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On the Rate of Convergence of the Bergman-Vekua Method

for the Numerical Solution of Elliptic Boundary Value Problems

Stanle§ C. Eisenstat

Abstract

Consider the elliptic partial differential equation with analytic

coefficients

Lu = Au + a(x,y) -g—i+ b(x,y) —g%+ c(x,y)u =0
in a simply conﬁected domain D of the complex plane. By a classic
result of Picard; every solution u is analytic for (x,y) € D and, by
" a more recent result of Vekua, can’be continued analytically to the
solution of a complex formally hyperbolic equation on the product domain
D x D*, By solving a Goursat problem for the hyperbolic equation,
Bergman and Vekua have independently derived equivalent representations
for solutions of Lu = 0 in terms of an integral operator V,

u=Re V[¢], ¢ analytic,

a generalization of the representation of harmonic functions as the real
part of an analytic function. Thus the study of-the éolution u can be
reduced to the study of the associafed analytic function ¢.

To that eﬁd, we shall prove that if the pth derivatives of u are
uniformly Holder continuous with exponent Y, then the pth derivative of
¢ is also uniformly Holder continuous with exponent y. Moreover, we
shall show that the asymptotic expansions for u in the neighborhood of
a corner obtained by Lehmén give rise to analogous asymptotic expansions
for ¢.

The generalized harmonic polynomials u = Re V[P;]’ where p_
denotes a polynomial of degree n, comprise a distinguished class of

solutions which is dense in the space of all solutions. Using a result




of Mergelyan on the degree of approximation of analytic funcfions by
polynomials, we shall prove thattfhe degree of approximation of the
soluﬁion u by generalized harmonic polynomials is ﬁ‘O(n—(p+Y)), where
p,Y reflect the smoothness of u.

The Bergman-Vekua method of particular solutions as developed for
use on high séeed digital computérs by Bergman and Herriot and Schryer
approximates the solution of the boundary value problem

Lu = 0 in D; u=f on 3D
by the generalized harmonic polynomials which in some sense best approxi-
' mates the boundary data f along the boundary. We shall prove that the
asymptotic raté of coﬁvergence of this method is Q‘O(n—(p+7)), where
P,Y reflect the smoothness of both the boundary and the Eoundary data.
For domains with piecewise smooth boundary, we shall show that we can
~ treat corners by introducing certain singular particular solutions to
the gpproximation as suggested by the form of the asymptotic expansion'
for ¢. |

The method of particular solutions has beenlapplied to the membrane
eigenvalue problem

Au + Au = 0 in D; u =0 on 3D
by Fox, Henrici, and Moler. We shall develop a similar method implicit
in the work of Bergman which defines ;pproximate eigenvalues as local
solutions of a minimum problem, and prove that the asymptotic rate of

convergence is the same as in the boundary value problem.



§1. Introduction

Consider the elliptic partial differential equation with analytic

coefficients
_ ou . au
Lu = Au + a(x,y) 3§-+ b(x,y) 3§-+ c(x,y)u =0

in a simply connected domain D of the complex plane. By a classic
fesult of Picard, every solution u is analytic for (x,y) € D and, by
a more recent result of Vekua [16], can be continued analytically to
the solution of a complex formally hyperbolic equation on the product
domain D x D*f By solving a Goursat problem for the hyperbolic
equation, Bergman [2] and Vekua [16] have independently derived
equivalent representations for solutions of Lu = 0 in terms of an

iﬁfegral operator V,
u = Re V[¢] , ¢ analytic,

a generalization of the reﬁresentation of harmonic functions as the
real part of an analytic function. Thus the study of the solution u
can be reduced to the study of the associated analytic function ¢.
To that end, we shall prove that if the pth derivatives of u
are uniformly Holder continuous with exponent y, then the pth
derivative of ¢ is also uniformly Hdlder continuous with exponent
Y. Moreover, we shall show that the asymptotic expansions for u in
the neighborhood of a corner obtained by Lehman [9] give rise to
analogous asymptotic expansions for @.
The generaliéed harmonic polynomials u = Re V[pn], where

P, denotes a polynomial of degree n, comprise a distinguished class



of solutions which is dense in the space of all solutions. Using a
result of Mergelyan [11] on the degree of approximation of analytic
functions by polynomials, we ;hall prove that the degree of approxi- -
mation of the solution u by generalized harmonic polynomials is
R‘O(n-(p+Y)), where p,y reflect the smoothness of u.

The Bergman-Vekua method of particular solutions as‘developed
for use on high speed digital computers by Bergman and Herriot [4,5]
agd Schryer [14] approximates the solution of the boundary value
problem

Lu=0inD; u= £f on 3D

by the generalized harmonic polyhomial which in some sense best
approximates the boundary data f along the boundary. We shall prove
that the asymptotic rate of convergence.of this method is R‘O(n—(p+Y)),
where p,y reflect the smoothness of both the boundary and the boundary
data. TFor domains with piecewise smooth boundary, we shall show that
we can treat corners by introducing certain singular particular
solutions to the approximation as suggested by the form of the asymp-
totic expansion for ¢.

The method of particular solutions has been applied to the
membrane eigenvalue problem |

Au+ A =03inD; u=0on 3D

by Fox, Henrici, and Moler [7]. We shall develop a similar method
iqplicit in the work of Bergman [3] which defines approximate eigen-—
values as locg} solutions of a minimum problem, and prove that the
asymptotic rate of convergence is the same as in the boundary‘value

problem.



§2. Notation
Let D denote a bounded, simply connected domain in the complex
plane with piecewise smooth boundary 3D. Let the boundary be

parametrized with respect to arc-length by

x =x(s), y=y(s), 02s =212

with x(s), y(s) periodic and fiecewise differentiable. The tangent
to the curve exists whenever x(s), y(s) are continuously differ-
entiable; a foint zq = (x(sq),y(sq)) at which the tangent fails to
exist is said.to be (the vertex 92) a corner. Let Pl and r2 denote

the adjacent boundary arcs and let éL be the interior angle between
, , q

the tangents to Pl and r2 at zq, The domain D is said to be of

class Rif 0 < E; < 271 at each corner zq (interior and exterior
q

cusps are excluded); D is said to be of class R(uw) (0 <p<1l)

if, in addition, mwp £ 2w --iL (the exterior angle at each corner is .
) q '
at least mp). Clearly a domain with no corners is of class R1).

A function g(z)(*) defined on a closed subset of the complex
plane is said to be Hélder continuous with exponent y (0<y < 1) if

there exists a constant K such that
lg(z;) - g(z,)| <K|z;, - 2 Y, v z,, 2z, eS8,
1 27 — 1 2! 1’ "2
We introduce the function spaces

c(bUaD) space of functions continuous in DU3D

A() space of functions analytic in D

(*) For convenience, we shall frequently write g(z) for a

function g(x,y).



CP’Y(DUBD) space of functions whose pth

derivatives are H8lder continuous
with exponent y in DU3D
cP>Y (pUsD -b{zl,..;,zq}) space of functions whoseApth
derivatives are HGlder continuous
with exponent y in every compact
| subset of DU3D - {zl,...,zq}

If the functions x(s), y(s) in the boundary parametrization‘have

pth derivatives with respect to arclength which are Holder continuous

with exponent y, then we write D € cPsY, 1£ D e Y or M e cPY

except at corners Zys eees zq, then the spaces Cp’Y(BD) and

CP’Y(BD -'{zl,...,zq}) are defined in the obvious manner. We state

without proof the obvious
1) ] :
Lemma: If g € Cp’Y, then g € c? Y for p'+yY'<p+yv.

