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Abstract

Traditional stereo algorithms either explicitly use the frontal paral-
lel plane assumption by only considering position (zero-order) disparity
when computing similarity measures of two image windows, or implic-
itly use it by imposing a smoothness prior bias towards frontal parallel
plane solution. However this introduces two types of systematic er-
ror for slanted or curved surfaces. The first type is structural, and
relates to discrete pixel coordinates and neighborhood structure. The
second is geometric, and relates to differential properties of surfaces.
To eliminate these systematic errors we extend stereo matching to in-
clude first-order disparities. Contextual information is then expressed
geometrically by transporting surface normals over overlapping neigh-
borhoods, which takes a particularly simple (and efficient) form in the
tangent plane approximation. In particular, we develop a novel stereo
algorithm that combines first-order disparity information with position
(zero-order) disparity for slanted surfaces, and illustrate its use.

1 Introduction

Two frame dense stereo correspondence algorithms have made significant
progress [1, 7, 24, 5]. Working with a rectified image pair [9, 11], most of
these algorithms exploit the frontal parallel plane assumption either explic-
itly or implicitly. In particular, it assumes position disparity (or depth) is
constant (with respect to the rectified stereo pair) over a region under con-
sideration. However, real world objects possess surfaces rich in shape, which
generically violate the frontal parallel plane assumption (Fig. 1).

Traditional area based methods compare a window of the same size and
shape in the left and right images and compute the similarity measure, where
the frontal parallel plane assumption is explicitly used. Several algorithms
address this problem. [12] uses a parameterized planar or quadratic patch
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Figure 1: For a regular surface S ⊂ R
3, the tangent plane Tp(S) (in solid lines) at

a point p ∈ S is well defined. However traditional stereo algorithms use the frontal
parallel plane (in dotted lines) to represent the (local) surface geometry at p, which
is incorrect.

fit to the images as a local model for the disparity surface. In [14] variable
window size (but fixed shape) is used. In [6] disparity derivatives are used
to deform the matching window in a refined correlation algorithm. In [3, 17]
slanted and curved surfaces are explicitly modeled for each segmented region,
where segmentation and correspondence are iteratively obtained from the
multiway-cut algorithm [4]. [20] develops a slanted scanline algorithm.

Taken individually, point-wise geometric constraints (e.g. epipolar con-
straint) and similarity measure (e.g. SSD) cannot always resolve matching
ambiguities. Thus requiring neighboring matching pairs to be “consistent”
is natural. An early cooperative algorithm[18] uses a local excitatory neigh-
borhood of the same disparity level to support the current matching pair.
In [28] local support is defined as the sum of all match values within a 3D
local support volume. In [23] local support at different disparity hypothe-
ses is diffused iteratively. In [4] a smoothness term over neighboring pixels
is introduced in an energy function minimized by graph cuts. In [25, 26]
messages (similarity measure weighted by gaussian smoothed disparity dif-
ference) are passed between nearby matching pairs in a Markov network
by belief propagation. However these algorithms implicitly use the frontal
parallel plane assumption since the neighboring matching pairs interact in
a way such that frontal parallel plane solution is preferred.

Both the explicit and the implicit use of the frontal parallel plane as-
sumption introduces systematic errors to stereo corrspondence (see experi-
ment section for details). To move beyond this assumpltion, locally it implies
that the tangent plane Tp(S) deviates from the frontal parallel plane. Our
geometric observation then arises in several forms: (i) the shape of matching
patches in the left/right image must vary; (ii) integer coordinates must be
interpolated; (iii) disparity derivatives are related to surface differential ge-
ometric property; and (iv) continuity over overlapping neighborhoods must

2



include (at least) surface normal consistency. To take full advantage of (iii)
and (iv), which follow directly from differential geometry, we futher observe
that some form of (Cartan) transport is required to combine information
from different surface normals in a neighborhood around a putative match-
ing point.

