xX(h,f,g) in F'(h, f,q,x
; h = let x=X(h,f,qg) in H' (h,f,qg,x)
in g

Note that the majority of the proof that PATH can achieve the expressiveness of Restricted

EPs is done in PATH itself, in the proofs Gbomposition-Laws-ApplicatioandFPF-Ext.

4.5 Evaluation of the PATH Approach

Although the restricted expression procedures seems to be a significant limitation to the
form of possible derivations, | am aware of no EP derivation that is not already in the
above restricted form (either from Scherlisi[69, 70], Sands [66], or my own work). Thus,

in practice, PATH appears to be as expressive as Expression Procedures (which appear to

be as expressive in practice as fold/unfold used safely).

Many EP derivations which aren’t in the restricted form could be transformed into the
restricted form easily. The two rules that cannot be used inside an EP can often be moved

outside the EP:
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e An “apply fin EP” can often be moved before the composition. I.e., this EP deriva-

tion

f=Ff

= {compose}
f=Ff
C f =ep= C(F f)

= {C o F = G}
C f =ep=G £

= {apply f}

C f =ep= G (F f)

can be transformed into this EP derivation

f=F1f

= fapply f}
f=F (F f)

= {compose}
C £ =ep= C(F(F £))

= {C oF = G}

e An“apply EP in EP” can often be moved after the application. I.e., this EP derivation

C f =ep= H(C f)

= {apply C £}
C f =ep= H(H(C £))

= {abstract and apply}
C =ep= h
h = H(H h)

= {abstract and apply}
C =ep= h
h=Hh

= {apply h}
h = H(H h)

But unfortunately, it does not always appear possible to get around the restriction. Note the

following law
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VC,F,Hy,Hsy.

VE. C(F f)

VE. Hy(f,C £,H;(f,C £,C £))
=

C(UF) = Hh — Hy (UF,h)

C f)

It can be derived using EPs (cf. Sectjon 4.4.1). Unfortunately, | have been unable to either
prove it using PATH or to demonstrate that it cannot be proved using PATH. | conjecture
that it cannot be proved using PATH. (And it would follow from this conjecture that re-

stricted EPs are strictly less powerful than EPs.)

It would certainly be possible to extend PATH to come closer to or give the full power of

EPs. Two possibilities are the following:

e Add an improvement relatiory, such as that in Sands[67]. This approach is very
expressive but unfortunately still not as expressive as expression procedures [66, 68];
to achieve the expressiveness of expression procedures, the improvement relation
must be extended to a weighted improvement relation. This further complicates an

already complex approach.

e Add another law to the system which would give us more expressiveness. One can-

didate for such a law would be the following:

clL=1
;(Vi:Nat.fi=Ffi+1
=

C(F fo) = H(fj,fx,...,C £5,C fx,...)
)
=
C(letrec £ =F f in f)

letrec h = H(f,f,...,h,h,...); £=F f in h

This is similar in spirit to Sands’s approach. It ensures that an improvement is being

made and allows for thapplication or inlining, of the functionf in the “expression
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procedure”. Such a law, though more expressive EraiRandFPE s one directional
in its nature: it is easy to use left to right but difficult to use right to left. Because
PATH uses the schematic approach, adding a new primitive law such as this is as

simple as adding it to the primitive rule catalog.

Either of these approaches could be used to increase the expressiveness of the PATH sys-
tem. However, this has not been done in the current version of PATH as the need has not

arisen for more expressiveness than that achieved with the primitives in PATH.

Although in some respects PATH appears less expressive than full EPs, in other respects
it is more expressive: PATH has a law for structural induction on Ils&;Induct which
allows for many transformations impossible with BR&d thanks to reversibility, PATH

can do many transformations directly which cannot be done with EPs.

4.6 Conclusion

This chapter has expanded on the author’'s work’in [79]. As discussed in Chapter 3, the
schematic approach and the generative set approach each have their advantages and disad-

vantages. Some previous attempts have been made to integrate these two approaches:

e Extend fold/unfold with schematic rules: Chin and Darlington [17] added schematic
rules to fold/unfold along with a method to generate new schematic rules using

fold/unfold.

e Extend the schematic approach with fold/unfold: The CIP system takes this ap-

proach, laws can be derived using fold/unfold plus a proof of termination.

’See Sectiof 3.3.2 for a discussion regarding the difficulty of extending generative set methods with laws
such ad.ist-Induct
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However, these attempts are primarilg@nbinationof the approaches rather than an in-
tegration. The resulting systems are more complex and the disadvantages of fold/unfold
are still present when fold/unfold is used. It would be preferable to have the advantages
of both approaches—simplicity, expressiveness, symmetry, and abstraction over transfor-
mation rules—and the disadvantages of neither. This chapter has shown a better way to
integrate the two approaches: a powerful generative set approach (expression procedures)
is subsumed into the schematic approach. This gives a method with the following advan-

tages:

e Simple and intuitive There are only two primitive rules for reasoning about recur-
sive definitions. FPF can be understood intuitively as a common pattern used in

fold/unfold or expression procedures.

e Expressive The method is strictly more expressive than “Restricted expression pro-

cedures” as presented here.
¢ History independentAs with expression procedures, no history is required.

e Totally correct Total correctness is preserved without proof of termination. Thus,

the method is able to correctly transform partial functions and infinite data structures.

e Extensible New program equivalence laws can be derived. Note how this has been
used to good effect in this chapter, where numerous additional laws about recursion

have been developed.

e Symmetric Programs can be generalized as well as specialized; derivations can be

reversed.

In comparison to expression procedures, the advantages of the PATH method are the fol-

lowing:



4.6. CONCLUSION 67

e There is a symmetric derives relation; no ad hoc rules, suada$inition are needed
to get reversibility. Thus the system is simpler than expression procedures would be
with such an extra rule: there @erule which the user uses to both specialize and
generalize, rather than an extra rule added to a set of “one directional” rules. Also,
the somewhat ad hammpositiorandapplicationrules are no longer needed, but are

implicit in the FPF law.

e Transformations can be done directly which cannot be done directly with expression
procedures. With expression procedures, there is sometimes a need to derive pro-
grams indirectly: e.g., in order to show thai is equivalent tops, one must do the

two derivationsp; = p2 andps = po.

e The base language does not need to be extended with expression procedures. Al-
though expression procedures would not need to be implemented in the language
(they are removed in the final program), a semantics would need to be given to ex-

pression procedure definitions.

e Derivations are structured in a goal-directed fashion. It is clear what the goal is, what

the sub-goals are, and where the sub-derivations are that support that goal.

PATH has achieved a number of advantages over methods such as fold/unfold and ex-
pression procedures but there is still the issue of expressiveness, intrinsic to the schematic

approach:

e Fold/unfold, although partially-correct, can do transformations that neither PATH nor
expression procedures can do and can do so with the fewest restrictions on the form

of derivations.
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e Expression procedures appear to be strictly more expressive than the restricted ex-
pression procedures which PATH can do. Clarifying the difference in expressiveness

here is an area for further research.

However, it should be noted that PATH, with structural induction, can do transformations

that fold/unfold and expression procedures cannot.

Some areas for future work are the following: determining transformations that require
the extra expressiveness of full EPs; clarifying the expressiveness of restricted expression
procedures in a more satisfying manner; and finding the simplest way to make PATH as

expressive as full expression procedures.



Chapter 5

A Logic for Program Transformation

Previously, program derivations have been presented somewhat informally; but in this

chapter the exact syntax and semantics of laws and program derivations will be elucidated.

With the generative set approach there is no logic, only a set of rules by which closed
programs are transformed into closed programs; but with the schematic approach, we are
provinglawsabout programs. What logic should be used in PATH? Pepper [59] describes
the logic which was developed for use in the CIP transformation system [8, 9] and argues
that a logic for program transformation should be simpler than that needed in a general
purpose theorem prover. Although agreeing with Pepper’s argument, | have developed a
different logic for PATH—one that improves on the infelicities of the CIP logic. The goals

for the design of the PATH logic were the following:

e It should be at least as expressive as the CIP logic.
e It should be able to express parametricity laws.
e It should be as simple as possible.

69
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t = oty —ta| x(tg,to,...) | +(t1,t2,...) | Int types

e = vivit—el|ee].. expressions

frou= vivit— | 1 5] ... [ {e1=e} expr. equivalence

poo= vivit—p | pies |- | {pL ={i} p5} proof of expr. equivalence
f = Wity Voity, .. [f1 fo ] = formula

p = Yty Voito, L [racfrsrai o] = pf proof / derivation

j = i"IRj"|? justifications

o= red| eta| r (e1,e,...) [P1; P2; -] rules

r € names of rules (premises & known laws)
v € names of variables

Figure 5.1: The PATH Logic

e Proofs in the logic (i.e., program derivations) should be small, easy to read, and lend

themselves to a graphical display.

A note on the terminology used in this chapter: éxpressioris a term of the PATH-L
language. Aormulais a syntactically valid statement of program equivalencéaviis a
formula that is semantically sound: this includes both primitive laws and derived laws. A
primitive ruleis like a primitive law but a rule uses meta-notation (it cannot be expressed
as a formula). Aderivationfor a law is a proof that the law is valid. (I will uggroof and

derivationinterchangeably.)

5.1 The Syntax of Formulas and Proofs

The syntax of formulas and proofs in PATH is given in Figure 5.1. The syntactic categories
e andt are expressions and types as given in Chapter 2. The syntactic catégery
statement of program equivalence, it allows for writing “contextual equivalences”, i.e., em-
bedding equivalencesgi=e>} inside program contexts, allowing one to writg=1=e2} as

a shortcut foc[e1]=C[e2]. The syntactic category is a proof of an expression equivalence

f’. A proof of the expression equivalencee1=e} might have this form:
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C{e1 ={red} {e3 ={red} en}}

that is,e1 reduces te3 andes reduces t@,. The syntactic categorieflsandp correspond

to formulas and proofs thereof. A formula consists of a sequence of typed quantified vari-
ables, a sequence of premisdsg;“fs;...” (each of which is a formula), followed by the
conclusion, which is a statement of program equivalence. The form of a prieaimilar
except that the premises are named and there is a proof of expression equivletwce,

the right of the=-.

Each step{p; ={j} p5}, in a proof of expression equivalence must be given some justi-
fication j. A justification can be g’, which is the name of a primitive rule—i.eed or
eta—or the application of another rule (either a premise or known law). When one applies
a rule, values for each of the quantified variables must be provideay, ...), and proofs

for each of the rule’s premises must be providgd; p,; ...|. The justification {R j} allows

for the rule to be applied right to left instead of left to ri§hiThe justification {?} is not
essential to the logic but is an essential part of the user interface, it is a placeholder for an

unproved part of the proof.

All laws in PATH follow a particular variable convention which is rather extreme, but sim-
ple: No bound variable (withet or —) can be free in any quantified variable. So, for
instance, ifr is a quantified variable, we have the following step which is always valid, we

need not say thatis free inF:

(x—F x) y ={red} F y

Note theFPE law for expanding out a recursive definition:

VE. uf'—>F<f,f> = p.fl—>F<f,F<f,f>>

“R” signifies reverse.
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vc,D,F,G.

clL=DL1
i Vx,y . {Cx =Dy} = (C(F x) =D(Gy)}
=

C(MF) = D (MG)

Figure 5.2:FPI Law

The functionr here cannot have a freethis is why we use (£, £) and not ¥ £": if FPE

was written thus

VF. Mf — F f = Uf — F(F 1)

we would have a law of less generality, in this caseryoccurrence oft would be re-
placed by ¥ £”. In the original FPE we have two occurrences of one to represent the
occurrences of that are unchanged and the other to represent the occurrenctdsadfre
expanded. This convention can make certain laws, sudfP& more onerous to write,

but it makes laws clearer and greatly simplifies performing derivations: one need not be
concerned with conditions such asfiot free int.” Also, this variable convention means

that there is no need for meta-notation for substitution in PATH laws.

Figure[5.2 gives an example of a PATH lawR| (Fixed Point Induction)Figure[5.B gives
an example of a derivation that proves the [BRF using the lawFPI. In order to make
derivations more readable than this example, derivations in this dissertation are generally

written less formally. They are simplified in the following ways:

Brackets are dropped.

Empty lists of premises and empty lists of sub-derivations are dropped.

Types are dropped when not essential.

Instantiation lists are dropped.
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vc,F,G.
[ Py: {C L =1}
; Po: Vx. {C (F x) =G (C x)}
]
=
{C(MF)
={FPI (C,id,F,G)
[ { CL={Py} L ={R red} id L }
;o V%, y.
[P3: {C x = id y}] =
{ C (F x)
={Py (x)}
G { Cx ={P3g} id y ={red} y }
={R red}
id (G y)
}
1}
id (U G)
={red}
UG

Figure 5.3: Full Derivation oFPF

e The simple lanGC is sometimes applied implicitly.
e A sequence ofred} steps is sometimes written as a singlted*} step.

e The exact place where the rule is applied is not manifest but the whole program is
repeated on each line. (Although making it less clear what part of the program has

been changed, this makes it easier to see the complete program which is available for

transformation.)

To see what the derivation 6PF looks like in the easier to read form, refer to its derivation

in Appendix[C.

All formulas and proofs must be well-typed to be valid. But it is not enough for a syntac-
tically valid proof to be well-typed, it must also be valid in the sense that every step,

={r} ez}, in the derivation must be a valid application of the ruleA precise definition
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of what it means for a derivation to be valid is the subject of the following section.

5.2 From Proofs to Laws

| have described the syntax of the PATH logic, but to use the language of logic, What are
the “inference rules” for constructing new theorems from known theorems? Usually the
answer to this question would be a set of natural deduction style rules. However, PATH
takes a slightly different perspective on this: We start with tridativationsand build

largerderivationsfrom them. That is, we start with a trivial derivation of the form

\V/X1,X2,X3,... . [p1: f1, p2: fo, ...] = e

(where e is just an expression, i.e., a derivation without{@ay {r }e2} steps) and then we

create larger derivations by modifying them in such ways as

Apply a premise somewhere in the consequent.

Add a premise.

Remove quantified variables by instantiating them.

Join derivations: e.g¥a.[f1] = g1 andVb.[f2] = 2 are joined intova, b.[f1, f2] =

(01, 02)-

So, we always have a valid derivation of some program equivalence and we want to extend
it till it is a valid derivation of what we want. The rules for modifying derivations are
straightforward (and done automatically by PATH—cf. Chapter 6). | will not discuss
the rules for modifying derivations but | will specify in this section what it means for a

derivation to be valid. All rules for modifying PATH derivations preserve validity.
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A derivation p is valid if it proves a formulaf. The notatiorA;I" - p — f signifies that
the derivationp proves the formula given the laws in the law environmeAtand the
types in the type environmeft This notation is overloaded to also work on expression
equivalence and proofs thereof (i.e., syntactic clagsasdp’). The proves relation (of

andp) is defined in terms of the proves relation 6randp’:

Arqify rmifm; TVt vnitn P/ — q
AT F (Wit nitn [refermi fm) = /) — (Wviity,... Vnitn [f1,...,fm] = Q)

(The variabley is used for elements of the syntactic clds$ The relation— on f’ andp’
is defined inductively on the structure of the proofs and is given in Figure 5.4; it uses the

valid relation which is defined by the rules in Figure]5.5 and the following axioms:

valid (A, rl (pr—e1) e2 , {red}, 61{62/p} )
valid(d, T, (e1,...,€en)-In , {red}, ej )
valid(a, I, (case (e1,...,eq) (In.ip x), {red}, (e; x) )
valid(a, I, (Mp+— f) , {red}, f{p— £ / p} )
valid(a, I, (prim {(c1,...,Cn)) , {red}, [[prim {(ci,...,ca)] )
valid(, I, (L e) , {red}, L )
valid(, I, (L.mp) , {red}, L )
valid(a, I, (case e 1) , {red}, L )
valid(a, I, (prim (eq,...,L, ..., en)) , {red}, L )
valid(, I, (1L , {red}, L )

The valid relation uses the relation - e :: T which signifies thak has typet in type
environment™. The equality in the rules is alpha-equivalence. The functfonst and
final extract expressions (syntactic cla&$rom expression equivalences (syntactic class

f’). Their definitions are as follows:

first( {e; = eqg} ) =e

first( eq eq ) = (first eq) (first ey)
first( pr—e ) = p+— first e

first( (ei1,e9,...) ) = (first ey, first es, ...)
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AT X:TFe — ( AlTHe —q, ATHe — o
ATE X:T—e) — (X:1T—Q) ATEFee — qop
ATHeg — g AlTke—=q
A TH (e, e,....en) — (01,02,...,0n) A THemy — qmy
AlT-e—q ee {In.my,,m,prim , 1}
A, I casee — caseq AlT-e— e

ATkHe — g, ATF e — g, valid/AT,final(qp),r,first(gz))
A TE {er={r}e} — ({first(qr) = final(qz)}
Figure 5.4: The— (Proves) Relation

valid(A,l", ez, {j},e1) - e:ty —ty, xnotfreeine
valid(A,T,e1,{R j},e2) valid(A,T ,e {eta},x — ex)
MEe: +(t,...,th) M-e: x{t,...,ty)

valid(A,T,e {eta},cas€lIn.1y,...,In.n,) e) valid(A,I',e {eta}, (ely,...,eny))

Ar:l; T Epj — fi{in/Xa,...,in/Xn}
q/:C]{i]_/X]_,...,in/Xn}

e, = first(d)

e = final(d)

| =Yy ity Vn ity [f1, ..., fm] Q)

valid((A,r : 1), e, {r(i1,...,in) [P1,---, Pm] }, €2)

Figure 5.5: The “valid” Relation

final ( {e1 = e2} ) = €9

final( ey ) = (final ey) (final ej)
final( p+—e ) = pr— final e

final ( <e1,e2,...) ) = (final ey, final e, ...)

