TR XRO

Secondary Storage Methods for Solving
Symmetric, Positive Definite,

Banded Linear Systems

A Dissertation
Presented go the Faculty of the Graduate School
of
Yale University

in Candidacy for the Degree of

Doctor of Philosophy

by
John Richard Perry

May, 1981

This work was supported in part by ONR Grant N00014-76-C-0277
and AFOSF Grant F49620-77-C-0037.

Acknowledgments

I am indebted to my advisors, Martin Schultz and Stan Eisenstat,
for suggesting this topic, providing guidance, ideas, and criticism, and
allowing me the freedom to pursue the problem along my own inclinations.

I thank Josh Fisher for his time and suggestions as the third reader.

I also wish to acknowledge the impact of other professors whose
gift as teachers should not go unrecognized. In particular, the wit and
insight of David Dobkin and Alan Perlis have contributed enormously to

my perspective and interest in computer science,

To my graduate student and social colleagues, too numerous to
mention: I am grateful for your supply of friendship, lively
discussions, athletic diversions, and sporadically attentive seminar

audiences.

Finally, I cannot express my deep feelings for my family, who
support me in everything I do, and for Pat, who suffered and celebrates

with me the end of my overextended career as student.

ii

Table of Contents

CHAPTER 1: Introduction e & e e 4 e e e e

1.1 Definition of the Problem
1.2 The Model Problem« . .« .
1
1

2
3 Organization and Preview of Results . . .
4 Notation and Terminology e e e e e

CHAPTER 2: Gaussian Elimination and Its Variations

2.1 Factorization and Substitution e e e

[

O~ th =

14

2.2 Outer~ and Inner—Product Forms of Dense LU Factorization

2.3 The Cholesky Method for Symmetric, Positive Definite

Systems & 4 4.
2.4 The Cholesky Factorization of Banded Matrices
2.5 Block Factorization Algorithms e e e

CHAPTER 3: The Use and Performance of Paging Systems

Characteristics of Paging Systems . e .
Paging with Gaussian Elimination

3.1

3.2

3.

3.4 Block Pagination and Factorization . .
3.5 Summary of Paging Costs

-

CHAPTER 4: Secondary Storage Methods e e e s =

4.1 Introduction e e e e e e e e e
4.2 Strip Factorization with Minimal I/0 ..
4.3 A Strip Method with Subordinate I/O . . .
4.4 Block Factorization with Secondary Storage
4.5 Back-Solving with Strip and Block Methods .
4.6 Further Remarks e e e e e e s

Strip Pagination with the Band Cholesky Algorithm

CHAPTER 5: Analysis of Costs for Secondary Storage Methods

1 Introduction e e e e e e e e e
.2 I/0 Functions for Secondary Storage Methods
3 An Analysis of Fragmentation . . .

4 Memory Occupancy Costs

-iii-

16

21
23
25

32

32
37
38
42
49

54

54
58
65
68
73
75

78

78
83
92
96

—-iv—

CHAPTER 6: Parallel Execution of Computation and I/O0 100
6.1 Introduction e e e e e e e e e e e e 100
6.2 Hardware and Software Allowing Parallel I/O0 104
6.3 Synchromnization and Storage Schemes for SR and ST Methods
107
6.4 Conditions for Compute—Bound Strip Factorization . . 114
6.5 Synchronization and Compute-Boundedness with the BM Method
' 117
6.6 The Barrier to a Compute—Bound Back-Solve 124
6.7 Analysis of Turn—Around Time+ . 125
6.8 The Effect of Parallel I/0 on Memory Occupancy Costs . 128
CHAPTER 7: Implementation and Performance of the Methods . . 135
7.1 Introduction o e e e e e e e e e e e e 135
7.2 Characteristics of I/0 Performance 139
7.3 Performance of BESS on Various Problems . e e e 144
7.4 Experimental Memory Occupancy Costs 153

List of Figures

1-1: Linear Systems Arising from the Model Problem e e e
1-2: Principal and Subordinate Sets in Gaussian Fliminatiomn

: Principal and Subordinate Set Examples

Principal and Subordinate Sets in the Cholesky Algorithm

2-3: Column Storage of the Band of A .. e s s e = e .
2—-4: Block Partitioning of Symmetric Band Matrix o e e e
2-5: The Band Pad of a Block Partitioning e e e e« e
3-1: Strip Pagination of a Symmetric Band Matrix e« e e
3-2: Block—Row Symmetric Band Factorizatiom
3-3: Paging Costs of Block Factorization Orderings e o
3—4: The Effect of Page Size on the Paging Rate e e s .
3~5: Paging Costs vs. Primary Memory Usage e e e e e

4-1: Strip Partitioning of the Band of A by Columns e e u
4-2: I/0-Storage Scheme for‘SR Method
4-3: I/0-Storage Scheme for ST Method
4—4: Shift of Subordinate Elements in ST Method o e e .
4-5: Computation and I/O for Strip—Strip Method e e e
5-1: Sigma Coefficient vs. Primary Memory Usage, M=100 . .
5-2: Tau Coefficient vs. Primary Memory Usage, M=100 ., . .
5—-3: Sigma vs. Memory with Good Strip and Block Sizes . .
5~-4: Taun vs. Memory with Good Strip and Block Sizes e e .

o

13

19

21

23

25

30

38

43

44

47

50

56

61

63

63

65

85

85

88

88

—-vi—

: Fragmentation Ratios vs. Primary Memory Usage
¢ Configurations of Host, AP, and Secondary Storage

: Pipelining of I/0 in the SR and ST Methods .

ST 2—Channel Buffering Scheme . . . - e e

: SR 2—Channel Buffering Scheme . . . « e .

SR 1-Channel Buffering Scheme

: I/0 vs. Computation in tkLe SS Method e e

Synchronization of BM Method for a Block—Column

: Synchronization of First M Block—Columns . .,

: Best to Worst Cases of Band Padding . , . .

Sample BESS I/0 Subroutines e v e e e

: Timings of Sequential and Random Access I/0 .
: Wall Time vs. Primary Memory, M=100 , . . .
: CPU Time vs. Primary Memory, M=100 « e e
: Wall Times of BESS Methods vs. Bandwidth . .

¢ Memory Occupancy vs. Primary Memory Usage . .

93

104

107

109

111

112

115

118

118

121

139

142

148

148

148

153

List of Tables

2-1: Block Operators for Inner—Product Cholesky Algorithm e . 26
2-2: Multiplication Counts of Block Factorization Operators . 30
3-1: Timings of DEC-System 2060 Page Map Commands . . «+« =« 34
3-2: Paging Costs of Block Factorization Orderiﬁgs e e« o u 44

5-1: Primary Memory and I/O Requirements of Secondary Storage

Methods e 84
5-2: Primary Memory and I/0 Requirements with M and M Constant 91
5-3: Asymptotic Memory Occupancy Costs for the Model Problem . 97
6-1: Summary of Compute—Bound Requirements e e e e e e . 122
6-2: Memory Occupancy for SR Overlap/Buffering Schemes « . u 131
6-3: Strip Sizes Minimizing Memory Occupancy e e = e s = 131
7-1: Timings of Sequential I/O . . . « =« =« =« o =« =« 141
7-2: Timings of Random Access I/0 . . . « « + « =« « 141
7-3: Timings and Storage of BESS Methods, M=100 e e e s s 146
7-4: Fragmentation in Bad Record Sizes, M=100 e s e s = e 148
7-5: BESS Timings for Various Bandwidths + « . = 148
7-6: Timings of Forward— and Back—Solve Routines e e+ e e 148

-yii-

List of Algorithms

1-1: Gaussian Elimination (no Pivoting) e e e e e
2-1: Outer—Product Dense LU Factorization e e e e e
2-2: Inner—-Product Dense LU Factorization o+ e e« e
2-3: Inner—Product Cholesky Factorization e e s e e
2-4: Forward—-Back—Solve for the Cholesky Factorization .
2-5: Inner-Product Band Cholesky Factorization
2-6: Block Operator {A} = (A} - (BY'{C}
2f7: Block Operator {A} = {A}/{D} e e e e e e e
2-8: Back-solve Block Operator {x} = {x}\{D} e e e e
2-9: Block Inner—Product Cholesky Algorithm
2-10: Block Band Forward—Back—Solve e s e e o e s

: The Strip—-Rectangle (SR) Method, 1 Colump per Strip

: The Strip—Rectangle (SR) Method, K Columns per Strip
: The Strip—Strip (SS) Method e e & e e « o
: The Block-Minimum (BM) Method « o« .
: The Block-Column (BC) Method
: The Strip Back-Solve by Columns c s e e o e =

: The Block Back—=Solve . . v ¢ &« o« o o o s @

ST Method with Parallel Computation and 2-Channel I/0

: SR Method with Parallel Computation and 2—Channel I/0

¢ SR Method with Parallel Computation and 1-Channel I/0

-viii-

10

16

17

21

22

24

217

217

217

29

29

58

60

65

69

71

73

73

109

111

112

CHAPTER 1

Introductidn

1.1 Definition of the Problem

In this dissertation, we are concerned with the problem of solving
a linear system of equations,
Ax = b,
This is one of the most thoroughly-studied problems in numerical
computation. Yet, because of the variety of applications in which
linear systems arise, the large proportion of computer time spent
solving them, and the evolution of machine architectures, it continues

to be an active area of research.

In particular, we shall investigate the storage aspects of variants
of Gaussian elimination for solving linear systems. Gaussian
elimination is generally considered to be a good method because it
computes an exact solufion, with certain bounds on round-off error, in a
specific number of steps. In practice, a major problem is that the
storage requirement of Gaussian elimination can be quite large.

Tterative methods [40] are often used because they require less storage.

Much research has been directed at reducing the storage
requirements of Gaussian elimination (and usually the work involved as
well) by exploiting the symmetry aﬁa/br the zero structure of the
coefficient matrix. The easiest such structure to exploit is that of a
band matrix [8, 22]. By "easy”, we mean that there is little additional
overhead due to reordering of equations and unknowns or manipulation of
the data structures necessary to store and operate upon the matrix. In
some problems, more arithmetic operations and storage can be avoided by
using a profile storage scheme [18]. Profile methods are sometimes
referred to as envelope or skyline methods. In some problems, one can
do still Better by using general sparse algorithms, which store and
operate upon only the nonzero elements [12, 34]. However, thé work and
storage advantages of profile and sparse methods are offset by higher
overhead costs., Furthermore, there still may be a storage problem with
any of these apﬁroaches in the sense that the amount of memory limits

the size of a system that can be stored and solved on a given machine.

A general approach to solving problems which require more storage
than is available in main memory is to use some form of backup storage.
In most computing environments, a limited amount of fast primary memory
is backed up by a slower but much larger secondary memory, the most
common being disk storage. Often, an automatic mechanism for using
secondary storage is provided by a virtual memory operating system.
Research on the use of such operating systems for matrix computations

aims at reducing the paging costs through programming

techniques [23, 24, 32, 37, 14] or compiler design [1]. We shall

summarize some of these approaches and show ways to organize band

Gaussian elimination so as to minimize the number of page faults.

- However, paging systems are not available on many of the machines
used for large matrix computations. Indeed, machine architectures can
have memory configurations and transfer mechanisms that are too complex
or require too much control for a Paging approach to be useful.
Moreover, an innate drawback of automatic paging systems is that for any
particular algorithm, they cannot perform as well as an explicit

individually-tailored I/0 scheme.

The principal aim of this dissertation is to develop and analyze

secondary storage methods, which incorporate a strategy for the explicit

transfer of data between primary and secogdary storage as part of the
algorithms for solving linear systems., We shall focus on algorithms for
solving symmetric, positive definite, banded linear systems. This type
of system arises in many applications, especially finite—~difference and
finite—element methods for elliptic partial differential equations. In
the next section we introduce one such example to serve as a model
problem and discuss the reasons for using band elimination, as opposed
to profile or sparse elimination, for developing secondary storage

methods.

Some work exists on the implementation of Gaussian elimination

using secondary storage. Several codes for solving symmetric, positive

definite banded systems have been developed, especially as part of
structural analysis packages [15, 25, 30, 33, 39]. In particular, the
frontal method [17] uses secondary storage as it concurrently generates
and solves the linear systems arising from finite elements. Similar
issues have been studied for specific machines such as the

Cray-1 [3, 20, 26].

We extend these efforts by defining a class of secondary storage
methods for banded systems, a few of them similar to those in the cited
works. These methods allow Gaussian elimination algorithms to run
within reduced (in some cases arbitrarily small) amounts of primary
memory at the cost of performing the necessari I/0. Thus, secondary
storage capacity becomes the only limiting factor on the size of a
system that can be solved on a given machine. Furthermore, our methods
differ from most by allowing the size of records involved in transfers
to be specified by the user. Through this mechanism, each method of fers
a tradeoff within limits between the amount of primary memory used and
the amount of I/0. Using a simple model for the cost of performing I/0,
we analyze and compare the I/0 and memory occupancy costs for the
various methods. This analysis reveals that the tradeoff between memory
usage and I/0 can be better exploited with secondary storage methods
than with paging. Also, since it is possible with certain architectures
to carry out I/0O concurrent with computation, we consider the
possibilities and implications of overlapping the I/O with the

arithmetic work of these secondary storage methods.

In the remaining sections of this chapter, we introduce terminology
and notation and outline the organization and results of the

dissertation.

1.2 The Model Problem

In order to compare the costs of secondary storage methods with
other approaches to reduce primary storage, we now present a specific
.model problem: the solution of Poisson’'s equation,

Uxx+Uyy = F(x,y),
on a bounded square domain, where the values of U on the boundary are
known. If a five—point difference operator is applied over a regular M
by M grid, a symmetric, positive definite linear system results in which

N=M2 [351. The coefficient matrix has only two nonzero off-diagonal

elements above the diagonal in each row.

The form that this sparsity takes, and the resulting work and
storage requirements, depeﬁds on the ordering of the equations and
unknowns. In Figure 1-1 we show the matrix with bandwidth M produced by
row ordering and the profile matrix produced by diagonal ordering. This
profile matrix requires less work and storage to factor than the band
matrix, since the profile is a subset of the band. Further reductions
of work and storage are realized by ordering the equations and unknowns
by the method of nested dissection [12] and using sparse elimination to

solve the resulting system.

O O P4 Md
O O b4
O O P
M O O O M
o MO O
O O pdq b4
O O MM
XOOOX
MO O M q
O O pdq b4
M O O g
Mq O O O M
(== h |
(=T
b4 b
4
TR 2 7
o
Qo o 00— (N \— M
| | L i
R
Q e () P ——] ——) —
| | - L]
R
B||l2|...6.|0|.4I|B
| | - L)
R T
B11I5I9I3IB
] | _ —
L] _
| |
m m m m

Symmetric Banded Matrix.

>

Natural Ordering

b4 b b4
P4 bd O b4
b O
M O O
b b4 © © b4
MO O
MO OOM
MO O
M OO K
M O O
MO oM
M O Mg
b O 4
MO M
4 b4
b4
|
m m fas] m
| | | §
ool
Me—t~m— o — = O — M
| - - L
bl
Qe f=— 00— =~ 1 —
“ | - -
L]
Me— N— tN=— AN=— n— M
T
A H—N— 00— O—m
§ 1 | -
A
| |
m m /m m

Symmetric Profile Matrix

===

Diagonal Ordering

Figure 1-1: Linear Systems Arising from the Model Problem

We focus on band methods largely because the theoretical reductions
offered by profile and sparse methods are gained through tﬁe use of more
complex data structures. The storage of band elements is accomplished
using a standard rectangular matrix in which the location of any element
can be directly determined from its indices and from N or M. Profile and
sparse storage schemes use pointers, which means that addresses are
indirectly determined from the data stored in one or more index arrays.

This introduces additional work and storage overhead.

Secondary storage methods are particularly useful for the machines
known as peripheral array processors [2]. These are inexpensive
machines that offer the speed of much larger mainframes, but have
limited memory space backed up by the memory of the host machine, or by
direct access to disk or bulk storage. However, they have architectures
that are most effective with certain kinds of algorithms. In
particular, they have a limited capacity for the type of indirect and
data-dependent addressing that sparse algorithms require. Therefore, we
concentrate on band elimination, which has an elementary data structure

and algorithms that are well-suited for parallel organization.
1.3 Organization and Preview of Results
In Chapter 2, we survey the Gaussian—elimination—type algorithms

for solving linear systems. The method of primary interest is the

Cholesky factorization for symmetric, positive definite, banded systems,

which can be stored and ordered either by columns or by blocks. We
discuss the issue of locality, which affects the paging performance of
the algorithms and the amounts of memory and I/0 required by secondary

storage methods.

In Chapter 3, we summarize some of the published results on solving
linear systems with paging. We add some observations applying to banded
systems, and point out situations in which paging is inefficient in its
levels of I/0 or primary memory usage. In particular, we find that for
each algorithm that is organized for paging efficiency, there is a
threshold in the amount of primary memory above which there is a minimal
amount of paging, and below which there is an order of magnitude more

paging.

In Chapter 4, we present secondary storage methods for solving
symmetric, positive definite banded systems. A method is defined by a
partitioning of the coefficient matrix into records containing either
strips or blocks from the band, and a strategy for coordinating work,
storage and I/0 while computing the factorization. The strip or block
size is variable, allowing a certain degree of control over the storage

and I/0 demands of each method.

The various costs associated with secondary storage methods are
quantified in Chapter 5. We characterize I/0 costs in terms of a simple
linear model of transfer time which takes into account the number of I/0

events as well as the number of elements transferred. We use this model

to derive expressions for the amount of I/0 in each secondary storage
method, and to quantify memory occupancy costs. For a symmetric banded
system of dimensionlN and bandwidth M, the methods span the range from
0(M2) to 0(1) primary memory, as opposed to NM memory required to store
the entire band., As the amount of required primary storage decreases
through this range, the I/0 costs rise from O(N) events of O(M) elements
each up to O(NMZ) events of O(1) elements each. This analysis
identifies some of the factors affecting the best choice of method and
parameters'given the size of the problem, the amount of memory, and the

characteristics of I/0 costs.

In Chapter 6 we examine the implications and capabilities of
parallel execution of I/0 and computation events. For methods using
O(M2) memory, we introduce schemes for allocating memory between
computation and buffering, and for overlapping I/O with computation to
minimize the time that the processor is idle and thus the turn—around
time. An analysis of these schemes shows the amount of primary memory
that is needed to overlap nearly all I/0 during the factorization.
Finally, we show that nearly all I/O can be overlapped even in the
secondary storage factorization mgthod with the highest level of I/O.
This result implies that we can compute the Cholesky factorization
within a constant amount of primary memory (i.e., independent of N and

M) with virtually no increase in time due to I/O.

A more gemeral implication of this result is that the time and

10

space requirements of an algorithm are not the only criteria affecting
the cost of computation. The capability for a controlled flow of data
can replace the storage requirements of certain types of algorithm.
Memory hierarchies occur in many computing environments, and to use them
effectively requires careful study of the data flow characteristics of

the algorithms that are most common in numerical computing.

Finally, in Chapter 7, we describe the features of a package that
implements the methods of Chapter 4 called BESS, for Band Elimination
with Secondary Storage. We report on the performance of these codes

using a DEC-System 2060 with secondary disk storage.
1.4 Notation and Terminology

To complete this introduction, we present the simplest form of
Gaussian elimination, Algorithm 1-1, in order to introduce notation for
specifying algorithms., We define a step of such an algorithm as being
one execution of the outermost loop. In the forward elimination stage
of the algorithm (Lines 1-7), each step introduces zeroes in the jth

column below the diagomal so that, after N-1 steps, A is

upper—triangular.

We shall represent multiplication by juxtaposition, as with ”S bi"

" in Lines 5 and 11 of Algorithm 1-1, respectively. We use

and "A.. x
ji ~i

the equals sign for both assignment and comparison testing, as the

11

1. FOR j = 1 TO N-1 DO
2. [P=1/A., ;
ji
3. FOR i = j+1 TO N DO
4, [S=PA,, ;
ij

5. b. =b. - Sb, ;

i i J
6. FOR k = j TO N DO
7. [Aik=Aik—SAij]];

8. FOR j = NTO 1 STEP -1 DO
9. [x. =1v./A,, ;
J bJ/ JJ
10. FOR i = 1 TO j-1 DO

11, [b,=b, -A.. x. 11

Algorithm 1-1: Gaussian Elimination (no Pivoting)

context indicates. The index of a "FOR...DO” loop, delimited by
brackets and indenting, is increménted by 1 unless "STEP —-1" is
specified to indicate decrementing as in Line 8 of Algorithm 1-1. In
cases where the limits of a loop encompass no values (such as when j=1
in Line 10 of Algorithm 1-1) the loop is to be ignored. Finally, the
indexing of elements of a matrix within the algorithms will always refer
to their positions in the full matrix, regardless of the actual storage
scheme. This convention is aimed at maintaining as much comsistency as

possible between various forms of the algorithm that require different

12

storage schemes (nonsymmetric, symmetric, band, etc.). The problem of
mapping these indices into the actual location of the elements in memory

is left as a detail of implementation.,

Also note that, although we refer to elements of b and x, the
algorithm is ordered so that x can overwrite b a§ it is computed. Since
we are concerned with conserving’storage, this convention will be
maintained for all vectors and all matrices involved in each algorithm

of this dissertation.