A corner determined by the vertex zq and interior angle-gL is
q

said to be an analytic corner (zq,aq) if the adjacent (closed)
boundary arcs are segments of analytic curves. If g(z) is defined
on 9D and piecewise analytic near zq, i.e.,

g(x,y) = ¥;(x,y) on Ty, glx,y) = ¥,(x,y) on T,

where the functions wj are analytic functions of X,y near zq, then
we write g € PA(zq). The space PA(zl,...,zq) is similarly defined.

Finally, we introduce the norms

llgll = max |g)] ligll = max |g(z)]
DU3D zeDU3D aD zedD
“gHZ’D = {ng2 axdy /2 "gnz,an = {."B’Dgzds}ll2



53. An Integral Representation

By a claésic result of gnalysis, every harmonic function, or
equivalehtly every solution of Laplace's equation Au = 0, can be
represented as the real part of an analytic function. For solutions

of the more general equation
Lu = Au + a(x,y) du b(x‘y) oy cx,y)u =0
3 ax b By H b

an analogous representation has been derived independently by
Berman [2] and by Vekua [16].

Let D be a simply connected domain of class R and let u satisfy

Lu = 0 in D. For the moment, we shall assume that the coefficients
a,b,c are énalytic. Then by a classic result of Picard, the solution
u is analytic in D.

Treating x and y as independent complex variables, we introduce
the variables z = x + iy, z%¥ = x - iy, which are conjugate complex
if and only if x and y are real, and the corresponding differential

operators

5 1,9 .. 5 _1 .3 ,.09,.23 .
5257 G~ Lagh w27 Gt iyt 2

Let D be a simply connected domain with pUSDED and set D* = {z*lE*sD},

the conjugate domain to D. Then the functions

1 [ z4o% z-zk, |, . ztzk z-2%
A(Z,Z*) = Z{a(z 22 ) ZZ? ) + i b(z ZZ- s 22? )}
, 1 % —z% . Lok —z%
B(z,2%) = Z{a(z.z_%_, 2ty @R, 3_2_12._)}
tzk  z-z%
Clz,z%) = 7 cBH=, 555

are analytic for (z,z*) € D x D*¥, We may now relax our assumptions

on the coefficients a(x,y), b(x,y), c(x,y) and assume only that



A(z,z*), B(z,z*), C(z,z¥) are analytic for (z,z*) ¢ D x D%,

Theorem 3.1: (Vekua [16]) The solution u(x,y) can be continued

analytically to a solution

* -k
U(z,2%) = uE—, BF

), (z,z%) € D x D*

of the equation

BZU

v = 5 5%

+ A(z,z*)-%% + B(z,z%) %g;-+ C(z,z*)U = 0,

B&\solving a Goursat problem for the complex, formally hyperbolic
equation LU = 0, Bergman [2] and Vekua [16] have derived equivalent
integral representations for the solution u in terms of an analytic
function.

With our assumptions on tﬁe coeffiéients, the complex Riemann
function G(t,t*,z,z*) for the operator L (Henrici [8]) is defined and
analytic for t,z ¢ D, t*,z* ¢ D*, For any function ¢ analytic in D
and zg € D, we define the integral operator

; - z _

I[¢;2g] (z,2%) E-% {%(z,zo,z,Z*)¢(2) + I $(t)H(t,zy,2,2%) dt
%0

z%

+ Glz,2%,2,2%) 9% (%) + J
20

¢*(t*)H*(zo,t*,z,z*) dt%}

where ¢*(z*) = ¢(§*) and
H(t’t*szaz*) = B(t,t*)G(t,t*,Z,Z*) - 'g‘% (t,t*,z,z*)

3G

H*(t,t*,z,2%) = A(t,t*)G(t,t*,2,2%) - og

(t,t*,z,z%).

When z* = z, this simplifies to



Z
1[4324) (2,2) = Re{G(z,2(,2,2) 6(2) +'f $(E)H(t,2(),2,2) dt}
Z
‘ 0

= Re{v[¢; 2] (z,2) }.

Theorem 3.2: (Vekua[l6]) Fix zg € D. Then there exists a unique

function ¢ analytic in D with-¢(z0) real such that

u(x,y) = Re V[¢;z,] (z,2), z=x+1iy €D

U(z,2%)

I[¢;251(z,2%), ~ (z,2%) € D x D¥*,
Moreover,

Q(z) = 2U(z,;b) - U(ZO’;b)G(ZO’;b’Z’;b)'

For Laplace's equation, the Riemann function is G(t,t*,z,2*%) = 1 and
the integral representation reduces to u = Re{¢}, a classic result
for harmonic functions.

The Vekua integral representation is of 1imitéd value in calcu-
lating a particular solution U given an anélytic function ¢k since
the Riemann function is known for only a few special equations.
However, Bergman [2] has derived an equivalent infegral representation
which can be constructed directly from the coefficients A,B,C. For
the case of polynomial coefficients, the method has been implemented
by Bergman and Herriot [4,5] and by Schryer [14]. |

Finally, we note that if ¢ € C(DU3D), then

e o523l < Bl Hellyugg + [l Dellygopalel < kel
%

since the domain is bounded and the functions G, H are bounded

(indeed analytic) in the appropriate domain.



§4. The Continuity of u vs. ¢

The integral representat}bn of Berggan and Vekua associates
an analytic function with evefy solution of Lu = 0 in D. 1In this
section, we shall relaté the smoothness of the associatéd analytic

function to the smoothness of the solution.

Theorem 4.1: Let D be a simply connected domain of class R and fix
z, e D. Let u satisfy Lu =0 in D and let ¢ be the associated
analytic function. If u e CP’Y(DUBD), then ¢ € CP’Y(DUBD) (p+vy>0).

The proof of the Theorem depends on three Lemmas. Let

r(z) = min It—zl,
tedD

the distance from z € D to the boundary.

Lemma 4.1: Let D be a simply connected domain of class R and let
u satisfy Lu = 0 in D. If u e CO’Y(DUBD), then there exists a

constant K independent of z such that

.

lu, 2] = l%— u () - 3 uy(x,y)l < Kr(Z)YT'1 (0 <y=<1).

Proof:
Fix z € D and let R = %-r(z). The function v(Z) = u(z+Rg) - u(z)

defined on the unit disk Dy = {g]lz| <1} satisfies

A;v(;) = -Rz{aux(z+Rc) + buy(z+Rc) + cu(ztRg)} = £(8), T € Do.

