
Yale University
Department of Computer Science

Fast Computation by Population Protocols With a Leader

Dana Angluin James Aspnes David Eisenstat

YALEU/DCS/TR-1358
May 2006



Fast Computation by Population Protocols With a Leader

Dana Angluin∗ James Aspnes∗† David Eisenstat‡

Abstract

Fast algorithms are presented for performing computations in a probabilistic population model. This
is a variant of the standard population protocol model—in which finite-state agents interact in pairs
under the control of an adversary scheduler—where all pairs are equally likely to be chosen for each
interaction. It is shown that when a unique leader agent is provided in the initial population, the popu-
lation can simulate a virtual register machine in which standard arithmetic operations like comparison,
addition, subtraction, multiplication, and division can be simulated in O(n log4 n) interactions with
high probability. Applications include a reduction of the cost of computing a semilinear predicate to
O(n log4 n) interactions from the previously best-known bound of O(n2 log n) interactions and simula-
tion of a LOGSPACE Turing machine using the same O(n log4 n) interactions per step. These bounds
on interactions translate into O(log4 n) time per step in a natural model in which each agent participates
in an expected Θ(1) interactions per time unit. The central method is the extensive use of epidemics
to propagate information from and to the leader, combined with an epidemic-based phase clock used to
detect when these epidemics are likely to be complete.

1 Introduction

The population protocol model of Angluin et al. [AAD+04] consists of a population of finite-state agents
that interact in pairs, where each interaction updates the state of both participants according to a transition
function based on the participants’ previous states and the goal is to have all agents eventually converge
to a common output value that represents the result of the computation, typically a predicate on the initial
state of the population. A population protocol that always converges to the correct output is said to perform
stable computation and a predicate that can be so computed is called stably computable.

In the simplest version of the model, any agent may interact with any other, but which interaction occurs
at each step is under the control of an adversary, subject to a fairness condition that essentially says that
any continuously reachable global configuration is eventually reached. The class of stably computable
predicates in this model is now very well understood: it consists precisely of the semilinear predicates
(those predicates on counts of input agents definable in first-order Presburger arithmetic [Pre29]), where
semilinearity was shown to be sufficient in [AAD+04] and necessary in [AAE06]. However, the fact that
a protocol will eventually converge to the correct value of a semilinear predicate says little about how long
such convergence will take.

One fundamental measure of convergence is the total number of interactions until all agents have the cor-
rect value, considered as a function of n, the number of agents in the population. Assuming that interactions
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may occur in parallel, we are also interested in related measures of time in which each agent participates in
Θ(1) interactions per time unit and time is asymptotically equal to the number of interactions divided by n.

To bound these measures, it is necessary to place further restrictions on the adversary: a merely fair
adversary may wait an arbitrary number of interactions before it allows a particular important interaction to
occur. In the present work, we consider the natural probabilistic model, proposed in [AAD+04], in which
each interaction occurs between a pair of agents chosen uniformly at random. In this model, it was shown
in [AAD+04] that any semilinear predicate can be computed in Θ(n2 log n) expected interactions using a
protocol based on leader election in which the leader communicates the outcome by interacting with every
other agent. Allowing answers to be incorrect with inverse polynomial probability, protocols also were given
to simulate randomized LOGSPACE computations, with polynomial slowdown.

We give a new method for the design of probabilistic population protocols based on controlled use of
self-timed epidemics to disseminate control information rapidly through the population. This method or-
ganizes a population as an array of registers that can hold values linear in the size of the population. The
simulated registers support the usual arithmetic operations, including addition, subtraction, multiplication,
division, and comparison, with implementations that complete with high probability in O(n log4 n) interac-
tions and polylogarithmic time per operation. As a consequence, any semilinear predicate can be computed
without error by a probabilistic population protocol that converges in O(n log4 n) interactions with high
probability, and randomized LOGSPACE computation can be simulated with inverse polynomial error with
only polylogarithmic slowdown.

However, in order to achieve these low running times, it is necessary to assume a leader in the form
of some unique input agent. This is a reasonable assumption in sensor network models as a typical sensor
network will have some small number of sensors that perform the specialized task of communicating with the
user and we can appoint one of these as leader. If a leader is not provided, it is in principle possible to elect
one; however, the best known expected time for leader election in a population protocol is still the Θ(n2)
interactions or Θ(n) time of a naive protocol in which candidate leaders drop out only on encountering other
leaders. There must also be a way to reinitialize the simulation protocol once all but one of the candidates
drops out. We discuss these issues further in Section 8.

In building a register machine from agents in a population protocol, we must solve many of the same
problems as hardware designers building register machines from electrons. Thus the structure of the paper
roughly follows the design of increasing layers of abstraction in a CPU. We present the underlying physics
of the world—the population protocol model—in Section 2. Section 3 gives concentration bounds on the
time to propagate the epidemics that take the place of electrical signals and describes the phase clock used to
coordinate the virtual machine’s instruction cycle. Section 4 describes the microcode level of our machine,
showing how to implement operations that are convenient to implement but hard to program with. More
traditional register machine operations are then built on top of these microcode operations in Section 5,
culminating in a summary of our main construction in Theorem 11. Applications to simulating LOGSPACE
Turing machines and computing semilinear predicates are described in Section 6 and Section 7. Some
directions for future work are described in Section 8.