Note that conjectureg,?}, are not used in the definition o114, this is because deriva-

tions with conjectures are not valid.



5.3. THE DESIGN OF THE LOGIC 77

5.3 The Design of the Logic

In this section | will describe why the logic has been designed as it is and compare it to

other logics.

5.3.1 More expressive than the CIP logic

In [69], Pepper describes the logic used in the CIP transformation system. The CIP logic is

basically two-level Horn Clause Logic. I.e., formulas are of the following form,

([P, Py 1P, [Py Py TP ]
=
(p,p,...1FP
wherep is comparable to a statement of program equivaldricén Figure[5.1). In CIP

there are no explicit quantifiers, all quantifiers are implicit at the top level. This might

suggest that one could not expré&$3F, which contains a nested quantifier:

VYc,F,G.

clL=_1
7 Vx (F x) = G(C x)
=

C(MF) = MG

But CIP could expresBPF as follows

cl=1,c(fX =glcX

=

c(Mf) = Mg
using a special class of “indeterminate” variablgsy ...) which allow it to handle one
nested quantifier (but no more). So, CIP allows up to two levels of implication and up
to two levels of quantifiers, while PATH allows for arbitrary nesting of implications and

guantifiers.
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By allowing for arbitrary nesting of implications and quantifiers, PATH has gained two
advantages over the CIP logic: first, it becomes simpler as there are not two kinds of “im-
plication” (one for each of the two levels allowed) and there are not two kinds of variables
(quantified variables and indeterminate variables); second, it can express laws that cannot
be expressed in the CIP logic (laws that are “third orlarid higher). Are such “higher
order” laws necessary? They are necessary to meet the goal of being able to express all
parametricity laws: parametricity theorems feth order functions are laws of orde+1.
Although such higher order laws don’t occur offethey easily arise when dealing with

functions of high order. For instance, if we have the following function,

app :: xX{a—b,a) — b

app (f,x) = f x
and convert it to Continuation Passing Style (CPS) [64] we get this:

appk :: X(x{a, b—c) — d, (xX(a,b—c) — d) — e) — e

appk = let fi(f, k) =

(let f9(x,k9) = (let r x = ko x in f(x,r)) in k f5)
in fl

Now, the fourth order functioappk satisfies the third order law in Figures.6 (which is the
free theorem forppk). Granted, this example may appear contrived and the law complex,
but the law is valid and high order laws do arise naturally when high order code is involved

(such as when using CPS).

5.3.2 Simpler than CIP Logic

In CIP, a number of syntactic predicates are also used in the premises of a law; these

predicates are as follows:

2The order of a law being the depth of nested implications in it.
3No examples in this dissertation use more than two levels of implications or quantifiers.
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Va,b,c,d,e, £, £ ,k,k’.

vx,kg,kgl.
Vy. c (k2 y) = ko' (by)
=
d (£ (x, ko)) = £" (a x, ko')
i Vg,9".
(VX,kQ,kQ'.
Vy. ¢ (k2 y) = ko’ (b y)
=
d (g (x, k2)) = g" (a x, ka")
)
=
e (kg) =k" ¢
=
e (appk (f, k)) = appk (£, k')

Figure 5.6: Parametricity Theorem feppk

1. m=Type[E] (The termE has typem.)

2. New[v] (The variablev does not occur in any of the terms in the given law.)

3. Occurs|v, E], NotOccurs|v,E] (The variables occurs in progrank, does not occur

in programk.)

4. F =Declaration[f] (The identifierf has the tern¥ as the right-hand side of its

declaration.)

In PATH none of these syntactic predicates are necessary: Predicate 1 is not necessary
because PATH is a typed logic working on a typed language, any typing constraints are
implicit in the types of the quantified variables. Predicates 2 and 3 are not necessary be-
cause of the variable convention in PATH. Predicate 4 becomes unnecessary due to both
the variable convention and the use of an explicit fix point operator in path. E.g., in CIP,

one would use a side condition such as

F[f]=Declaration[f]
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in order to refer to the defining equation for a recursive f. In PATH, one simply can write

laws about the recursive functiopt' — F £” without referring to a notion of declaration.

5.3.3 Making the Logic as Simple As Possible

Note the syntactic categorly of formulas in Figurg 5]1. This corresponds to first order
logic without negation-{) and disjunction ) but with implication &) and conjunction

(here *;”). For the purposes of programansformation negation is not needed as we do not
want to prove programs unequal, only equal. Disjunction is also dropped: laws of the form
f = (e1 = &2 Ve3 = &) are not directly useful (we need to know which of the equivalences

is valid); a law of the form{e; = e; Ves = e1) = &5 = e is easily replaced by the equivalent

two laws:.e; = e = es = gg andez = &4 = &5 = €.

There are additional syntactic restrictions imposed by the definitioln do quantifiers

are allowed except at the outermost position in a formula and conjunction (using “;") is
only allowed in the antecedent of the. The reason for these syntactic restrictions (no
expressiveness is lost by thBxis to simplify theapplicationof laws. Since the consequent

is always an expression equivalendé)( a law is always applied in the same manner:
giving an instantiation of the quantified variables and a sequence of sub-derivations, one
for each premise. (Compare this to the situation where conjunctions or general formulas
could be in the consequent, one would need different ways to apply different forms of

laws.)

As a result of the above restrictions, the form of derivations (or prqgfbecome simple
and directly follow the form of the formula to be proved. The syntactic form of formulas

and proofs have been made nearly identical. Another result is that derivations become

4The formulaa = vx.b can be reformulated a&.a= b (x not free ina). The formulaa=- (bA c) could be
reformulated as the two formulas=- b, a=> c. Alternatively, one could reformulate= (e; = e, Ae3 = €4)

asa= ({ey = e}, {e3=es}).



5.3. THE DESIGN OF THE LOGIC 81

straightforward to read and write. Note also that when a law that has premises is applied
the proof of the premises is proved right where the law is applied and is not distant in the

derivation.

The equality relation between programs is transitive, reflexive, and compatible (that is,
for all C, 1 = e; = C[e;] = Clep]); but the user doesn’t need to think about or use such
laws: these are implicit in how the user manipulates and constructs derivations, described

in Chaptelp.

5.3.4 Predicates

From Figurg 5]l it can be seen that there is only one predicate in the PATH4agidis
is in contrast to the five predicates in the CIP logic:

1. Equivalent[ey,e] (i.e.,e1=e)

2. Descendant|[ey, €]

3. Determinatel€]

4. LessDefined[ey, e (Or, e C &)

5. Defined]€]
The first is simply the program equivalence used in PATH. The second and third are use-
ful in the CIP system because of its non-deterministic constructs but are not applicable to
PATH-L as it has lacks non-deterministic constructs. The fourth and fifth allow for reason-
ing about the denotational meanings of programs([71, 28] lkesDefined|e;, &] states

that the domain theoretic meaning @fis less defined than, or approximates, the mean-

ing of ex. (Or we could formulate.essDefined operationally: LessDefined|e;, €] if
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forallC, Cle1] || = C[ez] ||.) In CIP, the predicateefined[€] is overloaded: ikis in a flat
domain, it signifies thag # L, if f is a function,Defined|f] signifies¥x.Defined|fXx],
i.e., thatf is total. For the purpose of clarity in what follows, | will usetal to refer to

the second use @ffined.

These last two semantic predicates allow for reasoning which PATH cannot do: PATH only
allows for reasoning about program equivalence. PATH certaiolyd be extended to al-

low for additional semantic relations besides program equivalence; however, the argument
against this is the same as the argument in Seftion 4.5 for not adding Sands’s improvement
relation: it makes the system more complex and in practice the extra expressiveness has
not been needed: the primitive laws, which use only equivalence, have been sufficient to
achieve all desired transformations to which PATH has so far been applied to. The goal of
reasoning about eitheessbefined or > (improvement) is to eventually prove programs

equivalentand if proving two programs equivalent can be done directly, so much the better.

PATH has demonstrated a surprising expressiveness for a system that has only two primitive
laws aboutu and uses only program equivalence. This would not have been discovered
had | not stuck to my original design principles (one being that PATH should not require

knowledge of domain theory).

CIP can make the statememifined[e] (i.e.,e# L1). PATH can express that a program
is undefined, but because it does not have inequality it cannot state that a prograim is
undefined. (CIP does not have inequality either, justth@i ned predicate.) This lack of
ane=# | predicate in PATH has pervasively influenced PATH: Many of the laws in the CIP
system are littered withefined predicate§; on the contrary, many of the laws in PATH

are littered with strictness conditions. For example, k€

VC,F,G. [ CL=1; Vx. C(F x) =G(Cx) ] = C(UF) = UG

SAnd it needs numerous laws in order to be able to prove ned[e] .
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One might have had this law instead

VC,F,G. [ Total(MG) ; Vx. C(F x) = G(C x) ] = C(UF) = MG

where a strictness condition on the context is replaced witital condition on the result.

The strictness condition seems preferable for two reasons: one, a strictness condition is
often simple to prove (totality of functions may be much harder to prove); two, reasoning
about infinite data structures and partial functions (neither of whichdsd'1”) is possible.
However, there may be cases where one would want téB&an a non-strict context and

the alternativd-PF law would be what is needed. Determining what expressiveness might

be gained with the alternatifePF is a matter of further research.

So, to summarize the differences between PATH and CIP: the logic of PATH is more ex-
pressive than théogic of CIP (i.e., it can express formulas that CIP cannot). It is also
simpler because it does not require ad hoc syntactic predicates. However, PATH is less ex-
pressive than CIP with respect to the available semantic predicates: PATH ihasdoes

not haveC andDefined. However, there is nothing (but the desire for simplicity) that

would keep PATH from being extended with these predicates.

Extending the system with the=fined predicate may not gain us as much as we think:
Pepper in[[59] makes the statementfined ... [is] less amenable to treatment within

the framework ... Therefore one often uses corresponding syntactic predicates ... to
guarantee the desired semantic properties ... Defined [is frequently guaranteed] by the

absence of recursion/iteration.”

5.3.5 Semantics of Expression Equivalence=(

What precisely is the meaning of the predicat® It corresponds to observational equiva-

lence at base types. More formally, we say two programs are equiveleateb) if for all
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contexteC whereCle;| andC|ey] are ofint type,Cley] |} iff C[ey] |}. The before-mentioned

laws are sound (but not complete) with respect to observational equivalence.

As noted in Chaptefr] 2, PATH uses a call-by-name equivalence rather than call-by-need.
This is because call-by-name is more expressive: it allows for both removing and introduc-
ing the sharing of computation in transformations. The semantics and the primitive rules
could be easily adapted (as in [7] 52]) to support call-by-need; however, if call-by-need was
needed, it would be preferable to extend PATH to allow for multiple program relations such
as=name(equivalent under call-by-nameJ,name(€quivalent under call-by-name with less
sharing),=need (€quivalent under call-by-need, i.e., the intersectiorgfme and >name

so as to allow for both the greater expressiveness of call-by-name and the ability to rea-
son about sharing in call-by-need. However, under call-by-need, many of the derived laws
would no longer be derivable from the primitive laws but would need to be primitive laws
themselves (e.gGC, Inline-Bndg Inline-Self Inline-Body etc.). This results because un-

der call-by-need the reduction rule

(preq) eg ={red} eq{ey/p}

becomes the less general rule (wheie a canonical form):

(pr—ey) c ={red} ej{c/p}

5.4 Primitive Rules

This section describes the primitive rules in the PATH logic. Note that theseuke®

not laws they cannot be expressed as formulas in PATH but require meta-notation, such
as that needed for substitution or “..."”. Note also that these rules do not follow the PATH
variable convention. First, there are the reduction rules which correspond to the operational

semantics of PATH-L (the variableis for canonical forms):
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(pr—eq) eq ={red} ej{ey/p}
(e1,...,en).Jn ={red} ej
case (e1,...,en) (In.ip x) ={red} e; x
Mp +— £ ={red} f{dp+—f / p}

prim (ci,...,cn) ={red} [prim (ci,...,cn)]

In order to satisfy various strictness conditions, we need facts about strictness, thus there
are the following rules about the strictness of the basic language constructs (note that

prim represents integer primitives):

1l e ={red} L

1l.mp ={red} L

case e 1. ={red} L

prim {(es,...,L,...,eq) ={red} L
pL  ={red} L

These are the minimal set of rules about strictness. From these are derived other laws about

strictness, e.g., the la@ase-Strict

VE. case L E = L

The primitive rule{red} is used for both reduction and strictness properties. Note that

these rules for strictness are similar to the definition of reduction contexts (cf. SEction 2.2).
It follows from these laws that reduction contexts are strict. Generally types have been
dropped for clarity, but the rules for type directed expansion give an example where the

types are essential:

Vx:a—b x ={eta} vi—x v (v not freein x)
Vx:x(ty,ta, ..., tn) . x ={eta} (x.1p, %x.24, ... , X.ny)
Vx:+{t1,ta,...,tn) x ={eta} case (In.ly,In.2;,...,In.ny) x

These allow for expansion or contraction of expressions based on their type. All three of

these rules will be referred to asa There is also th&trecrule:
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letrec f1=F1;f2=F2;...;fn=Fn; g1=G1;g2=G2;...;gm=Gm in M
={letrec}
letrec £1=F1;f2=Fo;...;fn=Fn; (91,92, .--,9n)=(G1,G2,...,Gp) in M

This rule allows for laws aboutetrec to be more general than they first appear. For

instance, note the lamline-Bndg

VC,F,G. letrec f=F(f,q); 9=G(f,{ £=F(f,qg) },q9) in C(f,qg)

It appears that this only applies when e rec has exactly two bindings. But this law is
actually more general as it allows the inlining of a binding irearec with any number of
bindings. This is true because by usietrec theg binding can represerail the bindings
except thef binding to be inlined. In most derivations thetrecis done implicitly when
applying these laws. | have not treated this rule as one of the key laws (or rules)uabout
because every instance of it can be derived uBiRg. See Appendix]C for a derivation of
the lawLetrec-Equiv

VF,Gq1,Gq.
letrec £=F(f,91,92);(91,92)=(G1(f,91,92),G2(f,91,92)) in (f,91,92)

letrec £=F(f,91,92); 91=G1(f,91,92); 92=G2(f,91,92) in (£,91,92)

This isletrecfor the case when =1 andm = 2. (Similar derivations could be done for
anynandm.) So, theletrecrule does not add more expressiveness to PATH, it just makes

all the other rules aboutt rec more easily applied.

There are a few “rules” used in derivations which are not actual rules or laws in PATH
because they are effectively “no-ops”. For instance, theredsame} which allows us to

change variable names, e.g.,

x+—F x ={rename} y—F y
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and there is(sS} (Syntactic Sugar) which allows for conversion between syntactic repre-

sentations, e.g.,

let x=e in C x ={SS} (x+—C x) e

and there is alsadef. v} which inlines the definition o from the PATH-L prelude.
These are effectively “no-ops” because in PATH none of these rules change the program:
programs equivalent up to renaming are considered equal, programs equivalent up to syn-
tactic sugar are considered edljalnd prelude variables are treated as equivalent to their
definitions, so there is no need to inline prelude variables. In addition, programs equivalent

up to re-ordering of bindings in &=t rec are considered equal.