Since u € CO’Y(DU8D),

lvo)] = |utz + R) - u@@)]| < KlIRt;|Y= RRY, e Dy

From the Schauder Interior Estimates,

r(t){]ux(t)l + |uy(t)|} _<_i<2, teD



whence

lux(z+Rc)l lu (z+Rc)[

since r(z+Rg) > R for {El.i 1. Therefore

K K
£ < Rllallyy,y 2 + bl 2 =+ llellyyypliullysp}

2 Y
< KgR + KR <KR', zeD

0
since R < diameter (D). Let I'(Z,t) be the Green's function for
Laplace's equation Au = 0 in Dy:

L-1
1-z1

1
r(z,t) = - 27 log

Then

v(g) = fl o1 3n (C,T)V(T)ds -[ P’(C,T)ATV(T)dAT-

T|<1

Differentiating,

2
v 9T
=+ (D =j (z,Dv(7)d —[ (z,1)E( )dA
Y: IT|=1 BCBHT vt sT r!<1 BC T T

and

%— 0,1)

[v (1) lds + f

2 <o>[ <f l i S HOIET
4 - l I 1 Bljan . T

T|<1

5 ac (0,1)|d

2 .
5K1RYf ’ 9T (0,1
[t]=1

ds +KRY[
3c8nT T ol<1

- y o 1 Y _ Y
KR +3K5R KR

But then

<KRY1-21YKr(z)Yl

3 <z,?)| [ ©] <&

Q.E.D.



10

Lemma 4.2: Let z € D and let

2 _
M(z,t,t)dt + N(z,t,t)dt

0

x(z) = ]

z
where the integral is path independent and

M(z,6,D) ] < ke, NG, D] k@™ 0 <y <)
uniformly for z e DU3D. Then x(z) is uniformly bounded for

z € DU3D and the bound depends only on K and the domain D.

Proof:
Let D6 = {z ¢ D]r(z) > 8§}. We shall prove that X(z) is uniformly

é for 6§ > 0 sufficiently small and in a neighborhood of

every boundary point z

bounded in D

. The result then follows from the compactness

B
of DUID.
Let
z -—— . — —
¥(z,0) = I M(z,t,t) dt + N(g,t,t) dt, z,z € DU,
Z
0

For § > 0 sufficiently small, the domain D6 is simply connected and

zg € Dﬁ' Thus for z € D r € DU3D,

6’
z — —
lv(z,2) | _<_j {M(z,t,0) | + |N(g,t,t) | s,
¥4
0
Z Z
< 2K [ r(t)Y'ldst < 2xe¥? I ds_ <K
z ZO .

8

since the path from zq to z can be chosen to lie in D6U3D6 and the
length of the shortest such path is uniformly bounded. Since
X(Z) = ll)(z,z) s

|X(z)]'§ KG’ Z € DG'
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Let zp € 3D. Since the boundary is piecewise smooth and
contains neither interior nor exterior cusps, without loss of

generality we can assume that there exists a sufficiently small

neighborhood NB of zg with the property that there exists a point

zQ € NBﬂD and a gonstant g such that Zg
for every z € N, the diamond ’//4///’/’~§“‘2“T-~__
N /’ 1 ]
' t | B./,% ! :
—Z . \\
D i < | IR L
{t € D||sin arg ——| < ng, S
Y 7 P
5’
~ ¥
t-2
|sin arg | < ng.}, .
- B zZ= ZZQ z

Q

where z = 2z -z,is contained in D. Therefore

Q

—
r(t) 2ng lt-ZI, t e zQz

for every z ¢ Ng. Note that

Z

¥(z,0) = ¥(zg,0) + f M(z,t,t)dt + N(z,t,t)dt.
Z

Q

For &6 > 0 sufficiently small, zQ € D6 whence

Iw(zQ,c)l < Ky, & e DUD.

Thus for z € NB’ r £ DU3D,

z
-1
vz, 0| < [¥(zge2)| + 2K j r(e)’ Tds,
°B
y-1 [* y-1
§_K6 + 2KnB I; It—zl_ dst
B
= 2K y=1y o _ Y
Ry + 5 ng |2 - gl <K
—

taking zQz.gs the path from zQ to z. Since x(z) = ¥(z,z),

Ix@] < ¥ = e N Q.E.D.
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Indeed, the result is still valid when zy € 9D. For fixing

EO eD, ‘
X(z) = - ¥(z4,2) + ¥(z,2)
where
-~ z — [,
v(z,7) = L M(z,t,t)dt + N(z,t,t)dt, z,z e DUJD.
%0

The argument used to prove the Lemma shows that &(z,c) is uniformly

bounded for z,z € DUaD. Thus x(z) is uniformly bounded for z e DUSD.

\

Lemma 4.3: Let zg € DU3D and let

z
X(z) = j M(z,t,?bdt + N(z,t,?bdz'

%o
- where the integral is path independent and
- y-1 - y-1
IMz,t,0)| < ke()Y,  [N(z,t,0) | < Ke(E) (0<y<1)

uniformly for z € DU3D. Moreover, letting
M(zl,t,’E) - M(zz,c,‘t‘)

ﬁ(z sZ st9;3 = =
1’72 z; = 2, z2y52, € DU3D
. N(z,,t,€) = N(z,,t,t) 2y * 2y
N(Zl’zzst)?) = 1 z. - z 2 ’
1 2

assume that

. - -1 s — -1
lfi(zy 2,6, D] < koY, [N(zp,2,,6,D ] < Re(e)

uniformly for 2,52, € pUsD, z; # z,. Then X € CO’Y(DUBD).
-

Proof:
We must prove that the ratio

x(zl) - x(zz)
yY

‘p(zl’zz) = h _
2y " %
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is uniformly bounded for 2152, € DU3D, zy # z,e But

z
471
‘p(zl’zz)' = (21—22 1 YI M(zl,zz,t,t)dt + N(zl,zz,t,t)dt
Z

0

%2 M(z,,t,t) N(z,,t,t) _

+ - " dt + Y dt
z; (z1-z)) (z1-25)

By Lemma 4.2, wl(zl,zz) is uniformly bounded for 2152, € DUD,
z1 # 22. Moreover, if ]zl - zzl_z ¢ > 0, then wz(zl,zz) is uniformly
bounded again by Lemma 4.2 (the bound will of course depend on €).

We shall prove that for every z_ ¢ DU3D, there exists a neighborhood

Q

NQ'of ZQ such that wz(zl,zz) is uélformly bounded for zl,z2 € NQ' By

the compactness of DU3D, there exist a finite number of such neigh-
borhoods with the property that for some € > 0 sufficiently small,

if z e DU3ID and lzl - zzl < ¢, then z,,z, belong to at least one

1°%2 1°%2
such neighborhood and wz(zl,zz) is bounded by the corresponding
bound. Thus wz(zl,zz) will be uniformly bounded.

If z € D, then take N_ = {z ¢ Dllz - zQI < %-r(zQ)}. Then

Q Q
=1
r(z) Z.r(zQ) - Iz - zQI =3 r(zQ), z € NQ'
Thus{ for Z1s2y € NQ’
» z
lwz(zl,zz)| j_]zlv— ZZI—Y jZI{IM(zz,t,23| + IN(zz,t,E3[}dst
zZ,
:_lzl - zzl-Y J 2Kr(t)Y—ldst
z
1
)
j.lzl - zzI“YZZ“YKr(zQ)Y"1 Jz dst

1

b H
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= |12, - 2

1-y ,2-y,r y-1 2=y
1m0 T2k (z)' ~ <27 K

¢

taking the-direct path from zq to z, and noting that Izl - zzl j_r(zQ).