In this paper our task is to develop a new constraint for planar surfaces
not in the fronal parallel plane using basic surface differential geometry.
Specifically, we develop a novel stereo algorithm that explicitly takes into
account first-order disparities for non-frontal-parallel surfaces. This amounts
to: (1) the local deformation of the SSD window, which gives us continuous
(interpolated) disparity as well as first order disparities (surface orientation);
and (2) describing geometric consistency between nearby matching pairs by
using depth (position disparity) and surface normal (first-order disparities),
which does help the matching process. The second part behaves like an
extra geometric constraint for stereo correspondence. While the epipolar
constraint is well studied and utilized in stereo correspondence, geometric
contextual constraints among nearby matching pairs are largely unexplored.
In this paper we explore the simplest such geometric constraint for slanted
or curved surfaces by taking into account their orientation. One implemen-
tation illustrates how well these constraints perform in practice, extending
performance beyond traditional algorithms on several scenes. We hope this
novelty will inspire researchers since our constraint could be used in more
elaborate stereo algorithms.

2 Background

Assume the image pair is rectified [11]. For a 3D point p with disparity d,
3D planes (centered at p) in R

3 can be classified as frontal parallel, hori-
zontally slanted, vertically slanted, and in general configuration, respectively
(Fig. 2(a-d)). First order disparities ({ ∂d

∂u
, ∂d

∂v
}) do not vanish simultaneously

for non-frontal parallel planes. Thus they cannot be ignored, otherwise sys-
tematic error will arise. In this section we describe how to take this effect
into account for any local (window-based) algorithms with an aggregation
step. In the next section we show how these first order disparities can be
used to impose geometric contextual information by transporting surface
normals over overlapping neighborhoods.
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(a) (b) (c) (d)
∂d

∂u

∂d

∂v
3D Surface Model

(a) = 0 = 0 Frontal Parallel

(b) 6= 0 = 0 Horizontally Slanted

(c) = 0 6= 0 Vertically Slanted

(d) 6= 0 6= 0 General

Figure 2: (LEFT: a-d) 3D plane types in R
3: frontal parallel, horizontally slanted,

vertically slanted, and in general configuration, respectively (frontal parallel plane
also drawn in dashed lines for comparison); (RIGHT) First order disparities for
different 3D plane types.

2.1 Deforming Matching Window by First-order Disparities

To find correspondence, traditional area based methods use a small window
(e.g. 9x9) centered at (u, v) in the left image, and compare it with a window
of the same size and shape at (u − d, v) in the right image using similarity
measure such as normalized cross correlation (NCC), sum of squared differ-
ence (SSD), or sum of absolute difference (SAD), etc. Disparity estimate d is
obtained by selecting the one that gives the best similarity measure. When
the scene within each window satisfies the frontal parallel plane assump-
tion the above method is valid. However when the 3D surfaces are slanted
in depth or curved the problem formulation has to be modified, otherwise
systematic errorr will arise. In Fig. 9(corridor), traditional SSD yields a
stepwise scalloped pattern (frontal parallel planes at different depth) due to
such systematic error.

To illustrate, we consider a small image window of a slanted planar sur-
face (Fig. 3) for similarity measure (SSD). If the correspondence of (u, v) in
the left image is (u−d, v) in the right image, then to a first order approxima-
tion the correspondence of (u+∆u, v+∆v) (black dots) in the neighborhood
(in the left image) is (u + ∆u− d− ∂d

∂u
∆u− ∂d

∂v
∆v, v + ∆v) (also black dots)

in the right image, with ∂d
∂u

and ∂d
∂v

the partial derivatives of disparity d

with respect to u and v, respectively; ∆u and ∆v the small step size in each
direction. Typically ∆u, ∆v ∈ {0,±1,±2, · · · }. When the 3D surface is not
frontal parallel, these black dots are different from the measured gray dots.
Matching window in the right image must be deformed accordingly.
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Figure 3: Computing a similarity measure using an image window of size 3x3. To
overcome the limitation of the frontal parallel plane assumption, in the other image
window must be deformed according to the shape of the (disparity) surface. This
involves both window shape and corresponding pixels. Shown are true corresonding
points (as black dots) in the right image of a slanted surface, which are different
from measured gray dots.