5.5 Primitive Laws

Besides the primitive rules just described, PATH has five primitive laws. l.e., the rule
catalog starts out with these laws. Theselaves they can be expressed in the PATH logic
but cannot be derived from the primitive rules. Before describing these laws, | will explain
a notation used in some of these laws; the notatibrc [1]) represents an n-tuple, the

meaning of which is as follows:

(1 cri1) = (C[1a],C[2a],...,Clngl)

The reader could view n-tuples as meta-notation but in fact it will be shown in CHapter 8

how n-tuples can be a standard construct in the language. Thinki{instantiation),

VE, |, X.
H.l=1
: ' .
H(case (* y—F.iy) X) = case (* y—H(F.iy)) X

5The various syntactic equivalences are listed in Appeﬁbix B.
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is used to move a strict function (. = 1) into the branches of @se. This is a useful law
which happens to be the free theoreém [82] dase. A rule similar tolnstis also part of

both fold/unfold and expression procedures but is only used left-to-right in those systems.

Although | focused on the lawBPF and FPE in Chapterf}4, they are not primitive laws
in PATH. The two primitive laws of PATH for reasoning abqutare FPI (Fixed Point
Induction) and=PD (Fixed Point Duplication). Th&PI law

vc,D,F,G.

cl=pLl
i Vx,y . {Cx =Dy} = {C(F x) =D(Gy)}
=

C(UF) = D(MG)

gives us a form of fixed point induction, or Scott induction, for PATH (thus the naR##).

can be proved by fixed point induction with the predicB{e,y) = Cx= Dy. This law,

like FPF, is a free theorem fou (FPF is the free theorem fou generated from a binary
relation,FPI is the free theorem generated from a ternary relati&®l is more general
thanFPF: it can prove two programs equivalent even when the recursion does not appear
in a strict context EPF is basicallyFPI with D instantiated taid). The second primitive

law for pis FPD,

VF,G.
letrec f=F(f,qg); 9g=G(f,g) in £

letrec f=(letrec g=G(f,g) in F(f,g)) in f
which allows for mutual recursion to be expressed as two fixed paints 10,151, 87]. This is
also known as Bekic’s Theorem, proofs can be found in Bekic [10] and Winskel [87].

There is a law for induction on list§jst-Induct

¥V C: List a — b, D : List a — b, xs : List a.

Cl=DL1
; CNil = D Nil
; Vx,xs. C xs =D xs = C( Cons(x,xs) ) = D( Cons(x,xs) )

=
C xs =D xs
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and a law for eta expansion of n-tuplés,Tuple-Eta

Veixa . ox = (L x.i)

The reader may refer to Appendix B for a listing of all the primitive rules and laws. No
mention has been made of laws for the primitive functions as they are of little theoretical
interest. However, a practical transformation system needs a large number of laws about

the primitive functions (e.g., associativity of integer addition).
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Chapter 6

The PATH User Interface

In the previous chapter | discussed the PATH logic; in this chapter | hope to demonstrate

its aptness for displaying and manipulating derivations.

One could type in the derivation of FPF (as written in Figure 5.3) and ask PATH to verify it;
PATH will either print the law which it proves (in this caB®F) or return an error message
stating where it is wrong. As useful as this may be, we would rather construct a proof
which is guaranteed to be valid. This chapter describes the user interface to PATH which

helps the user to create valid proofs.

6.1 The User Interface—Overview

The PATH user interface is implemented inside of the Emacs text editor using various
Emacs Lisp functions and an external Haskell program. The user chooses functions to
be performed or a law to be applied using a pop-up menu. Emacs, via Lisp functions,
annotates the derivation and invokes a Haskell program that processes the annotation and

returns a new derivation.

91
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The Haskell program that does the bulk of the work has three main entry points, each one

inputs a derivation:
get-formula Outputs the formula that the derivation derives or outputs an error mes-
sage if it is not a valid derivation.

simplify Removes conjectures as follows: if any conjecture in the derivation can be
satisfied by a primitive rule or by a premise, the premise is replaced with the

corresponding rule.
meta-eval Processes an annotated derivation and applies the indicated rule, law, or

meta-program to the selected sub-derivation.

The PATH user interface is just an Emacs mode in which certain functions and menus are
enabled; this mode knows nothing of the syntax of derivations. The user works by selecting
sub-derivations and choosing functions from menus. The user selects sub-derivations or

expressions by moving the cursor to the end of the desired exprgssion

The functions available to the user via Emacs menus are the following:

get-formula Displays the formula derived by the derivation in a second window.

simplify Simplifies the derivation as described above. This is rarely used as all

other functions that change the derivation automaticallyssaiplify .
apply-rule Applies one of the primitive rules€d, eta R etg to the selection.

apply-law Applies a law from the rule catalodnist, FPF, FPI, FPD, ...) to the

selection.

apply-premise Applies a premise from the derivation to the selection.

1This could require inserting parentheses when the desired expression is inside a larger expression; but in
most cases, just a single mouse click is needed to select a region.
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apply-mp Applies one of three meta-programmo(m, eval eval’) to the selection.

(These meta-programs are described in Se¢tign 6.3.)

meta-eval Applies the Haskelineta-evalfunction to the annotated derivation. This
requires that the user inserts the annotations by hand. This is needed at times,

particularly when th&R redrule is applied (the new program must be entered).

meta-eval-no-simplify Calls meta-eval but does not simplify the derivation.

The next section provides further details by showing how to create a derivation using PATH.

6.2 Deriving FPF using PATH

Here I will show how we can create the derivatior=bfF in Figure[5.B. We enter the trivial

derivation in Figurg 6]1 as a starting point. To ensure that no errors have been made in the

entry of this derivation, we presget-formulg and PATH displays in a separate window

the law that this derivation derives:

vC,F,G.
[ {CcL=1
; Vx. {C (F x) =G (C x)}
] =
C (MF)

This might look odd because there is a program, not an equality, in the consequent. How-
ever, this is correct because an expression context without piyp2} holes is also a

valid expression equivalence:(ur) just corresponds to the equalityF) =C (UF) . Note

that the law is virtually identical to the derivation at this point. The next step is to move
the cursor to the end of expressionur) (i.e., selecting it) and pic (from a pop-up
menu) which results in the derivation in Figure]6.2. (In this sequence of figures underlines

will represent the selected expression; the boxed text represents the action applied to the
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selection; and the character '+’ will mark the lines in the subsequent derivation that were

changed or new as a result of the last operation.)

PATH has successfully matched agaiRtl and applied this law to the program, giving
us the progranx (py) . It has filled in the instantiatiofc, x, F, y) and given us templates
for all sub-derivations required féiPI. If necessary, PATH changes the names of variables

(quantified, let, or lambda bound) to avoid variable conflict problems.

PATH must return a valid derivation, one with the result of the application in the program;
but since the result of applyirfgPI is not known, PATH has created two unknown variables,

x andy, and brought them into the derivation using thet (unknown let) construct, which

is a placeholder for an unknown value. These unknowns will be either filled in by the user
or filled in by PATH automatically. Note the{ 2} in the templates for the sub-derivations,

this kind of derivation step is called a conjecture and acts as a placeholder for an unfinished

derivation.

Now at this point, the derivation is syntactically correct, but it is not valid (in the sense

that it derives a law) due to the presence of conjectures and unknowns, so if we press

(et formud, we ge

Error: bad step:
cl={?} xL
conjecture present

We know whatx should be—it should be the empty context—but siik¢d expects a
function here, we can use the identity function%z". So, we fill in the value, giving the
derivation in Figur¢ 6]3. Thelet was changed into anlet, anmlet (for meta-let) is like
alet but it exists only in the program derivation, not in the program. The program being

transformed is the program with all et’s expanded out. Thus, we cannot inline a variable
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bound bymlet, it is the value bound bylet. We have specified, but we do not need to

know the value ofy before proceeding, we will determieas we gé.

Sincex is known, we see two opportunities for simplification, we reduce the applications

of x: select % (uy)” and pressnormalizd then select £ L” and pressnormalize. These

actions result in the derivation in Figure]6.4.

Applying normalize to % |” caused the derivation to go “backward” (i.e., right to left). A
rule can be applied to any “apply point.” An apply point is a point in one of the following
four regions: the start of the derivation, the end of the derivation, the right of a conjecture,
and the left of a conjecture. When a rule is applied to the start of the derivation or the
right of a conjecture, the rule is applied and then reversed. Thus, the user can work from

whatever direction is easiest, not necessarily from left to right.

The| normalize function invokes a built-in PATH meta-progrgnit applies the ruleed as

many times as possible (even under lambdas, but it does not rpdadexes).

After “x 1 ” was replaced by 1t ={R red} x 1", PATH detected that the conjecture “L
={?} 1" was satisfied by the premise labeledand changed the conjecturerg. Any

conjecture that can be replaced by a premise or primitive rule is automatically removed.

So, the first premise d¥PI is satisfied, let’s turn our focus to the second conjecture. The
“C(F a)” matches the left hand side of premisg so we select it and pre, giving

the derivation in Figur€ 6.5.

Now we see an opportunity to apply the premise so with two mouse clicks we have
the derivation in Figurg §.6. Just as program equalities can be nested inside expressions, so

also program derivations can be nested inside expressions. Note how this is used: above the

2In this case we know what should be, but often one does not know the program one is aiming for. |
will leave y unspecified for illustrative purposes.

3A meta-program here being a program (implemented in Haskell) that takes a derivation and transforms
it into another derivation.
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Ve, F,G.
[ Py: {C L =1}
; Po: Vx. {C (F x) =G (C x)}
] =
C (UE) FPI

Figure 6.1: Deriving=PF (1)

conjecture, we have G{ C a =fp x b}, the “right side” of this derivation corresponds to
the program “G(x b)”, so, what we are left to prove is “G(x b)=x(y b)”. We immediately see
two opportunities for reductions (applying x). Doing that we get the derivation in Figure

67.

Now we are left with the conjecture “G b={?}y b”, and it is easy to see what we need to

do: we give the unknown y the value G and p (simplify is done automatically

after other actions: it replaces conjectures with applicable rules) and we get the complete

derivation forFPF in Figure. To confirm this we presget-formuld, giving

Note that thenlet’s have disappeared. One thing to note about this derivation is that after
the initial derivation was entered virtually no text was entered (just the text:” and the

text “G”). Many derivations require little textual entry but others require more.

6.3 Meta-programs in PATH

Although it is a user-directed system, PATH should still automate as much of the tedious

work of program transformation as possible. This is done primarily through the use of
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+ +

+ + 4+ 4+ + + + +

VvC,F,G.
[ Py: {C L =1}
; Po: Vx. {C (F x) =G (C x)}

] =
ulet y = ? in
ulet x = ? in
{ C (MF)
={FPI (C,x,F,y)
[ {CL={?} x 1}
; Va,b.
[P3: {C a =x b}] =
{ C(Fa) ={?} x (y b) }
11
x (Hy)
1
Figure 6.2: Deriving=PF (2)
YC,F,G.
[ P1: {C L =1}
; Po: Vx. {C (F x) =G (C x)}
] =
ulet y = ? in
mlet x = z+— 2z in
{ C (UF)

={FPI (C,x,F,y)

[{CLl=(2) x1)

; Va,b.

X (Hy) normalize

Figure 6.3: Deriving=PF (3)
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vC,F,G.

[ Pq: {C 1= L}

; Po: Vx. {C (F x) =G (C x)}
] =

ulet y = ? in
mlet x = z+— z in
{ C (MUF)
={FPI (C,x,F,y)
+ [ { CL={P1} L ={R red} x L}
; Va,b.
[P3: {C a=xDb}] =
[ C(Fa)={?} x (y D)}

Figure 6.4: Deriving=PF (4)

YC,F,G.

[ Py: {C L =1}
; Po: Vx. {C (F x) = G (C x)}

] =
ulet y
mlet x =
{ C (uF)
={FPI (C,x,
[ {CLl=

; Va,b.
[P3: {C a = x b}
+ { C(Fa) ={Py (

? in
z+— z 1n

F,y)
{P1} L ={R red} x L}

Q
~
@
(@]
@
Il
D
b
<
o
=]
w

Figure 6.5: Deriving=PF (5)
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Ve, F,G.

[ Py: {C L =1}

; Po: Vx. {C (F x) =G (C x)}
] =

ulet y = ? in
mlet x = z+—z in
{ C (MF)
={FPI (C,x,F,y)
[ { CL={P1} L ={R red} x L}

; Va,b.
[P3: {C a x b}] =
{ C (F a)
={Py (a)}
+ G {Ca={P3g} xDb} red
={?}
X (v b) red
}
1}
x (Hy)
={red}
Hy

Figure 6.6: Deriving=PF (6)
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; Po: Vx. {C (F x) =G (C x)}

ulet y = 2 in edit | |simplify

z+— 7z in

{ C (UF)
={FPI (C,x,F,y)
[ { CL={P1} L ={R red} x L}

Figure 6.7: Deriving=PF (7)
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YC,F,G.
[ Py: {C L =1}
; Po: Vx. {C (F x) =G (C x)}
] =
+ mlet y = G in
mlet x = z+> 2z in
{ C (MF)
={FPI (C,x,F,y)
[ { C ={P1} L ={R red} x L}
; Va,b.
[P3: {C a=xDb}] =
{ C (F a)
={Py (a)}
G { Ca={P3g} x b ={red} b }
={R red}
x (y b)
}
11
x (Hy)
={red}
Hy

Figure 6.8: Deriving=PF (8)

meta-programs (a meta-program is a built-in program that applies multiple rules to a deriva-
tion based on some strategy). PATH currently has three built-in meta-prognannsalize,

eval andeval’. These meta-programs can be applied to any selection in the derivation.

Normalizeapplies the ruleed as many times as possible with a leftmost-outermost strategy
until no more redexes are left. It performs reductions even under lambdas. In order to avoid

non-termination when applied to programs wjitt does not reducg redexes.

The second meta-programasal it appliesred at reduction contexts until a canonical form

is reached. Unlike the standard evaluator, it need not be applied to a closed expression but
it allows for free variables in the term it is applied to. The third meta-progeval), is a

variant ofevalthat stops after a set number of steps (this keeps PATH from going into an
infinite loop when the user tries to evaluate a non-terminating program). esaid”ATH

can be used as a simple evaluator. E.g., if we appéito this program
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plus (succ (succ 3)) (succ 5)

we get the following derivation:

{ plus { succ (succ 3)
={red}
plus 1 { succ 3 ={red} plus 1 3 ={red} 4 }
={red}
5
} { succ 5 ={red} plus 1 5 ={red} 6 }
={red}
11
}

The resulting derivation gives us a complete execution trace of the evaluation. Viewing
such a trace can be useful in understanding the order of evaluation in PATH-L. In the next
version of PATH I plan to allow for selective displaying and hiding of parts of the program
or of the derivation. Together with theval meta-program, this would allow PATH to be
used as an effective debugger for functional languages: we applput only display the

final result, then the user can explore whatever parts of the execution trace he chooses.

Although these three meta-programs have been found extremely useful, it would certainly
be useful to allow for others. It is planned to allow the user to specify meta-programs
by providing a set of laws (laws without premises) which will be applied with a left-most
outermost strategy until none can be applied to the program. A further extension would be

to allow the user to write their own strategies.

6.4 Dealing with Changes in Specifications

What does the user do when the program changes after we have already transformed it? It

is not to be expected that the old derivation will automatically work on the new program.
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But it might be hoped that small changes in the program will result in small changes to the
derivation. With the approach where the derivation is stored as a script of commands, the
best we can do is replay the script until it breaks and then continue by hand from there;
trying to figure out how and when the original script can be re-used is very difficult. In the

PATH approach, there seems to be more promise of reusing derivations because derivations

are displayable and manipulable.

Here is an example that gives a sketch of how one might proceed when the original program

(or specification) changes. Let’'s assume a program derivation starts as follows

{
(cata(fy,b1) xs, cata(fa,ba) xs)
={R red}
{ xs+ (cata(fy,b1) xs, cata(fa,ba) xs)
= {Cata-Merge-2}
cata ((y,z) — (£1(y,z.1), f2(y,z.2)), (b1,ba))
} xs

and that the initial program is changed to be the following program:

(cata(fy,b1) xs, cata(fa,ba) xs, cata(fs,bs) xs)

What we can do is add this new program to the top of the derivation using a conjecture,
giving this derivation:

{
(cata(fi,b1) xs, cata(fa,ba) xs, cata(fs,bs) xs)
={?}
(cata(fy,by1) xs, cata(fa,ba) xs)
={R red}
{ xs+ (cata(fy,by) xs, cata(fa,by) xs)
={Cata-Merge-2}
cata ((y,z) — (£1(y,z.1), f2(y,2.2)), (b1i,b2))
} xs
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The objective is to remove the conjecture. We first “push” the conjecture through the first

{R red} step giving the new derivation:

{
(cata(fi,b1) xs, cata(fa,ba) xs, cata(fs,bs) xs)
={R red}
{ xs+ (cata(fy,b1) xs, cata(fa,ba) xs, cata(fs,bs) xs)
={?}
(xs — (cata(fy,by) xs, cata(fa,by) xs)
={Cata-Merge-2}
cata ({y,z) — (£1(y,z.1), f2(y,z.2)), (b1,ba))
} xs

Now we see that we cannot push the conjecture throughtthiea-Merge-2} unlesCata-
Merge-2could be applied to the expression above the conjecture. &ate-Merge-2
merges a 2-tuple afata applies, we need to generali@ata-Merge-2o Cata-Merge-N,
which merges an n-tuple ekta applies. If we do this generalization and apply the more

general law, we get the following derivation

{
(cata(fy,b1) xs, cata(fa,ba) xs, cata(fs,bs) xs)
={R red}
{ xs+ (cata(fi,b1) xs, cata(fa,ba) xs, cata(fs,bs) xs)
={?}
(xs — (cata(fy,by) xs, cata(fa,by) xs)
={Cata-Merge-N}
cata ({y,z) — (£1(y,z.1), f2(y,z.2)), (b1,ba))
} xs

where nothing has changed except the rule name, but we have a more general derivation.