Let z_ ¢ 9D. Since the boundary is piecewise smooth and contains

Q

neither interior nor exterior cusps, without loss of generality we

can assume that there exists a sufficiently small neighborhood N_ of

Q

z. with the property that there exists

Q

a constant nQ such that for any zy52, e N

Q
with h = [z, - z,| > 0,

<V RN
r() 2n e - gl e

. PR §
r(t) > ot s t € L,C5T,

—
r(t) 3,nQ|t - csl s tELiLs

where Cl’CZ’C3’C4’55 are taken such that I;l - §2| = ICS - ;4| = h,
Th
- Ty, (%, (%s
lwz(zlzz)].i Izl - 22] Y f + J + J {IM(zz,t,t)l
T B
+ lN(zz,t,E)l}dst
| T, (5, (%5
<nY ZK{ +J +I r(t)Y—ldst
5 L B

g z
. 2 4
< 2Kh-Yng ! j |t - gllY‘ldst + [ hY”ldst

zy z,

z
2
- |1
+ [ |t ;51 dst
%
lgz-cll
S | P U R A R LAY

< 2Kh nQ 0 s s T, = T3 &3~y
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2524 "
+ sY ds
0

&

e ook VY 1d nY + o0 4 1,7
Q v Y

1 v=-1
= K — + .
4 (Y l)nQ
Q.E.D.

Proof of Theorem 4.1:

The extended solution U(z,z*) satisfies (Lewy [10])
U(z,z%) = U(z*,2%)G(z*,2*,2,2%)
z — — — — —
+ j_ U(t,t)[Gt*(t,t,z,z*) - A(t,t)G(t,t,z,z*)]dt
2%

+ [B(t,t)U(t,t) + Uz(t,'f)}G(t,'E',z,z*)dt

where the integral is path-independent and G is the Riemann function.

From Theorem 3.2, the associated analytic function ¢(z) satisfies

¢(z) = 2U(z,z,) - U(zO,EO>G<z0,'ZO,z,E‘O)

so that

$(z) = U(z4,2()C(z(:20252()

.

+ 2 ] U(t,t)[Gt*(t,t,z,zo) - A(t,t)G(t,t,z,zo)]dt

)

+ [B(t,D)U(t,T) + uz(t';'c')]c(t,‘E,z,Zo)dc

Differentiating,
P P
4% (5) = U(z.,2,) =2 (2524:2:2
= s - 323252 )
dzP 0’707 5 p TOTTOTTO
p-1 dp—k—l k

e —_ =
+ 2 Z —T [U(z,2)B(z,2z) — (2,2,2,2 )
k=0 azP7¥1 3z~ 0
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k
(zz) (zzzz)]

Z

z P J — 3pG —_ —
+ 2 J u(t, t)[ (t t z, Zz ) A(t,t) — (t,t,z,z,)]dt
P P 0
z, 3z oz

— - —_ P - -
+ [B(t,t)U(t,t) + Uz(t,t)] 3—%—(t,t,z,z )dt
: 9z

C(z)+EC(zz) il
j=0 z

(zz)+R(zz)

where the coefficients

P
a G —_—

(Z 9 ,Z Z )
Szp 0 0

J j-k-1 k
- -k-1\ d - 26 , = _ =
C_.(z,2) =2 ) {(p- _ ) — T [lf(z,z) — (z,z,2,2 ;}
PJ k=0 \\J k-1 dzd k-1 azk 0
j-k k
p-k-l) d [a ¢, — —
+ ( . — | (2,2,2,2()
: j=k dzd k azk . 0
are analytic for (z,z*) € D x D* and the integral

z 3P - - — 3P - = —
2 U(t,t) |—— aGtx (t,t,z,2,) - A(t,t)-aJE (t,t,z,2,)]|dt
p 0 P 0
z, 9z 9z

Cp(Z)

Rp (z,z)

+ [B(t,t)U(t,t) + Uz(t,t)] ——S-(t,t,z,zo) dt

9z
z — — —
= [ N(z,t,t)dt + M(z,t,t)dt
%0
is path independent. Moreover,
k k
BkU 1,9 . 9 _\1k -k k, .k-2 3
(z,2) = [T G - 1 39) vlxy) =2 ) ()1 ”'ifl%;if'

Bz L4 2=0 9x oy

Since u € CP’Y(DUBD), a fortiori u e Ck’Y(DUBD) (0 <k <p) and
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25%-(2,2) e ¢0*Y(pUsD). From Lemma 4.1,
9z '
:_Kr(z)Y-l.

ou . —
laz (z,2)
Thus the functions M(z,ﬁ,E}, N(z,t,t) satisfy the conditions of

: P
Lemma 4.3, and Rp(z,53 £ CO’Y(DUBD). Therefore g—g € CO’Y(DUBD)
dz

or ¢ € cP*Y(DUsD). Q.E.D.
Theorem 4.1 requires that u be more than merely continuous and

that 3D have neither interior nor exterior cusps. The necessity of

these restrictions is showh by the following examples.

Example (Privalov [13]):

If u is merely continuous, then ¢ need not be continuous. For

let D = {zllzl < 1}, the unit disk, and let the sequence'{ak}:=1

satisfy(*)
. © ap
al > a, > a3 > ees 3 1lim a = 0; Z x - + o
k> =1
Define
© g r sin kO
u(r,0) = 2 k k X ’ reIe e DUJD
=1
a zk
1 k
o) =7 L > zeD
k=1
Then Au = 0 in D, ¢ is analytic in D, and
16

u(r,8) = Re ¢(z) = Re V[$;0]1(z,2z), z =re ¢ D.

However, ¢ ¢ C(DU3D) even though u € C(DU3D) since the series for

' ' 1
* N
(*) E.g., & TI1 ¥ log k




the conjugate harmonic function

® akrk cos kb6

v(r,8) = Im¢(z) = ] —f
k=1

diverges at z = 1.

Example: A (:j~\\\\\
If u is Holder continuous but 3D
contains an interior (reentrant) cusp, : (::—’////

then ¢ need not be Holder continuous

with the same exponent. For let

D = {reie 0<r<l; -m<6<m; |sing| >r if Gl >-%}

and define

u(r,8) = r'cos Y0 : z = re16 eD (0 <y < 1.
o(z) = zY = r'(cos y6 + 1 sin y6)
Then Au = 0 in D, ¢ is analytic in D, and
u(r,6) = Re ¢(z) = Re V[¢;0](z,§), z = rele e D.

However,

(A) s ¢ ¢ (DUaD)
even though

(B) ue CO’Y(DUBD)
Proof of (A):

L
For 0 < r <2 Y, let 6 = 6(r) satisfy
i,
sin 6 = 27 ‘T, Tco<m

2

and define z = z(r) = rele. Then z,;'e D but
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lo(z) - ¢(=) | |2ir¥sin yo| _ 21 Ysin vo _ sin 8
$ ¢ = = =
|z - z|" |2ir sine|Y ° (sin 0)Y Y

&

> -2 inf {sin y6} = L nin {sin A
T £’ 2

, sin yn} > + =
UTRY

2

as r > 0.
Q.E.D.

Proof of (B):
16 i92
Let e s> Toe ¢ DUSD where without loss of generality

Then

rl __>_ r2.

_" Y Y ' Y Y
lu(rl,el) u(rz,ez)l f_lrl cos yel r, cos Y61| + |r2 cos yel r, cos yezl

Y.