The deformed window SSD is:

dw SSD(u, v, d,
∂d

∂u
,
∂d

∂v
) =

∑

(u+∆u,v+∆v)∈Nuv

(Il(u + ∆u,v + ∆v)− (1)

Îr(u + ∆u − d −
∂d

∂u
∆u −

∂d

∂v
∆v,v + ∆v))2

where Nuv denotes the window centered at (u, v), and Îr is the linearly
interpolated intensity of two nearest integer index positions in the right
image.

With this new formulation of the similarity measure, the correspondence
problem is then: for every (u, v) in the left image to select {d, ∂d

∂u
, ∂d

∂v
} that

gives the best similarity measure:

arg min
{d, ∂d

∂u
, ∂d

∂v
}
dw SSD(u, v, d,

∂d

∂u
,
∂d

∂v
) (2)

We use direction set method [21], a multidimensional minimization method,
initialized with the integer disparity dI (obtained from traditional SSD)
and zeros for the first order disparities. The results are the (interpolated)
floating point disparity d and first order disparities { ∂d

∂u
, ∂d

∂v
} that achieve the

best similarity measure at (u, v). In [6] such a deformed window was also
used. Our contribution is to relate the deformation to surface orientation
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and impose geometric consistency over overlapping neighborhoods by using
surface orientation, which provides extra geometric constraints for stereo
correspondence. In the next section details will be given.

Note that several recent algorithms [4, 16, 25] use a pixel dissimilarity
measure [2], which is insensitive to sampling by using linearly interpolated
intensity functions. This measure is pixel-wise. To compute the similarity
between two image windows using correlation or SSD, this measure has to be
adjusted according to the deformation described above, otherwise systematic
error may still arise.

3 Geometric Consistency from First-order Dispar-

ities

This is the central part of our paper. Since ambiguities (along the epipo-
lar line) cannot always be resolved using the local measurements described
previously, we require neighboring matching pairs to be consistent. Unlike
others [28], we derive this consistency geometrically, with surface orientation
playing an important role.

Assume cameras are calibrated. The stereo pair has a baseline B and
focal length α (pixels), and the depth of a point with disparity d is [9]:

Z(u, v) =
Bα

d(u, v)

Differentiating Z we have:

Zu =
∂Z

∂u
= −

Bα

d2

∂d

∂u
(3)

Zv =
∂Z

∂v
= −

Bα

d2

∂d

∂v
(4)

The surface normal at this point is then (1, 0, Zu)T × (0, 1, Zv)
T , which

after normalization is:

N =
(−Zu,−Zv, 1)

T

√

Z2
u + Z2

v + 1
(5)

With the (putative) surface depth and normal at hand, we can then uti-
lize contextual information geometrically. The basic idea is in the spirit of
the Cartan moving frame model [15, 8], which specifies how adapted frame
fields change when they are transported along an object. And this model
can be used to integrate local (geometric) information with (geometric) in-
formation in the neighborhood. We use i to denote a candidate match, i.e.
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{d, ∂d
∂u

, ∂d
∂v
} at pixel (u, v), or equivalently (u, v) < − > (u − d, v) with first

order disparities { ∂d
∂u

, ∂d
∂v
}.

Geometric consistency means that, for a matching pair i, when it is
transported along the object to a neighboring position, it is consistent with
a neighboring matching pair j (Fig. 4). Note that the local surface approx-
imation around i (computed from the information at i) serves as the object
along which geometric information is transported, and is formally known as
the osculating object. In this paper, the osculating object for a surface S

takes its simplest form, which is the tangent plane Tp(S) at p ∈ S. Since i

and j refer to matching pairs, they each encode position disparity (depth)
separately. Note that first order disparities at i and j further encode surface
normals at these two points. Fig. 4 shows the geometric consistency between
a matching pair i and its neighboring matching pair j (in solid lines). The
tangent planes provide a natural description of the geometric compatibility

rij between i and j:

rij = 1 −
1

m
(|vij · Ni| + |vji · Nj |) (6)

where vij denotes the vector from i to j, Ni is the surface normal at i, and
m is a normalization constant. Also shown are different neighbors j (dashed
lines) of different depth and orientation, to illustrate the importance of both
zero-order disparity (depth) and first-order disparities (surface orientation)
in determining such consistency measure.