Many of our results are probabilistic, and our algorithms include timing parameters that can be used to
adjust the probability of success. We say that a statement holds with high probability if for any constant c
there is a setting of the timing parameters that cause the statement to hold with probability at least 1− n−c.

1.1 Related work

The population protocol model has been the subject of several recent papers. Diamadi and Fischer intro-
duced a version of the probabilistic model to study the propagation of trust in a social network [DF01],

2



and a related model of urn automata was explored in [AAD+03]. In the simplest form of the model, any
agent may interact with any other, but variations of the model include limits on which pairs of agents may
interact [AAD+04,AAC+05,AAD+06], various forms of one-way and delayed communication [AAER05],
and failures of agents [DGFGR06]. The properties computed by population protocols have also been ex-
tended from predicates on the initial population to predicates on the underlying interaction graph [AAC+05],
self-stabilizing behaviors [AAFJ05] and stabilizing consensus [AFJ06].

Similar systems of pairwise interaction have previously been used to model the interaction of molecules
in solution and the propagation in a human population of rumors or epidemics of infectious disease [Bai57,
DK65, Gil92]. One distinction in the literature on epidemics is whether individuals are removed (for exam-
ple, by quarantine) from the population after they become infectious, thus becoming neither infectious nor
susceptible to infection. The epidemics we construct are of the simple type, in which an infectious agent
remains infectious until it receives a control signal to the contrary.

Birman et al. [BHO+99] introduced, analyzed and implemented a probabilistic bimodal multicast pro-
tocol based on gossip protocols and the mathematics of epidemics. In the simplest form of the protocol, in
each of R rounds, each process that receives a gossip message for the first time sends it to a random subset
of other processes (chosen by flipping a coin of bias β for each other process) and then removes itself from
the protocol. The full analysis considers process and message delivery failures, and gives a recursive method
of calculating a bound on the probability of failure of the multicast.

The notion of a “phase clock” as used in our protocol is common in the self-stabilizing literature,
e.g. [Her00]. There is a substantial stream of research on building self-stabilizing synchronized clocks
dating back to to the work of Arora et al. [ADG91]. Recent work such as [DW04] shows that it is possi-
ble to perform self-stabilizing clock synchronization in traditional distributed systems even with a constant
fraction of Byzantine faults; however, the resulting algorithms require more network structure and compu-
tational capacity at each agent that is available in a population protocol. An intriguing protocol of Daliot et
al. [DDP03] constructs a protocol for the closely-related problem of pulse synchronization inspired directly
by biological models. Though this protocol also exceeds the finite-state limits of population protocols, it
may be possible to construct a useful phase clock for our model by adapting similar techniques.

2 Model

Because we consider only the all-pairs interaction graph, we can simplify the general definition of a proba-
bilistic population protocol as follows. A population protocol consists of a finite set Q of states, of which
a nonempty subset X are the initial states, a deterministic transition function (a, b) 7→ (a′, b′) that maps
ordered pairs of states to ordered pairs of states, and an output function that maps states to an output alpha-
bet Y . The population consists of agents numbered 1 through n. A configuration C is a function from
the population to states. C can reach C ′ in one interaction, denoted C → C ′, if there exist distinct agents
i and j such that C(i) = a, C(j) = b, the transition function specifies (a, b) 7→ (a′, b′) and C ′(i) = a′,
C ′(j) = b′ and C ′(k) = C(k) for all k other than i and j. In this interaction, i is the initiator and j is the
responder. An execution is a sequence C1, C2, . . . of configurations such that for each i, Ci → Ci+1. For
a probabilistic population protocol, we stipulate a particular probability distribution over executions from
a given configuration C1 as follows. We generate Ck+1 from Ck by drawing an ordered pair (i, j) of agents
independently and uniformly, applying the transition function to (Ck(i), Ck(j)), and updating the states of
i and j accordingly to obtain Ck+1. To extend our results to apply to time in a parallel model, we assume
that interactions are triggered by a Poisson process with uniform rate Θ(1/n) for each possible interaction;
this yields an average of Θ(1) interactions per agent per time unit and justifies the assumption that with high
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probability, time is simply number of interactions divided by n.

3 Tools

Here we give the basic tools used to construct our virtual machine. These consist of concentration bounds
on the number of interactions needed to spread epidemics through the population (Section 3.1), which are
then used to construct a phase clock that controls the machine’s instruction cycle (Section 3.2).

3.1 Epidemics

By a one-way epidemic we denote the population protocol with state space {0, 1} and transition rule
(x, y) 7→ (x,max(x, y)). Interpreting 0 as “susceptible” and 1 as “infected,” this protocol corresponds
to a simple epidemic in which transmission of the infection occurs if and only if the initiator is infected and
the responder is susceptible. We wish to show that the time for the epidemic to finish is Θ(n log n) with
high probability.

