Multiscale Optimization in Neural Nets
Eric Mjolsness, Charles Garrett, and Willard L. Miranker

Research Report YALEU/DCS/RR-797
June 1990




Multiscale Optimization in Neural Nets

Eric Mjolsness and Charles Garrett
Department of Computer Science, Yale University
P.O. Boz 2158 Yale Station, New Haven CT 06520-2158

Willard L. Miranker
IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598
and Department of Computer Science, Yale University

June 6, 1990

Abstract

One way to speed up convergence in a large optimization problem is to introduce a smaller,
approximate version of the problem at a coarser scale and to alternate between relaxation steps
for the fine-scale and the coarse-scale problems. Done recursively, this is the idea behind the
Multigrid methods which are widely used in the solution of partial differential equations,
usually by optimizing quadratic objective functions defined on geometric domains.

We exhibit a similar optimization method for neural networks governed by quite general
objective functions. At the coarse scale there is a smaller, approximating neural net. Like
the original net it is nonlinear and has a nonquadratic objective function, so our coarse-scale
net is a more accurate approximation than a quadratic objective would be. The transitions
and information flow from fine to coarse scale and back do not disrupt the optimization.
The problem need not involve any geometric domain; all that is required is a partition of
the original fine-scale variables. Given this partition the rest of the multiscale optimization
method requires no problem-specific design effort on the part of the user, because the mapping
between coarse and fine scales is determined. Thus the method can be applied easily to many
problems and networks. We show positive experimental results including cost comparisons.

1 Introduction

A rather general neural net objective function for continuous neural variables v; is (Hopfield,

E[7) = - ZTijkv,-vjvk — ZT,‘J"U,"UJ' - Z hiv; + Z¢i(vi)a
1 i

ijk iJ

although many networks are designed without the cubic term. The quadratic and cubic terms
can involve quite general patterns of connectivity between neurons. All higher-order polynomial

objectives can be reduced to this form (Mjolsness and Garrett, 1990).
If Tijx and ¢; are absent from E[%] then the objective is quadratic and analogous to many

numerical problems, defined on geometric domains, for which multigrid methods are successfully
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Figure 1: Multiscale network. An ordinary neural network, depicted on the left in this figure, may
be governed by an objective function E[v] with numerous simple interactions (links) between many
nonlinear neurons (nodes). Such a network may be tranformed into a multiscale network, shown

here on the right, by the addition of smaller and cheaper approximating networks at successive
scales, with associated objective functions.

used as fast relaxation algorithms (Hackbusch, 1978; Miranker, 1981). Such algorithms proceed
by introducing a smaller, approximate version of the problem at a coarser scale (i.e. using a
coarser mesh) and alternating between relaxation steps for the fine-scale and the coarse-scale
problems. This is done recursively, at many scales, and it is the two-way passage of information
between scales which is responsible for the unusual effectiveness of the technique. In this paper
we generalize the multigrid approach and propose a multiscale relaxation method which does not
require an underlying geometric domain, and which incorporates the T:jx and ¢; nonlinearities of
equation (1) at all scales if those terms are present in the original fine-scale problem. Thus, we
define and explore a multiscale optimization method appropriate for neural nets.

2 Theory

The desired multiscale neural network is illustrated schematically in Figure 1. To obtain such a
design, let us consider the usual multigrid method for optimization.

The constituents of the multigrid method are: (1) a map from the original variables v; to
fewer coarse-scale variables V;, called the “restriction” or “aggregation” map V = R[?]; (2) amap
from coarse scale to fine scale called the “prolongation” or “disaggregation” map 7 = P[V]; (3)
a coarse-scale objective function E[V] which is intended to approximate E[%] although E[V] is
cheaper to evaluate and differentiate; (4) an algorithmic cycle by which E [7] is partially relaxed to
produce a point 7, then 7 is restricted to produce V, then E[V] is partially relaxed by updating V,
then V is prolonged to produce a new value of # for relaxation under E again; and (5) modification
of the basic cycle to handle many scales recursively. We must supply versions of these constituents

suitable for the neural nets. The prolongation map and the coarse-scale ob jective are particularly
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important. R
The choice of E will be very simple for us: it is the restriction of E to a subspace parameterized
by V. The subspace is given by the prolongation map P:

E[V] = E[P[V]]. 2)

Thus, relaxation of E[V] is equivalent to relaxation of E[#] in a subspace, namely the range of
P[V)]. This form of E will be modified slightly in section 2.2, equation (13).