Now we can push the conjecture through tlheta-Merge-N} step giving this derivation:

4See Cata-Merge in Appencﬂ C.
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{
(cata(fy,b1) xs, cata(fa,ba) xs, cata(fs,bs) xs)
={R red}
{ xs+ (cata(fy,b1) xs, cata(fa,ba) xs, cata(fs,bs) xs)
={Cata-Merge-N} .
cata ( (v,z)—(* f1{y,z.1), f2(y,z.2), f3(y,z.3))
1 <b11b2/b3>

} xs

={?}

Modifying the derivation proceeds until we have removed all conjectures. If the next step
in the derivation does not depend on the structure of the argumenttg then pushing

the conjecture through that step is trivial. So, we don’t necessarily have to modify the
complete derivation. There is no guarantee how easy it will be to completely develop a new

derivation, but at least there is a chance to re-use a large portion of the original derivation.

6.5 The Advantages of Manipulable Derivations

In Section[I.3]4, it was mentioned that previous transformation systems allow the user
to view the current state of the transformed program but the derivation itself is hidden
from the user, possibly stored as a script of commands. Hopefully some of the advantages
of manipulatingderivations not programs, can seen from the above examples. Here the

advantages will be elucidated.

Derivations are more robust.

Having manipulable derivations makes PATH more robust in the face of changing specifi-
cations: As seen in Sectign p.4, having a derivation that we can see and change allows us

to modify it to work on a new specification.
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Many aspects become visible.

Besides the fact that the derivation itself becomes visible, many things are now visible to

the user which otherwise would not be:

e All the valid premises are kept in view.
¢ All unfinished derivations are kept in view.

e The goal of the transformation is kept in view.

Derivations can be developed non-linearly.

The user is no longer stuck developing derivations linearly, from left-to-right, but has far

more freedom to explore and to transform in any order desired:

e One can transform either left to right or right to left.
e One can transform in the presence of unknown variables.

e An exploratory style is easily accommodated: if it is seen that the application of a
law is not working (i.e., its premises cannot be derived), it is trivial to know exactly

where to “back up” to: we just delete the application (and all its sub-derivations).

For example, another approach one could take to the derivation in SEClion 6.2 would have

been to start with the derivation

YC,F,G.

[P1: {C L =1};

Py: Vx. {C (F x) =G (C x)}]
=

C (MF)

={?}
UG
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apply FPI, fill in the unknowns with %+—z" and G, and then work from both sides in. The

original approach was taken to illustrate the typical case in which the goal is unknown.

One can load a program into PAPHnd start transforming it: if the transformation is

stuck at some point, one could just add a conjecture there and continue. One could later
come back to the conjecture and prove it; or maybe one may want to add a premise to the
derivation which corresponds to this conjecture. The point is that one can derive programs

in any order one wants.

6.6 Conclusion

| hope this chapter has given some evidence that the PATH logic does indeed lend itself to
the graphical display and editing of program derivations. There are numerous directions in

which the work described here could be improved upon:

e Programs that Transform Derivations

— A more sophisticated proof search would be desirable: PATH should replace
{?} with valid proofs when possible or indicate that no proof is possible when

that can be determined.
e Meta-programs

— User-defined meta-programs could be added to PATH.

— An extension of the PATH logic which would make derivations more robust is

to allow not just for the application of rules in derivations but the application of

SNote: a program is just a special case of a derivation, one in which there are no quantifiers, no premises,
and no rule applications.
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meta-programs (i.e., instead of the meta-program being executed statically to
create a derivation, it would be executed dynamically—whenever the program

changes to which it is applied).

e User Interface. PATH could be extended to take more advantage of a visual interface

to derivations:

— Selectively display and hide parts of the program or derivation.
— Control the layout of the derivation.
— Navigate the program in a manner similar to an outline editor.

— Give visual feedback when and where laws would be applicable.



Chapter 7

Applications of PATH

This chapter gives some examples of the derivations possible in the PATH system.

7.1 Filter-lterate

An example from Sand< ]66], used to demonstrate expression procedures Fikehe

lterate law:

pr— fr—xr filter p (iterate f x)

Hgr—prH—fr—x+— 1if p x
then Cons(x, g p £ (f x))
else g p f (f x)

It can be derived simply using one applicatior-6fF, see Figur€ 7]1. This is the most com-
mon method of transformation (and of usiRBF): we have a recursive functiontlerate

here) and some context in which to specialize it; by specializing it, we hope to create a
single recursive definition which performs fewer steps. The strictness condition is handled

primarily by a series of reductions. The main premisé=BF is accomplished also by

109
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p— f—x+— filter p (iterate f x)

{FPF
p—f—x— filter p (L f x) =

= {red*}
p—fr—x— L

= {R Func-Bot,R Func-Bot,R Func-Bot}

1
Viterate.
pr— frx— filter p ((f+ x+> Cons(x, iterate f (f x))) f x)
= {red}
p—f—x— filter p (Cons<x, iterate £ (f x)))
= {red*}
p—f—x—if p x
then Cons(x,filter p (iterate f (f x)))
else filter p (iterate f (f x))
= {R red}

p—f—x—if p x
then Cons(x,(p — fr—x+— filter p (iterate f x)) p £ (£ x)>
else (pr— f+—x— filter p (iterate f x)) p £ (f x)
}
Mg+—prHfr—x+— 1f p x
then Cons(x, g p £ (f x))
else g p £ (f x)

Figure 7.1: Derivation oFilter-Iterate
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a series of reductions until we see two instances of the origifialter p (iterate f
x)". S0, we need to abstrac{rR red}, in order to get the exact context we need. The end
result of this transformation is that we have performed deforestation: the intermediate list

which was generated by iterate has disappeared.

There is a certain convention used whenever possible in PATH: All rules and laws are
written so that the right hand side is more efficient than the left hand side. This makes it
easier to remember which direction to apply a law. Also, as a result of this, proofs are most
easily achieved left to right (or top down): if the law is making a program more efficient,
then the derivation will most likely have more reduction steps than reverse reduction steps;
the former are easier to do than the latter as reverse reduction steps require user input (many

terms may reduce to a particular term).

7.2 Map-lterate

Here is a law,Map-Iterate,that has been used as an example of the usefulness of co-
inductive proofs([63,26]:

V£, x. map f (iterate f x) = iterate f (f x)

Here it can be derived simply with just two applicationd¢fF, the second in the reverse
direction: see Figurg 4.2. The whole derivation is bracketed by an abstractionavean
application tox. This is required to create a context“map f ([] f x)” which would

be sufficiently general enough (we do not want to specialize whé&eonstant, we want

a function where it is a parameter) In both application§BF, the whole derivation pro-
ceeded by reductions except for one step in which we need to give PATH some assistance by
entering a Reverse reduction step. It is often difficult to work through a reverse application

of FPF, but in performing this derivation, we started with the incomplete derivation
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VE, x.
map f (iterate f x)
= {R red}
(x — map f (iterate f x)) x
= {FPF
x+— map f (L f x) ={red*} L

Viterate.
x+ map f ((fr— x> Cons(x, iterate f (f x))) f x)

= {red}
x+— map f (Cons(x, iterate f (f x)))

= {red}
x+ Cons(f x, map £ (iterate f (f x)))

= {R red}
x+ Cons(f x, (x+>map f (iterate f x)) (f x))

}

(L g— x+— Cons(f x, g (f x))) x

= {R FPF

x—1 £ (f x) ={red*} L

Viterate.
x+ (f+— x— Cons(x, iterate £ (f x)) ) £ (f x)

= {red}
x +— Cons(f x, iterate £ (f (f x)))

= {R red}
x + Cons(f x, (x+> iterate f (f x)) (f x))

(x — iterate £ (f x)) x

= {red}
iterate £ (f x)

Figure 7.2: Derivation oMap-Iterate
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V£, x.
map f (iterate f x)

= {2}
iterate £ (f x)

and then appliedPF directly to the top program and the bottom program and attempted

(successfully) to derive a common program in the middle.

7.3 Tupling

Here is the standard, two pass, program to compute the average ofsaristr(dlength

defined in the prelude):

yst—divide(sum ys, length ys)

Let’s derive a program which computes this result in one traversal of the list. The first thing
to do is expose the function which returns the sum and length of the list. This is done with

the following two transformation steps:

ys — divide(sum ys, length ys)

= {R red}
ys— let (s,1) = (sum ys, length ys) in divide(s,1)

= {R red}
ys— let (s,1) = (ys+ (sum ys, length ys)) ys in divide(s,1)

Now the function which we want to transform into a one-pass recursive function has been

exposed:

ys—(sum ys, length ys)

FPF is not directly applicable to this program because neithermor length is in a strict

contexfl. However, the context in whichoth of these recursive functions occurs is strict:

Thus, it appears that expression procedures cannot do this derivation because it requires a strict context
and can only specialize one function at a time.
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ys— (L ys, L ys)

- {red, red}
ys+— (L, 1)

= {R Prod-Bot}
ys— L

= {R Func-Bot}
L

So, if we could merge these two recursive calls into one function then we couldEipply

This strategy is encapsulated in theF-N law (refer to its derivation in Appendix C):

V¢, F,G.

cl=1
; Vx oL C(t F.iox.i) = G(C x)
=

c( pr.i)) = pe

Or to instantiate this general form to the case of a 2-tuple:

VC,Fy,Fa,G.
cl=1
i Vxi,%9. C(F1 x1, Fo x2) = G(C(x1,x2))
=
C(W Fy, U F2) = WG
So now we can use this laWPF2, to achieve tupling: see Figufe]7.3. The key step is the
application of theAbideslaw which converts a tuple afase’s into a singlecase. This

strategy of combining results together to eliminate multiple traversals is called (unsurpris-

ingly) “tupling” [87].

7.4  Mix

The lawMix (here theletrec version)

VF, M.
letrec £

F(— f) in (= £)

F(J £.M.i.9)) in £

letrec f.1
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ys — (sum ys, length ys)

{FPF-2
ys— (Lys, Lys) ={...} L

}

Vsum, length.

ys — (case (Nil: 0, Cons(x,xs): x + sum xs) ys
,case (Nil: 0, Cons(x,xs): 1 + length xs) ys)

ys — case (Nil:

(0,0)

,Cons(x,xs): (x + sum xs, 1 + length xs)

) ys

case (Nil:

,Cons(x,xs):

)

case (Nil:

,Cons(x,xs):

)

case (Nil:

,Cons(x,xs):

)

Msumlen — case (Nil:
,Cons(x,xs): let (s,1) = sumlen xs in (x+s,1+1)

)

(0,0)
(x + sum xs, 1 + length xs)

(0,0)
let (s,1) = (sum xs, length xs)
in (x +s, 1+ 1)

(0,0)

Abides}

{R eta}

{R red}

{R red}

let (s,1) = (ys+— (sum ys,length ys)) xs

in (x +s, 1+ 1)

(0,0)

Figure 7.3: Tupling Derivation
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can be a bit difficult to understand; viewed from the right to left perspective, this law
allows for the coalescing of multiple recursive definitions which are identical up to names
of functions . As an example, refer to the following derivation which udesLetrec a

law derived fromMix:

letrec £ = F(f,£,f) in £
= . {Mix-Letrec}

letrec (f1,fa).i = F(J (f1,f2).(M.1.3)) in (f1,£2).]

- , {letrec}
letrec £1 = F(J (£1,£2).(M.1.3))
i fo = F(I (fy,fa). (M.2.9))
in <f1,f2>.j
- {eta,eta}

letrec f3 = F((f1,f2).(M.1.1),(f1,£2).(M.1.2),(f1,£f9).(M.1.3))
i fo = F((f1,f2). M.2.1),(f1,f2). (M.2.2),(f1,f2). (M.2.3))
in <f1,f2>.j

We start with a recursive definition 6fin the first line, in the last line we have two mutually
recursive functions.M could be any two dimensional matrix containing the projections
{12,2,} and j can be any projection. So, by choosing the appropriate value afe
can choose between andf, in each of the arguments to So, for example, we could

instantiate and 5 in order to derive the following law:

letrec f = F(f,f,£f) in £

letrec £y = F(fy,fo,f2)

j o = F(fo,fa,£1)
in fl

The lawMix is as expressive as Ariola and Blom’s "copy" rule [1]. They need additional
meta-notation and meta-concepts to express the rule, but here we have a simple rule, written
without meta-notation. However, | do require n-tuples used in full generality. The non-

letrec version oMix is

VE,M. (—pf—F(— £)) =pf— (1 70 £. 1. 9)))
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and its derivation is one of the shortest in this dissertation:

VE, M. .
(* ut (3 1))
= {FPF
(* 1)
= {R Prod-Bot}
1
vE.
(* (I 1))
= {R red}

(Fr ). i)
}
ue - (2 P £ i.9)))

7.5 Assertions

In his thesis[[69] Scherlis noted that expression procedures allow us to specialize recursive
functions in a syntactic context, but do not allow us to specialize functions based on non-
syntactic information. For instance, expression procedures can specialitee syntactic
context “f x 0” but cannot take advantage of “> y” in the specialization of £ x y”.

To take advantage of the non-syntactic information available, Scherlis extended his system
to support “qualified expression procedures.” A qualified expression procedure looks like

this
{p} el =ep= e2

in whichp is a boolean valued expression similar to a pre-condition. In the transformation
of the definition, we can assumes true; the qualified expression procedure may only be

applied where the qualifier is true.

Due to the non-strict semantics of PATH-L and the schematic approach to expression pro-

cedures, we can achieve the power of qualified expression procedures without adding ad
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Introducing/Eliminating Assertions

e = assert True e

if p then {a = assert p a} else b

if p then a else {b = assert (not p) b}
Manipulating Assertions

assert (if p then ps else p3)
{if p then a else b = if p then assert ps; a else assert ps b}

Cl=1 = assert p (C e) = C(assert p e)

assert p (assert g e) = assert g (assert p e)
Using Assertions

assert (e;j=—es) Cl{ey = eq}

assert p (C{ if p then a else b = a })

assert p (C{ if not p then a else b = Db })

Figure 7.4: Laws Regardingssert

hoc constructs to the language or adding additional primitive laws. We defiagsamnt

function as follows:

assert p e = if p then e else L

With assert and some simple laws we can derive about it, we get the power of qualified

expression procedures. We can chaade “assert p e” where we know p is true and

where we havedssert p e”, we can transforme with the knowledge that is true. Since

the context 4ssert p []”is strict, we can specialize function calls in this context. Some

easily proved laws regarding assertions are in Figuie 7.4.

Let the functioncheck be defined thus:

check p x = assert (p x) x
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The lawPreconditionallows us to prove and use invariant properties of recursive functions:

VF,F’,P.
P1l=_1
; VE. {F £ =F' f} o check P

; VE. F {f = £ o check P} o check P
=
{ME = MEF’} o check P

The invariant is the (strict) predicateWhat this law is saying is this: if the invariant allows
ustotransform¥ f”into“r’ £”, andifthe invariantis preserved across all recursive calls,

then we can transformr to pF’ in contexts where the invariant is satisfied.

7.6 Conclusion

A number of the laws proved in PATH are listed in Figure$ 7.5[@and 7.6. Derivations of these
and other laws can be found in Appendiix C. One derivation particularly worth noting is
FPF-Partial. In its derivation a bit of insight is required to determine the context in which

one ought to specialize.