To do so, we reduce the running time of the epidemic protocol to the running time of the well-known
coupon collector problem, in which balls are thrown uniformly at random into bins until every bin contains
at least one ball. We show the following bounds on the time to fill the last k of n bins based on an occupancy
bound of Kamath et al. [KMPS95].

Lemma 1 Let S(k, n) be the time to fill the last k of n bins in the coupon collector problem. Then for any
fixed ε > 0 and c > 0, there exist positive constants c1 and c2 such that for sufficiently large n and any
k > nε, c1n ln k ≤ S(k, n) ≤ c2n ln k with probability at least 1− n−c.

Proof: Observe that each step of collecting a specific k of n coupons can be split into (a) choosing to
pick one of the k coupons with probability k/n and (if (a) is successful) (b) choosing the specific coupon to
pick. The number of steps of type (b) before all coupons are collected is exactly S(k, k). It is easy to see that
E[S(k, n] = n

k E[S(k, k)] and a simple application of Chernoff bounds shows that S(k, n) = Θ(n
k S(k, k))

with high probability (assuming k is polynomial in n).
We will now show that S(k, k) = Ω(k log k) with high probability. Theorem 2 of [KMPS95] states that

with m balls tossed uniformly into n bins,

Pr[|Z − µ| ≥ ρµ] ≤ 2 exp

(
−

ρ2µ2(n− 1
2)

n2 − µ2

)
,

where Z is the number of empty bins and µ = E[Z] = n(1− 1/n)m = Θ(ne−m/n).
Our goal is to bound the probability that Z = 0, i.e. that all coupons have been collected at some time m.

Substitute n = k and m = (1/4)k ln k in (3.1). This gives µ = Θ(ke−(1/4) ln k) = Θ(k ·k−1/4) = Θ(k3/4).
For Z to equal 0 we must have |Z − µ| ≥ µ or ρ = 1. So

Pr[Z = 0] ≤ 2 exp

(
−

µ2(k − 1
2)

k2 − µ2

)

= 2 exp

(
−Θ

(
k3/2k

k2

))
= 2 exp

(
−Θ

(
k1/2

))
.
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For k polynomial in n we get an exponentially small probability that S(k, k) ≤ 1
4k ln k, which tells us

that S(k, n− 1) = Ω(n−1
k · k ln k) = Ω(n ln k) with high probability.

For the upper bound, if m = ak ln k and n = k then E[Z] = k(1− 1/k)ak ln k ≤ ke−a ln k = k1−a can
be made an arbitrarily small polynomial in n by choosing a sufficiently large, and by Markov’s inequality
this bounds Pr[Z ≥ 1].

Let T (k) denote the expected number of interactions to infect the last k agents in a one-way epidemic.
We bound E[T (k)] as follows.

E[T (k)] =
∑
i=1,k

n(n− 1)/i(n− i) = (n− 1)(H(k) + H(n− 1)−H(n− 1− k)).

If k ≤ n/2 then (H(n− 1)−H(n− 1− k)) is bounded by ln 2 and in this case,

(n− 1)H(k) ≤ E[T (k)] ≤ (n− 1)(H(k) + ln 2).

To get concentration bounds for T (k), we now reduce the time for an epidemic to the time for coupon
collector. The intuition is that once half the agents are infected, we have a coupon collector problem (collect-
ing susceptible responders) that is delayed by at most a factor of two by occasionally choosing uninfected
initiators. When fewer than half the agents are infected, we use the symmetry of the waiting times for each
new infection to apply the same bounds.

Lemma 2 Let T (k) be number of interactions before a one-way epidemic starting with a single infected
agent infects k agents. For any fixed ε > 0 and c > 0, there exist positive constants c1 and c2 such that for
sufficiently large n and any k > nε, c1n ln k ≤ T (k) ≤ c2n ln k with probability at least 1− n−c.

Proof: We start by observing some useful symmetry properties. The probability that an interaction
produces i + 1 infected nodes starting from i infected nodes, which is i(n−i)

n(n−1) , is also the probability that
an interaction produces n − i + 1 infected nodes starting from n − i infected nodes. It follows that the
distribution of T (i+1)−T (i) is identical to the distribution of T (n− i+1)−T (n− i) and in general that
the distribution of T (k) = T (k)− T (1)—the time to infect the first k − 1 susceptibles—is identical to that
of T (n)− T (n− k + 1)—the time to infect the last k − 1.

Next we’ll bound the time to infect the last k susceptibles using Lemma 1. Consider each step of the
epidemic process as consisting of (a) a random choice of whether or not the initiator is infected and (b) a
random choice of a responder. Then step (b) makes progress with probability k/(n − 1), exactly the same
probability as in the coupon collector problem with k remaining coupons out of n− 1. Step (a) corresponds
to a random choice (with probability (n − k)/n lying between 1/2 and 1) of whether to draw a coupon or
not. A straightforward Chernoff bound argument applied to (a) then shows that the time to infect the last k
susceptibles lies with high probability between S(k, n− 1) and 2S(k, n− 1) where S(k, n− 1) is the time
to collect the last k of n− 1 coupons. From Lemma 1, we have that S(k, n− 1) lies between c1(n− 1) ln k
and c2(n− 1) ln k with high probability, which simplifies to Θ(n ln k) as claimed.