The geometric constraint (eqn. (6)) can be used as follows. For a match-
ing pair i (hypothesis), we initialize its support s0

i according to its deformed
window SSD (denoted by ci) and iteratively update si by the geometric
support it receives from its neighboring matching pair j:

s0
i = 1 −

ci

c
(7)

st+1
i =

∑

j∈Ni
rijs

t
j

∑

j∈Ni
st
j

(8)

with c a normalization factor, Ni denotes the neighbors of i (in our exper-
iments we use a 5x5x3 (u, v, d) region). The true correspondence will be
supported by its neighbors since their local surface geometry estimates are
geometrically consistent. False matches are unlikely to get support from
neighbors.

Assuming the noise in the surface normals is roughly zero mean Gaussian
i.i.d. (independent and identically distributed), the “best fit” (in a least-
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Figure 4: Illustration of the geometry for the basic matching constraint. Surface
patch i on a slanted surface in R

3 projects to patches in the left and right images.
For a nearby patch j in R

3, the surface normal Nj must be parallel to Ni, and
the two patches must both lie on the same surface. Possible patches (dashed lines)
which lie off the (tangent) plane at i, or at the wrong orientation, are not consis-
tent. Both zero-order (position) disparity and first-order disparities are essential in
determining such geometric consistency.

squares sense) unit normal at i is updated as [22]:

N
t+1
i =

∑

j∈Ni
N

t
j

σ
(9)

with σ > 0 and

σ2 = (
∑

j∈Ni

Njx)2 + (
∑

j∈Ni

Njy)
2 + (

∑

j∈Ni

Njz)
2

Note that even without calibration information, such gometric consis-
tency support can still perform in the disparity space. Surface normal in

the disparity space is then N =
(− ∂d

∂u
,− ∂d

∂v
,1)T

√

( ∂d

∂u
)2+( ∂d

∂v
)2+1

.

For a line segment in the 3D plane, the orientation difference between
its projections in the left and right images is called the orientation disparity

[13, 27], which is widely studied in psychophysics. Note that first order
disparities { ∂d

∂u
, ∂d

∂v
} encode such orientation disparity.

3.1 Relation to Energy Minimization Formulation

Our problem formulation consists of two parts: (1) It requires zero and first
order disparities ({d, ∂d

∂u
, ∂d

∂v
}) to be consistent with image measurement, or

“data” consistency; and (2) It requires neighboring matching pairs i and
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j to be geometrically consistent, or “smoothness” consistency. Accroding
to the taxonomy [24], our algorithm is neither a local method (e.g. SSD)
nor a global method (e.g. graph cuts). It is in the spirit of a cooperative
algorithm [18, 19, 28], which iteratively performs local computations and
uses nonlinear operations resulting in a final effect similar to global opti-
mization. Nevertheless, to facilitate intuition here we show its relation to
global optimization method (graph cuts) that uses an energy minimization
formulation. Graph cut algorithms [4, 16] for stereo find the disparity label-
ing d for every pixel p in the reference image such that the following energy
is minimized:

E(d) = Esmooth(d) + Edata(d) (10)

=
∑

{p,q}∈NI

Vp,q(dp, dq) +
∑

p∈I

Dp(dp)

where in the first term NI is the set of all neighboring pairs of image pixels
{p, q} (determined by 4-neighborhood, for instance), and Esmooth measures
the extent to which d is not smooth; Edata measures the disagreement be-
tween d and the observed data, and the sum is over all image pixels p in
the reference image I. A popular smoothness prior is the Potts model [4]
which is a piecewise constant model. To overcome the difficulty of such a
model for handling non-frontal parallel planes, a piecewise smooth prior has
been introduced [4] by using either a truncated quadratic or a truncated lin-
ear function (Vp,q(dp, dq) = C · min(K, |dp − dq|)) centered at zero disparity
difference. But still this model prefers a frontal parallel plane solution. To
illustrate, Fig. 5 shows a truncated linear piecewise smooth prior Vp,q(dp, dq)
centered at disparity dp of pixel p. Since this smooth model is not oriented
according to surface orientation at (p, dp), a point that comes from the same
surface at a neighboring pixel q with disparity dq still has a large penalty
in the smooth term. This model still prefers an erroneous space point with
disparity dp at q, which lies in the frontal parallel plane at (p, dp). It is just
the consideration of the surface orientation that allows us to encode the true
(up to first order approximation) geometric contextual information in the
algorithm.