We now introduce terminology (similar to that of Mondkar and
Powell [25]) to help describe the locality, or pattern of references to
matrix elements, within algorithms, The algorithms we are considering
perform inner or outer prodncts.within nested loops, of the general form
FOR i = , ., ,
FOR j = ., ., .

FOR x = , ., .
References to (A, , A A).

ij ik’ Y5k

The first element of the triple is referenced the most locally in that
its indices are independent of the innermost loop index. We call this
the principal element during the computation with that triple. The
indexing in algorithms throughout this dissertation is such that Aij is
the principal element within the innermost loop. For instance, within
the outer product in Line 7 of Algorithm 1-1, S (as computed from Aij)
is the principal element. The second element is the next-most—locally

referenced element, or that without the next—innermost loop index (Aik

in this example). We define this element to be the first subordinate

13

element and the remaining, least—locally referenced element to be the

second subordinate element.

Thus, each principal element is associated with sets of first and
second subordinate elements which we respectively call its first and

second subordinate sets. Further, the successive principal elements in

a specified portion of an algorithm can be referred to as a principal
set, whose first and second sub§rdinate sets are the unions of the
subordinate sets of its elements. In Figure 1-2, we illustrate the
subordinate sets corresponding to a principal element and a principal
column in the Gaussian Elimination algorithm. Finally, notice from
Algorithm 1-1 and Figure 1-2 that all elements of the second subordinate
are modified in each step of the outer—product algorithms. We shall see
that such characteristics affect the amount of paging or I/0 in

factorization algorithms.

P = Principal Set \\\\

1 = First 11111 RJ1 1111
Subordinate Set P 2222
P 2 2 22 Pl2 222
2 = Second Pl2 2 2 2
Subordinate Set A Pi2 2 2 2

Pi2 2 2 2

Principal Element Principal Set

in Innermost Loop in One Step

Figure 1-2: Principal and Subordinate Sets in Ganssian Elimination

CHAPTER 2

Gaussian Elimination and Its Variations

2.1 Factorization and Substitution

There is a variety of algorithms for solving linear systems by
factorization. These algorithms have been extensively studied and their
properties with respect to accuracy aﬁd efficiency are well understood.
Wilkinson [38] and Forsythe and Moler [8] contain good overviews. The
variety exists in order to efficiently solve the many special cases that
arise in practice. Some algorithﬁs can reduce the work and storage
required to sol;e the system by exploiting properties of the coefficient
matrix. Other algorithms reorder the operations to improve the locality
and thereby reduce the amount of paging involved when the algorithms are
executed in a virtval memory environment. In this chapter we introduce
these algorithms and identify the characteristics that are significant

for secondary storage methods.

The method of Gaussian elimination (Algorithm 1-1) for solving a

linear system

14

15

of dimension N is commonly expressed in the equivalent form of computing
the unique LU factorization of A, where L is unit—lower—triangular and U
is upper—triangular. Once L and U are found, the solution for ome or
more right—hand sides is obtained by solving the triangular systems

Ly = b and Ux

f

y

by forward and backward substitution, respectively. We refer to the

computation of L and U as the factorization stage and the solution of

the triangular systems as the forward—solve and back—solve stages of the

algorithm, respectively. Our primary concern is the factorization
stage, since it requires an order of magnitude more work than the

solution of the triangular systems.

In Section 2, we present inner— and outer—product algorithms for
computing L and U when A is nonsymmetric and dense (i.e., no elements
are assumed fo be zero). In Section 3, ;e present the Cholesky
factorization for symmetric, positive definite A, which can cut the work
and storage requirements in half. In Section 4, we describe other
variations of these algorithms which exploit the zero structure of a
band or profile coefficient matrix to gain further savings in work and
storage. This thesis focuses on secondary storage methods for the
symmetric positive definite banded case becaumse the locality and
structure of the algorithm allows large savings in primary storage with
low levels of I/0. The general approach of some of the methods extends
to other matrix strmctures, which we shall point out where appropriate.

Finally, in Section 5, we describe block factorization methods, Block

16

methods have better locality than standard row— or column-oriented
algorithms [23] and hence decrease the ratio of I/0 to work within a

given amount of primary memory.

In conjunction with the algorithms, we shall specify storage
schemes that satisfy several efficiency and convenience considerations.
In particular, it is advantageous for the vector operations of the
innermost loops of the algorithms to be performed on vectors that are
contiguous in memory. Among the advantages are

— it simplifies the coding of the algorithm;

— the code generated by many compilers will run faster;

— the convenience or efficiency can be even greater when the
vector operations are performed by optimized vector
subroutines (such as the BLAS in LINPACK [5]), assembly—

language routines, or by vector processors;

— memory references tend to be local and thus induce less
paging, as first observed by Moler [24].

Furthermore, I/0 operations are generally easier and faster if they

transfer to or from contiguous areas of memory.

2.2 Outer— and Inner—Product Forms of Dense LU Factorization

If an LU factorization of A exists (see [8, 38]), there are several
algorithms for computing the elements of L and U. The algorithms are
algebraically equivalent, but differ in the order in which operations

are carried out. We focus on two such orderings.

17

i 1. FOR j = 1 TO N DO
2. [FORi=jTONDO [U., =A..1;
ji ji

3. FOR i = j+1 TO N DO

4. [L,,=A../0..;

ij ij" "ij
5. FOR k = j+1 TO N DO
6. [A, =A 111

ik = Aix 7 LU

Algorithm 2-1: Outer—Product Dense LU Factorization

In one case the algorithm performs vector outer—products (that is,

the innermost loop is of the form V2 = V2 - S*V1 where S is a scalar,
invariant in the loop, and V1 and V2 are vectors) and in the other case

inner—products (of the form S = S — V1#*V2). Each requires about N3/3

multiplies and N2 storage.

The outer—product form of LU factorization, Algorithm 2-1, 1is

closest to Gaussian elimination. This algorithm reduces A to upper—
triangular form one column at a time by adding multiples of the ith TOow
to the remaining (N-i) by (N-i) submatrix so as to create zeroes below
the diagonal in the ith column. U then contains the upper—triangular

result and L is composed of the multipliers used to eliminate elements

of the lower triangle.

The other algorithm of interest is the inner—product form,

Algorithm 2-2, also known as the Crout method. The innermost loops of

18

1. FOR j =1 TO N DO

2. [FOR i = 1 TO j-1 DO

j 3. [FOR k =1 TO i-1 DO
. L., = .
5 i Aji/Uii 1;
6. FOR i = 1 TO j DO
7. [FOR k = 1 TO i-1 DO
8. [Aij = Aij - LikUkj 1 ;
9. 15 = Agy 11

Algorithm 2-2: Inner—Product Dense LU Factorization

this algorithm carry out inner products between elements from a row of L
and a column of U. In essence, this is a reordering of the
factorization so that all modifications to a given element are made in

succession.

There are, in fact a total of six distinct algorithms for computing
the LU factorization, corresponding to the six possible permutations of
the indices in the expression

Ai; = B35 7 Lixlyj
For example, the inner—-produnct algorithm computes the elements by rows

rather than columns of U if we exchange i and j in Lines 1, 2, 3, 6, and

7 of Algorithm 2-2. Since the operations that modify a given element

19

are carried out in the same order, the round—off properties of these
algorithms are generally similar. However, in the inner—product
algorithm, the inner products can be accumulated in a double—precision
register to reduce round—off error [8] while using virtually no extra

storage.

For a general matrix A, it may be necessary to perform some type of
pivoting during factorization. Otherwise, division by a zero or
near—zero element on the diagonal may making the algorithm either

ill-defined or unstable, Complete pivoting guarantees stability, but

partial pivoting is generally sufficient in practice [38]. However, in
casés where A is symmetric and positive definite'(as is true in many
applications) it can be shown that no pivoting is necessary [8]. We
shall concentrate on symmetric, positive definite banded linear systems
and shall therefore not discuss pivoting in any detail, except to

mention what methods do or do not easily extend to include pivoting.

We show several examples of principal sets and their subordinate
sets in Figure 2-1 to illustrate the pattern of memory references that
occur in these two factorization algorithms. The inner—product form has
several advantages over the outer—product form, especially in a
secondary storage context. The main advantage is that the modification
or rewriting of elements is more local. For each principal row and
column, the inner—product algorithm reads but does not modify the second

subordinate set, in the upper left j by j submatrix. The outer—product

20

LEGEND
\ U \ U

P = Principal Set
1 = First 11111 Rj1 1111

Subordinate Set P 2222
2 = Second L |P 2 222 L {P 222

Subordinate Set P 2 22
Where there is no A P 22 2
First Subordinate Set P 2 22
it is contained in Principal Element Principal Column
the Principal Set.

NONSYMMETRIC OUTER-PRODUCT FACTORIZATION

A \<i\
Principal Element Principal Column Principal Row)

NONSYMMETRIC INNER-PRODUCT FACTORIZATION

Figure 2-1: Principal and Subordinate Set Examples

form rewrites its second subordinate set, the lower right right N-j by
N-j submatrix, which would involve additional I/O if these elements were
in secondary storage. Even when the entire matrix is in primary storage
and no I/0 is involved, the memory rewrite costs can cause the outer—

product form to be less efficient.

21

2.3 The Cholesky Method for Symmetric, Positive Definite Systems

If A is symmetric and positive définite, we can halve the work and
storage by using the Cholesky method to compute the UTU factorization.
Algorithm 2-3 is the inner—-product forﬁ of the Cholesky factorization.
In addition, Figure 2-2 shows examples of its principal and subordinate

sets, using the notation of Figure 2-1.

Wé should also mention that there is a variation of the Cholesky
algorithm that factors A into UTDU, where U is unit-upper—triangular and
D is diagonal. This factorization does not require any square roots,
and thus is computationally more efficient. However, in the context of
this dissertation, we prefer the square—root method because it is more
local in its memory references., In particular, in the loop
corresponding to Line 5 of Algorithm 2-3, the square—-root—free method
references previous diagonal elements Akk in addition to all elements of
the jth column. In some secondary storage schemes, this would induce
additional I/0 or require a more complicated storage scheme, which would

offset the computational advantage.

22

1. FOR j = 1 TO N DO

2. [FOR i =1 TO j-1 DO

3. [FORk =1TO0 i-1 DO [A,, =A,. -0_.0U,.1;
ij ij ki'kj
4. U,. =A,./U0..1;
ij ij° 11
5. FOR k. =1 TO0 j-1 DO [A,, =A4A., - il ;
: ij jj kj
6. U, = (4,02
ii ii

Algorithm 2-3: Inner—Product Cholesky Factorization (A=ﬁTU)

U |2 1 U 1
2 1 1
2 1 1] A
P} A 11 A
1
Principal Element Principal Principal Column

Diagonal Element

Figure 2-2: Principal and Subordinate Sets in the Cholesky Algorithm

Algorithm 2-4 is the forward-back-solve for the Cholesky
factorization. In Lines 1-4, the lower—triangular\system UTy=b is
solved, and in Lines 5-8, the upper—triangular systém Uzx=y is solved.
The forward-solve is ordered so that the elements of U are used in the

-same order as they are computed in Algorithm 2-3, Thus, the

23

1. FOR j =1 TO N DO

2. [FOR i =1 TO j-1 DO
3. [b, =b, -0.. y. :
§ 705 7 Uiy vyl
4. . =b./0.. ;
T

5. FOR j = NTO 1 STEP -1 DO

6. [x, =y, 0,.
577 %4
1. FOR i = 1 TO j-1 DO
8. [Vi =9 7 Ui % 11

Algorithm 2—-4: Forward-Back—Solve for the Cholesky Factorization

forward—-solve can be carried out along with the factorizatiom, as it is
in Gaussian Elimination. This is usually domne in secondary storage

methods to avoid redundant I/O.

2.4 The Cholesky Factorization of Banded Matrices

The linear systems arising from many applications are sparse, that
is, most elements of the coefficient matrix are zero, The work and
storage requirements of factorization algorithms can be greatly reduced
by exploiting the zero structure. However, zero elements can "fill in”
(become nonzero) during the factorization, changing the zero structure
of A. A sparse form that is unchanged by fill-in during factorization is

that of a symmetric, positive definite, banded matrix [22].

24

Figure 2-3: Column Storage of the Band of A

Ve say that a symmetric matrix A is a band matrix of bandwidth M if

Aij=0 for a;l j—i>M. Algorithm 2-5 is the Cholesky algorithm modified
to avoid unnecessary operations ountside the band by a simple change in
the range of the loop indices. Combined with a symmetric band storage
scheme, this reduces the storage from N2/2 to N(M+1) and the number of

multiplies from N3/6 to NM2/2, a substantial savings if MJI<N.

Figure 2-3 shows a mapping of the elements of the upper band of A

into dense storage by columns within an N by M+l matrix. The scheme of

25

1. FOR j = 1 TO N DO

2. [FOR i = MAX(1,j-M) TO j-1 DO

3. [FOR k¥ = MAX(1,j-M) TO i-1 DO [Aij = Aij - UkiUkJ. 1;
4. Uij = Aij/Uii 1;
5. FOR k = MAX(1,j-M) TO j—1 DO [A..=A..—U2.] ;
ji jj kj
6. u,. = a2
ij ij

Algorithm 2-5: Inner-Product Band Cholesky Factorization

storing band elements by columns is used in LINPACK [5] but is not
universal. The IMSL format for storing band matrices [16] is to store
the M+l diagonals of the band within the columns of an N by M+1 ﬁatrix.
This is inefficient with respect to paging because a given row or column
of the band is spread across nearly the entire extent of memory being
used. For the reasons mentioned in the introduction to this chapter, we

choose a storage scheme to keep the memory references of an algorithm as

)

local as possible,

2.5 Block Factorization Algorithms

All the factorization algorithms presented so far are scalar
algorithms, since the operations being carried out on the coefficient
matrix are with scalar arguments. A property of scalar algorithms is

that each arithmetic operator has a fixed ratio between the time

26

N

Figure 2—4: Block Partitioning of Symmetric Band Matrix, N=10, M=4

required for the computation and the time required to transfer the
arguments to and/or from memory. The value of such a computation-to—-I/0
ratio for each operator is determined by the relative speeds of the

N

processor and the memory device holding the arguments.,

In this section, we present a generalization of the scalar band
Cholesky factorization to a block algorithm, that is, one in which the
primitive operators are matrix operations carried out on square
submatrices of the coefficient matrix. In Figure 2-4, we show an

example of a symmetric band matrix partitioned into blocks of dimension

217

Scalar Corresponding Block Operator
Operator
Operator Notation Operator Definition
a - be iy - B Algorithm 2-6
a/d {A}/ (D} Algorithm 2-7
al/2 (0yt/2 Algorithm 2-3
In back—
solve: {x}\ (D} Algoritbm 2-8
x/d

Table 2-1: Block Cperators for Inner-Product Cholesky Algorithm

L, where we define N=[N/L7] and the block bandwidth M=[M/L7.

We can convert the scalar algorithm into a block algorithm by
reordering the operations to maximize locality within this block
structure. This is equivalent to gemeralizing the operators and
arguments to refer to blocks rather than individual elements. We use
the notation [A}ij, 1<1i,j X N, to denote the appropriate block of A,
The right—hand-side vector is also partitioned for the purposes of
operating with these blocks. Thus, [b}j denotes elements

[bil (j=1L < i < jL}.

28

*
1. FOR j =1 TO L DO
2. [FOR i =1 TO L DO
3. [FOR Xk =1TOLDO [A, =4a;, ~B C;11]

*Ignore j in forward-back—solve, where {A} and (C} are vectors.

Algorithm 2-6: Block Operator {A} = {A} - {B}I{C}

1. FOR j =1 To L po*

2. [FOR i = 1 TO L DO

3. [FOR x =1 TO i-1 DO [Aij = Aij - DkiAkj 1
4. Aij = Aij/Dii 11

*
Ignore j in forward—-solve, where {A} is a vector.

Algorithm 2-7: Block Operator {A} = {A}/{(D},
where {D} is a Symmetric Diagonal Block

1. FOR j =1L TO 1 STEP -1 DO
2. [=, =x./D.,., ;
J J]

3. FOR x =1 TO j-1 DO [X = X~ ijxj 11

Algorithm 2—-8: Back-solve Block Operator {x} = {x}\{D},
where {D} is a Symmetric Diagonal Block

29

To convert from a scalar to a block algorithm, we replace each
scalar operation (subtract-multiply, divide, and square root) by the
corresponding block operator specified by Table 2-1 and Algorithms 2-6,
2-7, and 2-8. Operations which always occur together in these
algorithms are combined in the block Qperétors. Algorithm 2-9 is the
result of generalizing the Cholesky factorization to block form, and

Algorithm 2-10 generalizes the forward-back-solve.

Blocks near the edge of the band contain elements which are not
within the band, and Are therefore padded with zeroes. The block
operators can and should be implemented to avoid operating on these
extra elements, but there are still I/O costs associated with them. Ve
define the band pad to be the difference between the maximum bandwidth
that fits a given block structure and the actual bandwidth, which Figure
2-5 shows to be LM-M. For a given bandwidth, L should be chosen to
minimize this band pad and the extra costs associated with storing and

transferring these zeroes.

We show operation counts for these operators under the various
special cases in Table 2-2. A useful property of block algorithms in
the secondary storage context is that the ratio of computation to I/O is
not fixed for the block operators. For block size L, the computational
cost of each operator is 0(L3), while the time required to transfer
blocks is O(LZ). This property allows us to control the relative costs

of computation and I/O through the choice of block size.

30

1. FOR j = 1 TO N DO

2. [FOR i = MAX(1,j-M) TO j-1 DO

3. [FOR k = MAX(1,j-M) TO i-1 DO

T
4. [(A}, = (A} = (O (O 1
5. (O, = A}/ @y s

6. [FOR k = MAX(1,j-¥) TO j—1 DO

T
. ., = L. o= . {U ;
7 [{A}JJ [A}JJ {U}kJ {U}]

kj
o a1/2
8. (U}, = (ay;57]

Algorithm 2-9: Block Inner—Product Cholesky Algorithm

1. FOR j =1 TO N DO

2. [FOR i = MAX(1,;j-}) TO j-1 DO

T
3. [(x}y = (x}; - (015 (=3 1
4. {x}j={x}j/[U}jj] ;

5, ©FOR j = NTO 1 STEP -1 DO

6. { {x}j = {x}j\{U}jj]
7. - FOR i = MAX(1,j-M) TO j-1 DO
T
8. { {x}i = {x}i - {U}ij {x}j 11

Algorithm 2-10: Block Band Forward—-Back-Solve, ﬁrU Factorization

N

Figure 2-5: The Band Pad of a Block Partitioning

Operator Approximate number of multiplies
C full C lower—
,triangular
{A} = 3 3
T A nonsymmetric: L L /2
{A}- (B} (C} or 3 3
A symmetric: L7/2 L/6
({B}=(C})
{C} = (C}/(D} | D is symmetric: | L3/2 L3/6
{D} = {D}1/2 D is symmetric: L3/6

Table 2-2: Multiplication Counts of Block Factorization Operators

CHAPTER 3

The Use and Performance of Paging Systems

3.1 Characteristics of Paging Systems

Virtual memory paging systems offer one solution for solving a
problem that does not fit into Primary memory. The main advantage of
paging is the automatic use of rrimary and secondary storage, insnlating
a user from the details of I/0 and memory management . However, it is
necessary to pay some attention to the characteristics of Paging in
carrying out large numerical computations in order to avoid unnecessary
and sometimes catastrophic increases in execution time. Furthermore,
the size of a System that can be solved is constrained by the size of a
machine’s virtual memory address space, Although this is often very
large, the DEC-System 2060 is an example of a machine whose virtual

meémory is smaller than its physical memory.

33

techniques such as prepaging. Abu—Sufah [1] has worked on the compiling
of programs into code that has good paging characteristics. In this
chapter, we present some of the principal techniques for reducing the
amount of paging with the factorization algorithms from Chapter 2. VWe
analyze several of these épproaches as adapted to banded systems so

that, in later chapters, we can compare paging costs with the I/O costs

of secondary storage methods.

Ve attempt to be consistent with terminology from the literature in
describing the characteristics and performance of paging systems. In
particular, we are interested iﬁ the amount of paging that is induced by
a program's memory references to the pages containing its data arrays.
These data arrays are partitioned sequentially, or paginated, into pages
of a fixed size by the virtual memory system. The working set comnsists
of those pages that are active, or in primary memory, at a given time.

We assume that the working set size (the maximum number of pages in

¢ .
primary memory) is fixed during a computation, and that all pages are

initially in secondary storage.