As all the derivations presented in this chapter and in the Appendix fit on one page or less,
does this imply that PATH will not scale? No. There is no reason to expect that PATH
cannot do derivations of arbitrary length. However, one of the goals of PATH is to make
derivations short: thus, we have laws that are very generic and laws which we can prove
once and reuse multiple times. Just as functional programming languages scale to large
programs even though most functions are small, | expect PATH to scale to large programs
with most derivations being small (contingent of course on the user writing modular deriva-

tions).
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Cata-Merge

VF,B. xs— (% cata (F.i,B.i) xs) = cata ({(v,z)— (* F.i (y,z.i)), B)
FPE:

VE. U — F(f,f) = Pf — F(£,F(£,£))
FPF-Ext

veC,F,G,H.

clL=1
; VE. letrec g=G(f,qg,C f) in { C(F(f,g)) = H(f,qg,C £) }
=

letrec f=F(f,qg)

£,9); 9=G(f,9,C f) in (£, q)
= letrec f=F(f,q); g

-G
=G(f,g,h); h=H(f,g,h) in (f,q)
FPF-N:

vC,F,G.

cl=1
; Vx . C<l F.i x.1) = G(C x)
é .

C(* M(F.1)) = MG

FPF-Partial:
vC,F,G.
cl=_1
; VE. C(F(f,C f)) = G(f,C f)
=
C(letrec f=F(f,C f) in f) = letrec f=F(f,g); 9=G(f,g) in g
Inline-Self.

VC,F,G. letrec f=F(f,{ f=F(f,f,q) },9); g=G{f,g) in C(f,q)
Lambda-Mu-Switch

VE. ME—x—F(f x,x) = x> Uf—F(f,x)

Figure 7.5: Laws from the PATH Catalog
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Letrec-Equiv

VF,Gy,Gq.
letrec f=F(f,91,92);(91,92)=(G1(f,91,92),G2(f,91,92)) in (f,91,92)

letrec £=F(f,91,92); 91=G1(f,91,92); 92=G2(£f,91,92) in (£,91,92)
Letrec-Exp

VF,G,C.
letrec f=F(f,qg); g=G(f ,£,9) in (f,q)

_letrec £f=F(f,qg); g=G(letrec f=F(f,g) in f,f,g) in (f,qg)
Partial-Mu-Reduce

VF,G. HM(F o G) = F(U(G o F))
Split

V. px— (1 Fioxii) = (P pr.i)

Trivial-Fusion

VF,H,I.

HLlL =1
; Vx. I(H x) = x
=

H(UF) = Ug+— H(F(I g))
Tuple-Strict-Implies-Components-Strict
V. { x> (P Fix) L=1}) = (tril=1)
Unused-Parameter-Elimination

VA,B,C,D,F. |
(U — (x,y) — F({(* £ (C.i x, D.i(f,x,v)),x)) (A,B)

ME—x  — F(( £ (Cc.ix) ,x)) A

Figure 7.6: Laws from the PATH Catalog, continued
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Chapter 8

Genericity with N-Tuples

This chapter describes an extension of PATH-L that adds n-tuples, a construct that allows
for programs generic over the length of tuples. Secfioh 8.1 explains why the genericity
provided by n-tuples is needed. Section 8.2 describes the syntax and semantics of n-tuples.
Section[83 returns to the examples in Secfioh 8.1 and shows what programs, laws, and
program derivations look like using n-tuples. Section 8.4 describes a higher order typed

lambda calculus which gives us n-tuples. Secfionh 8.5 then concludes.

In a number of the examples in this chapter, Haskell syntax will be used, not PATH-L
syntax. Because these examples are directly from the Haskell prelude and libraries, | have
thought it best to write them as Haskell, not convert to PATH-L syntax. | hope that with
this forewarning, the reader will not be confused by the use of both Haskell and PATH-L in

the following examples.

123
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8.1 The Need for N-Tuples

An n-tuple is a tuple whose length is unknown. This section argues for the usefulness of
n-tuples: similar to the genericity provided by polymorphism and polytypism (cf. Section
L.34), n-tuples result in more general programs (Se¢fion) 8.1.1), more general laws about

those programs (Sectign 8]1.2), and more general program derivations ($ection 8.1.3).

8.1.1 More General Programs

The following family ofzip functions are defined in the Haskell Prelude and Libr8ries

zip :: ([a]l,[b]) — [(a,b)]
zip3 :: ([al, [b],[c]) — [(a,b,c)]
zip7 :: ([al, [b], [c], [d], [e], [f], [g]) — [(a,b,c,d,e,f,q)]

There is also theipwith family of functions

zipWith :: ((a,b)—c) — ([al, [b]) — I[c]

zipWith3 :: ((a,b,c)—d) — ([a],[b],[c]) — I[d]

zipWith7 :: ((a,b,c,d,e,f,9)—h) — (lal, [b], [c],[d], [e]l,[£f],[g]) — [h]
and theunzip family of functions:

unzip :: [(a,b)] — ([al,[b])

unzip3 :: [(a,b,c)] — (lal,[b], [c])

unzip?7 :: [(a,b,c,d,e,f,9)] — ([al,[b],[c],[d], [e]l,[£f],[g])

Although writing thezip, zipwith, andunzip families of functions is not difficult, it is
tedious and error-prone. Clearly, it is preferable to abstract over these families and write

one generizip, one generiezipWith, and one generienzip.

LActually, it is their curried counterparts which are defined, but the uncurried versiang ahdzipWith
are used here for illustrative purposes.
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8.1.2 More General Laws

Note the free theoremI82] (or parametricity theorem)Zfos:

let cross (f,9) (x,y) = (f x,9 y) in {
map (cross(f,g)) o zip = zip o cross(map f,map g)

}

The free theorem forip3 is

let cross3 (f,g,h) (x,v,z) = (£ x,9 y,h z) in {
map (cross3(f,g,h)) o zip3 = zip3 o cross3(map f,map g,map h)
}

As before, to generate these laws is not difficult but tedious and error-prone. To formulate

this family of laws yet another family of functions is needed:

cross, cross3, crossi,

Another family of laws are the laws for expansion of tuples:

Vx:x(a1,as) .ox = (x.19,%x.29)
Vx:x(ai,az,a3) . x = (x.13,x.23,%.33)

We would like to generalize over thefamiliesof laws. Having fewer and more generic
laws is good in a program transformation system: there are fewer laws to learn, fewer laws
to search, and program derivations are more robust (i.e., they are more likely to remain

valid when applied to a modified input program).

8.1.3 More General Derivations

Program derivations of the following form (where the two “...” derivations are nearly iden-

tical) are common:
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This derivation gives the law

e = (el,e2)

When doing proofs or derivations informally we can do the derivation for the first case
and then say “similarlye.2> = e2.” However, in PATH this “similarly” step must be
done without hand waving; we would also like to do this step without duplicating the
derivation. How can this duplication be avoided? Note that in general the fofa1 p£2)

s (C[12],C[22])B- So, we would like to merge the two similar derivations

e.lp ={r} ...
e.22 ={r} ...

{r} C[12]
{r} Cl[22]

into a single derivation:

However, this cannot be done because tha e.i must be a projection constant and
cannot be a variable or expression (current type inference methods cannot handle such an

extension). There are two ways of allowing foto be a variable (in a typed language):

e The variable i could be a meta-variable, not a variable in the language. We move the
problem to a meta-language or meta-logic. Then we could express the above law in
the meta-language like thi§n.Vi <n. ein = C[ip]. The disadvantage here is that a

meta-language is needed to express program laws.

2Wherec [e] represents a program contexvith its holes filled by expression
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e Increase the expressiveness of the type system to alltiwbe a variable. Unfor-
tunately, the only type systems which allow this expressiveness are dependent type

systems, which do not have type inference.

The latter approach is what is taken here (without using dependent types).

8.2 N-tuples

To get n-tuples, a number of changes must be made to the PATH-L language as described

in ChapteflR. In the syntax of terms, where before we had

| emy

we now have

<P

| €€
|
|

<

{

e

Projections become first class elements of the language. The last construct is an n-tuple, it
abstracts over a projection variabievhich can be used inside the body of the n-tuple. An
n-tuple works much like a function parameterized over a projection (where “.” is applica-
tion) but the typing is different. We also have n-sums. Where before we had the various

constructors fon-sums:

| In.my

we now have a tuple of all the constructors fesums

| Innp

To which we can apply a projection to get timeth constructor:
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Inn .My

To give some intuition for the semantics of n-tuples, note these equivalences:

(“f x.i) = (£ x.1, £x.2, ..., £ x.n)
(" {£,9)1 (xy)i) = (£ % gy

In the latter, the tupleét, g) and(x, y) are “zipped” together. The types,must become

significantly more complex: where before we had

| ><<t1,t2,...>
| +(t,t2, )

we now have

| xt

| +t

| (t1,t2,...)
| 11.to

| m

| <v:de>
| v

and a new syntactic categayin the n-tuple construct) to represent “dimension variables”:

d = a variables of dimension kind
| nd dimension (1< n)

The result is that we have tuplaadn-tuples at the type level. We now have types such as
xa; in this type, the type variable must have a different kind, a kind that indicates that

is not a type but a tuple of types. The kind system will be discussed in Sécijon 8.4.

8.3 Examples of N-Tuples

This section provides examples of the usefulness of n-tuples.
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Syntactic Conventions.

Some syntactic shortcuts are used in the following: As previously, ttieis:dropped
in functions andm is put for the projectiorm,. The following conventions are used for
variablesi, j, k for projection variables (at both the term and type leweh; b, c for regular

type variables; ant J,K for type variables of dimension kind.

8.3.1 More General Programs

An uncurriedzip3 is as follows in Haskell:

zip3 :: ([al], [b],[c]) — [(a,b,c)]
zip3 (a:as,b:bs,c:cs) = (a,b,c) : zip3 (as,bs,cs)
zip3 _ =[]

If Haskell had n-tupld one could write a genericip as follows:

zip t: x(1' [a.i]) — [xa]
zip (' x.i : xs.i) = x : zip xs

zip _ =[]

Note here that an n-tuple is part of a pattern. Note also that the type variablee above

represents a tuple of types. A generigpwith would be similar to the above. Haskell's

unzip3
unzip3 :: [(a,b,c)] — ([a], [b], [c])
unzip3 ((a,b,c):xs) = let (as,bs,cs) = unzip xs in (a:as,b:bs,c:cs)
unzip3 [] = ([1,01, 1)

could be written generically as follows:

unzip :: [xa] — X(l I a. i1)
unzip (x:xs) = (l x.1 (unzip xs).i )
unzip [] = (- [1)

30r if PATH-L had patterns, which it doesn’t have at the present.
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8.3.2 More General Laws

The free theorem forip3 is

let cross3 (f,q,h) (x,v,z) = (£ x,9 y,h z) in {
map (cross3(f,g,h)) o zip3 = zip3 o cross3(map f,map g,map h)
}

but it can be generalized to the free theorem for the generic

let cross f x = (% f£.i x.i) in {
map (cross f) o zip = zip o cross(! map f.i)

}

And the laws for the expansion of tuples

Vx:x(ai,as) .ox = (x.19,%.29)
Vx:x(ai,az,a3) . x = (x.13,x.23,%.33)

can be generalized to tiN-Tuple-Etdaw:

Vxixa . x = (% x.i)

Note also the primitive lavinst, which is generic over sums of any length:
VF, H, X.
Hl =1

j " .
H(case (T y—F.iy) X) = case (* y—H(F.iy)) X

Using n-tuples this law can be written as a law without meta-notation. etdeule for

sums,

Vx:+(ti,ta,...,ta) . x ={eta} case (In.ly,In.2p,...,In.n,) x

can also now be written without meta-notation and with more concision:

Vx:+t . x ={eta} case In x
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8.3.3 More General Derivations

This section shows how n-tuples can make derivations simpler and more generic. Previ-

ously, we had the following derivation, where the two “...” derivations are nearly identical:

e ={eta} (e.lp ={r} ... ={r} C[l2]
,e.22 ={r} ... ={r} C[22]

)

Using n-tuples we can merge these two sub-derivations into a single derivation:

e ={N-Tuple-Eta} (}e.i ={r} ... ={r} C[i])

So, we have a derivation that is both shorter and more generic, and there is no need for

meta-notation.

Here is a law,Abides2, which combines twaase expressions in a 2-tuple, eachse

takes a 2-sum:

case (x+— (F1 x,G1 x), x+— (Fa %,63 X)) e

(case (Fy,F3) e, case (Gy,Ga) e)

Its derivation is in Figur¢ 8l1. Now, here is a generic versioAbides2, it combinesn

case expressions in an-tuple, eachcase takes arm-sum:

case (1 y— (3 F.i.9y)) x = (3 case(? F.i.9) x)

Its derivation, in Figur& 8] 2, corresponds directly to the non-generic derivation. The generic
derivation is shorterinstis only applied once (not twicejed once (not four times), and

“R etd once (not four times). If we did the derivation in the reverse direction (from bot-
tom to top), we would see another advantage to the generic approach: in the non-generic

derivation, to do thgred, 4 times} step requires the input of four expressidasd all

4To do reverse reduction requires user input.
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case (x+— (Fy x,G1 x), x+— (Fy x,G9 X)) e

(case (x+ (F1 %,G61 x), x— (Fg %x,G2 x)) e).1l
(case (x+— (Fq x,G1 x), x+ (Fg x,G3 x)) e).2

~ o~

(case (x+— (Fy x,G1 x).1, x>
(case (x+> (Fy x,G1 x).2, x+>

~ N~

((case (x+—Fy x, x—Fgy x) e)
, (case (x+— Gy %, x+> Gy x) e)
)

(case (Fy,F3) e, case (Gy,Ga) e)

Figure 8.1: Derivation oAbides-2

case (! y— (3 F.1.9 v)) x

<F2 X,G2 X>1> e
<F2 X, Go X>2> e

{Inst,

{red,

{R eta,

{N-Tuple-Eta}

(3 (case (Y y— (J F.i.9 y)) x).9)
(3 case (* y— (I F.1.9 v).9) %)

(3 case (} y—F.i.9y) x)

{Inst}

{red}

{R N-Tuple-Eta}

<j case <i F.i.3) x)

Figure 8.2: Derivation oAbides
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four of these expressions must be entered properly in order to allowrfier, 2 times}
in the next step angeta} in the following step; in the generic derivation, only one reverse

reduction step needs to be done.

8.3.4 Nested N-Tuples

Informal notations for representing vectors (or n-tuples) are generally ambiguous: e.g., one
writes f X for the vector(f xy, ..., f x,) butg(fX) could signify either{g(f x1),...,g(f Xn))
or g(fx,..., fXn). These notations do not extend to nested vectors. With n-tuples one
can easily manipulate nested n-tuples (i.e., matrices). For example, the application of a
function to every element of a three-dimensional matrix is coded as follows (note-that
is a tuple of identical elements):

map3Dmatrix :: (a—b)—ox (=1 x(=7 x(= K a))) o x (=T x (=19 x (=K p)))

map3bmatrix = fom— (" (3 (X £ m.i.5.k)))
In the definition ofrap3Dmatrix, the expressioft (J (X £ m.i.§.k))) is a 3-dimensional
matrix where ‘f m.1i.j.k"is the value of the. 1. j.k-th element, which here isapplied
to the corresponding value of the original mattixi . j.k. Matrix transposition is straight-
forward:

transpose :: x(%:F x(3773.1.9)) — x(39 x(F 1 a1.9))

transpose x = (I (' x.1i.9))
The transpose is done by switching the subscripts dfote that the type variabkeabove

is amatrix of types. An application of ranspose would be reduced as follows:

(prapspose<<x1,x2>,(yi,y2>,<zi,22>>) 2.3
j .