Fig. 6 shows the problem when first order disparities (surface orienta-
tion) are not considered. It consists of a horizontally slanted plane with
∂d
∂u

= 0.25 and ∂d
∂v

= 0. Fig. 6(d) shows the result by graph cuts [4]. Their
result has staircases because their contextual structure is biased towards
frontal parallel planes. Without modeling the orientation of the 3D sur-
face, such results will generically arise. On the other hand, by considering
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Figure 5: Shown is the smoothness prior (V ) as a function of disparity difference
(dp−dq) for neighboring pixels p and q along the epipolar line. The classical prior V

has its valley oriented parallel to the frontal parallel plane. Our constraint amounts
to a rotation of the valley according to surface orientation (surface shown in bold).

the orientation, a correct disparity map can be obtained (Fig. 6(c), please
see electronic version for better comparison), also note the smooth dispar-
ity change. This agrees with the observation by Tappen and Freeman [26]:
“the greatest increase in performance will be found by improving the formu-
lation of the MRF, rather than improving the solutions found for the MRF’s
currently being used.”

In summary, without considering surface orientation, the piecewise smooth
model still implies frontal parallel plane assumption. Zero-order disparity
(position disparity) alone does not suffice, first-order disparities (surface ori-
entation) have to be considered as well.

In the context of the energy minimization problem, our new formulation
of stereo correspondence, without a bias towards frontal parallel plane so-
lution, is to find the disparity labeling d and its differential d′ to minimize
the energy functional:

E(d, d′) = Esmooth(d, d′) + Edata(d, d′) (11)

=
∑

{p,q}∈NI

Vp,q(dp, dq, d
′
p, d

′
q) +

∑

p∈I

Dp(dp, d
′
p)

An example smooth prior is Vp,q(dp, dq, d
′
p, d

′
q) = 1 − rij , with rij the com-

patibility (eqn. (6)) between i (pixel p with disparity dp and differential
d′p), and j (pixel q with disparity dq and differential d′q). To make the
data term meaningful here Dp could be the aggregated data cost. Note
that when surface patch at i and j are frontal parallel (Ni = {0, 0, 1}T ,
Nj = {0, 0, 1}T ), in the disparity space the new smooth prior becomes
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(a) (b)

(c) (d)

Figure 6: Synthetic pair to illustrate the importance of surface orientation on
smoothness term: (a)(b) Left and right images. (c) Our result. (d) Disparity map
by graph cuts.

1
m

(|vij ·Ni|+ |vji ·Nj |) = 1
2m

|dp−dq|, which after truncation is the piecewise
smooth prior used in [4].

This new geometric compatibility requirement between nearby match-
ing pairs, or contextual information expressed geometrically, can be used
in graph cuts algorithms [4, 16] or belief propagation algorithms [25, 26].
It amounts to the formulation of different Markov Random Fields. How-
ever, it would be expensive to compute directly. In the next subsection we
describe an approximation that efficiently accomplishes “data” consistency
and “smoothness” consistency separately. Although our solution cannot
guarantee the global optimization, experimental results show it works well
in practice.

3.2 Stereo Algorithm

In this section we describe our stereo algorithm:
(1) Use traditional similarity measure (e.g. SSD) for integer disparity

values at each (u, v), keep only the top δ% (we use 3 non-immediate neigh-
boring ones in our experiments) as the initial disparity hypotheses.