When a page is referenced but is not in the working set, a page
fault occurs, in which that page is brought into primary memory from
secondary storage. If the working set is full, then an active page must

-,
be replaced and, if it has been modified while in the working set,

rewritten to secondary storage. We shall assume that the page to be

replaced is chosen by the least-recently—used (LRU) criteron [32].

34

Since paging usually accompanies time—sharing, a system may choose the
LRU page among all programs, but we limit our attention to the case of a
single program with a constant working set size. We shall consider the
paging cost of an algorithm to be a count of the page faults incurred

plus the number of necessary page writes. We define minimal paging to

mean that each page is read and written only once during a given

algorithm.

Finally, we use the term fragmentation loosely to describe the
costs incurred when elements of a page are transferred and stored, but
not used. Fragmentation can occur for several reasons. For example, a
set of data may be padded with zeroes in’order to fit a page. Or, an
ill-ordered algorithm may reference only a few elemenfs in a page before
it is replaced. We shall only discuss the fragmentation inherent in the
block storage scheme of Figure 2-4, where the diagonal and band-edge
blocks are padded with zeros. The other sources of fragmentation are
avoided by assumptions made to simplify the analysis, or because our

algorithms are well—ordered.

In order to determine the qualitative characteristics of paging
costs, we performed timing experiments with the DEC-System 2060 TOPS-20
paging system. These experiments consisted of system calls that
manually mapped from 1 to 6 pages at a time in both sequential and
random order between disk storage and primary memory. These manual

paging costs do not include all of the bookkeeping costs of a page

35

Pages Sequential order Random order
per 60 pages Per page 60 pages Per page
command CPU Wall CPU VWall CPU VWall CPU VWall
1 190 1020 3.2 17 184 1212 3.1 20
2 1617 1137 2.8 19 | 162 1283 2.7 21
3 150 1068 2.5 18 142 1256 2.4 21
4 1317 1055 2.3 18 129 1169 2.2 19
5 123 993 2.1 17 118 989 2.0 16
6 122 985 2.0 16 118 1123 2.0 19

All times in msec., page size = 512 words.

Table 3-1: Timings of DEC-System 2060 Page Map Commands

fault, such as determining the page to be replaced and updating the LRU
order. The CPU and wall times for each of these operations are shown in

Table 3-1,

The results show that the wall-clock time per page is independent
of the number of pages mapped per command. The wall time per page is
only marginally higher for random as opposed to sequential order, and
for single as opposed‘to multiple page map commands. The only
significant trend is that CPU costs slightly decline as the number of
pages per command grows. Thus, the transfer rate of paging on this
system does not seem to increase even as we increase the number of

consecutive pages being transferred.

The performance of FORTRAN I/0 is qualitatively different in that
larger records are generally transferred at a higher rate per word. We

shall see this in time trials to be reported in Chapter 7.

36

Consequently, the paging costs of a factorization algorithm
qualitatively differ from the X/0 costs of a secondary storage method as
primary memory usage varies. We shall compare the two approaches in

detail in Chapter 5.

In the remainder of this chapter, we discuss paging with
factorization algorithms, particularly those presented in Chapter 2 for
banded systems; In Section 2, we summarize McKellar and Coffman’s
landmark results on paging with Gaussian elimination [23]. We then
evaluate the performance of LRU paging on forms of the band Cholesky
factorization as paginated by columns (Section 3) or by blocks (Section
4). In both cases, there is a working set size threshold above which
there is minimal paging, and below which there is paging at 4 rate that
is an order of magnitude higher. Unfortunately, on either side of this
threshold, the working set size has almost no effect on the amount of
paging. Thus, the availability of more primary memory does not
necessarily reduce the amount of paging for these algorithms, These
results point to the need for additional tools to be offered by paging
systems, or for alternatives to paging, in order to effectively use the
available primary memory to minimize X/0 costs. In Section 5, we
summarize the results and conclusions of this analysis of paging. We
alsp suggest features of a paging system that would allow some control
over the length and tiﬁing of transfers in order to increase the

transfer rate and/or overlap I/0 and computation by prepaging.

37

3.2 Paging with Gaussian Elimination

Much of the paging analysis in the literature is directed at
Gaussian elimination for dense nonsymmetric systems, but the principles
apply to other problems as well. For example, Moler [24] observes that
it is important to be aware of possible conflicts between the pagination
of matrices and the ordering of operations in a matrix computation. In
particular, FORTRAN uses column—major storage of matrices, and thus the
pagination is by columns., If the inner loop of a computation traverses
a row, then it references every page even though it may perform only a
few operations per page. By reordering an algo;ithm to traverse

columns, we can reduce this paging rate by an order of magﬁitude.

Locality considerations such as this were incorporated into all of
the algorithms and storage schemes presented in Chapter 2. We also
identified characteristics of the algorithms that affect paging costs.
For instance, the inner—product form of the factorization does not
modify subordinate elements, as the outer—product form does. Thus, when

a page containing only subordinate elements is replaced in the inner—

product algorithm, it need not be rewritten to secondary storage.

McKellar and Coffman [23] analyze paging for dense Gaussian
elimination with row and submatrix (or block) pagination schemes. The
number of "page—pulls” is expressed in terms of P, the number of pages

occupied by the coefficient matrix, since the value of P is

38

approximately the same regardless of the pagination scheme. For row
pagination, the number of page transfers in the factorization is P2/2
plus lower—order terms. For submatrix or block pagination, the number

. 2.3/2
of page transfers is §P plus lower—order terms. In both cases, the
working set size affects only lower—order terms. Thus, small changes in

the working set size have almost no effect on the amount of paging in

dense Gaussian elimination.

However, their analysis does not consider whether or not a replaced
page has been modified and needs to be rewritten. For Gaussian
elimination, almost all referenced pages are modifiedband thus a page
pull consists of two bPage transfers. Also, they do not analyze LRU
paging but rather a strategy which determines an optimal page

replacement sequence for a given algorithm and working set size.
3.3 Strip Pagination with the Band Cholesky Algorithm

We now examine the paging costs for solving a symmetric, positive
Aefinite banded linear system when the matrix is paginated by columns,
each page containing a strip. We analyze only the factorization stage,
i.e., the band Cholesky algorithm (see Figure 2-5). In a reasonably
ordered forward-back—solve, each page is referenced once in each

direction so the paging analysis is trivial.

The strip pagination scheme is illustrated in Figure 3-1, We

39

SN N\
AN
N

/
— T

N
|

Subordinate pages

Principal page with
subordinate regions

Figure 3-1: Strip Pagination of a Symmetric Band Matrix

assume that the page size is K(M+1l), so that A is paginated with one
strip of K full columns per page. We assume_that K is a factor of M,
and let M=M/K. By Moler's criteria [24], this combination of pagination
and computation by columns should result in reasonable paging

characteristics. In fact, the paging is as follows.

Doring the time in which values of U are computed for a given page,

40

we must reference .subordinate elements in the previous M pages. In
Figure 3-1, page 7 is divided into regions that are labeled to show
which page contains the region’s subordinate set. We call these the

subordinate regions of the principal page.

If the size of the working set is at least ¥+1, that is, primary
memory exceeds (K+M)(M+1), then there is minimal paging with the LRU
strategy. We illustrate this for the example of Figure 3-1 with a

working set size of M+1 or 5.

When page 7 is first referenced, the working set in LRU order is
{2,3,4,5,6}. The ensuing page fault replaces page 2, writing it out,
and the working set is now {3,4,5,6,7}. As each column of page 7 is
computed, the referencing of subordinate pages induces no page faults.
The LRU ofder of the subordinate pages rotates as the computation passes
down each column through its subordinate regions, but at the end of each
column the erking set returns to its original ascending order. Thus
each page will be read and written only once during the factorizatiom.

A larger working set size is wasteful in that paging is not
substantially reduced. Its only beneficial effect is that more pages
are active when the factorization is complete, so there will be fewer

page faults if a back—-solve follows.

However, consider what happens when the working set size is reduced
by one, to M. The first operation with page 7 finds the working set at

{3,4,5,6}. Page 7 therefore becomes active, replacing page 3.

41

Thereafter, each column in page 7 incurs the following page faults,

marked with asterisks.

Computation Working Set
sequence: (LRU order):
end of 6 {3,4,5,61}

__ begin 7 _ *{4,5,6,7}

For K 7 with 3 *(5,6,3,7}
columns: 7 with 4 *{6,3,4,7}
7 with 5§ *{3,4,5,7}

7 with 6 _ +{4,5,6,7)

finish 7 {4,5,6,7}

The total is KM+1 or M+l page faults for each principal page.
Also, a page write is required when page 6 is firstrreplaced, since it
is modified immediately precediné this sequence, If page 3 is
referenced before page 7, then only the first page fault in the loop is

avoided the first time through.

This example demonstrates how an algorithm that seems page—local
can have a catastrophic paging rate even when the working set size is
within one page of good performance. Furthermore, all working set sizes

from M down to 2 induce the same amount of paging.

It is possible to reduce this paging rate by a factor of K by
modifying the order of operations to observe subordinate page locality.
Rather than computing each column as a whole, the algorithm should
compute all values of U in onelsubordinate region of the principal page
before proceeding to the next region.. We shall call this the

strip~local order of operations. Although pagination is by strips, this

42

ordering resembles block factorization in that the subordinate regioms
are K by K blocks within the strip. This reduces the number of page
faults per principal page to M+1, with one page write when page 6 is
first replaced. In this case, too, the paging rate remains the same for
working set sizes from M down to 2. The ordering strategy requires that
K, the number of columns on each page, be known to the algorithm, and
that columns do not cross over page boundaries. The implementation of
this pagination and ordering scheme is nontrivial, and we know of no

codes that observe this ordering with strip pagination.

To summarize, there is minimal paging with strip pagination if
there are at least M+l active pages, or (K+M)(M+1l) words of memory.
Paging is at a higher level (catastrophic without strip—local ordering)
if there are M active pages or less. Therefore, when the working set
size is other than M+l or 2, extra active pages are being held in
primary memory without any reduction in the amount of paging. This
means that there are not many combinations of problem size and working
set size for which paging is truly efficient in its use of primary

memory.
3.4 Block Pagination and Factorization
We next examine paging costs of the band Cholesky algorithm when A

is paginated and operated upon by blocks as in Sectiom 2-35. Suppose

that each page contains ome block of L2 elements of A and that L is a

43

factor of M (i.e., the block bandwidth M = [M/L] = M/L). The block

operations in the block factorization algorithm can be performed in

various orders, just as the operations of the scalar algorithm can be

ordered by rows or columns, inner— or outer—products, etc. We consider

three such orderings:

1.

2.

Block—column order refers to that of Figure 2-9, the standard
inner—product ordering by columns.

Reverse block—column order means that the indexing order of
the innermost loops of Figure 2-9 are reversed. The
motivation for this ordering is that a principal block
immediately becomes a subordinate block in the next block
operator, and thus may save a page fault. We incorporate
this ordering into a block-based secondary storage method in
Chapter 4.

Block—row order means that the subordinate blocks from
previous block—columns are referenced in row order. The
motivation for this ordering is that the top row of
subordinate blocks, which are not needed again in the
factorization, are referenced first and thus will be the
first to be replaced. We specify this order in Figure 3-2.

1. FOR j = 1 TO N Do

2. [FOR i = MAX(1,j-¥) TO j-1 DO

3. [[U}ij = {A}ij / {U}ii H
4. FOR k = i+l TO j—-1 DO
T
5. [{A}kj = {A}ij - [U}ik {U}ij 11;
_ 1/2
6. {U}jj"{A}jj)

Figure 3-2: Block-Row dTU Symmetric Band Factorization

44

We determine the paging costs by means of an LRU paging simulation.
The simulation keeps track of the working set (the LRU order, which
active pages have been modified, etc.), and then, from the sequence of
page references generated by a given algorithm, counts the page faults
and page writes incurred. We then plot the paging costs as a function
of working set size, to be compared with the I/0 costs of secondary

storage methods in later chapters.

In Table 3-2, we show the simulated paging counts for these three
block orderings during the factorization of ome block—column where M=6.
We plot these results in Figure 3-3, which shows that the three
orderings have similar paging characteristics. However, block—column
order is best overall in that it has the smallest paging costs as summed
over the entire interval. When the working set size is very small,
reverse block—column order gains an advantage because of the few page
faults it avoids. Block-row order performs best only when the working
set size is just below the level required for minimum paging. It
performs poorly with a small working set size because the page being
modified is not referenced by successive operators, resulting in

additional page writes.

Note that the gualitative characteristics of paging performance are
the same for block pagination as for of strip pagination. That is,
there is minimal paging above a certain working set size, and an order

of magnitude more paging below this threshold. However, at each of

45

Page faults plus page writes
Size of per block—-column
Working
Set Block- Reverse Block—
Column Block—-Column Row
28 14 ' 14 14
27 14 24 29
26 29 34 29
25 35 35 30
24 35 35 31
23 35 35 32
22 35 35 33
21 35 35 34
20 35 35 35
12 35 35 35
11 '35 40 45
10 - 41 41 47
9 43 45 55
8 47 46 57
7 49 49 63
6 52 49 63
5 53 50 65
4 54 50 71
3 55 50 73

Table 3-2: Paging Costs of Block Factorization Orderings, M=6

46

"y
\

-

30.00

NHITIDO-M007d ¥3d SHI4SNUNL

M=6

Yy

oy e
e

[\L"-‘-i.(

*
+

k4

(AT

PIMAA

foea

€.00
gl

Paging Costs of Block Factorization Orderings,

Figure 3-3

47

these levels, the working set size has almost no effect on the amount of

paging.

Quantitatively, the threshold for block-column order is a working
set size of (ﬁ2+3ﬁ)/2, i.e., one page less than a principal block—column

plus its triangle of subordinate blocks. This working set size occupies

M2/2 + 3ML/2
words of primary memory. While this is less than the minimal paging
memory requirement for strip paginétion, the block algorithm requires
more programming effort and computational overhead. Minimal paging is
2M+2 Page transfers per block-column. If the page set size is smaller
than this, there are additional page transfers for each of the pages
containing the triangle of subordinate blocks. This higher level of
paging involves (ﬂ2+5ﬁ+4)/2 page transfers per block—column, Unless the
working set size is very small, paging remains at this level because the
principal block-column stays in memory until it has been completely.

factored,

The page size, which dictates the block size, also has an effect on
the paging rate for a given bandwidth. This is illustrated‘in Figure
3-4. For this example, we chose a bandwidth of 150 and simulated the
paging for three page sizes, 1444, 625 and 225, corresponding to block
bandwidths of M = 4, 6, and 10, respectively. The figure plots the

number of elements transferred per column against primary memory usage;

48

b
I
;m@ |
|
A -
e T
7 s‘ <
v
~f4 !
iy
< ana _
o<1 _
U B
L
th
LN
£t
m .
\km i
ATT olr
oL ‘4
ol
1 { (! \
mHm ﬁU. Hr.
Q) -
0 he]
Lo |

¥3d OINYTLSNBML SINIWTTI

16000,

HE TSNS
Mol S

Lo]

4P

Figure 3-4: The Effect of Page Size on the Paging Rate

49

thus it is implicit in the comparison that thevtime to transfer a page
is proportional to its length. With smaller block sizes, thgre is less
fragmentation in the diagonal and edge blocks, so less primary memory is
needed to achieve minimal paging. However, a smaller block size has

more paging at the higher paging rate of O(ﬁz).
3.5 Summary of Paging Costs

We now summarize the costs of the paging strategies described in
the previous two sections. In order to compare the costs, we express
the amounts of memory and the number of page transfers in terms of the

bandwidth M and the page size, which we denote by S.

For strip pagination, we assumed that there were K columns, or

about KM words, per page, so that
K=S/M and H=M/K=M>/S.
From Section 3-3, the amount of memory required for minimal paging is
M2+S words.

Above this level, there is minimal paging of 2 page transfers per strip,
or

2M/S page transfers per column. | (3.1)
We showed in Section 3-3 that the the amount of paging below this memory
threshold is M+2 page transfers per strip, or

(M2+2M)/S page transfers per column.

With strip—local ordering of operations, this paging rate can be reduced

50

to M+2 page transfers per strip, or

(M3+2MS)/(SZ) page transfers per column.

For block pagination, we assumed that there was one block of L2

words per page, sO
L= -/S and M=M -/T /S.
From Section 3-4, the amount of memory required for minimal paging is
(ﬁ2+3ﬁ)/2 pages, or
(M2+3M ~/§7)/2 words.
Above this level, there is minimal paging of 2M+2 page transfers per
block—column, or
2M/S + 2 ~/S /S page transfers per column.
This is slightly more than (3.1) due to the fragmentation of block
pagination, The amount of paging below this level is (ﬁ2+5ﬂ+4)/2 page
transfers per block—column, or

(M2 /'S +5MS+2S ~/S)/(232) page transfers per column.

To graphically compare these costs, we plot page transfers per
column versus memory usage in Figure 3-5. The comparison is based on 2
specific example of bandwidth and page size. The page size is chosen
not to be a realistic valune, such as 512, but to eliminate any avoidable
fragmentation with the given bandwidth and strategy. For 2 bandwidth of
150, we examine strip pagination costs with a page size of 604 (4 full
columns per page) and block pagination costs for a similar page size of

625 (block size 25, block bandwidth M=6).

51

P

o Sommsm——Le s
e
T
i

A
w4
v
w4 i
4
LL
L4
A/ .
”
4
w4 -
3
! | oo . 1
=, 2 (2
3 3 3
du 7u nm

NWITTZD d3d SYF46NHML 398d

f‘.r’z.r",
UUU .

2000.

T;l
Q]
(L
]
I
(1.

(-]

Figure 3-5: Paging Costs vs. Primary Memory Usage

52

The advantages of paging are its convenience and generality, but we

have shown that it is not necessarily a good means for solving problems

whose‘storage exceeds the amount of primary memory. Among the drawbacks

we

have mentioned are:

Virtual memory systems simply do not exist for many machines
of interest.

A machine’s virtual memory address space still limits storage
to what may be an unacceptable level.

The use of secondary storage is conveniently transparent, but
beyond the direct control of the user, which may prevent its
effective use.

Under our assumptions, Paging does not exhibit a smooth
trade—off between memory usage and I/0O. Thus the use of more
memory does not necessarily improve performance, and paging
can go from optimal to catastrophic levels with small
variations in memory usage.

The methods that have been shown to considerable reduce high
paging levels require considerable programming effort,

Finally, most general paging systems do not overlap I/O with
computation, and techniques such as pPrepaging do not guarantee
such overlap, since the sequence of Page references cannot be
predicted with certainty.

This analysis of paging performance for band Cholesky algorithms

points out that it would be desirable for a paging system to recognize

the thresholds of sharp paging increases, and to avoid constraining the

working set size below these thresholds whenever possible.

Alternatively, the user should be able to specify the optimal size for a

program’s working set in cases where paging can be accurately predicted.

Such features would help to avoid the dramatic paging increases that

occur in these algorithms.

53

A paging system could be used even more efficiently if it offered
features for controlling the length and timing of page transfers. In
Chapter 5, we shall show that secondary storage methods use primary
memory to reduce I/0 costs by transferring as large records as possible
in each operation. In Chapter 6, we shall further demonstrate how I/O
can be overlapped with computation with secondary storage methods. If a
paging system would give the user enough control to use these
techniques, a virtual memory system'’s innate capability for fast I/0

between disk and memory could be effectively exploited.

For example, the user could have the 6ption of causing a contiguous
set of pages to be transferred at once, which the system should be able
to carry out at a higher rate than individual page transfers. In
addition, if a transfer could be initiated before the pages are actually
needed and the program could continume in the meantime, the overlap of
I/0 could be achieved. These tools would allow a programmer to use the
same techniques for controlling the pagination and transfer of data as

would be done with explicit FORTRAN I/0.

That is, we do not wish to say that a paging system cannot use
secondary storage efficiently. Rather, the conclusion of this chapter
is that passive, inflexible I/O strategies such as LRU paging cannot be
as efficient as schemes that control I/0, whether with a paging system
~or a FORTRAN I/0 system. We shall present such schemes in the following

chapters.

CHAPTER 4

Secondary Storage Methods

4.1 Introduction

"In this chapter, we introduce methods for explicitly using
secondary storage with the band algorithms presented in Chapter 2. Each
of these methods extends the factorization algorithms by specifying:

— A partitioning of band elements into strips or blocks, which
serve as secondary storage transfer records;

- Those records and any other elements which are to be in
primary memory at each point in the algorithm, thus
determining the primary storage requirement;
- The I/0 operations needed to carry out the algorithm within
the primary memory constraint by transferring records to and
from secondary storage;
— The order of operations that maximizes the strip or block
locality of the algorithm.
The methods of this chapter do not address the problem of where
records and elements are actually stored within primary memory arrays.
As established in Chapter 1, indexing in the algorithms always refers to

the position of elements within the full matrix, and it is left as a

problem of implementation to transform these indices to the actual

54

55

location of the elements in primary memory. We discuss such

implementation issues in Chapter 7.