One special case of equation (2) covers much of what is done under the name of “multigrid”
methods. If E[7] is purely quadratic and the maps P and R are matrix-vector multiplications,

with R = PT, we get a form of E which occurs often in multigrid problems:

E[V] = Equadraticl P[V]] = 3 T5( 3o PaVa) (3 PVa) = S (RTP)uVaVs. (3)
iy a b ab

Thus, there is a corresponding quadratic form on the coarse scale with matrix 7 = RTP. If P
and R are fixed, the reduced-dimension connection matrix 7’ can be computed once and then used
throughout the multigrid procedure. Of course if T is sparse, then the cost advantage of relaxing
at the coarse scale requires that R and P be sparse as well, so that 7" will not suffer much fill-in.
Since 7' is smaller than T, some fill-in can be tolerated.

2.1 The Prolongation Map

Our problem now is to design the prolongation map P[V]. One might design it separately for
each objective function E, so that the prolongation allows E to approximate E. For example,
prolongations for canonical problems on two-dimensional grids have been extensively studied.
This is very expensive in the designer’s time. Or one might automatically learn an effective P
for a particular E by optimizing some measurement of the degree to which E approximates F
over a training set (after all we are studying neural nets), but that involves quite an escalation of
computational cost and must happen on a slow time scale: P would be nearly constant during one
multiscale optimization. We look for a less complex and less general choice of P. Our choice of
P is intended to require relatively little effort on the part of the user of the multiscale procedure.

At the other extreme in complexity for P, one could just take P[V] = BV ,where B is a 0-1
matrix representing the partition of the v; variables into blocks each of which is summarized by
Va. (Note that )°, B;, = 1 since, in our treatment, we require that each fine-scale neuron is a
member of exactly one block of the partition. We will exploit this fact in equation (10) of section
2.2.) This scheme would be very inexpensive since B is very sparse, and it seems reasonable to
request the user of the multiscale algorithm to guess a relevant partition of the variables. The
problem with this simple scheme is that B is a 0-1 partition matrix, so when a particular coarse-
scale variable V, is updated there is a corresponding motion of % induced by P. This motion
of 7 is along the (1,1,...1) direction within block a of the partition of the variables {v;}. So,
within each block the (1,1,...1) direction is always favored as the relaxation direction during
coarse-scale relaxation, though for most objective functions E that particular direction is without
special merit.

We therefore propose a compromise between generality and cost in the choice of P. Letting
the matrix B correspond to a user-supplied partition of the original variables, take

v = v? + Za PV,
Py = Biz(°) (4)
57) = —-VsE :
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i.e.

[V]l - ’l) - ZBta (aE) Va‘ (5)
70

2

(C.f. the form of the prolongation matrix P;, in (Chatehn and Miranker, 1982).) Notice that the
prolongation (5), while linear, is not homogeneous. Here #° is the value of ¥ obtained by the last
fine-scale relaxation of E, just before the coarse-scale relaxation of E. Note that 7° is the i image
of V = 0 under P[V]. That is, we center our coarse-scale coordinate system so that the origin
corresponds to the most recent fine-scale state vector, #°. Consequently there is no change in the
value of E in the actual restriction step of the multiscale method. The restriction step may be
written out as 0

CH (2

Vo = 0. (6)

Remark 1. Not only is there no change in E during the restriction step; after coarse-scale
relaxation occurs, equation (2) guarantees that there is no change in E in the prolongation step of
the multiscale method either. So E changes only during the fine-scale and coarse-scale relaxations.
The conventional multigrid method, by contrast, may suffer an increase of E during the restriction
or prolongation steps.

A second property of equation (5) is that the coarse-scale relaxation may be understood in
terms of gradient descent on the fine scale. Each block of the partition relaxes in the direction
specified by the projection of the gradient Z onto that block’s subspace in ¥; in other words
each block a undergoes its particular gradient descent, with V, as the parameter describing the
distance moved along the projection of the descent direction within that block. Initially V, = 0
for all blocks. Notice that the prolongation map P[V] adapts dynamically as the optimization of
FE proceeds.