(2) For each disparity hypothesis at every (u, v), use optimization method
(we use direction set method [21]) to obtain {d, ∂d

∂u
, ∂d

∂v
} that minimizes

11



dw SSD in equation (1) based on the deformed window. The input to the
optimization method are the initial integer disparity hypotheses, together
with the first order derivatives initialized to zeros. Note that d obtained
this way is interpolated in the continuous domain. At each pixel (u, v) we
could have several local minima based on dw SSD. Geometric contextual
information will be explored in the next few steps. {d, ∂d

∂u
, ∂d

∂v
} could also be

obtained by enumerating different combinations of these parameters if they
are properly quantized, and selecting the set that minimizes dw SSD.

(3) Compute the initial support s0
i at each matching pair i by equa-

tion (7), which encodes the similarity measure based on the deformed win-
dow SSD.

(4) Iteratively update the geometric support si at every i by equation (8)
until it converges (in practice we run a preset number (e.g. 8) of iterations),
using the compatibilities between nearby matching pairs rij (eqn. (6)) which
denotes how geometrically consistent they are. Also update surface normal
Ni at i (eqn. (9)) based on the normals of neighbors, to reduce the effect of
local noisy measurements.

(5) For each (u, v) select the the disparity with the highest support s,
output disparity and surface normal.

Observe that steps (3)-(5) are the unique geometric content of our algo-
rithm.

4 Experimental Results

Fig. 9 shows three examples. The first example (first row) is the synthetic
“Corridor” pair [10] from University of Bonn, The image size is 256x256
pixels with a disparity range 11. Next to the original image pair we show the
disparity map and surface normal by our algorithm. For comparison, in the
second row we show disparity maps of traditional SSD (same window size,
9x9), graph cuts [4], belief propagation [26], respectively. They are obtained
(and similarly for all other examples) from the stereo package provided by
Scharstein and Szeliski [24]. In particular, the α-β-swap algorithm [4] for
graph cuts, and max-product (contributed by [26]) for belief propagation.
Also shown is the cooperative algorithm [28] (software kindly provided by
the authors) result. Note that other algorithms obtain stepwise scalloped
pattern because of the frontal parallel plane assumption being used, either
explicitly or implicitly. Also note the gradual (continuous) disparity change
in our result, we achieve such better result because we explicitly model 3D
surface geometry.
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Our algorithm takes 538 seconds; the synchronous belief propagation
algorithm [26] takes 552 seconds, while the accelerated version [26] takes
75 seconds; the graph cuts algorihtm [4] takes 95 seconds. The results
are obtained with Pentium III M 1.0GHz CPU. The disparity map scale
factor is 21.25. We use the taxonomy package [24] to compute the disparity
error statistics (Fig. 7). Two measures are used here: (i) RMS (root-mean-
squared) error (measured in disparity units); and (ii) Percentage of bad
mathing pixels with absolute disparity error larger than a threshold δd. Note
that in [24] δd is set to 1.0, here we also report the results when δd is 0.5.
Our algorithm outperforms other leading algorihtms and has only about half
of their errors. (cooperative result is included for visual inspection, its error
statistics is not reported, partially due to the unspecified built in disparity
scale factor in their software [28].) Also note that our goal is not to provide
a complete stereo algorithm but to emphasize the importance of considering
surface differential geometry (e.g. surface normal consistency) in dealing
with slanted surfaces. The performance comparison should be viewed with
this in mind. As we stated earlier, our new geometric constraint could be
used in more elaborate algorithms (e.g. belief propagation [25, 26], graph
cuts [4, 16]), but it is beyond the discussion of the current paper.

Disparity Error SSD GC BPA BPS Our

RMS error (pixel) 1.31 0.65 0.75 0.62 0.35

% of errors > ±1 14.0 7.4 10.1 5.4 3.4

% of errors > ±0.5 32.5 26.4 30.3 24.3 11.6

Figure 7: Disparity error statistics on Corridor pair. RMS error and Percentange
of bad pixels (δd=1 and δd=0.5), for SSD, Graph cuts, Belief propagation (accel-
erated), Belief propagation (synchronous), and Our algorithm, respectively. Our
algorithm outperforms other algorithms for such scenes with slanted surfaces be-
cause we explicitly model 3D surface geometry.