All of our secondary storage methods for the band Cholesky
algorithm share certain characteristics. We assume that the elements of
b reside in primary memory, and the band elements of A imitially reside
in secondary storage, partitioned into records as the method requires.
Each method reads a record of A, computes the values of U for that
record, and writes the records of U to another secondary storage file.
The difference between methods is the means by which subordinate
elements needed to compute the values of U for a principal record are

either stored in primary memory or retrieved from secondary storage.

The forward—-solve can be computed using the values of U in the same
order as they are computed, so it is carried out simultaneously with the

factorization to avoid redundant I/0. We use the term forward pass to

refer to.this simultaneous factorizZation and forward-solve. For the
back-solve, the records of U must be retrieved in reverse order in a

backward pass through the band. This requires an order of magnitude

less computation and, as we shall see, less I/0 than the forward-pass.

While we have assumed that the right—-hand side is in primary
memory, we do not include its storage in the analysis of primary memory
usage, since it requires the same amount of storage for every method.
It could be argued that this is misleading because the storage of the

right—hand side would be the dominant storage cost for some of these

56

methods, and would thus have an effect on some of the theoretical
results of later chapters. However, we wish to point out that it is
possible to extend the secondary storage methods to include the
partitioning and transfer of the right-hand side with only low order
amounts of additional I/Q. We have implemerted such methods, which
involve only slightly extra effort. For the sake of simplicity, we
shall ignore the costs associated with the right—hand side, which are

all of low order.

The stracegies we shall consider arise from two types of
partitioning, introduced as pagination schemes in Chapter 3. In the
first, each record contains a strip of X complete rows or columns of the
‘band of A, as illustrated in Figure 4-1. The second is block
partitioning, introduced with block factorization in Figure 2-4, where
each record contains an L by L submatrix. In both cases, records are
contiguous in primary memory so they can be transferred easily and

efficiently,

On the surface, there is no difference between partitioning versus
pagination. However, there is a big difference in the constraints posed
by their secondary storage environments. In the case of paging, the
page size is fixed by the operating system, and thus strip and block
size is fixed for a given bandwidth. For secondary storagé methods
implemented in FORTRAN, there is no practical constraint on the size of

I/0 records, so we may choose a strip or block size to achieve various

57

Band of A:

Subordinate Set__]
for this
Principal Strip]
in the
Inner—Product Algorithm

Figure 4-1: Strip Partitioning of the Band of A by Columns

goals, In Chapter 5, we shall show how this flexibility results in a
much smoother tradeoff between primary memory usage and I/O costs than

that observed for LRU paging in Chapter 3.

In Section 2, we introduce two minimal-I/0 secondary storage
methods that use strip partitioning. By this we mean that each strip is
transferred in and out of primary memory just once during the
factorization., The methods require about M2 and M2/2 words of primary
memory to compute the factorization, but the storage scheme of the

latter method incurs greater computational overhead.

In Section 3, we define a strip method that reduces the primary

58

memory requirement to about 2KM words with an order of magnitude more
I/0. It uses the strip—local ordering scheme introduced with paging in
Chapter 3, and keeps only two arbitrarily thin strips in primary memory

at a time.

In Section 4, we present two secondary storage methods based on
block factorization. One of them reduces the primary memory requirement
to 3L2 words, which permits factorization for any bandwidth in a given

memory space.

In Section 5, we discuss how the backward pass can be carried out
for each partitioning., Throughout the chapter, we shall cite similar

secondary storage methods reported in the literature.

4.2 Strip Factorization with Minimal I/O

In the inner-product band Cholesky algorithm, the elements of a
given column are referenced during at most M+l successive steps of the
factorization algorithm, During the first such step it is the principal
column, when the values of U for that column are computed. These values
then become subordinate elements for up to M succeeding steps. The most
obvious reduction in the use of primary memory is accomplished by
storing columns in secondary storage except during these M+l steps.

This requires I/0 operations in omnly the outermost loop of the

algorithm, which results in a minimal-I/0 method.

59

1. FOR j = 1 TO N DO

Comment: This column replaces column J~M-1 of U if jo>M+1.
2. [INPUT column j of A ;

3. FOR i = MAX(1,j-M) TO j-1 DO
4. [FOR x = MAX(1,j-M) TO i-1 DO
5. [Aij = Aij - UkiUkj 1
6. Uij = Aij/Uii 1
7. FOR k = MAX(1, j-M) TO j-1 DO
8. [A . =4A,. - U2. ;

, ji AJJ kj]
9. U, =(a 2

JJ JJ
Comment: Retain values in memory until replaced at Line 2.

10. OUTPUT column j of U]

Algorithm 4-1: The Strip—Rectangle (SR) Method, 1 Column per Strip

We first present the Strip-Rectangle (SR) method, since subordinate
elements are retained in memory in a straightforward rectangular storage
scheme. Algorithm 4-1 is the SR method in its simplest form, where a

h

Strip contains one column, The jt column of A is brought into primary

h step of the factorization algorithm.

memory at the beginning of the jt
During this jth step, the values of U for this column are computed and
then output, but they are kept in primary memory as they are referenced

during the next M steps. After the last such reference, the column is

free to be overwritten in the next input operation.

60

This method was described for implementation on vector computers
such as the Cray-1 in [20], where they also suggest that iﬁ practice, we
may not want to perform I/O at every step of the factorization,
Algorithm 4-2 is a more gemeral form of the SR method which transfers K
columns in and out of primary memory once every K steps. The choice of
K allows us to use more memory to reduce the number of I/O events. This
method has also been implemented for the CDC-7600 in [15]1, where
provision was made to use that machine'’s capability to overlap FORTRAN
I/0 with computation. We shall examine techniques for overlapping I/0

with these methods in Chapter 6.

The SR method stores in primary memory the principal strip plus
those precéding strips that contain subordinate elements. The number of
such subordinate strips is ﬁE[M/K]. We shall assume that K is chosen to
be a factor of M, so that M=M/K and there are exactly M columns within
the subordinate strips. Thus, the total amount of primary memory needed

to store A and U for the SR method is (K+M) (M+1).

In Figure 4-2, we illustrate the I/0 cycle of the SR method. As
soon as the values of a principal strip have all been computed, this
strip is written out to secondary storage at Line 10. The next
principal strip is then input into primary memory at Line 2, replacing
the K columns in primary memory that no longer contain subordinate
elements., The forward pass requires the input and output of each strip

exactly once, so the number of strip transfers is 2N where ﬁ=[N/K].

61

1. FOR j =1 TO N DO
Comment: The kth column replaces the k—M—Kth
2. [IF j MOD X = 1 THEN

INPUT ((Aik’ i

column in memory.

MAX(1,k-M) TO k),

k = j TO MIN(j+K-1,N)) ;
3. FOR i = MAX(1,j-M) TO j-1 DO
4. [FOR k = MAX(1,j-M) TO i-1 DO
5. [Aij = Aij - UkiUkj 1
7. FOR k = MAX(1,j-M) TO j—1 DO
8. [A..=A..—U'2. ;
ji ji kj]
9. v, =, Y2
3 Ji

Comment: Retain values in memory after output until replaced at Line 2.
10. IF j MOD X = 0 OR j=N THEN
OUTPUT ((Aik’ i=k-M TO k), k=j-K+1 TO j) 1]

Algorithm 4-2: The Strip-Rectangle (SR) Method, K Columns per Strip

By storing and operating upon elements within their strips, the SR
method makes storage, I/0, and the computational algorithm as simple as
possible. However, it does so at the cost of storing elements in
primary memory that are actually no longer necessary in the forward
pass. The figures illustrate that only half of the elements of U being
retained in primary memory are actually subordinate elements. Thus, we
could achieve a minimal-I/0 method within less primary memory by using a

triangular storage scheme to retain the subordinate elements.

62

Symmetric Band |
Coefficient Matrix: .

Secondary storage,

input file stored 1{213141516{7

by strips of A:

Primary memory,
principal and
subordinate strips:

BEFORE:

BEFORE I/0 cycle,
Principal Strip 6
is complete.

AFTER 1/0 cycle,
Strip 6 has been
output and Strip 7
has been input to
replace Strip 2.

Secondary storage,

output file stored 1

by strips of U:

Figure 4-2: I/0O-Storage Scheme for SR Method

63

Variations of this approach, which we call the Strip~Triangle C =T)

method, have been described in the literature [29, 34]. In Figure 4 —3,
we illustrate the I/O and storage schemes of the ST method for the
inner—product Cholesky algorithm. After reading in a strip of K

columns, we compute U for one principal column at a time, simultane <= usly
shifting subordinate elements within the triangle to prepare for the==
next column, as shown in Figure 4-4., The principal elements themse "M ves
are shifted into the triangle since they are subordinate elements f «—>r1
the next column.. Since the subordinate elements needed for subsequ «==nt
stri'ps'have been shifted into the triangle, the principal strip may be

output and immediately overwritten by the next strip.

The triangular scheme for storing the subordinate set reduces —the
primary memory requirement to (KHI/Z)(I\I+1), with the same amognt ot I/0
as the rectangular scheme. Alternatively, we could use the same am=m ount
of primary memory as the SR method to reduce the number of strips C and
strip transfers), since K can be chosen with ST to be M/2 larger.

However, this method has more overheaZl than the SR method due to tF am e
shifting and rewriting of subordinate elements. We show the exten ®&—— of

this overhead in the timing experiments of Chapter 7.

64

Secondary storage,
input file stored
by strips of A:

Primary memory,
principal strip
plus triangular
storage of U |6
subordinate
elements:

[——1

1

Input next strip of A.

Compute U for principal
strip, shifting triangle.

Output strip of U and
proceed to the next
principal strip.

Uju|uiuiuivu
Secondary storage,
.output file stored 1]2§314}5}6
by strips of U: [

—_—t Y n—m——-—,—,-.

Figure 4-3: I/0-Storage Scheme for ST Method

Before shift, triangle contains I {-
subordinate set of column j
l (- {- Principal
| column j
After shift, triangle l (- <~ {= within its
contains subordinate set | | strip
of column j+1 l (= (= <= <~
‘ [11|
l <= (= (K= <= <~
111

Figure 4—4: Shift of Subordinate Elements in ST Method

65

4.3 A Strip Method with Subordinate I/O

We next consider several alternatives for reducing the primary
memory requirement even further. This implies that we cannot keep all
subordinate elements of a principal column in primary memory, and some
additional I/0 will be mnecessary to retrieve them from secondary
storage. In this section we introduce such a method based on strip
partitioning. It retrieves the subordinate strips one at a time from
secondary storage as the principal strip is computed. The additional
I/0 can be limited to about NM extra strip transfers during’the forward

pass if operations are reordered to reflect subordinate strip locality.

Figure 4-5 shows the example from Chapter 3 of a band section
partitioned into strips imn which M=4. Recall that the regions of the
principal strip are numbered to indicate the subordinate strip
associated With that region. That is, to compute the factorization of
region P3 involves elements from strip 83, as well as from regions Pl
and P2. If we compute U for the principal strip by columns, each column
requires the input of all subordinate strips. As with paging, it would
be much better to factor the principal strip by subordinate regions
jnstead. Thus U is computed for the entire principal strip with M

additional strip transfers.

66

N\
N

seeso #: TN N\
N ™\

«\5“_\
N

T T

Subordinate strips

Principal strip with
subordinate regions

For each Principal Strip:

(1) Input values of A in Principal Strip (Pl to P5)

(2) For each Subordinate Strip:
(Input S1, Compute values of U in P1)
(Input S2, Compute values of U in P2)
(Input S3, Compute values of U in P3)
(Input S4, Compute values of U in P4)

(3) Compute values of U in P5

(4) Output values of U in Principal Strip

Figure 4-5: Computation and 1/0 for Strip-Strip Method

67

Comment: "A(I)" and "U(I)"” refer to Strip I, containing columns
(I-1)XK+1 to IK. Upper—case indices refer to strips, and
lower—case indices refer to individual elements.

1. FOR T = 1 To N DO
2. [INPUT A(T) ;
3. jmin = (J-1)*K+1 ; jmax = MIN(J*K,N) ;
4. FOR I = MAX(1,J-¥) TO J-1 DO
Comment: Input Subordinate Strip I and compute U for those

elements of Strip J with subordinate elements in Strip I.
5. [INPUT U(I) ;

6. FOR j = jmin TO MIN(jmax, I*K+M) DO
7. [FOR i = MAX(1, j-M, (I-1)*K+1) TO I*K DO
8. [FOR k = MAX(1,j-M) TO i-1 DO
9. DA = A~ Oyl 1o
10. Uij = Aij/Uii 111
Comment : Compute final region and output Principal Strip J.
11. FOR j = jmin TO jmax DO
12. [FOR i = jmin TO j-1 DO
13. [FOR kx = MAX(1,j-M) TO i-1 DO
14. [Aij = Aij - UkiUkj 1;
15. Uij = Aij/Uii 1 ;
16. FOR k = MAX(1,j-M) TO i-1 DO
17. A=A - U 1
(ji 3i kj !
18. U.. =]:/.2] ’
JJ JJ
19. OUTPUT U(J) 1

Algorithm 4-3: The Strip—Strip (SS) Method

68

We give the details of this method in Algorithm 4-3. Similar
methods have been described in the literature [25, 33, 39}, but most of
them use an outer—product algorithm which modifies subordinate strips

and thus requires that they be rewritten to secondary storage.

The amount of primary memory occupied by the two strips 1is 2K (M+1) .
The I/O required for a full strip is the input and outpunt of the
principal strip and the input of M subordinate strips, 2 total of M+2

strip transfers.
4.4 Block Factorization with Secondary Storage

In Chapter 2 we presented algorithms for performing block
factorization, forward- and back-solve. Block partitioning leads quite
naturally to secondary storage strategies. Since we have defined the
block algorithms in terms of localized block operators, 2 block serves
as a unit for computation and for I/0. In this section we describe two
such strategies. We should mention that these block methods are
impractical without the capability for random access I/0. The initial
input of blocks of A and the output of U are in sequential order, but
the retrieval of suﬁordinate blocks of U would be impractical without

random access.

We first define a Block-Minimum (or BM) storage and I/0 strategy.

In block factorization (Algorithm 2-9), the greatest number of blocks

69

used by a single block operator is three, for the multiply-subtract
operator. If we store in primary memory only those blocks involved with
the current operator, we have a method that uses at most 3L2 words of
primary memory for block size L. In Algorithm 4-4, we specify the 1I/0

operations needed to carry out block factorization -in this manner.

The RELEASE st;temen; is used to indicate that a block is not
currently needed in primary memory and can be replaced with another
block. This occurs after a block has been used by one operator and will
not be used by the next operator. As noted in the comments, a principal
block {U}ij is not immediately released after output. Because of the
reverse order of the loop indices (Lines 4 and 13), this principal block
will be a subordinate block during the mnext operator, soO it is kept in
primary memory to avoid rereading it. A close examination of the
algorithm will verify that the only blocks in primary memory (i.e.,
input and not yet released) are those needed by the current block

operator.

70

1. For j =1 to N do

[

For i = MAX(1,j-M) to j-1 do

: Compute U for a prinmcipal block.

Comment :

9.

10,

Comment :

11.

- Comment :

12.

13.

14.
15.
16.
17.

18.

. Comment:

[INPUT {A}.. ;
1]
For k = i-1 to MAX(1,j-M) step -1 do
[INPUT {(U},. ;
ki

When k=i-1, U is already in primary memory.

kj
If k#i-1 then INPUT {U}kj ;
T
{A}ij = {A}ij - (U}, {U}kj ;
RELEASE {U}ki’ {U}kj 1
INPUT {U}.,. ;.
ii
{U}ij = {A}ij/{U}ii ;
Keep {U}ij in primary memory to use at Line 7 or 15.

OUTPUT {U},. ; RELEASE {U}.. 1 ;
ij ii

Similarly, input diagonal block and compute U.
INPUT {A}jj ;

For k = j-1 to MAX(1,j-M) step -1 do
When k=j-1, {U}kj is already in primary memory.

[If k=#j-1 then INPUT {U}kj 3

-— - T .
(A1, = (A)y; - (O (U s \
RELEASE {U}kj | I
_ 1/2
(0, = @55

OUTPUT and RELEASE {U}jj)

Algorithm 4-4: The Block-Minimum (BM) Method

71

The I/0 for the factorization of a full column of M+l blocks
ijncludes: reading and writing the M+1 principal blocks at Lines 3, 11,
12, and 18; reading M(M+1)/2 blocks of the second subordinate set at
Lines 5 and 9; and reading (M-1)M/2 blocks of the first subordinate set
at Lines 6 and 14. Thus the total number of block transfers required to

compute a full block—column is

W2 o+ 28 + 2. (4.1)

While this can be a high level of I/0, we have reduced the primary
memory required to store A and U to an arbitrarily small amount.
Furthermore, as previously mentioned, the ratio of computation to I/0 in
the block operators is proportional to L and thus the computation will
dominate the I/0 for L sufficiently large. We shall discuss this in
more detail in Chapters 5 and 6; Finally, notice that the BM method
could easily be adapted for dense and/or nonsymmetric algorithms within
the same amount of primary memory, since all forms of block

factorization use at most three blocks per operation.

A second block strategy uses more storage to avoid nearly half of
the I/0 of the BM method. If we keep all blocks from block—column j in
primary memory during the entire jth step of the algorithm, the first
subordinate set remains in primary memory and thus the input operations
at Lines 6 and 14 of Algorithm 4-4 can be eliminated. This is the

approach of the Block—Column (BC) method of Algorithm 4-5, which stores

a total of ¥M+2 blocks in primary memory. The factorization of omne

72

1, For j =1 to N do

Comment 1: Input the jth column of blocks.
2. [INPUT ({A]ij, i = MAX(1,j-M) to j) ;

3. For i = MAX(1,j-M) to j-1 do
4. For k = MAX(1,j-M) to i-1 do
Comment 2: Input the second subordinate block.
5. [INPUT (U}, . ;
ki
— — T .
6. (A, = (A, = (U, (Udyy
5. RELEASE (U} . 1 ;
7. INPUT {U}ii ;
8. | {U}ij = {A}ij/{U}ii 1
9. [For k = MAX(1,j-M) to j-1 do
T
10. [{A},. = {A},, - (U}, , (U}, . 1;
ij { }JJ { }kJ }kJ
11. wy,, = at?;
ij ij
12. OUTPUT and RELEASE ({U},., i = MAX(1,j-M) to j) 1]

Algorithm 4-5: The Block—Column (BC) Method

block-column requires the input and output of the M+1 principal blocks
at Lines 2 and 12, and the input of M(M+1)/2 subordinate blocks at Lines
5 and 7. The total number of block transfers for a block—column is
therefore

W2 + 5W/2 +2 . (4.2)

We should point out that the block methods have a practical upper

1imit on the block size L and thus on the amount of primary memory used.

73

For example, if L equals M/2 then 2/3 of the blocks are only half full
of elements, being on the diagonal or the edge of the band. To carry
out the BM method with this block size requires 3M2/4 words of ‘primary
memory, which is more than enough for minimal I/0 by the ST method. For
such a relatively large block size to be useful, we would have to devise
a means for storing non—full blocks without padding, which complicates
the storage, I/0 and computational schemes. Therefore, the largest

block size we shall use is L=M/3.

4.5 Back—-Solving with .Strip and Block Methods

The back~solve involves considerably less computation and I/0 than
the factorization, There is just one multiply per element of U during
the back-solve (as opposed to an average of M/2 multiplies per element
in the factorization), and it is simple to order the operations of the
algorithm by strips or blocks. Thus we can implement the back—-solve by
reading the strips or blocks into primary memory one at a time in
reverse order, and performing all computation with each record before

proceeding to the next.

For the SR, ST, and SS methods, where U is stored by columns, the
best form for the back—-solve performs outer—products over columns. We

show this in Algorithm 4-6.

74

1. FOR j = N TO 1 STEP -1 DO
2. [IF j MODK =0 OR j = N THEN

INPUT ((Uik’ i=MAX(1,x-M) TO j) , k=j-K+1 TO j) ;

3. . =vy./U.. ;

*j = V3045
4. FOR i = MAX(1,k-M) TO j DO
5 [Y; =y - Uiij 11

Algorithm 4-6: The Strip Back—Solve by Columns

1. FOR j = NTO 1 STEP -1 DO

.
14

2. [INPUT {U},,
ij

3. A {x}j = {x}jQ{U}jj] |
4, FOR i = MAX(1,j-M) TO j-1 DO
5. [INPUT (U}, ;
1]
T
6. {x}i = {x}i - {U}ij {x}j 11

Algorithm 4-7: The Block Back-Solve

The back-solve for block methods is similarly straight-forward. In
Algorithm 4-7, we show a block back-solve algorithm which needs just omne
block in primary memory at a time. It is in block outer—product form
although the block operators themselves perform inner-products, The
loop at Lines 4~6 could be performed in reverse order if it were

desirable to input the blocks strictly in reverse order.