Some analytical results concerning the reduction of error available at the coarse scale under
equations (2) and (5) are presented in the Appendix. Experimental results on the behavior of
the entire multiscale network will be presented in section 4. In the remainder of this section we
consider the computational cost of the multiscale network.

The proposed P[V] is inexpensive because B is very sparse: it has just one nonzero entry
per fine-scale variable (i.e. per row). On the other hand, P must be recomputed on successive
cycles of the multiscale method — whenever an intervening fine-scale relaxation step alters #° and
therefore the gradient (%°) as well. So, unlike the coarse-scale network connection matrix RT P
discussed earlier, the coarse-scale matrix here must be recomputed for each aggregation phase of
coarse-scale relaxation:

S TiPPLPIV]; = $4Ty(Sa Bian(®® WVa) (b Bjszi(7°)Vs) + linear terms
= TaTuVaVit ..., (7)
where T = EijB,'aijﬂjzi(f)o)z]‘(’b‘o)

The cost of recomputing T and the rest of E is small compared to the cost of the fine-scale partial
relaxation which immediately preceeds it. This network construction cost is due to the variable
7° and #(7°) vectors only. B remains constant and defines a fixed topology for the construction
algorithm, which can be considered to be a feed-forward neural net that computes 7’ according
to equation (7). In comparison the fine scale relaxation net for E has about the same number
of connections but it contains feedback and requires many iterated relaxation steps. Even for a
hard-wired circuit implementation, the wiring cost of recomputing 7,5 would about the same as
that of the fine-scale relaxation and therefore in balance with it.
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The cubic, quadratic, and linear terms of £ may be computed from the corresponding terms
of E as in equation (7). It remains to consider the effect of the prolongation map P[V] on E’s
single-neuron potential term, Y _; ¢:(v;).

2.2 The Potential Term

Low-order polynomial summands in ¢;(v;) can be efficiently transferred to the rest of the objective;
assume this has been done. We confine our discussion to singularites in ¢;, such as those of
the barrier functions that correspond to sigmoidal neural transfer functions v = g(u) through
g 1(v) = ¢'(v) (Hopfield, 1984). It may be possible to handle some nonsigmoidal neural transfer
functions in a similar way.

We will assume a restricted form of the potential term’s dependence on the neuron index i:

Ey4[3] = Z:¢i(vi) = Z [ci—¢-(ai—”i +bi_) + ciy oy (aiyvi + bi+)] (aix > 0) (8)

where ¢_(w) has a singularity at the origin and provides an infinite penalty for negative values of
w, so that relaxation algorithms are restricted to positive w; similarly ¢4 (w) = ¢_(—w) restricts
its argument to negative values. For example, one could take ¢_(w) = w™? or —(1/2)logw for
w > 0. We assume —b;_/a;- < 0 < —b;4/a;y for consistency, so that there is an allowable
region of v;. Equation (8) imposes a standard form for ¢;(v;) (in terms of ¢4 ) that can easily be
generalized to a small number of standard “species” of potentials, d)i, indexed by A, one of which
is used for each neuron.

Using equation (2) directly for the potential term in E is too expensive for a multiscale method,
but can be simplified as follows:

E4[P[7]] = > [c,-_¢_ (ai- 3" BiaVa + b;._) + iy b4 (a;+ Y BiVa+ b +)] (9)

1

where aly = a;+2 and by = a;4v?+bl,. Using the fact that B is a partition matrix (as discussed
in the previous section), equation (9) may be written as

B[PV = 3 [Biaci-¢-(af_Va + ) + Biaciy é4(aly Va + bly)]. (10)

Since a;+ > 0, a_ and a!, have the same sign. If they are negative we can change their signs
using ¢4 (w) = ¢_(—w), in the process interchanging the roles of ¢, and ¢_. Then we obtain

Eo[PIV)) = 3 [BiaGi-$-(ai-Va + bio) + BiaBis b4 (@isVa + biy)]  (@x 20)  (11)

where

Gy = aly ifal_>0

: —aj: otherwise

/ H !/

z : ifal_>0

b, - 1t i- 7 .

