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ERROR BOUNDS FOR GALERKIN’S METHOD
FOR MONOTONE OPERATOR EQUATIONS

MARTIN H. SCHULTZ!

ABSTRACT. An abstract theorem, generalizing a result of
Nitsche, is proved. This gives sharp error bounds for the Galerkin
method for approximating the solutions of a large class of non-
linear operator equations in Hilbert spaces.

Let H be a real Hilbert space and T be a strongly monotone operator
on H in the sense of Browder, i.e.,

¢y |(Tw — To,u — v)al Z 7 |u — vl

for all u, v € H and some constant y >0. We are interested in numerically
approximating the solution of the problem of finding u € H such that

2 Tu = f, where fis given in H,

by the Galerkin method. Given a finite-dimensional subspace, S, of H,
the Galerkin method is to find ug € S such that

(3) (TuS,y)H = (_f,_y)H, for allyeS
From [1] and [2], we recall the following result.

THEOREM 1. If T is uniformly Lipschitz continuous for bounded argu-
ments, ie., given B>0, there exists a positive constant, C(B), depending
only on B, such that |Tw—Tv| gz =C(B)|w—vl|y for all w, ve H with
Wl g =B and ||v|| z < B, then problems (2) and (3) have unique solutions and

C)) lu — uslg = y7CU f — TOll ) insf lu =yl
Ye,

In many applications, H is a closed subspace of W™?*(Q) for some
m=1 and (4) yields an error bound in the W™ *-norm when we are really
interested in an error bound in the L?-norm. While the bound in (4) does
induce an error bound in the L?-norm, one might expect that such a
bound is not sharp and indeed that is the case. In this note, we present an
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abstract theorem, generalizing a technique of Nitsche, cf. [3] and [4] for
linear selfadjoint problems, which when applied to the problems in
question yields sharp L>-error bounds directly. See [5] for another such
generalization.

Let V" and W be two real Hilbert spaces such that ¥'< H< W and there
exists a positive constant, K, such that

&) Il = K |lAllg, forall he H.

As a concrete example, one may take H=Wy3(Q), V=Ww>*Q)N
Wi (Q), and W=L3(Q).
Instead of (2), we consider the problem of finding u € H such that

(6) (Tu9 ¢)H = (ga ‘]S)W’ fOI' all 96 € H’

where g is given in W. Because of (5), problem (6) is a special case of
problem (3).
Our new result is

THEOREM 2. Let C be a collection of finite-dimensional subspaces, S, of
H such that if ug denotes the Galerkin approximation to u in S, then there
exist 0<A=A independent of S in C and a bilinear form bg on H such that

() (Tu—Tug, ¢$)y=>bg(u—ug, ¢) for all - H and all S € C,
(ii) bs($, $)=2l bl for all $ € H,

(i) [bg(w, )| SAlwl gllvll g for all w, v € H,

) if bg(w, ds)=(g, w)y for all we H, then there exists a positive
constant, p, independent of S in C, such that Iélly<plgly, and

(V) there exists a positive function, E, on S such that

@) inf g — ylgz = ES) gy, forallSeCandallgeV.
EN
Then
lu — ugllyy = ypC2(| f — TO| z)E(S) ing lu — ylig-
ve

ProoF. For each Se C, let eg=u—ug and consider the problem- of
finding ¢4 € H such that

®) bs(w, bs) = (es/lleslly, W)y, forall we H.
By our hypotheses on bg, this problem has a unique solution, ¢g, and
Iéslly =p.

Setting w=eg, we have |egll;;=bg(eg, bg)=(Tu—Tug, ¢g). Moreover,
by the definition of the Galerkin method, we have

”esnw = (Tu - Tus, (ﬁs - y)H, for ally eS.
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Thus,
leslw = CUIf— TOllg) lu — usly l¢s — ylg, forallyes.

Using Theorem 1 to bound |u—ugl;; and (7), we obtain the required
result. Q.E.D.

The reader is referred to [6] for further details and applications of this
result to boundary value problems for linear and semilinear elliptic
partial differential equations and eigenvalue problems.
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