= |rl

rzYllcos yell + rZY[cos Yel—cos Yezl

2

Y
2

sin

. ety
sin ——

2

j“rlY—rZYI + 2r
< ey, Y+ yr,min(|0 -6, ], le,+6,1)
e -e

f.lrl—r2|7 + %'r2Y|

191 telly Zl—y

1-v 10 )
2y 1_
<@+ - ) re re

Q.E.D.
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Example: (Babuska [1]) : Y

If u is Holder continuous but 3D contains

an exterior cusp, then ¢ need not even be

continuous. For let

1=y
2
J—%-L——2-<l} (0 <y <1)

1 1l
D= {(st)lo <X <7 l}’l < Z, p(x,y)
: X +y

and define

u(x,y) = -7;11~75, ¢(z) = é', z=x+ iy ¢ D.
x +vy

Then Au = 0 in D, ¢ is analytic in D, and
u(x,y) = Re ¢(z) = Re V[$;0](z,2), z = x + iy e D.
However, ¢ is not continuous in DU3D (¢ has a pole at z = 0) even

though

) u € CO’Y(DUBD).

Proof of (C):

Let (xl,yl), (xz,yz) € DUSD where without loss of generality

; = 1=y
Xy 2 %, Then letting A 5
y y y y
1 1 1 2
luGeysyp) '“(xz’yz)li_ 2,2 2 2 * 2.2 2 2
X3 271 271 272
|y, | %, %y,
- 1 L2 2]y 2 77172 [
2 2 2 2 1 2 2 2 2 2 1 2
(x1 +¥; )(x2 +y,7) (x2 +y; )(x?_ +y,7)
) .
|y1||xl+x2] l Xy i
< X, - X + y y
=72 2 2 2 1 2 2. 2 2 2 1 2
(x1 *y, ) (%, +y17) (=, +yy )(x2 +y,7)
AL
2 2 2 2 1 2
(x2 +y1 )(x2 +y2)



21

oyt gyl \
“L2,..2 7. 7+ Iyl Txg + %01y - %y
1 7 2 Th

l—Y . -

x,% max(|y, |,]y,1*

+ - .
2 2 2 2
x2 +min(|y1’a]}72l) X2 +max(lyll’ly2|) .

ly. -y sz
e il PO A
X X Y1792
max (|y, [, |y, |™
A A
A - ,
) 2 ¢ 2 2 ¢ yly21 Iyl - yZI ¢ lyl - yZ'

X vy %Xy tY,

5~le —szlY + [yl - yzlY + ]yl - y2|Y , since (xz,yl) e DU3D.

Q.E.D.
For computational purposes, it is desirable to allow the origin
point z, to lie on 3D as well as in D. The following result extends

Theorem 3.2 in this regard and relates the smoothness of Re V[¢;zo]

to the smoothness of ¢.

Theorem 4.2: Let D be a simply connected domain of class R and fix

zy € DU3BD.
(i) Let ¢ ¢ CP’Y(DUBD) be analytic in D and define

u(x,y) = Re V[¢52)](z,2), z = x + iy e DUAD.

Then u ¢ CP’Y(DUSD) and satisfies Lu = 0 in D.

(11) If u e CP?Y(DUID) satisfies Lu = O in D, then there exists
a unique analytic function ¢ ¢ CP’Y(DUaD) with ¢(zo) real
sﬁch that |

u(x,y) = Re V[¢;zO](z,;), z = x + 1y e DU3D

U(z,z%) = I[¢;zo](z,z*), (z,z%) ¢ (DUSD) x (D*U3D%),
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Moreover,

$(2) = 20(z,2p) - u<z0,20>c<zo,?0,z,20>.

Proof :

(i) Let ¢ € cP*Y(DU3D) be analytic in D. A long but straight-
forward formal calculation shows that u = Re V[¢;z0] satisfies Lu =
in D. On differentiating, the pth derivatives of u are seen to

' ko P,y

depend only on — (0 <k <p). But ¢ € C"’'(DU3D) whence

k dz

Q_% € CO’Y(DUBD). Therefore u ¢ CP’Y(DUBD).

dz

G D. By Vekua's Theorem 3.2

there exists a unique analytic function b€ cP*Y(DUID) with 3(50)

(ii) Let u ¢ Cp’Y(DUaD) and fix Z

real such that U = I[%;EOJ. As in part (i), U ¢ Cp’Y as is

¥(z,2o) = 20(z,z) - U(z(,20)6(2520:2,2()

for each zg € DU3D. Moreover, since U(z,z*) is analytic for z € D
given any z* e DU3D, we have w(-,zo) is analytic in D for zg € DU3D.
But u = Re V[w(°,zo);zo] for every zg € D by Vekua's Theorem and
therefore for every zy € DU3D using the continuitf of Re V and
U(z,z*). The same argument shows that U = I[w(°,zo);zo]. Now
;ake o(z) = w(z,zo).

Q.E.D.

0

’
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§5. An Asymptotic Expansibn

Lehnan [é] has obtained asymptotic éxpansions’in the neighbor-
hood of an analytic corner for solutions of Lu = 0 which are analytic
on each of the adjacent boundary arcs. In this section we shall give
a similar asymptotic expansion for the associated analytic function.

Let D be a simply connected domain of class R with analytic
corner (zq,uq), and let o = o The asymptotic expansions considered
are in terms of |

| z - zq, (z - zq)a
when o is irrational, and in terms of
z -'zq, (z - zq)a, (z - zq)z log (z - zq)

when o is rational, o = %-in lowest terms; for simplicity, we shall
state and prove results only for the case o irrational.

A function g(z) defined in D is said to have an asymptotic

expansion of order n if
- n
= P yZ 3 + 0 -
§(z) = P, (2,732, + 0Clz = 2

as z zq in D, where
— +ka,— = \&tm
Pn(z,z;z ,a) = 2 Cjklm(z—zq)j a(z_zq)z .
4 j+kort24ma<n
j9k92,m2_0

The asymptotic expansion is said to be p-times differentiable if

e o |2z "

2B (z) = —— = (2,232 ,a) + 0(]z-z ), 023 k2P
BJzak Iz ajzak—Jz q . 1

A function has at most one asymptotic expansion of any order

(Lehman [9]). Moreover, if g(z) has a p-times differentiable asymp-—

totic expansion of order n, then g(z) has a p-times differentiable
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asymptotic expansion of order n' for any n' < n (simply neglect

higher order terms).

[

Theorem 5.1: (Lehman [9]) Let u e C(DU3D) N PA(zq) satisfy Lu = 0
in D. Then for any p 3:0, u has a p-times differentiable asymptotic

expansion of order p.