75

In Chapters 5 and 6 we analyze in more detail the relative costs of
computation and I/0 for the forward and backward passes. For now we
simply state that amount of I/0 in the backward pass, while less than
that of the forward pass, is more significant in relation to the amount
of computation. Nevertheless, the timings of Chapter 7 will show that
the forward pass dominates the total time of solution with secondary

storage methods.
4.6 Further Remarks

We assumed in defining secondary storage methods that an input file
exists with the coefficient matrix partitioned according to the method’s
needs. In some cases, it may be possible and desirable to have the
strips or blocks of the coefficient matrix generated directly in primary
memory by a subroutine. The frontal method [17] uses this approach for
performing finite—element simulations using secondary storage. In the
simplest cases, such as the model problem introduced in Chapter 1, the
strips or blocks of A are identical to one of a few basic forms. This
allows a further simplification by keeping one of each form in primary
memory, to be copied into the computational work space when a mnew strip

or block is needed.

We will discuss such user—interface issues further in Chapter 7.
For now, we simply point out that some of the costs of these methods

might be avoided for certain problems., We shall continue to assume that

76

the appropriate input file exists and.include the initial input of A imn

the analysis of I/O costs.

The secondary storage methods we have introduced for the band form
apply with varying success to other types of matrices. For example, if
A is dense and nonsymmetric, the factorization of the first row or last
. column references every element of the matrix. Thus a minimal-I/O
method would require the entire matrix in primary memory. However, the
SS method and the block methods would yield substantial storage

reductions.

All of the methods have analogous approaches that can be applied to
the nonpivoting LU factorization of a nonsymmetric banded matrix. The
minimal-I/0 strip methods are also easily extended to the LU
factorization of a banded matrix that requires pivoting, since the
subordinate elements involved in the pivot search and row or column
exchange are in primary memory. However, the block methods are
impractical for any algorithm with standard row or column pivoting
because a pivot search or exchange would involve many block transfers to

perform very little computation [23].

The approach of the SS method has also been applied to profile
matrices [25], but the I/0 costs depend highly upon the specific profile
structure., A profile matrix with a narrow bandwidth, such as that shown
for the model problem in Figure 1-1, could certainly be factored with

less computation and I/0 than the corresponding band matrix.

77

Finally, there is a widely expressed need [13] for a general sparse

factorization code that uses secondary storage. The complexity and

variety of sparse data structures are the main obstacles to fulfilling

this need.

CHAPTER 5

Analysis of Costs for Secondary Storage Methods

5,1 Introduction

The secondary storagé methods of Chapter 4 require substantially
less pfimary memory than in—core methods for factoring banded symmetric,
positive definite matrices, but other costs are introduced by the I/0.
In this chapter, we characterize these costs with a simple model, and
compare.the costs associated with the secondary storage methods. We do
not recommend a specific method over others, because the criteria for
choosing a method can vary. The analysis does illustrate which methods
have the least I/0 under various conditions, what constitutes a good
strip or block size, and how to minimize memory occupancy. In Chapter
6, we shall use the same models to derive the conditions and

requirements for overlapping I/0 with computation.

In most charging algorithms, there are three main costs associated
with the execution of a program that uses secondary storage: CPU, memory
occupancy, and I/0. The CPU cost is measured by the CPU clock time

devoted to that program. Memory occupancy charges vary between systems,

78

79

but the most common measure is the amount of memory occupied multiplied
by the time of occupancy. Both computation and I/0 contribute to this
by increasing the time of occupancy. Measurement of the cost of paging
or explicit I/0 varies the most between different machines. Among these
I/0 measures are: time consumed by I/0 according to the CPU rate or some
other rate; a fixed charge per page fault or I/0 event; or no explicit
charge at all besides the indirect effect on memory occupancy. Any
charges for secondary storage occupancy are insignificant over the

duration of a program’s execution.

First, we consider CPU costs. Multiplication counts are the
simplest way of accurately measuring the amount of computation in
numerical algorithms, since the computational time to execute a given
program segment tends to be proportional to the number of floating-point
multiplies performed. That is, if we define p to be the CPU time
required for the execution of an algorithm divided by the total. number
of floating-point multiplies then the CPU time required for any n

multiplies within the algorithm is np.

The value of p depends not only on the speed of the processor in
performing multiplies but also on the overhead of the algorithm. In
practicé, timings show that there is a comparable amount of overhead in
the factorization or forward-back-solve algorithms for nonsymmetric or
symmetric, dense or banded matrices. However, there is additional CPU

overhead in the block methods due to subroutine calls, indirect array

80

addressing, etc., and in the Strip-Triangle method due to the shifting
and rewriting of subordinate elements. The significance of this
overhead depends as much on the design of the machine and compiler as on
the method. Since we shall use p to compare computation and I/0 time
within each method, and not between methods, we can consider it to be a
method-dependent value. In Chapter 7, we shall show the extent of this

overhead in timing experiments.

We intend for this measure to represent only the CPU costs of
computation in an algorithm, and not those of I/O events. The I/O costs

, are obviously not proportional to the number of multiplies.

N :
A
Furthermore, some architectures (array processors for example [2]) can

have independent processors to handle memory addressing, sending of disk
controller instructions, or other I/O-related tasks. These costs can be

represented by the I/0 model.

For measuring I/0 costs, we are most interested in the wall-clock
or turn—around time required to move elements between primary and
secondary memory. We assume that the transfer time for a record of n
elements is a linear function,

T(n]l = ¢ + nt , (5.1)
where ¢ is the startup time and v the transfer time per word, These

constants can have various meanings, including the hardware parameters

81

associated with a secondary storage device. For example, with disk
transfers, ¢ would be the seek time for the head to move to the correct

track plus the latency time for the disk to rotate to the record.

Our analysis also allows this model to represent other costs, s3&_ mce
it is a reasonable assumption that all costs related to I/0 depend orm ly
upon the number of I/0 events and the number of elements transferred.

For example, we can define ¢ and t and experimentally determine their—
values so that formula (5.1) represents I/O-related CPU t ime. Or, if” a
there i; a systém charge per I/0 event regardless of length, then o i s
the cost per event and t=0. Thus, the analysis that follows may have
various meanings‘depending on how o and t are defined. Unless otherw dse

stated, we use the model to represent wall time.

This I/0 model assumes that there is freedom to choose any recor =l
size, and that the transfer of such a record incurs only one start-up
cost, independent of record length. This may not be precisely true i=m
practice, since an I/0O system usually maps such records into physical
disk records which may not be in contiguous locations. However, the
model does describe the general characteristics of secondary storage

transfers and does seem to characterize the performance of disk I/0 iz

practice.

82

Experimental timings conducted with FORTRAN I/0 on a DEC-System
2060 (reported in Chapter 7) show that words within longer records can
be transferred at a higher rate per word in spite of the fixed disk
record size. This is a fundamental difference between the performance
of paging and explicit I/0. With paging, where transfers are of the
same length, the system uses more memory to retain more active pages and
hopefully avoid page faults. In Chapter 3, we showed that this is not
effective with the band Cholesky factorization., With secondary storage
methods, we can use more memory to transfer longer records and thus
achieve a higher transfer rate. The analysis of this chapter will show
how this difference affects the tradeoff between primary memory usage

and I/0 costs.

In Section 2, we express the amount of.I/O in each secondary
storage method as a function of the bandwidth and strip or block size.
These functions are used to show the relationship between primary memory
usage and I/0 for a given bandwidth. As a result, we find that there is
a much smoother tradeoff between memory and I/0 with secondary storage
methods than with paging. Furthermore, we can express these costs so
that the methods are asymptotically equivalent, differing only in levels
of fragmentation and limitations in their ranges of primary memory

usage.

In Section 3, we evaluate the amounts of fragmentation in the

various methods. Although some fragmentation is avoided by choosing K

83

or L to be a factor of M, the SS, BC, and BM methods have unavoidab 1e

fragmentation,

In Section 4, we derive expressions for the asymptotic levels of
memory occupancy for the secondary storage metﬁods, and compare thexm
with those of various in-core methods. We find that the memory
occupancy of the BM method is as low, asymptotically, as that of an~ss
direct or iterative method for solving the linear systems arising f -xom

the model problem.
5.2 I/O Functions for Secondary Storage Methods

We now characterize the amounts of I/0 in each of the secondars>
storage methods using the counts of strip or block transfers from
Chapter 3, and the formula (5.1) for the cost of each transfer. The=

result is an I/0 function, derived by examining the transfers requim—ed

for a principal strip or block—-column and dividing by K or L. This
represents the I/0 cost per column, expressed in the form oC+tD, whe=z1e C
is the number of I/0 events and D is the total number of elements
transferred. The coefficients C and D depend only on the bandwidth M
and the strip size K or block size L. Expressions are simplified by~

assuming that M is large, and approximating M+1 by M.

The Strip~Rectangle and Strip-Triangle methods require a given

strip to be input and output in the forward pass and input again in the

84

backward pass. FEach strip contains K full rows or columns, or about KM
elements, so the I/O function for SR or ST is

3T[KM]1/K = o(3/K) + ©(3M).
The Strip—Strip method had ¥M+2 transfers per principal strip in the
forward pass and one in the backward pass, so its I/O fgnction is

(3+)TIRMI/K = o(M+3) /K + tM(}+3).

The number of block transfers per block-column in the Block-Minimum
forward pass was given by equation (4.1) as H2+2ﬁ+2. Adding M+1 block
transfers in the backward pass, the I/O function for BM is

| (2+37+3) TIL21/L = o(M2+3H+3) /L + tL(H>+3H+3) .
For the Block-Column method (using equation (4.2)), the I/O function is

(272 + TH/2 + 3) TIL2] / L = o(F2+7H+6)/(2L) + tL(H2+7H+6) /2.

In Table 5-1, we summarize these I/0 functions along with the
primary memory requirements of the methods. The SR memory requirement
assumes that K evenly divides M, but there are no other constraints on K
or L. These expressions allow us to compare the methods, but the
results of this comparison depend on the relative values of ¢ and <t. If
o is large, it is better to transfer large records in order to rgduce
the number of I/O events. If o is small relative to v, then the number
of elements transferred is the significant factor. This discourages
large records that may result in more fragmentation. We examine the two
extremes by separately plotting the coefficients of the o and v terms

versus primary memory usage.

85

f Secondary Primary ,
Storage Memory I/0 per Column
Method Used for A

SR (K+M)M
o(3/K) + ©(3M)
ST (K+M/2)M
ss 2KM o(M+3) /K + tM(Hi+3)
o, s(M2+70+6) / (2L)
BC (H+2)L ,
+ tL(M+7M+6) /2
_.2 —
) o(M“+3M+3) /L
BM 3L -
+ tL(M“+3M+3)

Table 5-1: Primary Memory and I/0 Requirements of
Secondary Storage Methods

In Figures 5-1 and 5-2, we plot the coefficients of o and t for the
‘I/O functions over a range of strip and block sizes, and with a

bandwidth of 100, Each I/O function is a weighted sum of these two
coefficient plots with o and t the weights. The SR method is not

included because its I/O costs are the same as for the ST method whi«<—
requires less primary memory. The advantage of SR is computational

efficiency as we shall see in the experimental timings of Chapter 7.

The figures illustrate several points. The first is that sever —mmm 1

178 EVENTS PER COL.

86

I
|
10.00 1

5.00

STRIP-TRIANGLE

STRIP—QTRTP
BLECK~-COLUMN

B‘@CK MINIMUM

N e N 09 BE |

Figure 5-1: o Coefficient vs. Primary Memory Usage, M=100

87

2003.

B0 ddd SUFJISNEML - INGWF TS

-

1
-

000,

-

[
LID]
Gi.
4

=
ol

LOCK~-COLUMN
BLECK-MINIMUM

x

C

M

t© Coefficient vs. Primary Memory Usage, M=100

Figure 5-2:

88

of the functions are not smooth. In the block methods, there are
dropoffs in the o coefficient and a sawtooth effect in the t coefficient
that are due to fragmentation. Each "tooth”, or.upgrade, in the T
function corresponds to a particular block bandwidth M where the band
pad (see Figure 2-5) grows with L. The o and t dropoffs occur when an
increase in block size causes the block bandwidth to decrease, i.e., the
band fits within fewer blocks. As a result, a "good” block size is one
that minimizes the band pad within a given block bandwidth. That is,

for a given M, L should be the smallest integer greater than or equal +to
M/M. If LM=M, then there is no band pad. There is similar, less

serious fragmentation in the t coefficient of the SS method when the

trailing subordinate strip contains columns outside the subordinate se t.

To draw further conclusions, we examine the same I/0 functions
using only good choices for K and L, which result in the smooth
functions of Figures 5-3 and 5~-4. Not unexpectedly, the minimum-I/0 ST
method has the least I/0 unless o is large and K is smali. The other
methods have similar o functions, with the SS method practical over the
widest range, and the BM method best over its low range of memory usage.
The block methods have a clear advantage over SS in the © coefficient

because of less fragmentation, as the next section will show.

Suppose that M and M are held constant as M varies. Thus, K and L
are no longer independent variables, and the I/O functions take the foxrm

shown in Table 5-2, In this form, the primary memory requirements of

1/80 EVENTS PER COL..

89

10.00 - | |

5.03 ~ ¢~\

T STRIP-TRISNGLE
S STRIP-STRIP

€ BLBCK-CBLUMN

M BLBCK-MINIMUM

Figure 5-3: o vs. Memory with "Good" Strip and Block Sizes

ELEMENT-TRANSFERS PER CBL.

1000.

90 .

ZOw

Figunre 5-4: v vs.

STRIP-TRIANGLE
STRIP-STRIP
BLECK-COLUMN
BLGCK-MINIMUM

Memory with "Good” Strip and Block Sizes

91

2all methods are O(MZ), the o coefficients are O(M_l), and the <
coefficients are O(M). This shows that the comparison of I/0 costs
between methods is not affected by bandwidth. It also shows that all
the secondary storage methods have asymptotically equivalent costs,
although the coefficients limit the ranges of memory usage. Thus the
methods all offer the same asymptotic tradeoff between primary memory

unsage and I/0 costs.

Secondary Primary I/0 Cost per Column
Storage Memory
Method Used 6 component T component
2 o~
SR M7 (1+M) /M N
3 = - 3M/M 3M
ST M7 (2+M)/ (2M)
2 ~ 72 ~ ~
SS M7 (2/M) (M"+3M) /M MM+3
2, = =2 =2 = T =2 = =
BC M™(M+2) /M (M™+7TM+6)M/ (2M) M(M™+7M+6)/ (2M)
2 =2 =2 T T =2 .= -
BM M7 (3/M7) (M™+3M+3)M/M M(M™+3M+3)/M

Table 5-2: Primary Memory and I/0 Requirements
with ¥ and M Constant

92

5.3 An Analysis of Fragmentation

We have repeatedly mentioned that various types of fragmentation
have a major effect on the I/0 costs of secondary storage methods.
Certain fragmentation costs can be eliminated by choosing K or L to be a
factor of M. But there is still unavoidable fragmentation due to
unnecessary elements being transferred within subordinate strips in the
SS strategy, and band padding with the BM and BC methods. In this
section, we quantify and compare these unavoidable fragmentation costs.
This analysis helps to verify some of the statements made in the

previous sections concerning the amount of wasteful I/0 in the methods.

Let us define the fragmentation ratio (FR) of a method to be the

number of elements for which transfer is unnecessary divided by the
numbér of elements actually transferred. Necessary transfér consists of
the input and output of principal elements and the input of subordinate
elements during the forward pass, and the input of each element during
the backward pass. Unnecessary transfer occurs because strips and
blocks are padded with zeroes, or non—subordinate elements are part of
the I/0 records containing subordinate elements. The expressions for
the number of elements actually transferred come directly from Table

5-1.

For example, the first M strips of the strip partitioning are

93

padded with zeroes since their columns are not of full length (see
Figure 4-1). The SR and ST methods transfer these elements twice during
the forward pass and once again during the backward pass. The total
number of elements transferred is about 3NM, while the unnecessary
transfers total 3M2/2, so

FRg, = FRgp = (34°/2)/ (380 = M/(2N).
This fragmentation is insignificant if ND>>M; thus we shall ignore the
effects of transferring the extra triangle of elements. For fhe

remaining methods, we derive FR by evaluating the costs for a full

principal strip or block—-column.

For the SS method, the number of elements transferred for a given
principal strip is about (M+3)KM. There is unnecessary transfer in
reading the M2/2 extra elements along with the subordinate set. By

using the fact that K=M/M, we simplify the ratio of these expressions to

= M ~+ .
FRSS M/ (2M+6)
As M varies from 14 to 4 (which uses from .14M2 to .5M2 primary memory),

FRSS ranges from .41 to .29, a high level of fragmentation.

For the block methods, ﬁe derive the unnecessary I/0 from the
difference between actual I/0 and necessary 1/0. The amount of
necessary I/0 in the BC method is 3LM for the principal elements within
a block—-column plus M2/2 for the subordinate elements. The number of

elements actually transferred is L2 (ﬁ2/2 + 7M/2 + 3). Using L=M/M, the

FRAGMENTATION RATIZ

94

L4000 -
S
\
! —

.2000 +

.0aaa ' ’ ‘ ‘ L :

.0000 .2000 . 4000 L6000
PRIMBRY MEMZRY DIVIDED BY MxxZ

STRIP-STRIF
BLECK-CBLUMN
BLACK-MINIMUM

=z OWw

Figure 5-5: Fragmentation Ratios vs. Primary Memory Usage

95

difference between these expressions divided by the actual I/0 reduces

to
FRy, = (M+6)/ (B2+70+6) ..
As M varies from 12 to 4 (which uses from .1M2 to .38M2 primary memory),

FRBC ranges from .08 to .20.

Finally, the expression for necessary I/0 in the BM method is
slightly more involvéd. In addition to the I/0 of the BC method, there
is also the input of blocks from the principal block—column when they
contain elements of the first subordinate set. The lower—triangular
block at the top of the column is read M-1 times, and the total nuﬁber
of full block transfers is (M-1)M/2. Thus the total ﬁumber of necessary
transfers is

sLM + M2/2 + (01272 + LPE-DN/2.
The number actually transferred is L2(ﬁ2+3ﬁ+3). From these expressions,
the fragmentation ratio can be shown to be
FRy, = (F+7)/ (252 +63146) .
As M varies from 9 to 3 (using from .O4M2 to .33M2 primary memory), FRBM

ranges from .07 to .24.

In Figure 5-5, we plot these fragmentation ratios against primary
memory usage as expressed by the coefficient of MZ. In the SS method,
fragmentation decreases as strip size increases because a given strip is

reread fewer times as a subordinate strip and therefore its

nonsubordinate elements are read fewer times. In contrast,

96

fragmentation increases with block size since a larger block size
requires more padding. This explains why BM and BC have an advantage
over SS in the t coefficient of I/0 that narrows as the primary memory

usage increases (see Figure 5-4).
5.4 Memory Occupancy Costs

We now compare the memory occupancy costs of secondary storage
methods with each other and with several in—core altermatives for
solving linear systems. These results show that secondary storage
methods may be of interest even when there is enough primary memory =for
in-core solution. Often, large problems are solved on mainframes where
minimizing the dollar cost may be the most important consideration. In
this situation, it can pay to use less memory at the cost of higher x/0

and turn—around time.

Recall the model problem introduced in Chapter 1 with dimension
N=M2. The natural ordering of the grid points yields a symmetric
positive definite coefficient matrix of bandwidth M.JThe factorization
of this matrix in primary memory requires O(M4) time and O(M3) storage.
The memory occupancy cost is therefore O(M7), which is by far the
largest asymptotic cost of solving the system. If the grid is ordered
by nested dissection and solved by sparse methods [12, 34] the work is
reduced to O(M3) and the storage to O(leog M), so memory occupancy is

oM’ 10g M).

97

For the secondary storage methods, we derive separate components of
memory occupancy associated with computation time and I/0 time. 1In
practice, the occupancy time depends én the extent to which I/O0 is
overlapped with computation. But asymptotically, the occupancy cost

depends on the dominant term regardless of overlap.

First, we use the expressions of Table 5-2, where the memory and
I/0 requirements per column were derived assuming that M and M are held
constant as M varies. Under this assumption, all secondary storage
methods have the same asymptotic memory and I/0 requirements, O(MZ) and
0(M)o+0(M3)r, respectively, so the I/O0 occupancy is 0(M3)5+0(M5)r.
Since all band factorization algorithms have 0(M4) work, the

computational occupancy is 0(M6),

There are more interesting results if we assume that K and L are
held constant and use the requirements from Table 5-1. We summarize
these computational and i/O occupancy costs in Table 5-3, including
secondary storage methods and in—core alternatives. The‘results show
that I/0 occupancy is never more significant than computational
occupancy, and that the lowest levels are achieved by the methods with
the most I/O. Furthermore, the memory occupancy of the BM methods is as
asymptotically efficient as any in-core method, direct or iterative!