={red} ( (% ((x1,%2), (V1,v2),(21,22)).1.3)).2.3
={red} (* ((x1,%2), (v1,v2),(z1,22)).1.2) 3
={red} ((x1,%2),(V1,V2),(21,22)).3.2
={red} (z1,22) .2
={red} Z9
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Note the various ways one can transform a two dimensional matrix:

the transpose of
f applied to each element af
f applied to each “row” ofa

f applied to each “column” af

Clearly this notation extends to matrices of higher dimensions. Some laws about the trans-

pose function are as follows:

(transpose

transpose (trans

Here is a proof of the latter:

transpose (transpose m)

transpose(j (i m.i.3))
(MO i) k)

&k Enix) 1))

m.j.i = mMm.i.j
pose m) = m
{red}
{red}
{red}
{red}

(L (k m.1.k ))
= {R N-Tuple-Eta}
(1 m.1 )
= {R N-Tuple-Eta}
m

8.3.5 Generic Catamorphisms

It is obvious that Haskell'sip family of

functions could benefit from n-tuples; but inter-

estingly, catamorphism&71417,146, 49] can also benefit from n-tuples, giving catamorphisms
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over mutually recursive data structures. Let's assume we have a fix point operator for
types, alsql A recursive typepr, is the fixed point of a type functar. The kind ofytis

(* — x) — * (i.e., it takes a functor of kind — * and returns a type). We have two poly-
typic primitives, inr andouty, for explicitly getting values into and out of the recursive

type. Their types are as follows:
inp :: F (W) —WF
outg :: MF—F (UF)
But we can extend these operators as follows: the kindagcomes the following

(x(=1%) = x(=14)) = x(=1%)

i.e., it takes a functor transformirgtuples of types and returns &suple of types. SalF

is a tuple of recursive types. The primitives andout are also extended to be n-tuples of

functions:
ing ot x(UT(FE)) i (uF) L)
outp :: x(XT(UF) .1 (F(UE)) . 1)

The polytypic functiorcata is also extended; compare the original and the n-tuple versions

of cataf:
catap :: (F a—a)— (FF—a) (original)
catap :: X(i:I (F a).i—>a.i)—>><<i:I (UF) .i—a.1i) (n-tuple)
catap @ =Hf— @o (F f) ooutp (original)
catap @= ufH(i @.io (F f).iooutp.i) (n-tuple)

SThis assumes that there is some form of polytypism—note the application of the fariotarterm.
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So,catap takes and returns an n-tuple of functions. All laws (such as cata-fusion) can now

be generalized. Also, the standard functor laws for a functor F of kirex

id = F id

F((foQ)

FfoFg

can be generalized to functors of king—"'+) — x(=Jx):

(—id) = F (—1id)
G@FEHy0 Fqg.j) = Ffioagi)
The original functor laws can be derived from these by instantiating the n-tuples to 1-tuples
and then making use of the isomorphistia) ~ a (the bijections being — x.1; and

X (X)).

8.4 An Explicitly Typed Calculus with N-Tuples

So, n-tuples seem quite useful, but the difficulty is in developing a sound type system for
them. This section presents a higher order, explicitly typed lambda calculus with n-tuples
and n-sums. This calculus was introduced by the autharin [78] as the “Zip Calculus.” This
calculus starts as~—though in the form of a Pure Type System (PTS)17, 61]. To this is
added a construct for n-tuples and then n-sums are added. As the syntax of terms and types
are very close (because tuples exist at the type level), the choice of a PTS seemed natural:
in a PTS, terms, types, and kinds are all written in the same syntax. Also, the generality
of a PTS makes for fewer typing rules. However, the generality of a PTS can make a type
system harder to understand: it is difficult to know what is a valid term, type, and kind

without understanding the type checking rules.
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e = vV variables

| Av:it.e abstraction

| ee application

| Mv:itg.tp type of abstractions

| type of types

| (ey,en...) tuple

| m projection (1< m<n)

|  nd dimension (1< n)

| D type of dimensions

| +at sum type

| Ing constructors fory

| caseq destructor forty
i = e projections (of typend)
d == e dimensions (of type D)
t = e types and kinds (of type or [J)

m,n = {natural numbers}

Figure 8.3: Syntax

8.4.1 Syntax and Semantics

The syntax of the terms of the zip calculus is in Figure 8.3. The pseudo syntactic ¢lasses
d, andt are used to provide intuition for what is enforced by the type system (but not by the
syntax). The first five terms in Figufe B.3 correspond ¢ €éncoded as a PTS (although
one needs to see the typing rules in the following section to get the full story). In a PTS,
terms and types are merged into a single syntax. The correspondence begwaehd-

standard formulation and as a PTS is as follows:

standard PTS

AX:d.e AX:Q.e value abstraction
Na.e Aak.e type abstraction
a—pB Mv:a.B (vnotfreeinp) function type

va.B Moa:*.B guantification
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So, lambda abstractions are used both for value abstractions and type abstrEctesnss
are used for the function type and quantificatiengpresents the type of types. (For a more

leisurely introduction to Pure Type Systems, seé [61].)

To this base are added the following: (1) Tuples which are no longer restricted to the term
level but also exist at the type level. (2) Projection constangs- @et them-th element of
ann-tuple), their typesrd - dimensions, wherew,: nd; “d” here is the literal character),

and ‘D” the type of thesand (“D” has a role analogous te). And (3) n-sums made via-
tuples: forn-sums {na(ts, ..., th)) the constructor familyinng, is ann-tuple of constructors

and the destructarasepq takes am-tuple of functions.

Since one can write tuples of types, one must distinguish bettees) (a tuple of types,

having kindM_:2d — %) and x4 (t1,t2) (a type, i.e., something with king).

A 3-tuple such ases, e, e3) is a function whose domain is the ddis, 23,33} (the projec-
tions with type 3). To get the second element of a 3-tuple, one applies slprdection

to it; thus “(e;, e, €3) 23" reduces toe,. The type of the tuple is a “dependent typeT{a
term): for instance(es, ey, e3) has type Mi:3d. (Ey, Ez, E3) i” whereg :E;. Genericity over
tuple length is achieved because we can write functions suchda€X'Ai:d.€” in which

d can be any dimension {]24,...). Although tuples are functions, the following syntactic

sugar is used to syntactically distinguish tuple functions from standard functions:

(Fle) = M:I. e
el = e i
xgt = MNi:d.t i

Also, in what follows,a — b is used as syntactic sugar fidr : a.b; in this case, &1 type
corresponds to a normal function. Translating fiegduce) law into the above syntactic

sugar gives this law:

5Note that the variable  is used for unused variables.
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Av:te)e = efe/v} (B reduce)
(e1,....en)in = & (x reduce)
casge(lng.ie/) = ei€ (+ reduce)

Figure 8.4: Reduction Rules

(Hde).j = e{j/i} (n-tuple reduce)
The semantics is given operationally, similarly to Secfioh 2.2. Reduction contexts are de-

fined inductively as follows:

R ] (hole)

| Re
| caseeR

The one step reduction relatios;, is the least relation satisfying the reduction rules (given

in Figure[8#) and the following rule (i.e., it is closed under reduction contexts):
Rel=Re] if ege=e

Multi-step reduction=-*, is the transitive, reflexive closure gf. Evaluation,|, is defined

as follows:e |} cif and only ife=-* c.

8.4.2 The Type System

The terms of a PTS consist of the first four terms of Figurg 8.3 (variables, lambda abstrac-
tions, applications, anl terms) plus a set of constants, The specification of a PTS is
given by a triple §,4,R) wheres is a subset of” called the sorts4 is a set of axioms of

the form “c: 8" wherec € C,s€ §, andR _is a set of rules of the forntsl, s2,s3) where
sl,s2,s3 € §. The typing judgments for a PTS are as in Figure 8.5. In a PTS, the definition

of =g in the judgment (conv) is beta-equivalence (alpha-equivalent terms are identified).

In the zip calculus, the set of sorts§s={14d,2d,...} U {%,[0,D}, the set of constants is

C=SU{my|1 < m<n}, and the axiomg? and rules®_are as follows:
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N-a:A, '+B:s, A=pB c.seAqa

-a:B (cony) s Laxiom

N=A:s (var) N-b:B H_A:S(Wealg
MXxX:AEX:A Nx:Ak-b:B

Mef:(MNx:AB), FI—a:A(a ) x:AFb:B, FI—(I‘Ix:A.B):t(lam)
M+ fa:B{a/x} PP [ (A:AD): (Mx: AB)

Fr-A:s, Ix:AEB:t, (st,uefR
M= (MNx:AB):u

(pi)

Figure 8.5: Type Judgments for a Pure Type System

Vie{l.n}.TFaj:Aj, TEMind. (Ag,...,An)i):t
MF(a1,....,an) : Mi:nd.(Aq,...,An)i
Figure 8.6: Additional Type Judgments for the Zip Calculus

(tuple)

A axioms R rules
%O (%, %, %) AVeit.e
My @ nd (O, %, %) Av:T.e
nd:D (O0,0,0) Av:T.t
D:0O (D,D, %) Avi:d.i
(D, *, %) Avi:d.e
(D,d,0) Avi:d.t

The R rules, used in the (pi) rule, indicate what lambda abstractions are allowed (which
is the same as saying whidh terms are well-typed). Here we have #&xrules which
correspond to the six allowed forms of lambda abstraction. The expression to the right
of each rule is an intuitive representation of the type of lambda abstraction which the rule
representsg - terms,t - types,T - kinds, i - projections,d - dimensionsyy - variable in
clasx). For instance, théD, D, x) rule means that lambda abstractions are allowed of form
Av;:d.i whered : D (i.e.,d is a dimension such asiBand thusy; represents a projection
such as 2 and the body must have type D, and the type of the type of this whole lambda

expression is.
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In the zip calculus there is an additional terfey, ey, ...), which cannot be treated as a
constant in a PTS (ignoring sums for the moment). The addition of this term requires two
extensions to the PTS: one, an additional typing judgment (Figure 8.6) and twegthe
relation in the (conv) judgment must be extended to include notustquce) but alsox

reduce) and an additional law (eta):
(elp,...,.em) = e ife:xMi:nd. A  (x eta)

To get generic sums, one needs only adds a constant and the following two primitives
In  :: MNI:D. Marxg(="T ). x1<i:Ia.i—>+1a>
case :: MI:D. Marxg(="T%). Mbix. xr(**Ta.imsb) — (+ra—b)

whereln is a generic injection function: e.g., for the suy (a, b) the two injection func-

tions are {In 2d (a,b)).1;"and“(In 2d (ab)).2".

8.4.3 Type Checking

There are numerous properties, such as subject reduction, which are true of Pure Type Sys-
tems in general[7]. There are also known type checking algorithms for certain subclasses
of PTSs. Although the zip calculus is not a PTS, it is hoped that most results for PTSs will

carry over to the “almost PTS” zip calculus.

A PTS is functional when the relatiom® and R are functions¢:s; € 4 andc: s € 4

imply s; = &; (s,t,u;) € R and (s,t,up) € R imply u; = up). In the zip calculus,4
and®_are functions. If a PTS is functional there is an efficient type-checking algorithm
as given in Figurg¢ 8.7 (cf.[[61] and_i81]), where the type judgments of Figuje 8.5 have
been restructured to make them syntax-directed. The judgment (red) defines the relation

“'x:— X" and —g is beta-reduction.
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F=fi» (Mx:AB), Tra:A, A=A X:AeTl
'+ fa:B{a/x} (app r+ x:A(Var)
Nx:AFDb:B, I'I—(I'Ix:A.B):t(Iam> Czse/q(axiom)
= (Ax:Ab): (MNx:AB) Fc:s
rN-A:—»s, [X:AFB:—t, (s,t,u)eﬂ((i M-a:A, A_»BB(red)
M (Mx:AB):u P Fa—B

Figure 8.7: Syntax Directed Type Judgments for a Functional PTS
Vie{l.n}.T Faj:—Aj, TH(Ni:nd.(Ag,...,Ani) : t
M (a1,....,an) : Mi:ind. (Aq,...,An)i

Vje{l..n}.l‘l—aj — A
Mk {(a,....,an) : N_:nd. A

(tuplel)

_ (tuple?
r-f:—»C, rra:»AC= Tlx:AB
'+ fa:B{a/x}

(apg)

MN-a:A A B3 B
MN-a:—»B
Figure 8.8: Syntax Directed Type Judgments for the Zip Calculus

(red)
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This algorithm can be modified as in Figure]8.8. The rules (tuplel) and (tuple2) replace
(tuple) from Figurd 816. The rules (dp@nd (red) replace the (app) and (red) judgments
of Figure[8.J. Here-ps is —p extended with x reduce) and=y, is equality up to & eta)

convertibility. The reason for the change of (app) is becdusmay evaluate to

(Mx:ay.bg,...,MNx: an.bp).i

and application should be valid when, for instance, this is equivalent to a type of the form

MNx:((ag,...,an).i).(by,...,bp).i

A proof of the soundness and completeness of this algorithm should be similar to that in

[81].

8.5 Conclusion

8.5.1 Type Inference

The simply typed language PATH-L, given in Chagier 2, clearly allows for type inference.
Does the zip calculus of the previous section allow for type inference? And would the zip
calculus extended with and integer primitives allow for type inference? Currently, | have
implemented an algorithm for PATH which infers most general types (upqipofor all

the programs shown in this thesis, so | expect that it indeed can be shown to be sound and

complete. An exposition of the algorithm and such proofs are left for future work.
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8.5.2 Limitations

An n-tuple is similar to a heterogeneous array (or heterogeneous finite list); but although
one can map over n-tuples, zip n-tuples together, and transpose nested n-tuples, one cannot
inductover n-tuples. So, n-tuples are clearly limited in what they can express. As a result,
one could not define the following functions in a Haskell extended with n-tuples (although

they could be provided as primitives):

tupleToList i1 X(—a) — [a]
seqTuplel, seqTupleR :: Monad m => x<ladi4»m b.i) — Xa—m(xb)

However, ifseqTuplel andseqTupleR were provided as primitives, we get a great deal

of expressiveness (without the need to extend n-tuples to allow some form of induction):

e Each of these families of Haskell functions could be generalized to a generic func-

tion:
zip, zip3,
zipWith, zipWith3,

unzip, unzip3,
liftM1, 1liftMz,

e There are a number of list functions in Haskell that work “uniformly” on lists—they
act on lists without permuting the elements or changing the length;, zipwith,

unzip, map, sequence, mapM, transpose, mapAccumL, mapAccumR. We can write a

tuple version of each of these.

Other functions cannot be given a type in the zip calculus. For instance, therecisrthe

family of functions but there is no way to give a type to a geneticry:

curry2 :: ((a,b)—c) — (a—b—c)
curry3 :: ((a,b,c)—d) — (a—b—c—d)
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8.5.3 Related Work

Polytypic programmingi47,-46,49] has similar goals to this work (e.g., PalyP [41] and
Functorial ML [42]). (Intensional type analysis[30] is similar to polytypism, it gives the
same expressiveness, and sometimes more, at the expense of a heavier notation.) However,
n-tuples do not give us polytypism (nor does polytypism give us genericity over the length

of tuples); these are orthogonal language extensions:

e Polytypism allows for generalizing over type constructors (e.g., List, Maybe, Tree),
but does not allow for genericity over the length of tuples. E.g., polytypism general-

izes over

zipList2, zipMaybe2, zipTree2, ...

e N-tuples cannot generalize over type constructors, only over the length of tuples:

E.g., n-tuples generalizes over

zipList2, ziplList3, zipList4, ...

As seen in Sectiopn 8:3.5, withoth polytypism and n-tuples some very generic programs

and laws can be written.

Currently, projections have their dimension embedded (e.g., the projectidrhds di-
mension (or type) “3"); to allow for projections that are “polymorphic” over dimensions
(e.g., projection 1 could be applied to a tuple of any size) would take us into the realm of
extensible records [24,54,186]. N-tuples and extensible records appear to be orthogonal

issues.

The following table is an attempt to summarize the differences between the genericity
provided by n-tuples, polytypism, and extensible records. Each allows for abstracting over

a differentx;
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Form of Genericity Context What is abstracted

n-tuples ex x€ {1y, 2n,...,N}

polytypism xe x € {mapList, mapMaybe, mapTree, ...}
extensible records 82 xe{2d,3d,4d,...}

With n-tuples, we can abstract over all the projections of a given arity; with polytypism,
we can abstract over the functor of typ@“— b) — (Fa — Fb)” for each type functoF
(at least with one form of polytypism); with extensible records, we can abstract over the

dimension of the projection (in other words, we can overload the 2 projection).

It would be a simple and obvious extension to allow for finite sets other than the natu-
rals as projections, e.g., one could have strings as projections and finite sets of strings as

dimensions.

Two approaches that achieve the same genericity as n-tuples are the following: First, one
can forgo typed languages and use an untyped language to achieve this level of genericity:
e.g., in Lisp a list can be used as an n-tuple. Second, a language with dependent types
[4] could encode n-tuples (and more); though the disadvantages are that type checking is
undecidable (not to mention the lack of type inference) and the types are more complex.

N-tuples can be viewed as a way to add dependent types in a restricted way to a typed

language.

Related also is Hoogendijk’s thesis[36] in which he develops a notation (not a type system)
for n-tuple valued functors for program calculation; his notation is variable free, categori-

cal, and heavily overloaded.

Section 5.4 of Morrisett's thesis [53] presents an extension of his explicitly tydfed
calculus which is similar in power to n-tuples. This extension allows for lists at the type
level and has an additional kind?, for lists of types. Unfortunately no properties were

proved for this extension. This extension allows for inductive definitions of types (over a
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list of types). The zip calculus cannot do induction over tuples of types. However, the zip
calculus provides a simpler and more elegant way—in my opinion—to express functions
at the type level that are commonly needed: e.g., matrix transpose, zipping tuples and
matrices, mapping functions across tuples and matrices, etc. Further exploring the relation

between the extended'" and the zip calculus is an area for future work.