Theorem 5.2: Let u € CO’B(DUBD) n PA(zq) (0 < B <1) satisfy Lu = 0
in D. Fix z(q) e DUSD and let ¢q be the corresponding associated
analytic function: u = Re V[¢q;z

Then for any p > O, ¢q has a

p-times differentiable asymptotic expansion of order p:

- _ j+ko _ P
qsq(z) j+k§<P quk(z zq) + 0(|z qu ).
j,k>0

Proof:
Let Qv(z,zkzq,a) denote a generic asymptotic expansion of
order v
- j+ka ,— — | L+ma
Qv(Z,Z;Zq,a) = Z yjkm(z-zq)J (z-z )
j+kot24ma<y 4
j,k,2,m>0
where the coefficients may vary from occurrence to occurrence. Let
av(z,;}zq,aq) denote a generic asymptotic expansion of the same form
except that the coefficients YjOlm vanish.
The following properties of these generic asymptotic expansions

are immediate (remember that o is irrational so that j + ka is non-

integral for k > 0):

- A < ~ - . v
Qv = 0(1), Qva is of the form Qv + 0(|z qu )
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SV \Y

9 Qv - -vx —Vx 9 Qv
is of the form (z-z ) Q_, (z-z ) Q_ is of the form .

az’ . v 4 v 3z"

As in the proof of Theorem 4,1,

aP¢

q - li : - 33U — -
(z) = C_(z,2) + c (z,z) — (z,2) + R (z,2).
azP P v=0 P VP 3z’ P

Since the coefficients Cp—v P and Cp are analytic, the Taylor series

yields the following differentiable asymptotic expansions:

' aj-HL
(z, = X -——--—————Jl——ﬂl (z ,z Y(z-z )j(z~z YU+ 0([z—z | )
“p-v,p FHR<Y R a
3,220

| = Qv(z,;}zq,u)‘+ O(lz—quv)
cp(z,Z) = 0(1)

From Lehman's Theorem, U(z;;) has a vl times differentiable asymp-—

totic expansion of order v for 0 <v<p:

- - v
U(z,z) = Pv(z,z;zq,a) + O(Iz—qu )-

3V, = P,

— (z,2) = (Z.z;zq,a) + 0(1)

2z 9z

-\ ~ —
= (Z"zq) Q\)(Z,Z;Zq,d) + 0(1)3
U
the expansion for-—; being again differentiable. Since

9z

Rp € CO’B(DUBD), R.p has a differentiable asymptotic expansion

Rp(z,'z') -0+ 0(1)

for
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3R 6.,  _  _. P - -
—-_—_P- (z,z) = 2U(z, Z) (z,2,2,2) - A(z,2) —— (2,2,2,2)
0z 0z 9z
9R
so that -:P- is continuous whence bounded in DU3D, and
9z ‘

_a_f{_p_ (z,2z) = O(Iz—qu—l).
oz

Combining these results,

—-—-51dp¢ c, PR R (z,z
P (z) = C (z,2) + Zo v, p (%) v (z,2) + I)(z,Z)

o) + X {q, + 0(]z-z | )}{(z-Z) Q +0(1)} + 0@1)

v=0
P
= ) {(Z-Z) Q +0(1)) + 0@)
v=0

(z-z ) P 2 (z-2z )p YQ }+ 0(1)
1 v=0

]

(z—zq)“’c“ap(z,?;zq,a) +0(1)

an asymptotic expansion differentiable with respect to z. But

¢q is analytic in D whence

-

? dp4’g 5% = -1
0=— (z) = (z-2 ) P =2 (z,z;z_,a) + 0(|z-z_| )
0z dzp q oz q q
and
Q. _ i
—:_P— (z,2z32 ,0) = O(lz-z Ip l).
3q_ X
From the uniqueness of asymptotic expansions, —-_—_-P- = 0 so that Qp
: 9z

is analytic in D and does not depend on z:
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a " +k
Q = ) \rjk(z—zq)j °,
P 0<j+ka<p
*320,k>0
Let
¥.
5 (0 - — ik -, yJtk
P(z;z ,a) = z ) (z-z )j‘ ¢,
) Stk | P ang) !
i>0,k>0 4=0
- Then
P
P3 e d“ ¢
LP o (2-2)PQ = —2 + 0Q).
dzP q P dz?

Integrating the preceding equation from zq to z,

p-1, -1 p-1l,, 5

¢ &Y d” “(¢_~P) T
— () (z) +| —3— + 0(]z-z_| 7).
dzp“l dzp-l dzp—l z=z q

q

By induction,

. 1, [t -
$(2) = P(z52 ,0) + 22 T ——-——q-—-——dzl

%
(z-z )" + 0(|z-z_|P)
0 }z=z 4 ql

q
= X C.,(z-z )j+ka + 0(1)
Jtka<p k q
j,k>0

Q.E.D.
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§6. An Approximation Problem

The generalized harmonii'polynomialé un = Re V[pn;zol, where
P, denotes a polynomial of degree n, comprise a special class of
solutions of Lu = 0. In this section, we shall study the problem
of approximating arbitrary solutions by genéralized harmonic
polynomials. |

Let u ¢ C(DU3D) satisfy Lu = 0 in D and let ¢ be the associated

analytic function. Then the generalized harmonic polynomiai

u = Re V[pn;?O] satisfies

]

lho = w llpysp = IRe VI432g] - Re vip_szolllyy.p

lIre vIg-p_s20)ll 5 < Kollepollpyap.
' Thus the approximation problem can be reduced to the problem of

approximating an analytic function by polynomials,-a problem studied

by Walsh [17], Sewell [15], and Mergelyan [11].

Theorem 6.1 (Mergelyan): Let D be a simply connected domain of
class R(p) (0 < u 5;1). If ¢ € CP’Y(DUBD) is analytic in D, then
for any € > O there exists a constant C(e) independent of n such
that

C(e)

E () = min llo - p [l e

P, e]Pn
where Pn denotes the space of polynomials of degree n.

As an immediate consequence of this result, we have

Theorem 6.2: Let D be a simply connected domain of class R(n)

(0<upu<l)., Ifue Cp’Y(DUaD) satisfies Lu = 0 in D, then for



29

any € > 0 there exists a constant K(e¢) independent of n such that

ﬁ (u) = min llu-u [agn),bgn)]“ < _K€)
) T B T RE
i '3
where
M @, _ § . i, (n) 3.
un[aj ,bj ] = j__z_o {aj Re V[z73z(] + bj In V[z";z4]}
Proof:

By Theorem 4.2, if u € CP’Y(DUBD), then ¢ ¢ CP’Y(DUBD) and,
by Mergelyan's Theorem, for any € > 0 there exists a constant Cc(e)

independent of n such that

C(e)
min ¢ - p |l TN
pnépn n 'DU3D — np(p+y) €

whence

| | KCE)
min “u - Re V[pn;ZO]“DUBD':~pmi;, KV”¢ - pn“DU3D°§;§R5:;7:E
n n

PaPy

But writing pn(z)

n
) _ .. ]
jZQ (aj 1bj Yz7,

{a§n) Re V[zj;zo] - bgn) Re iV[gj;zo]}

|
e~

Re V[p ;3z,] =

j=0

p™7,

- (n)
u [a 3

nj 2

Q.E.D.

In domains with piecewise smooth boundary, the degree of
generalized harmonic polynomial approximation may be limited by a
lack of smoothness in the solution near the corners. However, if
the corners are analytic corners and the solution is analytic on
each -of the'adjacenf boundary arcs, then the asymptotic expansions

of §5 suggest the use of the singular particular solutions
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jtka
' {}ﬁ} Vi(z - Zq) 4 Z(Q)]

which have the correct singularities near the corners. (In practice,

z(q)'= z or z(q) =z, but we shall not make any such assumptions on

z(‘l) )

Theorem 6.3: Let D be a simply connected domain of class R(u)
(0 < p < 1) with analytic corners (zl, al), ...,'(zq, aq) and let
u e c?*¥(puUsp - {2,002, D) N PA(zy500s2) (@ + Y > 0) satisfy

Lu = 0 in D, Fix z (1),...,z(q) e DU3D. Then for any € > 0

0%
there exists a constant K(¢) independent of n such that
(@) (@) () (n)

RS b(n?m(m (n)“u a2y o5 v aggiePgicd v

23 k| KJk’ 2k

I

E (u)

< K(e)
—-nu(p+Y)-€

where

~ o (o) . (n ) (n) @)
un[aj ,bj 2 K’ RJk]

[ ]=]

Lo {agn)Ré V[zj,zO] +lb§n)1m V[zj;zo]}
» j+ko
+ g ) {aé?i Re V[(z-z,) 2;2(2)]
2=1 jtkog<pty 3
3,k>0
jtka

+ bé?i In V[(z-2,) %, (0,

Proof :

We first prove that u ¢ CO’B(DUBD) with B8 min(Y,al,...,aq) S0
that we may apply Theorem 5.2 (notevthat 0 <B<1l). By assumption,
u € Cp’Y(DUBD - {zl,...,zq}) whence u € CO’S(DUBD - {zl,...,zq}).