Any such method has a lowef bound of O(N) work and storage, or 0(M4)

memory occupancy for the model problem.

Whether these decreases in occupancy charges would offset the 1/0

98

Primary Computational I/0 occupancy
Method Memory Occupancy
Band
(In Memory)| 0(M%) oM’) 0
Sparse) 5
(In Memory) J]O(M“log M) 0(M log M) 0
SR
0(M2) o(x®) o0t) & + o) <
ST
ss 0 (M) o) o) o + oM7)
BC 0 (M) 0(M) o) o + o(M5) <
BM constant oMY om*) & + ot <

Tab}e 5-3: Asymptotic Memory Occupancy Costs for the Model Problem

charges depends upon the relative cost of memory and I/O. Tﬁis raises
the issue of how memory and I/O charging rates should be determined.
Secondary storage methods offer a tradeoff between the resources of a
computer that could be used to exploit an imbalance in a charging
algorithm. If I/0 is relatively cheap, users would be encouraged to use
as little memory as possible and perhaps overload the I/O system.
Expensive I/0 would favor the minimum—I/O methods or in—core methods,
which may result in an underused I/0 resource. Paging systems usual ly

handle this problem by using I/0 only when absolutely necessary.

99

However, their efficiency varies greatly between programs and at
different levels of memory usage, and is generally beyond the direct
control of the user. Secondary storage codes allow this memory-I/O

tradeoff to be efficiently controlled and perhaps exploited in ways that

no other methods offer.

In Chapter 6, we shall develop a more specific analysis of memory

occupancy costs in the case where I/0 is overlapped with computation.

CHAPTER 6

Parallel Execution of Computation and I/0

6.1 Introdmction

We‘now consider how secondary storage methods could exploit a
capability for performing I/0 synchronized in parallel with computation.
This capability exists in architectures where I/0 and computation can be
performed by separate asynchronous or synchronous processors that use
thé same primary memory. Our objective is to use this capability to
minimize the time that the computation processor is idle while waiting
for I/0. For several of the methods, we devélop schemes for overlapping
all I/0 during the factorization, with the exception of an jnitial read
and final write. We also examine the effect that overlapped I/0 has on

tuin—around time and memory occupancy.

Not all numerical algorithms are well suited for the parallel
execution of 1/0. Imn particular, if input of a record is to be carried
out before that record is actmally needgd, then the sequence of input
operations must not be affected by the actual values being computed.

This is & property held by all of the nonpivoting secondary storage

100

101

methods introduced in Chapter 4. It can also be true of a pivoting
algorithm, but only if the elements involved in the pivot search and row
exchange are in primary memory. For all such algorithms, the order in
which records must be input and output can be predetermined, and can

therefore be scheduled in parallel with computation on other records.

Our approach for determining the requirements and capabilities of
parallel I/0 is to specify a synchromization of the required computation
and I/0 of a given secondary storage method. That is, we schedule I/0
events in parallél with computational events so as to meet the
precedence requirements. Using the models of Chapter 5 to express the
time required for these events, we derive conditions under which each
I/0 event will be completed before its simultaneous computational event.
From these conditions and the storage requirements of the methods, we
determine the amount of primary memory needed to overlap virtually all
such I/0 in the factorizatién. Under these conditions, the turn—around
time of secondary storage methods is nearly the same as solving the

system totally within primary memory.

A property of a secondary storage method that reflects the ease of

developing parallel synchronizations is the local work-I/O ratio, the

computational cost divided by the I/0 cost during a given segment of a
program’s execution., Secondary storage methods whose work-I/0 ratio is
relatively constant throughout their execution tend to be easy to

synchronize, while those whose ratio varies greatly are less easily

102

synchronized. Put another way, it is easjer to overlap I/0 with

computation when the rate of data flow matches the rate of work.

We say that a computation is compute—bound'during a certain time

period if the CPU is never idle, and thus the turn—around time is
bounded by the computational events required. The turn—around time of a
comput e-bound scheme cannot be reduced further without reverting to a

different algorithm with lower computational requirements.

In Section 2, we give examples of computing environments that allow
for parallel I/0 and computation. Included are peripheral array
processors in various configurations, and FORTRAN run-time systems that

allow overlapped I/O.

In Section 3, we introduce synchronization with the SR or ST
methods, showing I/0 and memory management schemes. These schemes
jnclude both double—-buffering with a single I/O channel and

triple~buffering with two channels.

In Section 4, we derive expressions for the minimum amounts of
memory needed for compute—bound SR and ST factorization. These
conditions depend upon the bandwidth as well as the rates of computation
and I/0, We show that the methods are neariy always compute—bound for
typical machine parameters. Furthermore, if the start-up time o is
negligible, then the conditions for compute-boundedness depend only omn

the bandwidth and are independent of strip size.

103

In Section 5, we present a synchronization of the BM method and
derive conditions for comput e~bound execution. These conditions give an
upper bound on the amount of primary memory needed to totally overlap
I/0 with computation that is independent of bandwidth! That is, we show
that a fixed amount of memory is sufficient to compute‘ the factorization
for any size system with nearly the same turn—around time as an in—core

factorization.

We demonstrate the difficulty or impossibility of achieving a
compute—bound back-solve in Section 6. In Section 7, we consider the
implications of compute—boundness on minimizing turn—around time, and,
in Section 8, we show the effects of parallel execution of I/0 and

computation on memory occupancy costs.

A synchronous model does not necessarily reflect the‘perfonmanxze of
parallel computation and I/0, which is asynchronous by nature, Rather,
the synchronization of events indicates the capability of the secondary
storage algorithm to achieve compute-boundedness within a certain amount
of primary memory. This may also have implications on how a comput ing

environment can be designed to efficiently use all its resources.

104

6.2 Hardware and Software Allowing Parallel I/O

The capability for parallel execution of I/0 and computation exists
in several types of computing environment. It is especially important
in those configurations that require the extensive use of a memory
hierarchy. This is often true for very high-speed machines that are

suitable for doing large—scale numerical computations,

One such configuration is a peripheral array processor (AP)'coupled'

in some manner to a host machine [2]. The AP can be used to perform
floating—point computations at a much faster rate than the host. The
high speed of an AP requires very fast memory in order that the
processor not be memory—bound, so memory can be the dominant cost of an
AP unless data channels allow the effective use of a limited amount of
memory. Therefore, the design and use of links between the host, the
AP, and secondary storage devices is essential io their efficient use

and cost—effectiveness.

Thus, AP's generally have good capabilities for carrying out
concurrent I/0 and computation. This is accomplished with special-—
purpose processors within the AP for handling the control and addressing
of transfers. Other’features that facilitate parallel I/0 are multiple
memory busses so that the processors do not steal memory cycles from

each other, and a control processor to handle interrupts and

i
j
!
i
|
é
E

105

(4) {==>]| Host

<==>l AP !'

(B) Host l<==>‘ AP l<==>
Dual-Port
(C) Host j<{==> Bulk {(==>| AP
Memory
|
(D) {==)>| Host | AP

Figure 6-1: Configurations of Host, AP, and Secondary Storage

synchronization between processors without the need for host

intervention.

The network of data channels and memories can take various forms,
some of which are illustrated in Figure 6-1. In example (A), the host
controls disk I/0 and passes data to the AP through a peripheral
interface channel. This configuration is the least desirable from the
standpoint of efficiency and convenience because there are two steps to
a transfer between AP and disk. An AP may be able to carry out

secondary storage transfers itself directly to and from disk storage (B D

106

or bulk memory (C), and in either case it is possible to have dual port
access by the host as well, as shown with bulk memory in (C). Finally,
it is possible to have a host and AP interfaced through shared memory.
This allows the most convenient control over disk I/C, which can be

carried out by the host directly into AP memory using standard FORTRAN

reads and writes.

Other machines that allow some form of overlapped I/0 are computers
designed for large scale numerical computations. For example, the CDC
6600/7600 FORTRAN allows I/O to be overlapped through BUFFER IN and
BUFFER OUT commands [9]. These commands are essentially the same as
READ or WRITE except that the the program continues execution after the
transfer of a record is initiated. Before the program references an
element of that record or performs more I/O‘with the same file, there
must be a call to the function UNIT, which delays program execution
until the transfer in progress is completed. Thus, simple sequential
I/0 can be overlapped, but the responsibility for avoiding memory
conflicts is left to the user. Such a mechanisﬁ exists in similar forms

on other machines, including the CRAY-1 [11, 36].

As we discussed in Chapter 3, it would also be possible and
desirable for a paging system to have the same capability. If a page
transfer could be initiated before that page is actually used, then both
the transfer and subsequent computation could be carried out

concurrently.

107

The storage and I/0 schemes in the following sections are not
designed with any such specific hardware or software features in mind.
However, the strip methods with overlapped-I/0 of the next section could
be easily implemented with a simple mechanism such as that des;ribed for
FIN. The more complex overlapped-I/0 scheme for the BM method would
require more elaborate I/0 gquening and memory management schemes.
Therefore, it may be of more interest for its theoretical implications
in the design of new machines than as a practical method for carrying

out parallel I/O on existing machines.
6.3 Synchronization and Storage Schemes for SR and ST Methods

In order to demonstrate the synchronization of parallel
computational and I/O events, we start with the SR and ST minimal-1/0
methods. These methods are easiest to synchronize because they have
constant work-I/O ratios for most of their execution time. That is,
after the first M non—-full strips, the factorization of each strip
requires about KM2/2 multiplies, along with the input and output of that

strip.

The approach we shall use to overlap I/0 in the SR and ST methods
resembles the pipelining of the stages of an arithmetic operation as
used in various scientific computers [20]. In this case, each strip is
javolved in three stages: input, computation, and output. These stages

can be overlapped between successive strips in a kind of I/0 pipeline .

108

(A) Sequential Execution: time
{-step~->
Input Compute Output Input Compute Output
Strip |=>| Strip |=>] Strip |=>] Strip |=>] Strip Strip
1 1 1 2 2 2
(B) Pipelined Execution for the ST Method
Input Input Input
Strip |=>{ Strip |=>| Strip |=> . . .
1 2 3
Compute Compute Compute
Strip {=>| Strip }|=>{ Strip |=> . . .
1 2. 3
Output Output Output
Strip |=>| Strip |=>| Strip . e .
1 2 3
(C) Pipelined Execution for SR without memory conflicts, M=2:
Input Input Input Input Input
Strip |=>| Strip |=>| Strip |=>| Strip {=>| Strip e e
1 2 3 4 5
Compute Compute Compute Compute Compute
Strip |=>] Strip |=>| Strip |=>| Strip Strip
1 2 3 4 5
Output Output
Strip Strip
1 1

Figure 6-2: Pipelining of I/O in the SR and ST Methods

109

Our use of pipeline terminology in commection with I/0 should not be

confused with conventional arithmetic pipelining.

The SR and ST methods contain the sequence bf I/0 and qomputational
events pictured in Figure 6-2(A). Parallel pipelined I/0 with the ST
method is achieved by overlapping the computation of a strip with the
input of the succeeding strip and the output of the preceding strip.
"Shown in Figure 6-2(B), this synchronization assumes that‘a "time step”
equals both the computation and the transfer time for a strip. The
conditions under which this is true will be explored in the mnext
section. It also assumes that there are two independent I/O channels
that can simultaneously perform input and output. We later consider the

changes necessary for only one channel.

In practice, the synchronization of the SR method may have to be
slightly different because the elements of U for a given strip are -
subordinate elements during the factorization of the next M strips.
Even though the subordinate elements are not modified in tlie inner—
product algorithm, it may not be possible to output them and compute
with them simultaneously because of memory contention or buffer
protection mechanisms. This conflict may be avoided by delaying the
output of a strip for M time steps until it no longer contéins
subordinate elements. The pipeline of 6-2(C) shows this output delay

for the case of M=2.

110

1. INPUT Strip 1 ;
2. INPUT Strip 2 and COMPUTE Strip 1 ;
FOR T = 2 TO N-1 DO
3. [INPUT Strip J+1, COMPUTE Strip J, and OUTPUT Strip J-1 1 ;
4. COMPUTE Strip N and OUTPUT Strip N-1 ;

5. OUTPUT Strip N

Algorithm 6-1: ST Method with Parallel Computation and 2-Channel X/O

Subordinate
Elements:

\\N M

Principal
Strip

M+1 - M
K
Output Input
Buffer Buffer

Figure 6-3: ST 2-Channel Buffering Scheme

The parallel execution of I/0 and computation requires that moxe
memory be used than the amounts specified in Chapters 4 and S. This
memory is needed as buffer space for the strips being input and oumtput.

The synchronization and buffering schemes for the ST method are shown in

111

Algorithm 6-1 and Figure 6-3, where the operations at each numbered line
are carried out simultaneously. For the two—channel case, this requires
three strips of memory that circularly rotate between input buffering,
computation, and output buffering. The subordinate elements may be
stored in a separate array which is not involved in any I/0. Thus, the

events are synchronized as in the pipeline scheme of Figure 6-2(B).

With the SR method, subordinate elements are not stored separately
so the buffering scheme is a bit more complex. Figure 6—4 illustrates
how primary memory can be allocated for the various strips involved in
I/0 or computation at any given time. A given strip in primary memofy
is used first as an input buffer, then as a principal strip for one time
step, as a subordinate strip for M steps, and finally as an output>
buffer, before being recycled through this sequence for another strip.

A similar storage and I/O scheme was used in [15] to overlap I/0 using

the BUFFER IN and BUFFER OUT commands of CDC 7600 FORTRAN.

Notice that we do not output the final M+3 strips in Algorithm 6—2.
¥e may not need to write them out since they are used in the firét steps
of the backward pass. The output file must be completed only if
additional right—hand sides are to be solved later. We shall henceforth
assume that output of a strip is not carried out unless its memory space
is needed later as an input buffer. Thus, at the end of the
factorization, the entire memory space is filled with strips which wexe

never output and can be used as the first strips in the back-solve.

112

INPUT Strip 1 ;
FOR T = 1 To M+1 DO
[INPUT Strip J+1 and COMPUTE Strip J 1 ;
FOR T = M+2 To N-2 DO
[INPUT Strip J+1, COMPUTE Strip J, and OUTPUT Strip J-1-M 1 ;
INPUT Strip N and COMPUTE Strip N-1 ;

COMPUTE Strip N

Algorithm 6—2: SR Method with Parallel Computation and 2—-Channel I/O

Princi-
1 pal
Strip -

Input
Buffer

Output
Buffer

\

Subordinate
Strips
S

Figure 6—4: SR 2-Channel Buffering Scheme

113

1. INPUT Strip 1 ;
FOR J = 1 TO M+1 DO
2. [INPUT Strip J+1 and COMPUTE Strip J] ;
FOR T = M+2 TOo N-1 DO
"~ OUTPUT Strip J-1-ff
3. then and COMPUTE Strip J ;
INPUT Strip J+1 _

4. COMPUTE Strip N

Algorithm 6-3: SR Method with Parallel Computation and 1-Channel I/O

Principal

I/0
Buffer

Figure 6-5: SR 1-Channel Buffering Scheme

114

We have assumed throughout these synchronizations that the input
and output of two different strips can be carried out simultaneously
through two independent I/0 channels. If only one such data channel
exists, two changes occur. First, the I/0 will take twice as long |
without overlap of input with output. Second, only omne buffer is needed
in the circular memory scheme. After a strip has been output to
secondary sforage, the same buffer is used to input the next strip. We
jncorporate these changes into Algorithm 6-3 and in figure 6-5.
Similarly, the ST method would require only omne buffer with one data

channel,
6.4 Conditions for Compute—Bound Strip Factorization

We now derive conditions under which the synchronized
factorizations of Section 3 are completely comput e-bound after 2
start—up period. Clearly, the CPU must be idle during the input of the
first strip. Furthermore, the first M strips contain short columns that
require less computation than full strips. This is a low—order effect,
so let us consider the conditions ander which all I/O can be overlapped

with computation after these initial strips.

The first case is that of two I/O channels performing concurrent
jnput and output. The I/0 in Line 3 of Algorithms 6-1 and 6-2 takes
about o+tKM time to finish. The factorization for one strip takes about

pKM2/2 time. Therefore, the 1/0 finishes first and the loops are

115

compute—bound if

pKM2/2 > o+tKM or K > 26/(pM2—21M). (6.1)
Inequality (6.1) is never satisfied if M { 2t/p, but p and © are
generally of similar enough magnitude that this is not the case. Ve

define K_ 2526/(pM2—21M), that is, the minimum value of K for which the

b

two-channel case is compute—bound.

With only one channel, the I/O takes twice as long, so the
equivalent conditions are
K > 4o/ (uM2—4zh), (6-2)
and M { 4t/p. We define ch1=4c/(pM2—4tM), the minimum strip size for

which the SR or ST method is compute-~bound.

If we ignore o, then the compute—bound overlap conditions arising
from (6.1) and (6.2) are independent of K, but require that
M)>2t/p or M) 4t/p ,
respectively. This is not surprising in view of the fact that the <
component of the SR/ST I/O function is independent of K. Thus,

increasing the strip—size only serves to reduce the effect of o.

Experimental timings with the DEC System 2060, to be presented im
Chapter 7, show that sequential FORTRAN I/0 achieves values of
p=.01 ms., o=21 ms., and ©=.02 ms. For these rates of computation and
I1/0, the SR and ST methods is always compute—bound with two channels if
M > 67, and with one channel if M > 96. That is, ch2 and chl equal 1

ander these conditions and are small under most other practical cases.

116

N\
I/0 COMPUTATION Number of Multiplies
Input E
Input A
‘ Compute Region 1 K3/6 + K2/2 + K/3
Input B 3 2
’ Compute Region 2 K” + K
Input C :
Compute Region 3 2K3 + K2
Input D
Compute Region 4 3K3 + K2
Compute Region 5 11K3/6 + K%
Output E

Figure 6~6: I/0 vs. Computation in the SS Method

117

Using these conditions, we can derive the amounts of primary memory
that are sufficient for comput e~bound factorization with the SR and ST

methods. These results will bpe Summarized gt the end of Section 5.

The SS method, in which subordinate blocks are kept in secondary
storage, is not as suitable for overlapping I/0 because its work-I/0
ratio varies greatly through the factorization of a principal strip.
This is illustrated in Figure 6-6, which shows the sequence of I/0
events and computational events with multiplication counts. Since each
region requires a different amount of computation,'and in some cases a
different amount of I/0, the work-I/0 ratio constantly changes. Any
scheme for overlapping the I/0 would be awkward because of the

incompatible rates of data flow and computation.
6.5 Synchronmization and Compute-Boundedness with the BM Method

Next, we show that a comput e-bound synchronization is possible even
with the highest level of I/0 in the BM method (see Algorithm 4-4),
which performs block factorization using three L by L blocks of Primary
memory. We use the multiplication counts for the various block
operators from Table 2—2 to show that the overlap of I/0 is possible

using just five blocks of Primary memory and one I/0 channel.

Suppose that ch is the smallest block size so that one block

transfer can be performed in the time needed for L3/6 multiplies, i.e.,

118

2 _ ;3
c+rch = chb/6. (6.3)

We assume that L is a factor of M, so that there is no band pad. In

3, 1372, or 1376

this case, each of the block operators requires either L
multiplies, so if Lchb, then a block operator requires enough time to

totally overlap 6, 3, or 1 block transfers, respectively.

Figure 6-7 shows the block operators for the factorization of one
block—column by the BM method, scaled to these time ieqnirements. That
is, opposite each operator are slots for the number of I/0 events that
could be overiapped if Lchb. We show the case of M=3, but larger block
bandwidths with the same block size are even easier to synchronize
because there is a higher proportion of full blocks, and therefore a
higher work-I/0 ratio, The synchronization shown is the result of
scheduling input and output by the following simple rules:

1. Each output operation occurs in the first slot after a
modified block is no longer used in a current block operator;

2. The input operations are then scheduled in the slot(s)
immediately before a block not already in primary memory is
needed.

Those operations involving blocks from the preceeding or succeeding
block-column are in parentheses. The block set is shown only for those
step$ in which it changes, and a semicolon separates those blocks
involved in the present operator from those being transferred or stored
for future use. This schedule demonstrates that if Lchb, this entire

sequence is compute—bound using a block set no greater than five.