= { —bjz otherwise (12)
G = ciy ifal_>0

® T ciz otherwise
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Equation (11) has a form similar to its fine-scale counterpart, equation (8), but takes just as
many ¢ evaluations to compute. Fortunately there is another strategy available. To guarantee a
favorable result for a phase of coarse-scale relaxation, equation (2) is not necessary. It suffices to
choose E so that . .
(a) E[V] > E[P[V]], and
: (13)
(b) E[0) = E[P[0].

Subtracting (13a) from (13b) gives
0> AE > AE[P[V]] (14)

so relaxation in E implies at least as much relazation in E, when V is prolonged back to 7 (see
Remark 1 of section 2.1). _

We establish (13a) and (13b) for each summand ¢4 of E4[P[V]] in equation (11). The idea is
to bound all the ¢_ terms in one partition block by the ¢_ term whose singularity is closest to
the initial value V, = 0, and likewise with the ¢, terms. So we look for a function ¢ for which

(@) &-¢-(ai-Vo+b) < <f>1'-(Va)

b Ci-¢—(@a-Va +bs_) + Di_
(b) Ei-d-(bio) #:-(0)

Ci - (Ba) + D; (15)

where —b,_ [Gg— = MaX;er(q) —b;_ /@i, and C;_ and D;_ are to be adjusted to satisfy equations
(15). Then summing over ¢ and a as in equation (11) shows that (15) implies (13).

For some potentials ¢_ (e.g. ¢_(w) = w™? or —(1/2)log w), equations (15) can be assured by
demanding equality of the two functions and their V,-derivatives at V, = 0, and solving for C;_
and D;_: 3 R

Ci = &-ai-¢_(bi-)/[ta-¢_(ba-)] (16)
Di. = &_¢_(bi-) — Ci—p_(bs-).
Then

A —

EslV] = SiuBia|di-(Va)+ $it(Va)]

Ta (i BiaCi- )6 (80—Va + bas) + Ti Di

+ T (50 BiaCit )4 (8as Va + bay) + X Diy.

= Y. [éa-¢—(da—Va + i’a—) + Coy 4 (6ot Vo + 5a+)] +d (@ix > 0),

(17)

which is the coarse-scale version of equation (8). Notice that calculating £ now requires as many
evaluations of ¢ as there are coarse-scale variables, not fine-scale variables; thus the cost of the
coarse-scale neural net has become affordable for a multiscale method.

3 Discussion

Having presented the proposed multiscale optimization method for neural networks, we now make
a few observations about it before presenting experimental results in section 4.

3.1 Benefits

We have presented a very conservatively designed multiscale method: regardless of the particular
optimization problem being solved, the method can be applied and the restriction, prolongation
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and coarse-scale relaxation steps are each guaranteed to have AE[v] < 0 so that they at least
do no harm to the fine-scale minimization process. Also, we showed that the cost of the method
is low. The potential benefit is in speedier convergence: if the coarse-scale relaxations make a
lot of progress in minimizing E, they can be called upon to do most of the work at very little
computational cost. Ordinarily multigrid methods are studied on problems defined on spatial
domains. For linear problems the modal techniques of Fourier analysis are used to prove that
some speedup will occur (Brandt, 1977). We know of no such proof for our method; it must
simply be tried out. Spatial-domain multiscale techniques can also lead to better local minima
for problems with nonquadratic and multimodal objective functions; for example, scale-space
continuation methods in computer vision may have this desirable property (Leclerc, 1989). We
do not expect such an improvement in the local minima reached by our multiscale method because
it never takes any uphill steps in the original, multimodal E. This suggests using the multiscale
method to speed up convergence within a continuation method for minimizing E.

3.2 Saddle Points

As mentioned in the introduction, any polynomial summand of an objective function can be re-
duced to a cubic polynomial, so equation (1) is rather general (Mjolsness and Garrett, 1990). But
this reduction occurs at the expense of replacing minima with saddle points which have the char-
acteristic that each variable is classified ahead of time as requiring maximization or minimization.
Thus one can consider a two-phase algorithm for finding such saddle points: alternately maxi-
mize E with respect to all the maximization variables, then minimize E with respect to all the
minimization variables, and iterate. For each phase one can use the multiscale method we have
presented to speed up the calculation. But the number of max/min cycles required for conver-
gence may be large. Alternatively one could seek saddle points rather than minima or maxima
within the multiscale algorithm, but this would destroy the built-in property that the restric-
tion, prolongation and coarse-scale relaxation steps do not undo any of the optimization progress
made-at the fine scale. So the algorithm may be less effective on saddle point problems than on
minimization problems.