The recent work by Shao et al_[72] introduces a complex and expressive type system for
certified binaries. Their type system resembles the calculus of construcfions [18] extended
with induction definitions. It appears feasible that the zip calculus can be embedded into
this system. Such an embedding would allow the zip calculus to inherit all the properties

already proved for their calculus: subject reduction, strong normalization, confluence, etc.

| plan to explore this in future work.

8.5.4 Summary

So, a new form of genericity has been developed for typed languages: genericity over the
length of tuples. We have seen that this genericity gives us shorter programs, fewer and
more general laws, and shorter derivations. Future work is to increase the expressiveness
of n-tuples (saeqTuplel, seqTupleR, andtupleTolList can be defined in the language
andcurry could be given a type). Although it is questionable whether such an extended

system would allow for type-inference.
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Chapter 9

Conclusion

9.1 Contributions

In this dissertation, | have made the following contributions:

Described the PATH program transformation system.

¢ Integrated the two major approaches to transformation—the generative set approach
and the schematic approach—by showing how we can achieve, using the schematic
approach, the expressiveness of a powerful generative set approach, expression pro-

cedures.

e Began developing a catalog of useful laws, all of which can be derived from a small

number of primitive rules and laws.

e Developed a logic for program transformation which is more expressive than two
level horn clauses but less general than first order logic. Given some examples of

how this logic lends itself to the graphical display of program derivations.

149
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e Developed a new form of genericity for typed languages: genericity over the length

of tuples. Developed an explicitly typed calculus for this.

9.2 Related Work

In the body of this work, PATH has been compared and contrasted in detail to previous
transformation systems and methods. In this section, a very broad survey of the work being
done in program transformation will be given. More detailed surveys of work in program

transformation can be found inJ19] and|[56].

There are many similarities between theorem proving [58] and program transformation. A
program transformation system can be viewed as a specialized theorem prover—a theorem
prover specialized for proving equivalences of a particular programming language. | will
not attempt to explore this connection further here but will proceed to survey the work in
program transformation per se. Work in program transformation can be categorized into
four broad categories: transformation systems, generative set methods, theories, and fully

automatic meta-programs.

Transformation Systems. Numerous systems have been built for supporting user di-
rected program transformation. One of the seminal systems is the Munich CIP project
[B, 9]. This system was based on the schematic approach, but with extensions to support
fold/unfold, a proof of termination being required to preserve correctness. This system used
a wide-spectrum language which had constructs for non-executable descriptions, functional
programming, and procedural programming. A recent system which builds on (and simpli-
fies) that work is the Ultra system [55]; it transforms a subset of a Haskell-like language.

Other transformation systems are Prospecira [35], Starship [21], and KIDS [73]. This is
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but a small sampling of a large number of systems; Firth [21] gives an overview and com-

parison of many more transformation systems.

Generative Set Methods. One of the oldest and most well known methods for trans-
forming functional programs is the fold/unfold approach of Burstall and Darlingtan [15].

In spite of its drawbacks, in particular its lack of total correctness, it is commonly used for
informal reasoning about functional programs and is the basis of some program transforma-
tion systems. Scherlis’s expression procedure method 169, 66] preserves total-correctness
and does not require the keeping of a transformation history as fold/unfold does. Unfor-
tunately this method has been largely ignored; this may be due to the lack of interest in
total-correctness in the transformation community. The tick algebra of Sands[67, 68] is a
very general and powerful approach. It has been extended to deal with sharing [52] and to

reason about space usage [29].

These generative set methods are asymmetric. This asymmetry is what gives these methods
their power and certainly is desired when we want to reason about things as improvement
(as with Sands’s Tick Algebra). However, the lack of symmetry can be undesirable, as

explained in Sectiopn 3.1.4.

Theories for Program Transformation. In the generative set approaches, there is an
emphasis on developing strategies and meta-programs for achieving transformation of pro-
grams, but in the schematic approaches, there is an emphasis on discovering new laws
one can use to transform programs. This discovery and development of sets of laws for
program transformation has been subject of much work. A important line of such work
was pioneered by Bird and Meertens![12, 13, 48] and has been carried on by many others
[T, 6, [23,[49]25]. This approach to program transformation is called by many names:

the calculational approach, the Bird-Meertens Formalism (BMF), and Squiggol (due to its
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fondness for using new symbols—or squiggols). It is characterized by an emphasis on
developing powerful laws by which one can conduct linear, equational proofs of program
equivalence, without reverting to inductive proofs. Numerous laws, or theories, have been

developed for lists and various recursion schemes.

There is a growing interest in using this calculational approach in the development of
fully automated methods (e.g., deforestation [27, 76]) where previously generative set ap-
proaches were used |83, 16]. The advantages of using the calculational approach is that

there is no need to keep a history or to determine where to perform folding.

The BMF approach has focused on using a small set of recursion schemes and disallowing
general recursion. Thus, only total functions can be written—this makes reasoning simpler,
not having to deal with non-termination. This work has been extended to deal with partial

functions [49].

The disadvantage of BMF is that general recursion is disallowed. The motivation for the re-
sultin Chaptef]4 was to maintain the elegance of the calculational approach while allowing

for general recursion.

Fully Automatic Meta-Programs. In contrast tauser directedorogram transformation,

there ardully automatedneta-programs in which major program transformations are ac-
complished using sophisticated algorithms. Some examples of these are deforestation
[B3,[16], partial evaluatiori[14, 43], tupling [37], super-compilation [80, 74], and etc. When
the desired transformation is achieved, these methods can give dramatic results (though
only constant time improvements for most of these methods). The drawback is when the
desired transformation is not achieved: the meta-program rarely gives useful feedback and

allows for little control over the transformation process.

| believe that the best use of meta-programs is in the context of a user directed trans-
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formation system: The goal in PATH is not to achieve major transformations in a single
application of one complex meta-program to the whole program, but rather it is to allow
for simpler meta-programs to be applied—selectively and often—in conjunction with user-

directed transformations.

9.3 Future Directions

There are numerous areas for future research related to this work.

Language Extensions. As explained in Chaptdr 8, genericity is useful to have in the
language, but even more important in a transformation system. Adding polytypismi[46, 47]
to the language is the next step toward increasing genericity. How best to add polytypism

to a typed language is still an area of active research 5,40, 82, 33].

Currently PATH does not support Haskell’s type classes. As type classes are implemented
by dictionary passing, it would appear straightforward to support type classes by trans-
forming dictionary passing code. However, as polytypism overlaps with type classes [31],

another possibility is to support type classes using polytypism.

Haskell implementations allow for strictness annotations and perform some degree of strict-
ness analysis. If PATH is to evolve into a industrial-quality tool, it also needs to support
strictness annotations and be capable of strictness analysis at least as powerful as current
compilers. How is this strictness information to be encoded and used in PATH? One ap-

proach to doing so is using the approach taken by Launchbury and Paterson [45].

One area in which PATH has totally avoided the reality of Haskell is in the area of pattern-
matching. Haskell has numerous sophisticated pattern-matching constructs. These add to

the complexity of Haskell and make transformation much more complex. In the Starship
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system, great pains are taken to support transforming patterns at the sourcelevel [21] (this
in a Haskell-like language with simpler pattern-matching constructs). Another approach
is to use the author’'s work on first class patterins [77]: the complex pattern-matching of
Haskell would be transformed into pattern-combinators which would then be the subject of

transformation.

Multiple Program Relations. Currently PATH supports reasoning about only a single
program relation: program equivalence. By supporting multiple program relations, PATH
could add more precision to program derivations (at the expense of some complexity).
For instance, to support reasoning about sharing, we would have two relatighgsand

=neeg the latter being used for transformations which preserve sharing properties and the
former being used for programs which may not preserve sharing [52]. Or, we could add a
non-symmetric improvement relatior, for transformations which improve some measure

of efficiency [68].

Improving Meta-Programs. Currently PATH has a few simple built in meta-programs.
One area for further research here is in the continued development of such meta-programs
as deforestation, partial evaluation, and tupling for use in PATH. A second area of research
here is in extending PATH to allow for user-written meta-programs, as can be done in
theorem provers. Also, techniques for proof search could be borrowed from the theorem

proving community to be applied automatically in PATH.

GUI Design and Development. Currently PATH has a two-dimensional interface to the
program derivation. It is certainly an improvement over older systems that interface to the
user via textual commands and which have no user visible representation for the derivation

(only for the final program). However, the next step would be to improve this interface to
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one in which the user can 1) selectively display and hide parts of the program or derivation,
2) control the layout of the derivation, 3) navigate the program in a manner similar to an

outline editor, and 4) be given visual feedback when and where laws would be applicable.
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Appendix A

The PATH-L Prelude

data List a = Nil | Cons x(a,List a)
data Maybe a = Nothing | Just a

data Either a b = Left a | Right b

data Bool False | True

fog=zx—1£f(gx)

map = Mmap — f +— case (Nil ¢ Nil
,Cons(y,ys): Cons(f y, map f ys)

length Mlength +— case (Nil: 0, Cons(x,xs): 1 + length xs)

sum = Msum— case (Nil: 0, Cons(x,xs): x + sum xs)
iterate = Miterate — f+— x — Cons(x, iterate f (f x))
filter = pfilter—pr—
case(Nil : Nil
,Cons(x,xs): if p x

then Cons(x,filter p xs)
else filter p xs

)

cata = Hcata — (£f,b) — case (Nil : b
,Cons(y,ys): f(y, cata (f,b) ys)

id = x+—x

if = bt f+— case (True: t, False: f) b

157
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Appendix B

Primitive Rules & Laws

B.1 Syntactic Sugar

let x:t=e in C x
={SS}
(x:t—C x) e

letrec xy:ty = €1; ...; Xpitp = eg in C(xy,...,%p)
={sS}
let (X1, ..., Xn)=H(X1, ««v Xn):X(t1, ... tn) = (€1, ...,en) in C(xXq1, ..., %Xp)

let £ x=F x in C £
={SS}
let £f = x—F x in C f
let f.i =F iin C £
= {85} |
let £=(tFi)incCf

if p then t else £
={SS}
ifptf

159
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B.2 Primitive Rules

Reduction:
(preq) eg ={red} ei{es/p}
(e1s...,en).Jn ={red} ej
case (e1,...,en) (In.ip x) ={red} e; x
Mp — £ ={red} f{Up+—£f / p}
prim (cy, ,Cn) ={red} [[prim (cy, ,Cn)]
Strictness:
1 e ={red} L
l.e ={red} L
case e 1L ={red} L
prim (es,...,L,...,eq) ={red} L
pL  ={red} L
Eta:
Vx:a—b . x ={eta} v—x Vv (v not freein x)
Vx:x{ty,to,...,tn) . x ={eta} (x.1p, %x.2y4, ... , X.ng)
Vx:+{t1,ta, ..., tn) x ={eta} case (In.ly,In.2;,...,In.ny) x

Letrec Equivalence:

letrec f1=F1;f2=F2; ey fn=Fn; g1=G1;g2=G2; . -;gm:Gm in M
={letrec}
letrec £1=F1;f2=Fo;...;fn=Fn; (91,92, .--,9n)=(G1,G2,...,Gn) in M
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B.3 Law FPD (Fixed Point Duplication)

VF,G.
letrec f=F(f,q); g=G(f,g) in £

letrec f=(letrec g=G(f,g) in F(f,g)) in f
Alternatively, usingu notation,

VE,G.  (W(f,9) — (F(f,9),6(f,9))).1 = HE—F(f,Hg— G(f,g))

B.4 Law FPI (Fixed Point Induction)

vc,D, F,G.

cl=pD_L1
i Vx,y . {Cx =Dy} = {C(Fx) =D(Gy)}
=

C(HE) = D (uC)

B.5 Law Inst (Instantiation)

VF,H,X.
H.l=1
j . .
H(case (T y—F.i y) X) = case (* y—H(F.iy)) X

B.6 Law List-Induct (Structural Induction on Lists)

¥V C: List a — b, D : List a — b, xs : List a.

cl=DL1
; C Nil = D Nil
; Vx,xs. C xs = D xs = C( Cons(x,xs) ) = D( Cons(x,xs) )
=

C xs = D xs

B.7 Law N-Tuple-Eta

Vxixa . x = (1 x.i)
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Appendix C

Derived Transformation Laws

This appendix contains a list of derived laws in PATH, along with their derivations.

C.1 Abides
VF. case (! y— (3 F.i.9v)) x = (3 case(d F.i.9) x)
Derivation:

VE. | |

case (T y— (J F.i.3y)) x

= . . {N-Tuple-Eta}
(J (case (* y— (I F.i.3y)) x).3)

= , ) {Inst}
(7 case (* y— (J F.i3 y).9) x)

= , {red}
(3 case (* y—F.i.9y) x)

= . {R N-Tuple-Eta}
(3 case (! F.i.j) x)
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C.2 Case-Strict

VE. case L E = L

Derivation:

VE.
case L E

= . {Prod-Bot}
case (* 1) E

= . {Func-Bot}
case (* x—1 ) E

= . {R red}
case (Y x—1 ()) E

= . {R Inst}
1 (case (* x—()) E)

= {red}
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C.3 Cata-Merge

165

VF,B. xs (* cata (F.i,B.i) xs) = cata ({y,z) — (} F.i (y,z.1)), B)

Derivation:

ve,B.
xs +— (* cata (F.i,B.i) xs)

= {FPF-N
xs+— (* L (F.i,B.i) xs)

xs — (1 1)

1L
; Vcata.
xs +— (* ((f,b) — case (Nil : b

{red, red}

{R Func-Bot, R Prod-Bot}

,Cons(y,ys): f(y, cata (£f,b) ys)

)) (F.i,B.1) xs )

XS (i (case (Nil

{red}

.1
,Cons(y,ys): F.i(y, cata (F.i,B.i) ys)) xs) )

xs — case (Nil . (Y B.1)
,Cons(y,ys): (* F

xs — case (Nil : B

{Inst}

.i{y, cata (F.i,B.i) ys))) xs

{R N-Tuple-Eta}

,Cons(y,vys): (Y F.i(y, cata (F.i,B.i) ys))) xs

case (Nil : B
,Cons(y,ys): (

case (Nil : B

{R eta}

i F.i{y, cata (F.i,B.i) ys)))

{R red}

,Cons(y,ys): (Y F.i{y, ((* cata (F.i,B.i) ys).i)))

case (Nil : B

{R red}

,Cons(y,ys): (Y F.i(y, ((xs— (} cata (F.i,B.1i) xs))ys).i)))

}

Hg — case (Nil: B, Cons(y,ys): (} F.i (v, (g ys).i)))

{R red}

Hg — case (Nil: B, Cons(y,ys): ({v,z)— (X F.i (y,z.1))) (v,q ys))

{R red}

((f,b) — Mg — case(Nil: b, Cons(y,ys): £(y,g ys)))

((viz) = (t Foi (v,2.1)), B)

{Lambda-Mu-Switch}

(Mg — (f,b) — case(Nil: b, Cons(y,ys): £(y,g(f,b) ys)))

((y,z) = (* F.i (y,2z.1)), B)

cata ({y,z) — (* F.i (y,z.1)), B)

{def. cata}
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C.4 Components-Strict-Implies-Tuple-Strict

ve, L ril=1)) = x>t rFrix) L=1

Derivation:
VE.
Py: (T {F.i L =1})
:> .
(x+— (Y F.i x)) L
= {red}
(P r.il)
= {P1}
(G
= {R Prod-Bot}
1

C.5 FPD’ (Fixed Point Duplication - Alternative)
VE. MUE—F(f,f) = UE—F(f,uf —F(f,£))
Derivation:

VE.
pE — F(£f, f)

= {ss}
letrec £ = F(f,f) in f

= {Mix-Letrec}
letrec £ = F(f,f"); £/ = F(f',f') in £

= {FPD}
letrec f = F(f,letrec £/ = F(f',f’ ) in £') in £

= {ss}
ME +— F(f,UE — F (£, £))
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C.6 FPE (Fixed Point Expansion)

VF

. ME = F(f,f) = uE—F(£,F(f, £))

Derivation:

VE.