From Lehman's Theorem, u has a differentiable asymptotic expansion
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of order B near each analytic corner z,:

u(z) = u(zz) + O(IZ - zllB).

Differentiating,
Ju B-1 du _ -1
'a-z—= 0(]2— Z,Q,l ), ;_;_'—O(lz— Zzl ).

For 6, > 0 sufficiently small, the domain D, = {z e D||z - zzl < 8,1

% 2

is a simply connected domain of class R and -

u T B-1
v (2) f_Kzlz zzi < Kzrl(z)
Y ze¢ Dz
u g-1 B-1
— (@) = Kgllz - le = Kg'rg,(z)
2z
where r_(z) = min lt - zl. Since
- 2
tsaDl
z —
- u(z) = u(zz) + fz uz(t)dt + u;(t)dt,
q

we have u ¢ CO’B(DanDl) by Lemma 4.3. Therefore u ¢ CO’B(DUSD).

]

Let vq u and let ¢q be the associated analytic function

()

corresponding to the origin point z

(q)
= Re V 52 .
v [¢q, ]
By assumption, vq € Cp’Y(DUBD - {zl,...,zq}) whence

¢q e CP»Y(DUBD - {zl,..L,zq}). By Theorem 5.2,'¢q'has a (p+l)-times
differentiable asymptotic expansion of order p + y:
‘ j+kaq o
¢q(z) = z c jk(z—zq) + O(Iz-qu Yy

j+kaq<p+Y
3,k>0

= Pq(z) + 0(]2 - zq[p+Y).
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Let v = Re V[P §z(q)] and set Vv =v -v . Since P_ is analytic
q q q-1 q a q

in DUSD - {zq}, we have Pq € CP’Y(DUBD - {zl,...,zq}) and

-~

Y E’PA(zl,...,zq_l). Thus ¢q - Pq e cP*Y(DUsD - {z;,...,zq}) and

v._q € PA(Zl""’Zq~1)' Since

afa oz - 2 |7t
dz{dzp C Pq)}(z) o(lz = 2 |7,

: P
we have 4 (¢ -P) € CO’Y(D UsD ) for & > 0 sufficiently small
A B 1 q q

' ; P
by the argument used above. Therefore il;-(¢q - Pq) £ CO’Y(DUBD
dz

- _ PsY -
{zl,...,zqfl})>or ¢q Pq e ¢V (DULD {zl,...,zq_l}) whence

P,Y -
Ve-1 e C°'(DUD - {zl,...,zq_l}).
.By induction, there exist expansions
jtko
L
P,(z) = ) c,..(z = 2))
% j+ka£<p+y 23k %
3,k20
such that

vgEu- § Re V[P, ;2%1 e cP*Y(DUBD).
5=1 %

Letting ckjk = azjk - ibljk’

' j+ko .

Vg = u - 2 {al.kRe Vi(z - zz) 2; z(z)]
2=1 jtka, <pty J )

j k>0

j+ka

2, (2
+ szkIm Vi(z zg) sz 1}

Therefore, épplying Theorem 6.2 to Voo
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(q)

min

9 .

(n) b(n) (n) (n)
j 3 £ k’ £Jk
min ”u u_[a (n)
a(n) b(n) "nt%3
j 73
min v - u [a(n)
(n) ., () 0 J
a sb.
J h|

b(n)
j

’

lu - 5 @@ ,p® @ @
nj

D5 30510 Pek

’azjk’szk]“DUaD

(n) K(¢g)
) 1]
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]“DUBD

pU3D = u(p+y) e’

Q.E.D.
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§7. The Boundary Value Problem
The method of particular solutions applied to the boundary
value problem

Lu = Au + aux‘+ buy +cu=0 inD, wu=f on 3D (BVP)

approximates the solution by a linear combination of particular
solutions fitted to the boundary data. In this section, we shall
relate the smoothness of the boundary and of the boundary data to
the smooﬁhness of the solution, and, applying results on the
approximation problem, we shall establish the asymptotic rate of
convergence of the method.

Let D be a simply connected domain of class R and let

u € C(DU3D) be a solution of the boundary value problem (BVP).

Theorem 7.1: If 3D ¢ Cmax(p’l)’Yand fe Cp’Y(BD), then u ¢ CP’Y(DUBD)
(0 <y <1

Vekua [16] proves the case p = 0 using the theory of singular
integral equations, and the case p = 1 using the result for p = 0;
the case p > 2 is an immediate consequence of the Schauder Boundary
Estimates.

Combining this result with our results on the approximation

problem, we have

Theorem 7.2: If 3D ¢ Cmax(p,l),y and f € Cp’Y(aD), then for any

€ > 0 there exists a constant K(g) independent of n such that

E (u) = min lu - u I 5_-E£§l—
. n a(n) b(ﬂ) n' ' DU3D LPHY-€
i’

where
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{a;n)Re V[zj;zol + bgn)lm V[zj;zol}.

Proof :
By Theorem 7.1, u ¢ Cp’Y(DUaD). Since the boundary is smooth,
the domain D is of class R(1l) and the result follows from Theorem

6.2,
Q. E. D.

The method of particular solutions for the boundary value
problem (BVP) approximates the solution u by the linear combination
L]

of particular solutions u fitted to the boundary data f (Schryer

[14]). If c(x,y) < O in D, then by the maximum principle,

lu - un“DUaD = |l - un”aD = £ - unuaD

S0 fhat
E (f) = min ”f - u ” = min ”u - u ” _<_ _._I.<.(.€_2.._
n @) . (n) n'"'3D @) . (n) n' 'DU3D oPHY-€
aj ’bj aj ,bj

under the assumptions of Theorem 7.2. Therefore, if the coefficients
NORNS
J J

convergence for the method of particular solutions is at least

are chosen to minimize ”f - un” D* then the rate of

)

o~ (p+Y)+s) .