3.3 The Partition, B;,

One may obtain the required 0/1 partition matrix B, in several ways. For example, one might
preprocess the original network of equation (1) so as to group together neurons that are strongly
connected (large |T;;|). This calculation may be carried out by another optimizing neural net sim-
ilar to the graph-partitioning networks studied in (Anderson and Peterson, 1988). A particularly
cheap (and approximate) way to do this is to bisect the net into two “modules” with minimal
inter-module connections, and recursively bisect the modules. If the cost of such preprocessing is
still regarded as too high for its benefits, one might simply guess a partition of the neurons based
for example on a partition of some spatial domain loosely associated with the net, as we do in
the experiments reported in section 4. Finally, one might attempt to learn an effective partition
through experience in repeatedly running the network for different problems and optimizing B
on a slow time scale while respecting its sparseness.

3.4 An Alternate Network Notation

We will not consider in great depth the question of implementing our multiscale neural nets as
analog circuits or other special-purpose hardware. But a slight change of notation can bring this
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question into the domain of a circuit-design method that uses rewrite rules by which one objective
function can be algebraically transformed into another, more implementable one (Mjolsness and
Garrett, 1990). We will describe this alternate notation for the multiscale optimization method.

In our case we want to transform a generic neural net objective function E[7], given by
equation (1), into a two-level optimization scheme using E[7] and E[V]. The problem is that the
result of this transformation is not a single objective function, but two objective functions (E
and E) and also the dynamic relationship between them. At some times we optimize E; at other
times we optimize E. We therefore allow the result of transforming an objective functlon to be
a “clocked objective function”, whose argument list and functional form depend on time through
nonoverlapping clock functions ¥,(t) = 0or 1 (with 3", %¥a(t) < 1). Such clocked objective
functions can be written as

Edocked[Z,1] = Y ta(t) Eo[Xiee| xfixed) (18)

where X'free and Xfixed are subsets of variables from the entire set {z;}. During phase « (i.e. when
Ya(t) = 1) Edocked = Eo[XfFee|Afixed] is to be minimized with respect to all variables in Afree
while all variables in Xfixed are to be held fixed or “clamped”.

With this notation, the algebraic tranformation which encodes our multiscale method can be
written as follows (assuming Tope = 0 for simplicity):

E[i}] = E[{)‘ITa h] — Lclocked (19)
where
() E[d
+ va(t) (3T V2 +3Tioi - o9 + il + 8E)) (5,00, V4]
+ ¥3(t) Zab(%sz - T 2ij BiaBjpziz;Tij)
+ Ea(;hz h Ez Biah a; — h Et] ia %l (TU + TJ')) (20)
+ eaggregate[a:i: ’ b:!:’ c:i: ]) [T a:l:, b:!: ’ C:I:lé]
+ ¢4(t) [Vlzav ,T’h,ai,b:h’ci] .
+ ¥s(t) 3 Xi(vi — ) + T4 BiaziVa)?[9]7, 3, V).
Phases 1 through 5 occur in cyclic order. Phase 1 performs fine scale relaxation; phase 2 is the
restriction step, incorporating equation (6) and the definition of z as the negative gradient; phase

3 creates the coarse-scale net by means of equations (7); phase 4 is the coarse-scale relaxation
step; and phase 5 is the prolongation step corresponding to equation (5). Phase 3 also involves

Ecocked

the straightforward computation of the parameters of ¢, summarized by eagyegate[ai,bi,ci]
by means of simple maximum-picking and analog arithmetic networks which may be designed
using methods described in (Mjolsness and Garrett, 1990), for example. Phases 2, 3, and 5
are associated with simple quadratic objectives (except for eaggregate), and we assume that the
optimization dynamics can almost completely optimize these objectives in the time allowed by
¥a(t). By contrast phases 1 and 4 have nonquadratic objectives which are just partially relaxed
during each cycle. The entire sequence could be done recursively for more than two levels of
optimization.
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4 Experimental Results

We have applied the proposed multiscale optimization techniques to several nonquadratic objective
functions. To illustrate the method’s independence of a continuous spatial domain, we used an
objective function for inexact graph-matching based on purely structural similarity of two graphs
(Hopfield and Tank, 1986; von der Malsburg and Bienenstock, 1986). This problem may have
application to problems of model matching in high-level computer vision. The objective is related
to the Traveling Salesman Problem objective of (Hopfield and Tank, 1985), and both suffer from a
strong increase in the number of local minima as the problem size increases. So we also considered
a less problematical but spatially-structured nonquadratic objective function from low-level vision
(Koch et al., 1986). It may be used for smooth two-dimensional surface reconstruction from sparse
data, modified by nonlinear discontinuity detection processes, all defined on a discretized two-
dimensional grid.