Hf — F (£, £)

letrec f=F(f,f) in f

letrec f=F(f,f'); £'=F(f,f) in £

letrec f=F(f,letrec f’=F(f,f) in f’) in f
letrec f=F(f,letrec f’=F(f,f) in F(f,£f)) in £
letrec f=F(f,F(f,£f)) in £

ME — F(f,F(£,£))

{sS}
{Mix-Letrec}
{FPD}
{Inline-Body}
{GC-1let}

{sS}

167



168 APPENDIX C. DERIVED TRANSFORMATION LAWS

C.7 FPF (Fixed Point Fusion)

YC,F,G.
clL=_1
; Vx (F x) = G(C x)
=
C(MF) = MG
Derivation:
YC,F,G.
P;: CL=1
; Po: Vx. C(F x) = G(C x)
=
C (MF)
= {FPI
C 1L ={P1} L ={R red} id L
7 vXIY-
Pg: C x = id y
=
C (F x)
= {P2}
G (C x)
= {P3}
G (id y)
= {red}
Gy
= {R red}
1d(G y)
1
id (MG)
= {red}

UG
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C.8 FPF-Ext (Fixed Point Fusion - Extended)

VC,F,G,H.
CL=_1
; VE. letrec g=G(f,g,C f) in { C(F(f,q)) = H(f,g,C f) }
=
letrec f=F(f,g); 9=G(f,q,C £) in (£,q)
= letrec f=F(f,qg); 9=G(f,q,h); h=H(f,qg,h) in (f,q)
Derivation:
vC,F,G,H.
P;: CL=1

r

=

Pp: VE. letrec g=G(f,g,C £) in { C(F(f,g)) = H(f,q,C £) }

letrec f=F(f,q); g=G(f,qg,C f) in (f,q)

Zooming inon € £" (rules may apply to the larger context):
Cf

C(letrec f=F(f,q); 9=G(f,g,C f) in f)
C(letrec f=(letrec g = G(f,g,C f) in F(f,g))in f)

{FPF-Partial
cl=(py} L
; VI,
C(letrec g = G(f',q9,C £') in F(f’,qg))

letrec g = G(f’,q,C £’) in C(F(f’,qg))

letrec g = G(f’,q,C £’) in H(f’,q,C f’)

}
letrec f=(letrec g=G(f,g,h)in F(
; h=(letrec g=G(f,qg,h)in H(

letrec £=F(f,q); g=G(f,g,h);
h=(letrec g=G(f,g,h)in H(f,g,h)) in h

letrec f=F(f,g); 9=G(f,qg,h); h=H(f,g,h) in h

letrec f=F(f,qg);

{Letrec-Exp}

{FPD}

{Letrec-Ctxt}

{P2}

{R FPD}

{R Letrec-Exp}

9=G(f,qg,letrec £=F(f,qg); 9=G(f,qg,h); h=H(f,g,h) in h) in (f,g)

letrec f=F(f,q);

{R GC}

g=G(f,qg,letrec f=F(f,q); 9=G(f,qg,h); h=H(f,g,h) in h)

h:H<f/g/h> in <f/g>

letrec £=F(f,q); 9=G(f,g,h); h=H(f,qg,h) in (f,q)

{R Letrec-Exp}
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C.9 FPF-N (Fixed Point Fusion - On N Mu’s)

YC,F,G.

cl=1
; Vx oL C(t F.iox.i) = G(C x)
j .

C(* M(F.1)) = MG

Derivation:

Ve, F,G.
P;: C 1= L.
; Por Vx . C(! F.i x.i) = G(C x)
:> '
C(t p(F.1))
= . {Split}
C(H(x— (* F.i x.1i)))
(FPF
CL={py} L
; Vx. C((* F.i x.1)) ={Pa} G(C x)
}
MG
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C.10 FPF-Partial (Fixed Point Fusion - Partial)

Ve, F,G.
cL=_1
; VE. C(F(f,C f)) = G(f,C f)
=
C(letrec f=F(f,C f) in f) = letrec f=F(f,g); 9=G(f,g) in g
Derivation:
Ve, F,G.
P;: CL=1
; Po: VE. C(F(f,C £)) = G(f,C f)
=

mlet D x = (x,C x) in

C(letrec f=F(f,C f) in f)

= {def. D, R red}

D(letrec f=F(f,C f) in f) .2

{FPF
DL
= {def. D}
(L,c 1)
= {P1}
(L, 1)
= {R Prod-Bot}
1
; VE.
D(F(f,C f))
= {def. D}
(F(£,C £) , C(F(£,C £)))
= {P1}
(F(f,Cc £) , G(f,Cc £) )
= {def. D}
(F(D £) , G(D £) )
}
(ML h+— (F h,G h)) .2
= {SS}

(letrec f=F(f,q); 9=G(f,qg) in (f,qg)).2

= {Letrec-Ctxt}

letrec £=F(f,q); g=G(f,g) in (f,9).2

letrec f=F(f,q); g=G(f,g) in g

{red}
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C.11 Func-Bot

Lja—p) = xia = Ly

Derivation:
Ha—)
= {eta}
x1a > Ly X
= {red}
xia > Ly

C.12 GC(Garbage Collect Letrec)

VF,G,C.

letrec £ = F f; g=G(f,g) in C £ = letrec £ =F f in C £
Derivation:

VF,G,C.
letrec £ = F f; g=G(f,g) in C £

= {FPD}
letrec £ = (letrec g=G(f,g) in F £f) in C £

= {Ss}
letrec f = (let g=pg+— G(f,g) in F f) in C f

= {GC-1let}
letrec £ =F £ in C £

C.13 GC-Let(Garbage Collect Let)

VX,M. let x =X in M = M
Derivation:
VX, M.,
let x = X in M
= {ss}
(x — M) X
= {red}

M
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C.14 Inline-Bndg

VC,F,G. letrec £=F(f,q); g=G(f,{ f=F(f,qg) },g) in C(f,qg)

Derivation:

vC,F,G.

letrec f=F(f,q); 9=G(f,f,g) in C(f,q)

C(letrec f=F(f,qg); 9=G(f,f,g) in (£,q))

C(u(f,qg) — (F(f,q9), G(f,f,q9)))

C(M(f, q) — (F(£,9), G(£,(£,9).1,9)))

{R Letrec-Ctxt}
{SS}
{R red}

{FPE}

C(U(f,g) = (F(f,9), G(f,(F(f,9), G(f,(f,9).1,9)).1,9)))

C(u(f,g) — (F(f,q9), G(f,F(f,9),9)))

C(letrec f=F(f,g); 9=G(f,F(f,g),q) in (f,qg))

letrec f=F(f,q); g=G(f,F(f,q),q) in C(f,q)

C.15 Inline-Body

{red}
{SS}

{Letrec-Ctxt}

VF,G,C. letrec f=F(f,q); g=G(f,q) in C(f,{ f=F(f,g) },q)

Derivation:

VF,G,C.

mlet fg' = W(f,g) — (F(f,9),6(f,9)) in

{

letrec £ = F(f,q); 9=G(f,qg) in C(f,f,q)

let (f,g)=fg’ in C(f,f,q)

let (f,g)=fqg’
let (f,qg)=fg’
let (f,g)=fg’
let (f,g)=fg’

let (f,qg)=fg’

in

in

in

in

in

C(f,{f,q).1

c(f, fg'.1

c(f,(F fg’,G fg').1
C(f,F fg’

C<f,F<f,g>

/9)
/9)
/9)
'9)

/9)

{85}

{R red}
{Inline-Let}
{red}

{red}

{R Inline-Let}

{85}

letrec £ = F(f,qg); 9=G(f,g) in C(f,F(f,q9),q)
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C.16 Inline-Let

VC,X.  let x=X in C(x, {x=X})

Derivation:

Ve, X.
let x=X in C(x,x)

= {sS}
(x — C(x,x)) X

= {red}
C(X,X)

= {R red}
(x+— C(x,X)) X

= {sS}

let x=X in C(x,X)

C.17 Inline-Self

VC,F,G. letrec f=F(f,{ f=F(f,f,g) },q9); 9=G(f,g) in C(f,q)

Derivation:

vC,F,G.
letrec f=F(f,f,qg); g=G(f,g) in C(f,q)

= {R Letrec-Ctxt}
C(letrec f=F(f,f,q); 9=G(f,g) in (f,q))

= {ss}
C(U(f,g) — (F(£,£,9),G(£,9)))

- {R red}
C((f,g) — (F(£,(f,9).1,9),G(f,g)))

= {FPE}
C(M(£,g) — (F(£, (F(£,(£,9).1,9),6(f,9)).1,9),6(f,9))) .

= {red}
C(u(f,g) — (F(f, F(f,(f,9).1,9) /9),G(f,9)))

_ {red}
C(u(f,g) — (F(f, F(f, £ ' 9) 19),6(£,9)))

= {ss}

C(letrec f=F(f,F(f,f,9),9); 9=G(f,qg) in (£, g))
= {Letrec-Ctxt}
letrec f=F(f,F(f,£,9),9); 9=G(f,q) in C(f,q)
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C.18 Lambda-Mu-Switch

VE. ME—x—F(f x,x) = x> UL —F(f,x)
Derivation:
VE.
PE — x = F(f x,x)
= {eta}
yr— (M= x—F(f x,x)) v
= {FPF
1y ={red} L
; VE'.
((f—x—F(f x,x)) £') y
= {red}
(x —F(f’" x,x)) vy
= {red}

F(f' y,v)
}
y — MUf = F(f,y)
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C.19 Let-Citxt

vC,D, X. C(let x=X in D x)

let x=X in C(D x)

Derivation:
vc,D, X.
C(let x=X in D x)
= {SS}
C((x—D x) X)
= {red}
C(D X)
= {R red}
(x—C(D x)) X
= {sSS}
let x=X in C(D x)
C.20 Letrec-Citxt
VC,D,F. C(letrec £f =F f in D f) = letrec £f =F f in C(D f)
Derivation:
vc,D,F.
C(letrec £ =F £ in D f)
= {SS}
C(let £ = pf+—TF £ in D f)
= {Let-Ctxt}
let £ = yf—F £ in C(D f)
= {SS}

letrec £ = F £ in C(D f)
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C.21 Letrec-Equiv

VF,Gy,Go.
letrec £=F(f,91,92);(91,92)=(G1(f,91,92),62(f,91,92)) in (f,91,92)

letrec £=F(£f,91,92); 91=G1(£,91,92); 92=G2(£,91,92) in (£,91,92)
Derivation:

VF,G1,Gs.

mlet H(f,g)=(f,9.1,9.2) in

{
letrec £=F(f,91,92);(91,92)=(G1(f,91,92),62(f,91,92)) in (f,91,92)

= {sS}
letrec f=F(f,qg.1,9.2); 9=(G1(£f,9.1,9.2),62(f,g.1,9.2)) in (f,9.1,9.2)

= {def. H}
letrec f=F(f,q9.1,9.2); g=(G1(f,9.1,9.2),G2(f,9.1,9.2)) in H(f,qg)

= {R Letrec-Ctxt}
H(letrec f=F(f,q.1,9.2); g=(G1(f,9.1,9.2),G2(f,9.1,9.2)) in (£,q)

= {SS}
H(u<f/g>'_><F<flg-1lg-2>r<G1<frg-1rg-2>rG2<frg-llg-2>>)
={FPF
H L
= {Prod-Bot}
H(L, 1)
= {def. H}
(1,1.1,1.2)
= {red, red}
(L,1,1)
= {R Prod-Bot}
L
V(f,9).
H((F(f,9.1,9.2),(G1(£,9.1,9.2),G2(f,9.1,9.2)))
= {def. H}
(F(f,9.1,9.2), G1(f,9.1,9.2), G2(f,9.1,9.2))
= {def. H}
(F(H(f,g9)) , G1(H(f,g)) , Ga(H(f,g)) )
}
ph+— (F h, Gy h, Gy h)
= {eta}
u<f/g17g2>H<F<frg1/g2>rG1<frqllg2>/G2<frg17g2>>
= {SS}

letrec £=F(f,91,92); 91=G1(f,91,92); 92=G2(f,g1,92) in (£,91,92)
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C.22 Letrec-Exp

VF,G,C.

letrec f=F(f,q);

letrec £=F(f,q);

Derivation:

VF,G,C.

letrec f=F(f,q);

g=G(f

,£,9) in (f,9)

g=G(letrec f=F(f,qg) in f,f,q) in (f,q)

g=G<f Iflg> in <frg>

{Mix-Letrec}

letrec f=F(f,qg); g=G(f’,f,qg); £'=F(f’',qg); g'=G(f’,f',q’) in (f,q)

- {GC}
letrec f=F(f,q); g=G(f’,f,qg); £'=F(f’,g) in (f,q9)

= {FPD}
letrec f=F(f,q); g=(letrec f'=F(f’,qg) in G(f’,f,qg)) in (f,qg)

= {Letrec-Ctxt}
letrec f=F(f,qg); g=G(letrec f’'=F(f’,g) in £’,f,q) in (f,qg)

= {rename}
letrec f=F(f,qg); g=G(letrec f=F(f,q) in f,f,g) in (£,q)

C.23 Mix
VE,M. (—pf—F(— £)) =pf— (1 (0 £. M1 9)))

Or, using letrec notation,

VF, M.
letrec £

letrec f.1

F(— £) in (- f)

F(J £.M.i.9)) in £

{R Prod-Bot}

Derivation:
VE, M. .
(Futr(d £))
= {FPF
(t 1
1
T
(* r(I 1))

{R red}
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C.24 Mix-Letrec

VF,M, 7.
letrec £

letrec f.1

Derivation:

VE, M, 7.
letrec £

letrec £
(letrec £
(letrec f.1

letrec f.1

F(— f) in f

F(J £.M.i.9)) in £.9

F(— f) in f

F(— £) in (- £).]

F(—

F(J £.(M.1.9)) in £).]

F(J £.(M.1.9)) in £.]

£) in (— £)).]

C.25 Partial-Mu-Reduce

VF,G. H(F o G)

Derivation:

VF,G.
M (F o G)

letrec £ =

letrec £ =

letrec £ =

letrec f =

letrec £
F(letrec £
F(letrec g
F(letrec g

F(L (G o F)

= F(L(G o F))

{R red}
{Letrec-Ctxt}
{Mix}

{R Letrec-Ctxt}

{ss}

{red}

{R GC}

{R Inline-Bndg}
{Inline-Body}

{R Letrec-Ctxt}

{Inline-Bndg, GC}

{R red}

{sS}
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C.26 Prod-Bot

J—[><a] = <i J—[a.i]>
Derivation:

ixal

_<i J—[><a]'j->

<i J-[a.i})

{R eta}

{red}

C.27 Split
VF. pxe (P raioxad) = (fprad)
Derivation:
VE. |
ux— (1 FLiox.1)

= . {N-Tuple-Eta}
(I (Mx— (F F.i x.i)).9)

= {FPF
1.3 ={red} L
Yy .
((x— (T F.i x.1)) v).]
= {red}
(l F.iy.i).]
= {red}
F.jv.]
b
(I Hx—F.3 x))
= {R eta}
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C.28 Trivial-Fusion

VF,H,I.

Hl=_1
; Vx. I(H x) = x
=

H(UF) = Ug+— H(F(I g))

Derivation:
VF,H,1I.
P12 Hl=_1
; Po: Vx. I(H x) =X
=
H (MF)
= {FPF
H L1
= {Py}
1
VE.
H(F f)
= {R Pa}
H(F(I(H £)))
}
Mg — H(F (I q))

C.29 Tuple-Strict-Implies-Components-Strict

VF. { (x> (P Fix)) L=11 = (2r.il=1)

Derivation:
VE. ,
Pi: (x— (T F.ix)) L=_1
=
(t r.il)
= . {R red}
(x— (T F.ix)) L
= {P1}
1
= {Prod-Bot}
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C.30 Unused-Parameter-Elimination

VA,B,C,D,F. |
(U — (x,y) — F{((* £ (C.i x, D.i{f,x,y)),x)) (A,B)

ME—x  — F((1 £ (Cc.ix) ,x)) A
Derivation:

VA,B,C,D,F.
mlet fst = (x,y)+— x in

{

(MU — x — F((* £ (C.ix)) /X)) A
= . {R red}
(Uf — x — F((* £ (C.ix)) %)) (A,B).1
= . {R red}
((Uf — x — F((* £ (C.ix)) ,x)) . fst) (&,B)
= { FPF
1L . fst

= {def. compose}
x— 1 (fst x)

= {red}
x—_1
- {R Func-Bot}
1
; VE. .
(x = F((* £ (C.ix)) , %)) . fst)
= . {red}
z— F((* £ (C.i (fst z)) , st z)
= . {eta}
(x,y) = F((* £(C.i (fst (x,¥))) » £st (x,7))
- . {red, red}
(x,y) — F({* f£(C.i x)) ;X))
- . {R red}
(x,y) — F{(* f(fst (C.i x, D.i(f,x,v)) , x))
- {R red}

(x,y7) — F((l (f.fst) (C.i x, D.i(f,%x,v)) , x))
J .
(U — (x,y) — F((* £ (C.i x, D.i{f,x,vy)),x)) (A,B)
}
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