119

P and T are lower triangular, and
B,D,G,S, and W are symmetric..
Principal
Block-Column Q out R,E,P;Q
R = R-ETP R,E,P
Block I/0 Block
Operator Event Set. G in R,E,P;G
6 =¢6'%2 | in) | 6;(P,B,Q,0) R,G
P=pP/B |(6 out)| P,B;Q,C,(6) R = R/G
Q,C,P S in R,G;S
Q = a-C'p S,R
D in | Q,C,P;D s = SRR | @in | S,R;:Q
P out Q,D;P P in S,R;Q,P
Q= Q/D R in Q,D;R R out S,Q;R,P
F in | Q,D;R,F g = s-a¥q |(T in) | S,Q;P,(T)
R,F,Q (D in) S,Q;P,(T,D)
S = S-PYP |(U in) | S,P;(T,D,0)
. s =s2 | in) | s;(1,D,U0,F)
R = R-FQ =|=======
T =T/D (S out) T,D;U,F,(S)
E in R,F,Q;E .
P in R,F,Q;E;P

Continued in the next column

Figure 6-7: Synchronization of BM Method for a Block—-Column

120

P is lower—triangular,

F Q B,D,G and S
R are symmetric.
Block Block
Operator I/0 Set T
F = F-CE
B in B
B=28Y2 | cin |B;C
C,B D in F,C,E;D
C = C/B E out | F,D;E
D in C,B;D F = F/D F,D
B out D,C;B G in F,D;G
D=>0-clc|Bin |D,cC;B G,F
E in | D,C;B,E 6=G6GFF|Ein | GF;E
_ nl/2 . . .
D=D C ount D;C,B,E (P in) G,F;E, (P)
D out E,B;D F out G,E;F, (P)
E = E/B F in | E,B;F 6 = GE'E |(B in) | 6,E;(P,B)
C in E,B;F,C (Q in) G,E;(P,B,Q)
I 1/2
Continued in the next column G =G (C in) G;(P,B,Q,0C)
P =P/B (G out){ P,B;Q,C,(G)

Figure 6—8: Synchronization of First M Block-Columns

121

What about the synchronization at the beginning of the
factorization, involving the first M short block-columns? Here, there
are no lower-triangular blocks from the edge of the band and therefore
there is relatively more computation with which to overlap I/0. Thus,
we apply a slightly different synchronization, shown in Figure 6-8.
Notice that this scheme is compute—bound as soon as the first block has
been input, and that all the advance input needed to lead into the main
part of the algorithm has been carried out at the end of the third
block—colump. These schedules prove that if Lchb, then the entire

factorization is compute-bound after the input of the first block.

Being the root of a cubic polynomial, ch has no explicit
representation for the gemeral case, but the following special cases are
of interest. If o>>t, we ignore ©, giving a compute~bound condition of

1/3
L)Lcbc (6du) K

On the other hand, if o is negligible, we obtain

L > chr = 6t/p.

Finally, if we use the empirically determined values from Chapter 7
for random access I/0 with the DEC System 2060 (u=.01lms., o=41 ms. and

©=.04 ms.), then we can determine a value for Lc from (6.3). This

b
value is about 40. Therefore, the amount of memory necessary for the BM

method to be compute-bound ﬁith this system is only 8000 words.

These synchronizations are not intended to be algorithms, but serve

as a sample schedule showing that compute-bound execution is possible.

122

Iy

b 4 0 N 0 0 0
X X 0
ix x x _Ix = _]S{
X X X X X X 0 b4 00
X X X x|x 0 X X x 0 X X 0
X X X X|Xx X X X X X X X X 0
X X x X1X X X _ _Ixx x xix . _lxxxx _
| | | | | I N |
Best Case Median Case Yorst Case
(M mod L is 0) (M mod L is L/2) (M mod L is 1)

Figure 6—9: Best to Worst Cases of Band Padding

This schedule is a special case because of the assumption, implicit in
the multiplication counts, that there is no band pad. In fact, this is
the best case with respect to work-I/O ratio. Figure 6-9 shows the
median and worst cases of band padding. For these cases, the I/O
iequirements are identical but the computation involved with these
blocks is less. As a result, the work-I/O ratio varies more, and a
compute-bound synchronization is not as easy to achieve. By the same
process as is described above for the given schedules, the average and
worst cases can be synchronized under condition (6.3) if the block set

size is increased to 7 and 9, respectively.

While compute-bound synchronization of the SR and ST methods is
more straightforward, the implications of this compute—~bound block
synchronization are more significant. Condition (6.3) and the block set

size combine to make an upper bound on the primary memory necessary for

123

Minimum
Comput e—Bound Comput e—~Bound
Method Case Record Size Memory Requirement
40
1 K> > w o+ —3o
Channel uM™—4tM uM-4<
2¢
2 K) ——— 6o
Channels pMz—ZtM M2 * pM-2<
SR -
1 2
Channel M > 4x/p M° + 2M
(0=0)
2 2
Channels M > 2t/p M° + 3M
(o=0)

ST All Same as SR Same as SR except2
Cases - M2/2 instead of M
s> 1 | L> (6a/p)t/3 5 (60/w)2/3

BM] ’

neglibible L > 6z/p 180 (x/p)

Table 6-1: Summary of Compute—Bound Requirements

comput e—boundedness that is indégendent of the size of the problem.

That is, within a constant amount of primary memory, all of the I/O in
the block band Cholesky algorithm can be totally overlapped with
computation except input of the first block and output of the last
block. This upper bound is 5Lib, where ch depends only upon the system

performance parameters. The only demands on the size of the problem are

124

that the bandwidth be large enough so that M) 3 is satisfied, that is,

M > 3ch,

In Table 6-1, we summarize the conditions on K and L for the strip
and block synchronizations to be compute—-bound. We also show the
minimum amounts of primary memory required for computation and buffer ing

when these conditions are met.
6.6 The Barrier to a Compute—Bound Back—Solve

In the previous sections, we have shown how nearly all of the I/0
in the SR, ST, and BM factorizations can be overlapped with computati on.

We now consider the same problem for the strip or block back—solve.

The analysis of the back—solve is quite simple since each element
of U is used just once for each right—hand side during the back-solve.
Thus, for strip methods, each strip is used for about KM multiplies, and
the condition for compute—boundedness is

pKM > o+tKM, or
K > o/M(p—).
For block partitioning, the compute—bound condition for a full block is
pL2 > cr+'cL2, or
L > <o/ (p—=) .

Neither of these conditions is possible unless p)>tr, that is, unless

elements can be transferred from secondary storage faster than they can

125

be multiplied. This is generally impossible with most forms of

secondary storage.

The only situation that allows a compute—boﬁnd back-solve is if
there are multiple right—-hand sides to be simultaneously solved. For R
right—-hand sides, each element of U is involved in R multiplies, and a
large enough R would create enough computation with which to overlap the

I/0.

The back—solve problem, in which I/0 dominates computation, has
been pointed out in the literature [20, 26]. Although the I/O takes a
greater proportion of total time in the backward pass, the empirical
results of Chapter 7 will show that the turn—around time is still

dominated by the forward pass.
6.7 Analysis of Turn—Around Time

In this chapter, we have shown the conditions under which the SR,
ST and BM factorizations are comput;-bound with parallel execution of
I/0 and computation. The back-solve was found to be I/0-bound in most
circumstances. We now derive expressions for the turn—around time of
solving a linear system with these methods for the compute—bound and
I/O—bound'cases. These expressions are used in the next section to

analyze the memory occupancy costs and determine how they are minimized.

In deriving these expressions, we make certain simplifying

126

assumptions. As dome in previous chapters, we approximate M+l with M
wherever possible. Although there is less computation involved with the
first few non-full strips than with the iest, we choose to ignore this
low order effect and assume that the entire factorization is either
comput e-bound or I/O-bound. We do not include any output of strips
after the factorization is finished, since these strips are the first to
be used in the back-solve. Finally, since I/O dominates the low—order
computation in the back—solve, we assume that there is no overlap and we

ignore the computation.

We first consider the turn—around time required for the SR or ST
synchronization schemes. For a compute~bound factorization with either
1 or 2 channels, all transfers except the input of the the first strip
are completely overlapped with computation. The computation involves
NM2/2 multiplies, so the turn—around time is

(o+eEM) + pNM2/2. (6.4)
If the factorization is I/0-bound, then the turn—around time with 2
channels is

(N+1) (o+cEM), (6.5)
and with 1 channel,

(2N+1) (o+tKM) . (6.6)

Notice that (6.4) is minimized by choosing K as small as possible,
This means that increasing the strip size beyond the minimum compute—

bound requirement only slows down the factorization since there is a

127

longer wait for the initial strip to be input. The remaining
expreéssions are minimized by choosing K as large as possible. Since the
largest I/O-bound strip size and the smallest compute—bound strip size
are essentially the same, a choice of K=K or K minimizes the

cb2 cbl
turn—around time for the factorization. When o is negligible, the

choice of K is irrelevant.

Suppose we als§ include the I/O-bound back-solve in these
expressions, If the first strip is already in primary memory, the turn-
around time for all cases is about

(N-1) (o4+TEM) . (6.7)
Thus the total turn—around times for the forward-backward pass

corresponding to (6.4), (6.5), and (6.6) are

N(o+eRM) + pNM2/2 , (6.8)
2N(o+tKM) , and (6.9)
3N(o+ctKM) , (6.10)

respectively. In these cases, a larger choice of strip size always
speeds up the overall turn—around time because of the I/0-bound back—
solve, but the effect is 2 or 3 times greater when the factorization is

I/0-bound.

For the block factorization, the same type of analysis is not as
simple because of the non—uniform synchronization of I/O and
computation. If L<ch, then there are several points in Figure 6-7

where the computation would wait for I/0 to be completed, while most of

128

the synchronization would still be compute—-bound. Thus the turn—around

time for this case is not easily expressed. If Lchb then the tarn-—
around time per block-column is
2 2

3M (o+tL

b b’ (6.11)

where ch=M/ch' This uses the fact that there are 3ﬁ2 slots per full
block—column in Figure 6-7. Choosing block sizes larger than ch only
increases the turn—around time of the factorization, since it takes

longer for the imnitial block to be input.

A’larger block size would improve the turn—around time of the I/0-
bound back-solve, which is about
T 2
(1+4M) (o+xl?).
per block—column. However, (6.11) is 3M times larger, so the back—solve
takes a small fraction of the total solution time even though it is

I/0-bound.
6.8 The Effect of Parallel I/0 on Memory Occupancy Costs

In Chapter 5, we showed that secondary storage methods have 1l ow
asymptotic memory occupancy costs regardless of whether the I1/0 is
overlapped with computation. These costs were lower than in—core
factorization algorithms and even comparable with those of in-core
iterative methods. In this section, we compare the memory occupancy for

various buffering and I/0 strategies for carrying out parallel I/O and

129

computation with the SR method.” There are two ways in which memory is
used to decrease turn—around time: for larger records that decrease
~total I/0 time; and for buffering so that transfers and computation are
in parallel. However, the increased use of memory and the decreased
turn—around time have opposite effects on the memory occupancy costs.
Under what conditions does the increased use of memory and the resulting
decrease in occupancy time cause memory occupancy costs to fall, and
when do they rise? This question, which was discussed with respect to
overlapped I/0 on the Cray-1 in [36, 11], is the motivation for this
section; Let us separately consider the two ways in which memory use is

increased.

First, we present expressions for the memory occupancy costs of the

SR method for the following cases:

. A
The extension of results to the ST method is a simple exercise.

|
|
i
i
|
|
i
|
|

|
|
|
|
|
|
|
|
]

130

I. No overlap of computation and I/0;

II(A). Compute—bound overlap of computation and I/0
through 1 channel; :

II(B). I/0-bound overlap of computation and I/0
through 1 channel;

III(A). Compute-bound overlap of computation and I/O
through 2 channels;

ITI(B). I/0-bound overlap of computation and I/O
through 2 channels;

The memory occupancy cost is the product of turn—around time and
primary memory usage. For Case I, the turn—around time for the
factorization is about

2N(o+EM) + uNMZ/2, (6 .12)
and the primary memory requirement is KM+M2 words., For Cases II(A) and
II(B), the turn—around times are given by (6.4) and (6.5), respectively,
using 2KM+M2 words., For Cases III(A) and III(B), the turn-around times
are given by (6.4) and (6.6), respectively, using 3KM+M2 words. We
shall assume that there is no overlap and no buffering in the
back-solive, since we choose to ignore its low order computational costs.

Therefore, its turn—around time is given by (6.7) using KM words of

primary memory for all cases.

We present the memory occupancy costs for the forward and backward
passes together in Table 6-2. These are simply the products of the
turn—around times and memory requirements for the appropriate cases,

with a back-solve occupancy added in, as approximated by N(o+tKM) (KM) .

131

To simplify the expressions, we assume that K evenly divides N; thus

EN=N.

Now, consider minimizing memory occupancy through the choice of
strip size. By differentiating the expressions in Table 6-2 with
respect to K for each case, we obtain the values presented in Table 6-3.
The result for each compute-bound case is a negative value of X, This
indicates that memory occupancy is minimized by choosing a value for K
that results in a totally I/O-bound computation. That is to say, the
greater turn—around time due to I/O-bound execution is generally offset
in memory occupancy costs by the smaller memory usage. Whether the
savings in memory occupancy costs are greater than the increased I/O

costs depends on the relative charges for occupancy and I1I/0,

132

Case Memory Occupancy Costs, Forward + Backward
I p (N +RNM3) /2 + o (2RM2+3NM) + ¢ (2NM5 +3RNM)
11A) | poorts2r®) 72 + QMR 42kM) + o (RNME+RMP +28%02)

+2K

IT(B) | o(4NM+2802+NM) + ©(3ENMZ+2N3)

IIT(A) | pon+3xnmd) /2 + o(NM+MZ+3RM) + 7 (RNMZ+RM3 +3K2M2)

III(B) c(3NM+RMZ +NM) + ¢ (4ENMZ+NM3)

Table 6~2: Memory Occupancy for SR Overlap/Buffering Schemes

Strip Size
Case Minimizing Memory Occupancy
1 K = / 40

Mp + 67 .
II(A) ' CK<O
II(B) K = 20

3z
III(A) K<CO
III(B) K = o

4z

Table 6-3: Strip Sizes Minimizing Memory Occupancy

133

Finally, there is the question of whether the memory occupancy
costs are reduced by using extra memory for overlapped I/0. We address
this question by constraining the three cases in Table 6-2 to operate
wifhin equal amounts of memory, and comparing their occupancy costs.
Under this constraint, the strip size of Case I can be twice as large as
that of Case II, and three times that of Case III., Since the cases all
use the same memory, we can compare memory occupancy by comparing the

turn—around times given by Equations (6.8), (6.9), (6.10), and (6.12).

WQ find that there are rare circumstances when Case I is best, and
the memory occupancy costs are minimized by not overlapping any I/O.
Case I has less turn-around time than Case II(B) if the strip size for
Case II(B) is no more than 30/(M2p+2Mr). Case I wins over III(B) if the
strip size for IIT(B) is no more than 20/M2u. That is to say, a small
enough strip size can cause the I/O-bound cases to take more time than

the no—overlap case within the same amount of memory.

In comparing one—channel versus two—channel synchronizations, we
find that memory occupancy is always less for Case III unless both
methods are compute—bound. In that case, the ome—channel
synchronization has quicker turn—around because its larger strip size
reduces the I/O-bound back-solve time. In other words, the use of
separate I/0 channels for overlapping input and output with each other
does not reduce memory occupancy or turn—around time unless there is not

enough primary memory for compute—bound execution with one channel.

134

The results of this chapter have significant implications on the
storage requirement of factorization algorithms. With parallel
execution of computation and I/0, there is an upper bound of SLib on the
amount of primary memory needed to keep a processor busy during the
factorization of a symmetric, positive definite banded matrix. Using
more primary memory, and even solving the system totally in primary
memory, can only improve turn—around time slightly while adding

substantial increases in primary memory costs.

CHAPTER 7

Implementation and Performance of the Methods

7.1 Introduction

In this chapter, we discuss the issues involved in implementing the
secondary storage methods and report on the performance of these ‘
methods, The characteristics of secondary storage methods demand that
special attention be paid to implementation. In particular, the heavy
dependence on I/0 requires that transfers be carried out in as efficient
a manner as possible. In this section, we describe the design features
of a package of routines called BESS, fbr Band Elimination using
Secondary Storage. BESS includes implementations of the five methods
defined in Chapter 4 for solving symmetric, positive definite, banded

linear systems, which are designed with utility, flexibility, and

portability as well ag efficiency in mind,

A primary objective was to make the package flexible and yet
convenient to use with a minimum of knowledge about the internal
workings of the programs. To this end, BESS incorporates the following

characteristics,_which we discuss for the remainder of this section:

136

1. Argument lists are as short as possible.

2. There is some error checking and reporting aimed at avoiding
the misuse of the codes.

3. The input file that the user must supply is in a
straightforward format, independent of the method and the
strip or block size to be used (with the sole exception of
the BM method).

4. A1l I/0 operations, such as opening and closing files,
reading and writing records, and backspacing, are isolated in
a module of simple I/O subroutines. They can easily be
replaced or adapted to take advantage of a machine’s specific
I/0 characteristics without modifying or understanding the
methods that use them.

5. Routines are provided not only for computimng the
factorization, forward—solve, and back-solve with a first
right-hand side, but also for succeeding forward- and back-
solves using the same factorization with different right-hand
sides.

The user must supply the following information to each subroutime.
Scalar arguments are: N and M, the dimension and bandwidth of the system;
L, the strip or block size; and IA and IU, the unit numbers of disk files
for A and U, respectively. The user must also supply two arrays: X,
initially containing the right—hand-side b to be overwritten by the
solution x; and A, a work area for carrying out the factorization.

Finally, the user must supply the declared length of A in the scalar

argument LNGA and an error code variable IERR.

LNGA and IERR allow each method to do some error checkimng by
verifying that there is enough space to store the principal and
subordinate elements required by that method. If not, them the

subroutine immediately returns with the error indicated by the value of

137

IERR, and the value of LNGA is set to the minimum dimension of A
required to execute successfully. If a routine encounters a division by
zeéro or a negative square root, then it also returns with an error code

in IERR,

The codes that implement the SR, ST, SS, and BC methods all accept
a universal input file format. This file must be a FORTRAN sequential
binary (unformatted) file with each record consisting of the elements of
a single column of the upper band of A, in order of increasing row
index. The first M short columns must be padded with initial zeroes, so
that each record contains M+l elements with the diagonal element being
the last element., Each routine reads this file and assembles the
principal strips or block-columns as it requires them. The BM method
cannot use this form of input file, since it never stores a full column
in primary memory at one time, so it must be supplied with an iﬁput file
containing A stored by biocks. The records of the file containing U
vary with the method and with the strip of block size, but the user

never has to directly manipulate this file.

Perhaps the main drawback of secondary storage methods is the
possible lack of portabilitf involved with programs that use 1I/0. The
BESS package uses the FORTRAN-20 binary sequential and random access I/0
constructs [10]. These are constructs that are standard to many FORTRAN
compilers and run-time systems. However, the characteristics of I/O

vary so greatly between hardware enviromments and operating systems that

’

138

it may be necessary or desirable to tailor the manner in which I/0 is
carried out. This is the motivation behind the fourth feature of BESS,
All I/0 is carried out by simple subroutines, which can be replaced by
any other type of I/0O that might be available on a specific machine
without modifying the numerical portions of the package. The DEC-System

2060 implementation of these routines are described in the next section.

Another option in the use of BESS is offered by the module of I/O
routines. In some applications, it may be possible to generate the
columns of A independently and individually. A simple example is the
model problem: the five—point finite—difference operator for Poisson’s
equation applied over & square domain. This problem yields a symmetric
positive definite linear system in which a given column of A is
identical to one of four simple forms, which can be determined given the
parameters of the problem and the column index. In such a case, it may
be desirable to assemble the columns directly in memory when they are
first needed. This can be carried out with BESS by writing an assembly
subroutine to replace the the initial input subroutine. This would

eliminate the I/0 needed to create and read the input file.

Finally, BESS includes subroutines for performing a forward-back-
solve using values of U as previously stored by strips or blocks in
secondary storage. The file containing U is read one record at a time
in forward order to compute the forward—solve, then in reverse order for

the back—solve., There are three versions for the three types of files

139

created by the factorization methods: a sequential file of strips
created by SR or ST; a random access file of strips created by SS; and a
random access file of blocks created by BC or BM. Naturally, the strip
or block size L must be the same as was used in the factorization

routine that created the file.

In the next section, we report on timings that show sequential or
random access I/0 to be fastest when reading the records of a file in
forward order. This characteristic is likely to be true for most
systems. Therefore, if numerous forward-back—-solves are to be computed,
it may bevdesirable to create a second file containing the records of U
in reverse order to be used for the back-solve. This could speed up the
I/0~dominated forward-back-solve by a substantial amount. This is not
implemented in the BESS package, but would require only a few changes to

the existing codes.
7.2 Characteristics of I/0 Performance

In Chapter 5, we introduced a linear model for the time required by
an I/0 event and used the model to predict I/0 costs of the methods of
Chapter 4. In this section, we describe the actual performance of
FORTRAN I/0 subroutines on the DEC-System 2060 with an RP-06 disk drive.

We show examples of the BESS I/0 subroutines in Figure 7-1.