The inexact graph-matching problem is defined by two 0/1 incidence matrices g and G which
specify the graphs to be matched, and the answer is a sparse 0/1 matrix M of variables specifying
a permutation of nodes of g onto nodes of G. The objective function for graph-matching is taken

tob
o EIM] = 4 TS0 Mai = 17+ 4 Sul(5 M — 17
+ 7 Zai(l - Mai)Mozi (21)
= C Y apij Gap9ij MaiMp;
+ i bs(Mi;)
where )
¢s(z) = ——[Inz 4+ 1n(1 - z)] (22)
290

and A =30, B =1,C = 3, and go = 10. The first two terms favor unique matches between nodes
in the two graphs; the B term favors M ~ 0 and M ~ 1 over the intervening values M € (0, 1);
the C term favors consistent matches between neighboring nodes in the two graphs; and the final
term restricts each M variable to the interval (0,1) by raising infinite barriers at the border.

For matching two n-node graphs of constant degree, this objective function has n? variables
(neurons) and O(n3) monomial interactions, each corresponding to a connection in the neural
net which we simulated. It is known how to reduce this to ©O(n?) connections in a saddle-point
objective function (Mjolsness and Garrett, 1990) (with different temporal behavior). But to avoid
the complications of studying the multiscale algorithm in the context of saddle points, we will
compare it to the O(n?®) single-scale network just described. The multiscale method requires a
partition of the M,; variables. We used the outer product of partitions of the graph nodes in G
and g, which are indexed by o and ¢ respectively. We chose the graph partitions heuristically,
intending to minimize the number of graph links that cross the partition boundaries.

Two families of arbitrary-size graphs were considered. First, we constructed a size-n nearly-
balanced binary tree with incidence matrix g and the same tree under a different labelling of the
nodes had incidence matrix Gj in this case the graph partition was obtained by grouping together
equal-length segments of the chain of nodes resulting from an inorder traversal of the tree. Second,
we considered the sparse two-dimensional graphs of (Anderson and Peterson, 1988), obtained by
independenly choosing n points from the unit square with the uniform probability distribution
and connecting up all points within a distance d determined by the requirement that the average
degree of connectivity be 4nd? = 3. G was obtained similarly, after a randomly selected 20% of
the points had been displaced by random vectors with z and y components between -.1 and +.1.
In this case g and G were often not exactly isomorphic.
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Figure 2: Partition of variables used in the multiscale version of the surface reconstruction net-
work. Dots represent f;; neurons in the plane. Crosses represent the associated horizontal and
vertical “line process” neurons lf‘j and I};. Each [/ neuron is placed symmetrically between the two
f neurons with which it interacts. All these neurons occur in the original net and therefore at
the finest scale of the multiscale net. The f neurons are aggregated by means of a partition, here
into 3 X 3 blocks with solid outlines. The ! neurons are aggregated into their own 3 x 3 partition
blocks, separate from those of the f neurons, as shown by the dotted outlines. Both the / neurons
and, at the larger scale, their partition blocks, occur on lattices tilted at 45 degrees to the f;;
lattice. In this way the fine-scale network structure is reproduced at the coarse scale.