3.2 The phase clock

The core of our construction is a phase clock that allows a leader to determine when an epidemic or sequence
of triggered epidemics is likely to have finished. In essence, the phase clock allows a finite-state leader to
count off Θ(n log n) total interactions with high probability; by adjusting the constants in the clock, the
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resulting time is enough to outlast the c2n lnn interactions needed to complete an epidemic by Lemma 2.
Like physical clocks, the phase clock is based on a readily-available natural phenomenon with the right time
constant. A good choice for this natural phenomenon, in a probabilistic population protocol, turns out to be
itself the spread of an epidemic. Like the one-way epidemic of Section 3.1, the phase clock requires only
one-way communication.

Here is the protocol: each agent has a state in the range 0 . . .m− 1 for some constant m, that indicates
which phase of the clock it is infected with. Up to a point, later phases overwrite earlier phases: a responder
in phase i will adopt the phase of any initiator in phases i + 1 mod m through i + m/2 mod m, but will
ignore initiators in other phases. This behavior completely describes the transition function for non-leader
responders.

New phases are triggered by a unique leader agent. When the leader encounters an initiator with its own
phase, it spontaneously moves to the next phase. The case where a leader in phase i responds to an initiator
in phase i + 1 mod m through i + m/2 mod m does not arise in the normal operation of the phase clock.
We can treat such an occurrence as signaling an error.

A round consists of m phases. A new round starts when the leader enters phase 0.

3.2.1 Analysis

We wish to show that for appropriate constants c and m, any epidemic (running in parallel with the phase
clock) that starts in phase i completes by the next occurrence of phase (i+c) mod m with high probability.
To simplify the argument, we first consider an infinite-state version of the phase clock with state space
Z× {leader, follower} and transition rules

(x, b), (y, follower) 7→ (x, b), (max(x, y), follower)
(x, b), (x, leader) 7→ (x, b), (x + 1, leader)
(x, b), (y, leader) 7→ (x, b), (y, leader) [y 6= x]

We assume the initial configuration (at interaction 0) has the leader in state 0 and each follower in state
−1. This infinite-state protocol has the useful invariant that every agent has a phase less than or equal to that
of the leader. We define phase i as starting when the leader agent first adopts phase i.

Lemma 3 Let phase i start at interaction t. Then there is a constant a such that for sufficiently large n,
phase i + 1 starts before interaction t + an lnn with probability at most n−1/2.

Proof: Call an agent infected if and only if its phase is at least i. At the start of phase i, we have exactly
one infected agent, and an examination of the infinite-state transition rule reveals that infection spreads as
in a standard one-way epidemic.

We wish to bound the probability that the leader encounters an infected initiator by time t+an lnn. We
can do so using the following bit of trickery: consider an alternative version of the epidemic where at the
start of phase i it is not the leader who is infected but a follower. In this modified epidemic the distribution
on the number of infected agents after each interaction is identical to the original protocol, but as there is one
more infected follower the probability that the leader encounters an infected agent is only increased and thus
the probability that the leader has not encountered an infected follower by time t + an lnn has decreased.
But we can easily detect in the modified epidemic whether the leader has encountered an infected follower:
it has done so if and only if it is infected itself.

Now observe from Lemma 2 that there is a constant c1 such that the probability that more than n1/4

(say) agents are infected by time t + c1n lnn1/4 = t + (c1/4)n lnn is at most n−1. By symmetry, if only
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n1/4 agents are infected, the probability that the leader is one of this agents is bounded by n−3/4. So the
probability that the leader is infected at time t + an lnn when a = c1/4 is at most n−1 + n−3/4 ≤ n−1/2.

Corollary 4 Let phase i start at interaction t. Then for any c > 0 and d > 0, there is a constant k such that
for sufficiently large n, phase i + k starts before t + dn lnn interactions with probability at most n−c.

Proof: Call phase j short if it finishes within an lnn interactions, where a is as in Lemma 3. For any
fixed odd k, the probability that more than half of the k phases i through i + k − 1 are short is bounded by
2k−1(n−1/2)(k+1)/2 = 2k−1n−(k+1)/4 ≤ n−k/8 when n > 28.

If fewer than half the phases are short, the other k/2 or more phases must take at least an lnn interactions
each, for a total of at least a(k/2)n lnn interactions. Setting k = max(8c, 2d/a) then gives the claimed
bound.

Theorem 5 For any fixed c, d > 0, there exists a constant m such that, for sufficiently large n, the finite-
state phase clock with parameter m, starting from an initial state consisting of one leader in phase 0 and
n − 1 followers in phase m − 1, completes nc rounds of m phases each, where the minimum number of
interactions in any of the nc rounds is at least dn lnn with probability at least 1− n−c.

Proof: The essential idea is to apply Corollary 4 twice: once to show that the time between phase i + 1
and phase i + m/2 is long enough for any old phase-i agents to be eaten up (thus avoiding any problems
with wrap-around), and once to show the lower bound on the length of a round.