The second example is the “Parking meter” pair from the well-known
JISCT database. As in the previous example, we show our results (third
row), together with results from other algorithms (fourth row). Once again
other algorithms obtain stepwise scalloped pattern because of the frontal
parallel plane assumption being used, either explicitly or implicitly. But we
acheive better result because we explicitly model 3D surface geometry.

In recent years the Middlebury stereo database [24] has been very in-
fluential in providing a fair testbed and a taxonomy [24] for quantitatively
evaluating algorithms’ performance. However we observe that this dataset
is very limited in terms of 3D geometry of objects such as slanted or curved
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surfaces, as objects are largely frontal parallel in this dataset. (This is why
we include images from other databases as well.) Without the “slant” effect,
our algorithm degrades roughly to the cooperative algorithm [28], and has
similar error statistics using the taxonomy [24]. Due to space limit here we
only report the results on one example from this dataset — the “sawtooth”
pair. We show our results (fifth row), together with results from other
algorithms (sixth row). Since the object is roughly frontal parallel, the dif-
ference between our result and other results is not obvious, as expected.
Fig. 8 reports the error statistics (cooperative algorithm result provided by
the authors [28]). For these last three examples, the geometric consistenty
support is performed in the disparity space.

Disparity Error SSD GC BPA BPS CO Our

RMS error (pixel) 1.65 1.42 1.67 1.45 1.46 1.30

% of errors > ±1 8.7 3.9 4.5 4.7 4.2 4.5

Figure 8: Disparity error statistics on Sawtooth pair. RMS error and Percent-
age of bad pixels (δd=1), for SSD, Graph cuts, Belief propagation (accelerated),
Belief propagation (syncrhonous), Cooperative algorithm, and Our algorithm, re-
spectively. Our algorithm is comparable to other algorithms for such scenes with
frontal parallel surfaces.

Note that the disparity sub-pixel refinement post-processing stage can-
not be performed for belief propagation and graph cuts here. At pixel (u, v),
sub-pixel refinment stage takes the “cost” at the winning disparity C(d), and
the “costs” at the immediate two disparities C(d−1), C(d+1) (also at pixel
(u, v)), and then fits a parabola for these three costs. Finally it outputs the
floating number disparity which gives the minimum of this parabola. Essen-
tially this step uses the frontal parallel plane solution at the floating number
disparity to replace the frontal parallel plane solution at integer disparity.
Although this step does alleviate some problems caused by the frontal par-
allel plane assumption, it does not solve the problem. The remaining “soft
staircasing” is still noticeable (see [24] for examples). Furthermore, this post-
processing step does not help the matching process. We use the Scharstein
and Szeliski [24] software package (for SSD and Graph Cuts) with extention
(for Belief Propagation) by Tappen and Freeman [26]. In this package, both
Belief Propagation and Graph Cuts find the Maximum A Posteriori (MAP)
estimates, which means the “costs” at other disparities are not necessarily
meaningful, thus sub-pixel refinement cannot be performed. As a result, we
did not perform such a sub-pixel refinement step in our comparison (except
for cooperative algorithm, which has this step built in).
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5 Conclusion

In this paper we show a novel stereo algorithm that explicitly takes into
account first-order disparities of non-frontal parallel surfaces; it then relates
these to surface normal and further impose geometric consistency between
neighboring matching pairs. Our algorithm outperforms state-of-the-art al-
gorithms on general surfaces (e.g. slanted surfaces), which suggests the
power of surface differential geometry in obtaining a smooth solution for
stereo correspondence. Our constraints could be used in more elaborate
graph cuts or belief propagation algorithms.

However, there are several limitations of the current algorithm: First,
as most local area based methods, it needs texture or shading variations
to get a reliable local estimation. Possible solution to this limitation is
to combine surface occluding contours where reliable information can be
propagated to unreliable estimates. Second, occlusion is not considered
in the current model. And third, object boundaries are not used, which
provide information on depth discontinuities. We consider all these as our
future work.
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Figure 9: Input image pair, disparity map and surface orientation by our algorithm, disparity
maps by traditional SSD, graph cuts, belief propagation, and cooperative algorithm, respectively.
See text for details.
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