The objective function for two-dimensional surface interpolation with discontinuities was

Elf,l] = AT =15)fiprj - fii)? + AT ;(1 - 1) (fijer — £ij)? :
+ BEi(fij—dy)® + C (1 + 13 (23)
+ Tii(0s(%) + 84(13))

where d is the data, f is the real-valued interpolated function, and * and I? form a set of 0/1
variables (called “line processes”) indicating the presence of a discontinuity of the reconstructed
surface (the f’s in the horizontal or vertical directions. The parameters were A = 1, B = 1,
C =0.1,D =1, go = 100. The first two terms in E favor smoothness of the reconstructed
function f in the horizontal and vertical directions, unless interrupted by a line process variable
I. The B term favors consistency between f and the original data d. The C term penalizes a
large number of active line processes or discontinuities. And the final term again restricts [ to
(0,1). The f and [ variables were partitioned differently; since they occur on the sites and links
(respectively) of a fine-scale grid, their partition blocks were chosen to occur on the sites and links
(respectively) of a coarse-scale grid. This partition scheme is shown in Figure 2.

In our experiments the numerical relaxation step at any given scale consisted of repeated
univariate minimization along the gradient direction (a “line search”) (Luenberger, 1984). This
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strategy is standard in parallel optimization algorithms but slightly different from the continuous
steepest methods often used in analog neural nets. Rather than continuously computing the
gradient direction and moving the current state vector in that direction, a line search holds
the state vector fixed while the gradient is computed, and then the descent direction is held
fixed while a continuous displacement along that direction is calculated and taken. Such a two-
phase minimization procedure could be implemented as continuous steepest descent in a clocked
objective function similar to that described in section 3.4.

Also, the control scheme we used for the multiscale relaxation algorithm is a standard one for
multigrid algorithms: multiscale relaxation at level I of the scale hierarchy (where level number
increases with coarseness) consists of ordinary relaxation at level /, then multiscale relaxation at
level I 4+ 1, then ordinary relaxation at level /, and a final step of multiscale relaxation at level
I+1. This recursive “W-shaped” control scheme ensures that the smallest and cheapest networks
are called upon most frequently in a completely serial algorithm. Naturally a parallel algorithm
could omit the coarsest levels of the network, those which are too small to make effective use
of the parallel machine. (Indeed such an algorithm might profitably relax each finer level of the
network in optimal-size chunks, sequentially, with efficient relaxation of interactions that cross
chunk boundaries delegated to the next coarser level.)

The graph-matching network of equation (21) was used to find the best match between two
n-node graphs; we tried n = 8,16,25 for tree graphs and n = 8,16,25,36 for 2-dimensional
graphs. This single-scale algorithm was the control experiment. The problem was also given to
a three-level multiscale neural net of the design proposed in this paper; its three levels contained
roughly n2, n*/3, and n?/3 neurons respectively. The two algorithms resulted in about equally
good solutions, for three runs that differed in their randomly selected starting points. But their
computational costs were different.

The total number of univariate relaxation steps (line searches) required for convergence was
similar for the multiscale and the single-scale algorithms. But the multiscale relaxations are
much cheaper to perform, on the average, than fine-scale relaxations of the full ob jective function
because most multiscale relaxations occur at the coarsest scales. We estimate the magnitude
of this effect by weighting the number of univariate minimization iterations by the number of
nonzero connections in the network at each level of the multiscale scheme. This estimate omits
the construction cost of the coarse-scale networks and the cost of computing the parameters of
#(v) as well as the effects of highly parallel implementations (which would just truncate the
coarsest levels of the network).