To show that no agent is left behind, consider, in the infinite-state protocol, the fate of agents in phase i
or lower once at least one agent in phase i + 1 or higher exists. If we map all phases i or lower to 0 and all
phases i + 1 or higher to 1, then encounters between agents have the same effect after the mapping as in a
one-way epidemic. By Lemma 2, there is a constant c2 such that all n agents are infected by time c2n lnn
with probability at least 1− n−3c. By Corollary 4, there is a constant k1 such that phase i + k1 + 1 starts at
least c2n lnn interactions after phase i + 1 with probability at least 1− n−3c. Setting m > 2(k1 + 1) then
ensures that all phase i (or lower) agents have updated their phase before phase i + m/2 with probability
at least 1 − 2n−3c. If we sum the probability of failure over all mnc phases in the first nc rounds, we get a
probability of at most 2mn−2c that some phase i agent survives long enough to cause trouble.

Assuming that no such trouble occurs, we can simulate the finite-state phase clock by mapping the
phases of the infinite-state phase clock mod m. Now by Corollary 4 there is a constant k2 such that the
number of interactions to complete k2 consecutive phases is at least dn lnn with probability at least 1−n−3c.
Setting m ≥ k2 thus gives that all nc rounds take at least dn lnn interactions with probability at least
1 − ncn−3c = 1 − n−2c. Thus the total probability of failure is bounded by 2mn−2c + n−2c < n−c for
sufficiently large n as claimed.

3.3 Duplication

A duplication protocol has state space {(1, 1), (0, 1), (0, 0)} and transition rule:

(1, 1), (0, 0) 7→ (0, 1), (0, 1)

with all other encounters having no effect.
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When run to convergence, a duplication protocol starting with a “active” agents in state (1, 1) and the
rest in the null state (0, 0) converges to 2a “inactive” agents in state (0, 1), provided 2a is less than n;
otherwise it converges to a population of mixed active and inactive agents with no unrecruited agents left
in the null state. The invariant is that the total number of 1 tokens is preserved while eliminating as many
double-token agents as possible. We do not consider agents in a (1, 0) state as they can be converted to (0, 1)
immediately at the start of the protocol.

When the initial number of active agents a is close to n/2, duplication may take as much as Θ(n2)
interactions to converge, as the last few active agents wait to encounter the last few null agents. But for
smaller values of a the protocol converges more quickly:

Lemma 6 Let 2a + b ≤ n/2. The probability that a duplication protocol starting with a active agents and
b inactive agents, has not converged after (2c + 1)n lnn interactions is at most n−c.

Proof: Note that 2a + b is the number of agents that will eventually be in a non-null state if the
protocol converges. Under the assumption that 2a + b ≤ n/2, at least half the agents remain in the null
state throughout the protocol. So the probability that a particular active agent is selected as initiator and
encounters a null responder on any given interaction is at least 1

2n . The probability that it never becomes

inactive in 2(c + 1)n lnn interactions is thus (1 − 1/2n)2(c+1)n ln n ≤ exp
(
−2(c+1)n ln n

2n

)
= n−c−1. The

expected number of surviving active agents after 2(c + 1)n lnn steps is thus at most an−c−1 < n−c and the
full result follows from Markov’s inequality.

3.4 Cancellation

A cancellation protocol has states {(0, 0), (1, 0), (0, 1)} and transition rules:

(1, 0), (0, 1) 7→ (0, 0), (0, 0)
(0, 1), (1, 0) 7→ (0, 0), (0, 0)

It maintains the invariant that the number of 1 tokens in the left-hand position minus the number of 1 tokens
in the right-hand position is fixed. It converges when only (1, 0) and (0, 0) or only (0, 1) and (0, 0) agents
remain. We assume that there are no (1, 1) agents as these can be converted to (0, 0) agents at the start of
the protocol. We refer to agents in state (1, 0) or (0, 1) as nonzero agents.

As with duplication, the number of interactions to converge when (1, 0) and (0, 1) are nearly equally
balanced can be as many as Θ(n2), since we must wait in the end for the last few survivors to find each other.
This is too slow to use cancellation to implement subtraction directly. Instead, we will use cancellation for
inequality testing, using duplication to ensure that there is a large enough majority of one value or the other
to ensure fast convergence. We will use the following fact:

Lemma 7 Starting from any initial configuration, with probability at least 1 − n−c, after 4(c + 1)n lnn
interactions a cancellation protocol has either converged or has at most n/8 of each type of nonzero agent.

Proof: Assume without loss of generality that there are at least as many (1, 0) agents as (0, 1) agents.
Pick a particular (0, 1) agent from the initial population and for each t let At be the event that after t
interactions this agent is still in state (0, 1) and there are at least n/8 agents in state (1, 0).
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We will show by induction on t that Pr[At] ≤
(
1− 1

4n

)t. The base case is trivial. For the induction step,
we have Pr[At] = Pr[At|At−1] Pr[At−1] + Pr[At|At−1 = 0]Pr[At−1 = 0] = Pr[At|At−1] Pr[At−1] ≤
Pr[At|At−1]

(
1− 1

4n

)t−1.
Now let us bound Pr[At|At−1]. Since At−1 occurs, after t−1 interactions our target (0, 1) agent has not

yet encountered a (1, 0) agent and there are still at least n/8 surviving (1, 0) agents. The probability that the
target agent and a (1, 0) agent are selected in interaction t is thus at least 1