For domains with only piecewise smooth boundary, these results
do not apply. However, if the corners are analytic corners and the
boundary data is analytic on each of the adjacent boundary arcs, then
wé may treat the corners by introducing the singular particular
solutions
j+ka

{%i V[(z—zz) z; z(z)]-
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" Theorem 7.3: Let D be a simply connected domain of class R(u)

(0 <u<1) with 3D € Cmax(p,l),y except at analytic corners (zl,al),

...,(zq,aq) and let £ e CP?Y(aD - {zl,...,zq}) n PA(zl,...,zq).
Fix Zgs z(l), cees z(Q) e DUSD and let

u =
n

I o~
o

; {agn)Re V[zj;zo] + b§n)1m V[zj;zo]}
jtka

+ § z {af}l)( Re V[(z - Zl) 2;2(2)]
%=1 jt+ko, <pty J

3,k>0

j+ka

+ bg.ll)( In VI(z - 2,) 2,071,

Then for any € > 0 there exists a constant K(e) independent of n

such that
- . - R(e)
E (u) = min ”u - u_|| < —
puUsD — +v) -
T @@ @) @) . ot (PF1)-E
3’73 *Pagk’egk
Proof:

For any 6§ > 0 sufficiently small, we can smoothly round each

analytic corner (zz,az) of D (as shown in the figure) to form a

simply connected sub-domain D with 3D, € Cmax(p,l),y:

From Lehman's Theorem, u has a (p+l)-times differentiable asymptdtic

expansion of order 0:
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u(z) = u(zz) + 0(|z - zzlo).

<

Differentiating,

] +ku

3
k

3 (z) = O(lz - zzl P ), j+k=rptl, J, k >0
¥ x0Yy ‘ _

so that there exists a constant K2 such that

j+k K

3" u £ -p-1
T | g g s kPTG e - g 138
¢ x 3y |z - zzl

for § > 0 sufficiently small. From thi; we conclude that

u e Cp’Y({z € BDG Iz - zzl < 38}) for each analytic corner (Zg’az)‘
Let f6 denote the restriction of u to aDa. By assumption,

u=fondDand u ¢ cP+Y (o - {zl,...,zq}). Thus f6 € Cp’Y(BDG).

But u is a solution of the boundary value problem

Lv = 0 in D6; u = f6 on BD6

whence u ¢ Cp’Y(DG) by Theorem 7.1. Since every compact subset of

pusD - {z ,zq} is contained in D for § > 0 sufficiently small,

100"
we have u ¢ cP?Y(pUD - {zl,...,zq}) by definition and the result
follows immediately from Theorem 6.3.
Q.E.D.
The rate of convergence of the analogous method of particular

-U(P+Y)+€).

solutions is O(n The analysis is the same as for the case

of domains with smooth boundary.
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§8. The Eigenvalue Problem
The method of particular solutions has been applied to the

membrane eigenvalue problem

Au +.Au = 0 in D; u=0 on D (EVP)
with excellent results (Fox, Henrici, aﬁd Moler [7]). In this
section we shall study a methbd implicit in the work of Bergman [3]
‘for which the degree of approximation is at least O(n_u(p+f)+€).

If A* and u* are an approximate eigenvalue and eigenfunction
P ’

approximate in the sense that they satisfy the differential equation

Au* + A*u* = 0 din D
but not the boundary conditions, then a bound on the relative error

-in A* is given by the following Theorem:

Theorem 8.1 (Moler and Payne [12]): Let w satisfy

Aw = 0 din D, w = u¥ on 9D.
1f

[l ]|
6o 2D

NU*“?_ D

then there exists an eigenvalue X such that

|a% - 1] < €|&].

To apply this bound, in practice, the calculation of “w“2 D

b
would involve the solution of a boundary value problem. However,
using the following Theorem, we can give a somewhat weaker bound

depending directly on the approximate eigenvector u*,

Theorem 8.2 (Bramble and Payne [6]): There exists an explicitly

computable, domain-dependent constant KD such that
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el 5 < Kplivll, 5o

for every w satisfying Aw = 0 in D.

Corollary: If

_plherlly o

ol

€

then there exists an eigenvalue X such that

|a - X] < ¢]4].

Proof:

If w satisfies Aw = 0 in D, w = u* on 3D, then

lly il L gl

[lal 2.0 -

1
”u*uz,b : “u*llz D

and the result follows from Theorem 8.1.
Q.E.D.

The Corollary suggests a method for finding approximate eigen-

values. Given A, let the corresponding approximate eigenfunction be

n .
YA ! {a§n’A)Re VA[ZJ;ZO] + b;n’A)Im Vl[zj;zo]}
’ j=0

where Vl is the integral operator associated with the equation

LAu = Au+ Au = 0 in D,

e (%)
and the coefficients agn,l)’ b§n,k) are chosen to minimize the

ratio

(*) The minimization of the ratio of two positive definite
quadratic forms in the coefficients also arises in the Rayleigh-
Ritz variational approximation to the eigenvalue problem. However,
there the minimum ratio is an approximate eigenvalue rather than a

measure of accuracy.
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KD”un,AHZ,éD -

““n,xnz ;D

Then the minimum value

| el
en(l) - min KD n,A'2,3D

NCBVINCEY “%,x”z,n
J J

is a continuous function of A; and, if sn(k) < 1, then there exists
an eigenvalue A such that

A -] < en(l)lil-

Moreover, if en(k) is "small", then A is “close" to X. Thus we
are lead to the search for local minima of sn(l) as a method for

finding approximate eigenvalues.

max (p,1),y

Theorem 8.3: Let 3D € C Then there exist local minima

A* for which
n

K'(e)
* S AE
sn(ln) f-np+y—€

for any € > 0, where the constant K'(€) is independent of n.

Thus the degree of approximation is at least O(n-(p+Y)+€).

Proof:
Lo 3 L S K'(e)
We shall show that if A is an eigenvalue, then £ (}) < ——=.
n "np+y-€

The result follows from the continuity of En(A).

Let u ¢ C(DU3D) be the corresponding normalized eigenvector
Au+ fu =0 in D, ”u”2,D = 1.

By Theorem 7.2, for any € > 0O there exists a constant K(€) independent

of n such that




K(e)

lhu - un”DUE)D = _pHy-€

where u is the generalized harmonic polynomial of best approxi-

mation to u. Letting AD denote the area of D and RD the length

of 3D,
| | VATK ()
bl 2 Bully = s = wll, 23 = B e =l - nil'iy-g
and
' ' o K(e)
lhaglly, o < 725 ol = Ay e = ol < PHr-¢
so that
/i; K(e)
‘ )
e () i-KD“unHZ,BD < nPtY € < g;(fl
" e, T Ay ke T
1rlp+y-~£-2
for n sufficiently large.
. Q.E.D.

For domains with analytic corners, the inclusion of singular
particular solutions gives an analogous method with degree of

convergence at least O(n-u(p+Y)+€):

Theorem 8.4: Let D be a simply connected domain of class R(u)

(0 < qu < 1) with 3D ¢ Cmax(p,l),y except at analyticvcorners

. 1
(zl,al), ceny (zq,aq). Fix zo, z( ), ey z(q) € DU3D and let
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q ‘ jtka
~ ‘ (n,)) L. (L)
u = z z (a2 Re V. [(z2 - 2 ) sz 7]
n,A . 4=1 j+ka2<p+y Lik A L
j,k>0
. j+ka
(n,}2) %, (%)
+ b%jk Im VX[(Z - zg) sz 71}
n A
(n,)) j. (n,)) i,
+ ko {aj Re VA[Z ,zo] + bj Im VA[Z ,zO]}.
Set
S
en(k) = min —— .
S @) @) agn,n,bjgn,x) [N P

393k’ &ik 7]

Then there exist local minima i: for which

~ vk %' (2)
e, () = npH)-E

for any € > 0, where the constant K'(e) is independent of n.

Proof:
The proof is exactly the same as the proof of the preceding

rem 7.3 is used in place of Theorem 7.2.

Theorem except that Theo
Q.E.D.
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