The construction cost of the coarse-scale networks and the cost of computing the parameters
of ¢(v) were previously argued to be small compared to the cost of the fine-scale relaxation which
they follow, if many steps of partial relaxation are involved. We tested the multiscale net for
the extreme case in which just one univariate minimization was performed during each partial
relaxation (more univariate minimizations seemed to be less effective per unit of computational
cost, in our graph-matching experiments). In this case the network construction cost may become
comparable to (but not more than) the relaxation cost if a univariate minimization requires very
few search steps. This is because each coarse network construction, and each search step in a
univariate minimization procedure, require a number of operations proportional to the number of
nonzero connections at any given network level. Also the cost of computing the parameters of qg(v)
is proportional to the number of neurons at the same level - generally a much smaller quantity.
To avoid implementation-dependent assumptions about the ratio of the relevant proportionality
constants, we omit the (usually smaller) cost of the coarse-scale network construction and potential
calculation from the following cost estimates except when reporting on actual running times of
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Figure 3: Graph matching network using tree graphs. Values of E vs. estimated cumulative
computational cost, as the multiscale and single-scale minimization algorithms proceed. Three
runs are shown for each size n. Single-scale runs are plotted with circles and multiscale runs
are plotted with ‘+’ signs. Under the multiscale algorithm, E is substantially minimized after
roughly 20% to 50% of the effort required in the single-scale control experiment. (a) n = 8. Ratio
of convergence times ~ 6. (b) n = 16. Ratio of convergence times ~ 2.5 . Multiply by correction
factor .65 to get observed running-time cost ratio. (c) n = 25. Ratio of convergence times x 5.
Cost correction factor = .51 .
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Figure 4: As in figure 3, but here for 2-d graphs. (a) n = 8. Ratio of convergence times = 4. (b) n
= 16. Ratio of convergence times ~ 5 (worse local minima). Cost correction factor = .79. (e)n =
25. Ratio of convergence times & 3 — 10. Cost correction factor = .89 . Note speedup of late-time
convergence tail, which makes the speedup depend sensitively on the convergence criterion. (d)
n = 36. Ratio of convergence times ~ 5.
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Figure 5: E(t) for smooth surface reconstruction network with discontinuity detection. Three
runs are shown for each size n. Single-scale runs are plotted with circles and multiscale runs are
plotted with ‘+’ signs. The main effect of the multiscale algorithm for this network is to cut off
long convergence tails, thus greatly reducing the amount of computational effort required for the

final reduction in E. (a) n = 16. (b) n = 32.
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our serial-computer implementation.

Under this estimate of the cost of the two algorithms, the multiscale algorithm is strongly
favored over the single-scale control experiment for matching tree graphs as shown in Figure 3.
Similar results were obtained for matching two-dimensional graphs as shown in Figure 4. The
simulations generally exhibit punctuated descent towards local minima. Note the roughly constant
ratio of convergence times, as a function of n, between single-scale and multiscale simulations.
(For larger sizes there may be an additional benefit in cutting off a long tail of convergence at late
times.) There is generally about a five-fold improvement in estimated cost under the multiscale
method. For three scales and the W-shaped recursive control scheme, a five-fold improvement is
quite reasonable since it corresponds to roughly equal effectiveness of the fine-scale and coarse-
scale nets. But our attempts to improve this ratio by moving to four levels resulted in only
marginal improvements even for n = 36. As can be seen from the figures, the ratios of estimated
cost are sensitive to convergence criterion.

Including the costs of coarse-scale network construction will reduce the observed five-fold
savings in an implementation-dependent way. For our serial implementation using sparse data
structures and the C programming language on a Sparcstation 1 computer, the ratio of running
times for single-scale and multiscale tests was observed to be well predicted by the estimated
cost function used in the Figures in the following sense: for each problem there is a robust “cost
correction factor” which can be used to multiply the estimated cost ratio to get the observed
running time ratio, independent of iteration number and, to a lesser extent, problem size. The
correction factors are a little less than unity, so the observed cost ratios are a little less favorable
to the multiscale method than estimated ones. For two-dimensional graph matching the observed
cost correction factor is .79 (n = 16) or .89 (n = 25). For tree graph matching the correction
factor is .65 (n = 16) or .52 (n = 25).

In the case of the two-dimensional discontinuous interpolation network of equation (23), the
multiscale method cut off a long tail of slow convergence, allowing much quicker convergence in
the final stages of minimization as shown in Figure 5.

To summarize the experimental results, the multiscale method offers a decrease in computa-
tional cost by a factor that depends on the problem and on the convergence criterion, is roughly
independent of problem size for the three problems we tested, and is between two and five for
these problems. The advantage may be larger than this when the original network has a slow
convergence tail.

5 Conclusion

We have developed a fairly general, low-cost multiscale method for neural net optimization. It
transforms a neural network into a multiscale neural network of a similar form. In the particular
networks to which it was applied, we observed a nontrivial speedup by a constant factor (between
two and five) independent of problem size. Further improvements in computational cost are very
likely to be available, especially for problem-specific multiscale neural net methods, since the
method proposed here is conservatively designed in order to be more generally applicable. The
conservative design ensures that the multiscale network never accepts steps that move the original
objective function in the wrong direction; thus convergence is unobstructed. The method applies
to highly nonlinear networks, without underlying geometric domains or known descent directions,
and for which no particular problem structure is assumed or exploited except for a user-supplied
hierarchical partition of the optimization variables.