4n . Thus there is a probability of at
most

(
1− 1

4n

)
that the target agent survives, and we have Pr[At] ≤ Pr[At|At−1]

(
1− 1

4n

)t−1 ≤
(
1− 1

4n

)t.
Setting t = 4(c + 1)n lnn gives Pr[At] ≤ (1− 1

4n)4(c+1)n ln n ≤ exp(−4(c+1)n ln n
4n ) = n−c−1. Taking

a union bound over all (0, 1) agents in the original population shows that with probability at least 1 − n−c

either every (0, 1) agent is gone or there are at most n/8 (1, 0) agents. In the latter case, there are also at
most n/8 (0, 1) agents by the assumption that (1, 0) was not initially in the minority, and this condition is
preserved by the protocol.

3.5 Probing

A probing protocol is used to detect if any agents satisfying a given predicate exists. It uses three states (in
addition to any state tested by the predicate) and has transition rules

(x, y) 7→ (x,max(x, y))

when the responder does not satisfy the predicate and

(0, y) 7→ (0, y)
(1, y) 7→ (1, 2)

when the responder does. Note that this is a one-way protocol.
To initiate a probe, a leader starts in state 1; this state spreads through an initial population of state 0

agents as in a one-way epidemic and triggers the epidemic spread of state 2 if it reaches an agent that satisfies
the predicate.

Lemma 8 For any c > 0, there is a constant d such that for sufficiently large n, with probability at least
1− n−c it is the case that after dn lnn interactions in the probing protocol either (a) there is no agent that
satisfies the predicate and every agent is in state 1, or (b) there is some agent that satisfies the predicate and
every agent is in state 2.

Proof: For case (a), apply Lemma 2. For case (b), apply Lemma 2 first to show that some satisfying
agent is reached and again to show that the resulting 2 epidemic spreads to all agents.

4 Computation by epidemic: the microcode level

In this section, we describe how to construct an abstract register machine on top of a population protocol.
This machine has a constant number of registers each capable of holding integer values in the range 0 to
n, and supports the usual arithmetic operations on these registers, including addition, subtraction, multipli-
cation and division by constants, inequality tests, and so forth. Each of these operations takes at most a
polylogarithmic number of basic instruction cycles, where an instruction cycle takes Θ(n log n) interactions
or Θ(log n) time.
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Instruction Effect on state of agent i

NOOP No effect.
SET(A) Set Ai = 1.
COPY(A,B) Copy Ai to Bi

DUP(A,B) Run duplication protocol on state (Ai, Bi).
CANCEL(A,B) Run cancellation protocol on state (Ai, Bi).
PROBE(A) Run probe protocol with predicate Ai = 1.

Table 1: Instructions at the microcode level.

The simulation is probabilistic; there is an inverse polynomial probability of error for each operation, on
which the exponent can be made arbitrarily large at the cost of increasing the constant factor in the running
time.

The value of each register is distributed across the population in unary. For each register A, every
member i of the population maintains a bit Ai and the value of A is simply

∑
i Ai.

We assume there is a leader agent that organizes the computation; part of the leader’s state stores the
finite-state control for the register machine. We make a distinction between the “microcode layer” of the
machine, which uses the basic mechanisms of Section 3, and the “machine code” layer, which provides
familiar arithmetic operations.

At the microcode layer, we implement a basic instruction cycle in which the leader broadcasts an in-
struction to all agents using an epidemic. The agents then carry out this instruction until stopped by a second
broadcast from the leader. This process repeats until the computation terminates.

To track the current instruction, each agent (including the leader) has a current instruction register in
addition to its other state. These instructions are tagged with a round number in the range 0, 1, 2, where
round i instructions are overwritten by round i + 1 (mod 3) instructions.

The instructions and their effects are given in Table 1. Most take registers as arguments. We also allow
any occurrence of a register to be replaced by its negation, in which case the operation applies to those agents
in which the appropriate bit is not set. For example, SET(¬A) resets Ai, PROBE(¬A) tests for agents in
which Ai is not set, COPY(¬A,B) sets Bi to the negation of Ai, and so forth. We omit describing the
underlying transitions as the details are tedious.

Observe that when the leader updates its own current instruction register, the new value spreads to all
other agents in Θ(n log n) interactions with high probability (Lemma 2). The NOOP, SET, and COPY
operations take effect immediately, so no additional time is required. The PROBE operation may require
waiting for a second triggered epidemic, but the total interactions are still bounded by O(n log n) with high
probability (by Lemma 8). Only the DUP and CANCEL operations may take longer to converge. Because
subsequent operations overwrite each agent’s current instruction register, issuing a new operation has the ef-
fect of cutting these operations off early. But if this new operation is issued Ω(n log n) interactions later, the
DUP operation converges with high probability unless it must recruit more than half the agents (Lemma 6),
and the CANCEL operation either converges or leaves at most n/4 uncancelled values (Lemma 7). Note
that for either operation, which outcome occurred can be detected with COPY and PROBE operations.