The timings contained in Tables 7-1 and 7-2 demonstrate the

140

C
SUBROUTINE SOUT(A,LA,IFIL)
C Sequential output from A, length LA, to file IFIL.
DIMENSION A(LA)
WRITE (IFIL) A
RETURN
END
C
SUBROUTINE RIN(A, LA, IREC, IFIL)
C Random access input into A, length LA, from record IREC of file IFIL.
DIMENSION A(LA)
READ (IFIL#IREC) A
RETURN
END

Figure 7-1: Sample BESS I/O Subroutines

performance of these FORTRAN sequentiél and random access I/0
subroutines. The batteryiof tests shows some of the effects of how the
I/0 is carried out by the FORTRAN I/0 system. For several record
lengths, we timed sequential and random access transfers in three ways.
First, we read a single record, which requirés atlleast one transfer
from the disk. Second, we sequentially read the records of an entire
file to determine the average transfer time. The latter times are less
because the system transfers records of fixed size from the disk into a
buffer area and transfers them to the user’s program as they are
requested. Thus, some reads may not actually reqﬁire transfers from the
disk. In the third test for sequential I/0, we read a file in backwards
order, as required in the back-solve. In the third test for random
access 1/0, we read records in random order to determine the average

transfer time. For each case, we show the CPU time and wall time

141

required for the transfers and the coefficients of o and tv for the line

that best fits the wall time values.

We plot the wall time versus record size for each of these cases in
Figure 7-2. These times show several departures from the simple linear
I/0 model we used in Chapter 5. For example, there is a considerable-
difference between the performance of sequential and random access I/O.
For the single record times, the line which best fits the data (in a
least—squares sense) gives values of ¢=21 ms. and t=.02 ms. for
sequential I/0, and ¢=41 ms, and t=.04 ms, for random access. As would
be expected, the time for an individual transfer in both modes is
greatér that the average timé for many such transfers in sequential
order. Furthermore, the sequential average time is faster than for
transfers in backwards or random order. Random access I/0 of records in
arbitrary order yields values of o=17 ms, and ©=.05, while the remaining

modes of I/0 have o values which are effectively zero.

Since sequential I/O is substantially faster than random access, it
is used whenever possible in implementing the methods: for all I/O in
the SR and ST methods, and for the initial input of strips or blocks of

A in the SS, BC and BM methods.

142

Sequential I/0 times in ms,

Record Single Per record, Per record,
Size record forward seq. backward seq.
(Words) CPU Wall CPU Wall ~CPU Wall
128 7 24 2 3 4 6
256 8 20 3 5 6 12
384 9 26 4 9 8 19
512 10 37 5 11 10 23
640 10 34 6 14 11 31
768 11 44 8 16 13 35
896 13 34 9 20 15 43
1024 13 37 10 21 18 48
Best fit ms, ms, ms,
c 21, .32 .071
T .02 .021 .047
Table 7-1: Timings of Sequential I/O-
Random Access I1/0 times in ms.
Record Single Per record, Per record,
Size record forward seq. random order
(Words) CPU Wall CPU VWall CPU VWall
128 8 40 2 5 7 20
256 8 61 3 10 9 30
384 9 54 4 15 10 37
512 12 61 6 20 11 44
640 11 67 7 25 12 48
768 12 63 8 30 14 62
896 16 98 9 35 15 59
1024 16 70 10 39 16 65
Best fit ms. ms, ms,
g 41 25 17
T .04 .038 .05

Table 7-2: Timings of Random Access I/0

WALL TIME/RECBRD IN MSEC.

143

30.0 // \\E

40.0 |

g.0

SEQUENTIAL, SINGLE RECZR
RANDBM ACCESS, 60 RECBRDS FORWARDS
RANDBM ACCESS. 80 RECORDS RANDZMLY
RAND@M ACCESS, SINGLE RECZRD

D N> WD

Figure 7-2: Timings of Sequential and Random Access I/O

144

7.3 Performance of BESS on Various Problems

We now present results of time trials carried out on the BESS
subroutines and, for comparison, on similar codes which store the entire
matrix in primary memory. The timings were carried out Bn a DEC-System
2060 with the TOP-20 operating system and the optimized code of the
FORTRAN-20 compiler. The timings were made on a stand—alone basis
(i.e., a single user) so that the elapsed times would indicate the
extent and effect of I/O on the time of solution without the effects of

timesharing.

The virtual memory address space of this machine happened to be
fairly‘small, and less than the amount of physical memory. This meant
thaf fhe amount of paging involved in carrying out the stand—alone
solution in primary memory was negligible, since theré was no
competition for the available primary memory. This also limited the
size of a problem that could be solved in primary memory. Thus, we
solved systems in which N=M3/2 with an upper limit of N=1000, so that we

could solve problems with large bandwidths.

Table 7-3 summarizes the time required by the various methods for
solving a symmetric positive definite system of bandwidth 100. The
timings are expressed in milliseconds per column, Thus, the value of N

does not affect the primary memory requirements or relative performance

145

of the BESS subroutines, although it does affect the size of a system
that can be solved in primary memory. We include the time for solving
the system in primary memory when A is initially read from and U is
written to disk in one record. We also include a timing of the ST
method implemented in a row—oriented outer—product form. The outer—
product algorithm is more efficient for this method only, but we
nevertheless use the inner—product algorithm in BESS for the sake of

having a universal form for input files.

The wall times and the CPU times are plotted against primary memory
usage in Figures 7-3 and 7-4. VWith one notable exception, the relative
performance of the secondary storage methods is similar to that
predicted by the I/O0 functions of Chapter 5. The éxception is that the
BC method performed better than expected in comparison to the BM method.
This can be explained by the observation in the previous section that
random access I/0O takes longer when the records being read are not in
sequential order., The BM method reads two subordinate blocks at a time
from separate columns, so successive reads are never in sequential
order. However, the BC method retains the first subordinate set in
primary memory with the principal block—column. The blocks containing
the second subordinate set are then read from their block—columns in
sequential order. This higher degree of locality in BC's random access
I/0 operations, which is not taken into account in the model used to
predict I/0 costs, explains why its performance is better than expected.

Since the BM subroutine is outperformed by BC, and it cannot use the

146

same universal form of input file as the other BESS subroutines, we do

not recommend it as a practical method under most situations.

The CPU timings show the extent of computational overhead of the
ﬁethods due to I/0, extra loop overhead in reordering the operations,
and subroutine calls for the block operators. In the ST method, we see
the high CPU cost associated with the shifting of elements in the
subordinate triangle, which Table 7-3 shows is much less in the
outer—~product form of ST. The extend of CPU overhead would vary between

compilers.

Table 7-4 contains the results of several trials comparing the
fragmentation of the methods due to bad choices of strip or block size.
The effects of fragmentation are greatest in the block methods, where
increasing the block size from 33 to 34 reduces the wall time by between
10 and 15 percent. Furthermore, the BC method uses less memory with the

larger block size because there are fewer blocks per block—column.

147

Method Primary Record Memory Ms. per Column
Memory Size Used for A CPU / Wall
(N=1000)

In—-Core N(M+1) 101000 44.9 / 47.7
Including I/0 of A and U: 47.9 / 53.8

K=1 10201 49.0 / 56.6

SR (K+M) (M+1) K =2 10302 47.9 / 56.1
K =10 11110 46 .0 / 55.0

K =20 12120 46.0 / 55.0

K =1 5151 71.3 / 88.0

ST (K+M/2)(M+1) K = 2 5252 69.8 / 79.8
K =10 6060 68.4 / 80.2

K =20 7070 68.1 / 79.8

(Outer—Product Form: K = 10 6060 58.5 / 67.8)
K =17 3434 55.3 / 81.2

SS 2K (M+1) K =20 4040 53.1 / 78.7
K = 25 5050 52.1/ 15.0

K = 34 6868 51.4/ 72.0

L =17 2312 66.3 / 87.4

BC (2412 L = 20 2800 59.9 / 81.8

' L = 25 3750 57.4 / 76.5

L = 34 5780 55.8 /7 75.1

2 L =17 867 76.2 / 130.

BM 3L L=20 1200 67.5 / 114.
L =25 1875 61.9/ 99.1
L =34 3468 58.2 / 89.0

Table 7-3: Timings and Storage of BESS Methods, M=100

148

Record Memory Ms. per Column
Method Size Used for A CPU / Total

K = 25 5050 52.1 / 75.0
SS K =33 6666 55.0 / 15.5
K =34 " 6868 51.4 / 72.0
L = 25 3750 57.4 / 16.5
BC L = 33 6534 58.7 / 85.4
L = 34 5780 55.8 / 15.1
L =25 1875 61.9 / 99.1
BM L = 33 3267 67.2 / 104.
L = / 89.0

34 34638 58.2

Table 7—4: Fragmentation in Bad Record Sizes, M=100

In Table 7-5 we present the results of trials carried out with
several bandwidths. In this case, we constrained strip and block sizes
so that M and M were constant at various levels, as in Chapter 5. As a
resuit, all methods use O(MZ) primary memory. In Fignre 7-5 we plot the
wall times against bandwidth for methods that perfofm best within given
ranges of primary memory usage. The figure shows that the relative
performance of methods is independent of bandwidth. Furthermore, as the
bandwidth grows, the additional costs of secondary storage methods are
being dominated by the in-core solution time. Finally, Table 7-6 lists
timings of the forward-back-solve routines for solving additional right—

hand sides.

PER COLUM!

MSEC.

149

\
\
{
\
100.0 |- X
i 'ﬁ |
_ M.\s
A » SR—R—R
50.0°F i 7
0.0 ‘ ' ' : ‘
0. 4004. 8000, 12000.

XOU 0

WBRDS BF PRIMBRY MEMORY

IN-MEMEZRY (NM WGRDS BF STORRGE)
IN-MEMERY WITH 1/8 GF 8 AND U
STRIP-RECTANGLE

STRIF-TRIANGLE

STRIF-STRIF

BLECK-CALUMN

BLBCK-MINIMUM

Figure 7-3: Wall Time vs. Primary Memory, M=100

150

L
8004a.

t
2000,

100.0 F
50.0 &

NHNTIBJ ¥3d "036HK

g.ad

11l
22

e
q:
—-

i1

i

(i.
-

[
>

STRIP-TRIANGLE

T

MINIMUM

A
i

BCHK-

|

n

Figure 7—4: CPU Time vs. Primary Memory, M=100

151

Method, Approx. Ms. per Column (CPU / Wall)
Record Memory for Bandwidths of
Size Used for A 50 75 100 120
In Memory NM 11 / 12 25 [/ 27 45 / 48 62 / 66
SR,
K=M/5 1.2 M 14 /717 {21734 4675565/ 711
ST, 5
K=M/5 10 M 19 / 24 40 / 50 68 / 80 96 / 111
SS, 2
K=M/3 67T M 16 / 22 31 / 43 51/ 72 72 [91
K=M/4 .50 M2 16 / 24 31 / 46 52 1/ 15 74 / 100
K=M/5 .40 M2 18 / 25 32 / 49 53 / 179 77 / 106
BC, 5
L=M/3 56 M 19 / 27 34 / 48 56 / 15 76 / 100
1L=M/4 .38 M2 21 / 30 37 / 52 57 1 11 78 / 103
L=M/5 .28 M? 25 /33 | 39/ 55 | 60/ 8 | 81/ 106
BM, 2
L=M/3 33 M 20 / 34 36 / 58 58 / 89 79 / 111
L=M/4 .19 M2 25 / 41 41 / 67 62 / 99 84 / 123

Table 7-5: BESS Timings for Various Bandwidths

152

'

TS ST SO S

il

G

.,d.
P g
—

IR

il
Pdl g
Potmadod

- i)

~

N
will

fi.
r—

(-
1op

(9
G2

Ay

!

i

11 124]
‘)‘-—.L’i Hip
=0

s

BLECK-C

|59

L

lin
fe

!

A
i

.28

I

ip

FIMIN

UL\J! il

GCK

!

-
et
' o

£

Wall Times of BESS Methods vs. Bandwidth

.
.

Fignre 7-5

153

Method, Approx. Ms. per Column (CPU / Wall)
Record Memory Bandwidth

Size Used for A 50 15 100 120
In Memory NM 6/.6 | 1.1/1.2 | 1.5/1.6 | 1.8/1.9

By Strips,

K=M/5 .20 M2

2.3/4.2 |} 3.1/6.6 | 4.1/9.5 4.7/11,

By Blocks, 2
L=M/4 06 M 3.1/6.2 4.2/8.8 5.1/12. 5.9/15.

Table 7—6: Timings of Forward— and Back-Solve Routimes

7.4 Experimental Memory Occupancy Costs

In Chapter 5, we derived asymptotic occupancy costs for the various
methods compared with band and sparse elimination in primary memory. We
now use the timings and primary requirements from Table 7-5 to compute
experimental memory occupancy costs for the methods. In Figure 7-6, we
plot memory occupancy versus primary memory usage for several
bandwidths, where each point represents a specific choice of method and

block or strip size.

This figure supports the same conclusion as the analysis of
previous chapters: the less primary memory used, the smaller the

occupancy costs. Whether smaller occupancy costs are offset by larger

KILBCORE-SECONDS

154

1000.

S00.

0. .] , ! . }
G. 6000. 12000, 18000.

WORCS GF MEMBRY
BANDWIDTH=7S, VARIBUS METHBOS

BANDWIDTH=100. VARIQUS METHEDS
BANDWIDTH=120, VARIBUS METHBDS

13 N

Figure 7-6: Memory Occupancy vs. Primary Memory Usage

155

I/0 costs depends on the relative charges associated with each cost at a

given installation, or on the priorities of the user,

These experimental results corroborate the mathematical analysis of
costs in Chapter 5. They indicate that secondary storage methods can
dramatically decrease the primary memory requirement of solving
symmetric, positive definite banded linear systehs, and in turn the
memory occupancy costs, without prohibitive increases in turn—around
time. There is an alternative scheme called minimal-storage band
elimination [6] for reducing the primary memory requiremernt to about M.
This scheme throws away and later recomputes elements in a recursive
scheme thaf iﬁcreases the work by less than 100 percent for the model
problem. We see here that the same reduction in primary memory is
achieved by the SR method with an almost negligible increase in
turn-around time. Much larger reductions are possible by other methods
within a 50 percent increase in run time. Not only would the BESS codes
be expected to run faster than minimal-storage band elimination on many
machines, but I/0 time is usually less expensive than a similar amount

of CPU time.

Obviously, the performance reported in this chapter is highly
dependent upon the computer, its operating system, and the secondary
storage device. But these results were achieved using a
straightforward, high-level implementation of I/0, little attention to

the location or contiguity of data files on the disk, and hardware which

156

is not unusually well-suited to this purpose. We have shown that
secondary storage methods offer a better trade—off between storage and
I/0 than paging systems, since they exhibit good performance over the
entire range of primary memory usage. The possibility of overlapped I/0
would make the methods even more attractive, as investigated in Chapter
6. In theory and in practice, secondary storage methods are an
efficient means for solving large, symmetric, positive definite, banded

linear systems within limited amounts of memory.

Bibliography

[1] © W. A. Abu-Sufah.
Improving the Performance of Virtual Memory Computers.
PhD thesis, Computer Science Department, University of Illinois at
Champaign—Urbana, 1978.

[2] P. Alexander.
The array processor as an intelligent simulation co—processor.
In Proceedings of the 1979 Summer Computer Simulation Conference.
Society for Computer Simulation, 1977.

[3] D. A. Calahan, P, G. Buning and W. N. Joy.
Vectorized General Sparsity Algorithms with Backing Store.
Technical Report 96, Systems Engineering Laboratory, University of
Michigan, 1977.

[4] E. Cuthill and J. McKee.
: Reducing the bandwidth of sparse symmetric matrices.
Proceedings, ACM National Conference , 1969.

[5] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart.
LINPACK User’s Guide.
SIAM, Philadelphia, 1979.

[6] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.
Minimal storage band elimination.
In A. H. Sameh and D. Kuck, editor, Proceedings of the Symposium
on Sparse Matrix Computations, pages 273-286. University of
T1linois at Champaigne—Urbana, April, 1977.

[7] K. Fong and L. Jordan.
Some Linear Algebraic Algorithms and Their Performance on CRAY-1.
Technical Report 6774, Los Alamos Scientific Laboratory, 1977.

[8] George Forsythe and Cleve B. Moler.

Computer Solution of Linear Algebraic Systems.
Prentice—Hall, 1967.

[9] FORTRAN Extended Version 4 Reference Manual.
Control Data Corporation, 1977.

157

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

158

FORTRAN Reference Manual, FORTRAN-20.
Digital Equipment Corporation, 1977.

Dieter Fuss.

Postscript on overlapped I/0.

The Buffer 4(2):10-11, 1980.

Published by National MFE Computer Center, Livermore Laboratory.

Alan George.
Nested dissection of a regular finite element mesh.
STIAM J. Numer. Anal. 10(2):345-363, 1973.

Alan George.
Direct methods for solving large sparse systems: part two.
SIAM News 13(4), Aug., 1980.

E. M. Hill.

Computer Solution of Large Dense Linear Problems.

PhD thesis, Department of Computer Science, University of
Maryland, 1977.

A. C. Hindmarsh.
DISBAND: Disk-Contained Symmetric Band Matrix Solver.
Technical Report UCID-30065, Lawrence Livermore Laboratory , 1973.

Computer Subroutine Libraries in Mathematics and Statistics.
International Mathematical and Statistical Libraries, Inc., 1977.

B. M. Ironms,
A frontal solution program for finite elements,

International Journal for Numerical Methods in Engineering 2:5-32,
1970.

A. Jennings.

A compact storage scheme for the solution of symmetric linear
simultaneous equations.

Computer Journal 9:281-285, 1966.

H. A. Kamel and M. W. McCabe.
Direct numerical solution of large sets of simultaneous equations.
Computers and Structures 9:113-123, 1978.

John C. Knight, William G. Poole Jr., and Robert G. Voigt.
System Balance Analysis for Vector Computers.
Technical Report 75-6, ICASE, Langley Research Center, 1975.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[301]

159

H. T. Kung and C. E. Leiserson.
Systolic arrays (for VLSI).
In Sparse Matrix Proceedings 1978, pages 256-282. SIAM, 1979.

R. S. Martin and J. B. Wilkinson. :
Symmetric decomposition of positive definite band matrices.
Numerische Mathematik 7:355-361, 1965.

A. C. McKellar and E. G. Coffman Jr.

Organizing matrices and matrix operatioms for paged memory
systems.

CACM 12(3):153-165, 1969.

C. B. Moler. v
Matrix computation with FORTRAN and paging.
CACM 15(5):268-270, 1972.

Digambar P. Mondkar and Graham H. Powéll.
Large capacity equation solver for structural analysis.
Computers and Structures 4:699-728, 1974

D. A, Orbits and D. A, Calahan.

Data Flow Considerations in Implementing a Full Matrix Solver with
Backing Store on the CRAY-1.

Technical Report 98, Systems Engineering Laboratory, Oniversity of
Michigan, 1977.

B. N. Parlett and Y. Wang.

The influence of the compiler on the cost of mathematical
software.

ACM Transactions on Mathematical Software 1(1):35-46, 1975.

A e S e e e e s | e et ettt

John M. Pavkovich.

The Solution of Large Systems of Algebraic Eguationms.

Technical Report 33, Computer Science Department, Stanford
University, 1963.

Suresh R. Phansalkar.

Solution of large systems of linear simultaneous equations by
inverse decomposition.

Computers and Structures 5:131-144, 1975.

J. K. Reid.

Two FORTRAN Subroutines for Direct Solution of Linear Eguations
Whose Matrix is Sparse, Symmetric Positive-Definite

1972,

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

160

J. R. Rice.
FLLPACK, A research tool for elliptical partial differential

equations software.
In J. R. Rice, editor, Mathematical Software III, . Academic

Press, 1977.

L. D. Rogers.

Optimal Paging Strategies and Stability Considerations for Solving
Large Linear Systems.

PhD thesis, Computer Science Department, University of Waterloo,
1973.

William T. Segui.

Computer programs for the solution of systems of linear algebraic
equations.

International Journal for Numerical Methods in Engineering
7:479-490, 1973. ' |

Andrew H. Sherman.
On the Efficient Solution of Sparse Systems of Linear and

Nonlinear Equations.
PhD thesis, Computer Science Department, Yale University, 1975.

G. D. Smith,
Numerical Solution of Partial Differential Equations.
Oxford University Press, 1965,

John Stewart.

Overlapped I/0 on the CRAY-1.

The Buffer 4(1):8-11, 1980.

Published by National MFE Computer Center, Livermore Laboratory.

K. S. Trevidi.

Prepaging and Application to Structured Array Problems.

PhD thesis, Computer Science Department, University of Illinois at
Urbana—Champaigne, 1974.

James H. Wilkinson.

The Algebraic Eigenvalue Problem.
Oxford University Press, 1965.

Edward L. Wilson, Klaus—Jurgen Bathe and William P. Doherty.
Direct solution of large systems of linear equationms.
Computers and Structures 4:363-372, 1974.

161

[40] David M. Young.
Tterative Solution of Large Linear Systems.
Academic Press, 1971.

	1
	2
	3
	4
	5
	6
	7
	8