If the leader wishes these operations to succeed, it must wait for Ω(n log n) interactions, where the con-
stant is chosen based on the desired error bound. But this can be done using a phase clock with appropriate
parameter (Theorem 5): if it is large enough that both the probability that an operation completes too late
and the probability that some phase clock triggers to early is o(n−2c) per operation, then the total probability
that one of nc operations fails is o(n−c).
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Operation Effect Implementation Notes
Constant 0 A← 0 SET(¬A)

Constant 1 A← 1
SET(¬A)
Aleader ← 1

Assignment A← B COPY(B,A)

Addition A← A + B
COPY(B,X)
DUP(X, A)
PROBE(X)

May fail with X 6= 0 if A + B > n/2.

Multiplication A← kB Use repeated addition. k = O(1)
Zero test A 6= 0? PROBE(A)

Table 2: Simple high-level operations and their implementations. Register X is an auxiliary register.

5 Computation by epidemic: higher-level operations

The operations of the previous section are not very convenient for programming. In this section, we describe
how to implement more traditional register operations.

These can be divided into two groups: those that require a constant number of microcode instructions,
and those that are implemented using loops. The first group, shown in Table 2, includes assignment, addition,
multiplication by a constant, and zero tests. The second group includes comparison (testing for A < B,
A = B, or A > B), subtraction, and division by a constant (including obtaining the remainder). These
operations are described in more detail below.

5.1 Comparison

For comparison, it is tempting just to apply CANCEL and see what tokens survive. But if the two registers A
and B being compared are close in value, then CANCEL may take Θ(n2) interactions to converge. Instead,
we apply up to 2 lg n rounds of cancellation, alternating with duplication steps that double the discrepancy
between A and B. If A > B or B > A, the difference soon becomes large enough that all of the minority
tokens are eliminated. The case where A = B is detected by failure to converge, using a counter variable C
that doubles every other round.

The algorithm is given as Algorithm 1. It uses registers A′, B′, and C plus a bit r to detect even-
numbered rounds.

Lemma 9 Algorithm 1 returns the correct answer with high probability after executing at most O(log n)
microcode operations.

Proof: Observe that A′−B′ is initially equal to A−B, and that the value of A′−B′ is preserved by the
CANCEL operation in step 6. By Lemma 7, if the loop does not terminate with A′ or B′ equal to zero, both
registers hold values of at most n/8. It follows that the addition operations in steps 21 and 22 succeed with
high probability, leaving A′ −B′ = 2i(A−B) after i such doublings. In particular, after dlg ne doublings,
|A′ − B′| ≥ n|A − B|, a contradiction unless A = B. So if the protocol does not terminate before dlg ne
passes through the loop, we have A = B, which is eventually detected after at most 2 lg n passes when C
grows too large. Since there are only O(1) microcode operations per iteration, the claim follows.
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Algorithm 1 Comparison algorithm.
1: A′ ← A.
2: B′ ← B.
3: C ← 1.
4: r ← 0.
5: while true do
6: CANCEL(A′, B′).
7: if A′ = 0 and B′ = 0 then
8: return A = B.
9: else if A′ = 0 then

10: return A < B.
11: else if B′ = 0 then
12: return A > B.
13: end if
14: r ← 1− r.
15: if r = 0 then
16: C ← C + C.
17: if addition failed then
18: return A = B.
19: end if
20: end if
21: A′ ← A′ + A′.
22: B′ ← B′ + B′.
23: end while
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5.2 Subtraction

Subtraction is the inverse of addition, and addition is a monotone operation. It follows that we can imple-
ment subtraction using binary search. Our rather rococo algorithm for computing C ← A − B, given as
Algorithm 2, repeatedly looks for the largest power of two that can be added to the candidate difference C
without making the sum of the difference C and the subtrahend B greater than the minuend A. It obtains
one more 1 bit of the difference for each iteration.

The algorithm assumes A ≥ B. An initial cancellation step is used to handle particularly large inputs.
This allows the algorithm to work even when A lies outside the safe range of the addition operation.

The algorithm uses several auxiliary registers to keep track of the power of two to add to C (this is the
D register) and to perform various implicit sums and tests (as in computing B′ + C + D + D).

Algorithm 2 Subtraction algorithm.
1: A′ ← A.
2: B′ ← B.
3: CANCEL(A′, B′).
4: if B′ = 0 then
5: C ← A.
6: return.
7: end if
8: C ← 0.
9: while A′ 6= B′ + C do

10: D ← 1.
11: while A′ ≥ B′ + C + D + D do
12: D ← D + D.
13: end while
14: C ← C + D.
15: end while

Lemma 10 When A ≥ B, Algorithm 2 computes C ← A−B with high probability in O(log3 n) microcode
operations.

Proof: By Lemma 7, after Line 3 either B′ = 0 or A′ ≤ n/8 with high probability. In the former case
the algorithm returns immediately, so we can safely assume A′ ≤ n/8 for the remainder. This also gives
bounds of n/8 on B′, C, and D, so that the largest sum computed is B′ + C + D + D ≤ n/2, which lies
within the safe addition range.

To show that the algorithm terminates as advertised, observe that each iteration of the outer loop sets
C ← C + D where B′ + C + D ≤ A′ < B′ + C + 2D, from which D is the largest power of two
such that C + D ≤ A′ − B′ = A − B. Thus each iteration of the outer loop adds a distinct 1 bit to
C’s binary representation, and after dlg n/8e such iterations there are no more bits to be added. Since the
inner loop doubles D each iteration, it also runs for at most dlg ne iterations each time it is invoked, for a
total of O(log2 n) lines executed. However, the comparison in Line 11 may take up to O(log n) microcode
operations, so the total cost is O(log3 n) operations as claimed.

13



5.3 Division

Division of A by a constant k is analogous to subtraction; we set A′ ← A and B ← 0 and repeatedly seek
the largest power of two D such that kD can be successfully computed (i.e., does not cause addition to
overflow) and kD ≤ A′. We then subtract kD from A′ and add D to B.

The protocol terminates when A′ < k, i.e. when no value of D works. At this point B holds the quotient
bA/kc and A′ the remainder A mod k. Since each iteration adds one bit to the quotient, there are at most
O(lg n) iterations of the outer loop, for a total cost of O(lg4 n) microcode operations (since each outer loop
iteration requires one subtraction operation).

One curious property of this protocol is that the leader does not learn the value of the remainder, even
though it is small enough to fit in its limited memory. If it is important for the leader to learn the remainder, it
can do so using k addition and comparison operations, by successively testing the remainder A′ for equality
with the values 0, 1, 1 + 1, 1 + 1 + 1, . . . , k. The cost of this test is dominated by the cost of the division
algorithm.

5.4 Other operations

Multiplication and division by constants give us the ability to extract individual bits of a register value A.
This is sufficient to implement basic operations like A← B ·C, A← bB/Cc in polylogarithmic time using
standard bitwise algorithms.

5.5 Summary

Combining the results of the preceding sections gives:

Theorem 11 A probabilistic population can simulate steps of a virtual machine with a constant number of
registers holding integer values in the range 0 to n, where each step consists of (a) assigning a constant 0 or
1 value to a register; (b) assigning the value of one register to another; (c) adding the value of one register to
another, provided the total does not exceed n/2; (d) multiplying a register by a constant, provided the result
does not exceed n/2; (e) testing if a register is equal to zero; (f) comparing the values of two registers; (g)
subtracting the values of two registers; or (h) dividing the value of a register by a constant and computing the
remainder. The probability that for any single operation the simulation fails or takes more than O(n log4 n)
interactions can be made O(n−c) for any fixed c.

6 Simulating RL

In [AAD+04], it was shown that a probabilistic population protocol with a leader could simulate a random-
ized LOGSPACE Turing machine with a constant number of read-only unary input tapes with polynomial
slowdown. The basic technique was to use the standard reduction of Minsky [Min67] of a Turing machine
to a counter machine, in which a Turing machine tape is first split into two stacks and then each stack is rep-
resented as a base-b number stored in unary. Because the construction in [AAD+04] could only increment
or decrement counters, each movement of the Turing machine head required decrementing a counter to zero
in order to implement division or multiplication. Using Theorem 11, we can perform division and multipli-
cation in O(n log4 n) interactions, which thus gives the number of interactions for a single Turing machine
step. If we treat this quantity as O(log4 n) time, we get a simulation with polylogarithmic slowdown.
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Theorem 12 For any fixed c > 0, there is a constant d such that a probabilistic population protocol on a
complete graph with a leader that can simulate nc steps of a randomized LOGSPACE Turing machine with
a constant number of read-only unary input tapes using d log4 n time per step with a probability of failure
bounded by n−c.

Proof: We run a simulated register machine adjusted so that the probability of failure of each basic
operations is O(n−2c−1); since we use a constant number of register machine operations per Turing machine
step, the total probability of failure in nc Turing machine steps is O(ncn−2c−1) < n−c for sufficiently large
n.

The contents of each input tape is placed in a pair of registers representing the number of 1’s to the left
of the read head and the number of 1’s to the right of the read head. For an alphabet of size k, we can
represent blogk n/2c cells of the work tape in a register holding values up to n/2; if we want a larger tape,
we use multiple registers to hold each tape segment. The state of the finite-state controller is stored in the
leader.

The head position on the work tape is represented by a pair (i, ks) where i is a constant-size segment
identifier stored in the leader and ks is a segment offset stored in a virtual register S; (i, ks) represents the
position i blogk(n/2)c+ s. Reading the symbol under the tape head consists of computing (Si/ks) mod k.
Shifting the head right involves multiplying S by k; if as a result it overflows or reaches kblogk(n/2)c, we
reset S to 0 and increment i. Shifting the head left involves dividing S by k, decrementing i and resetting
S to kblogk(n/2)c−1 if S is 1 initially. These operations require at most two divisions and some comparisions
and assignments assuming the value kblogk(n/2)c−1 has been precomputed during the initialization of the
simulation.

To implement random choices, the leader initializes two disjoint populations of roughly n/2 agents with
heads or tail tokens, and chooses the result of a coin flip by waiting to see which token it sees first. This
again takes at most dn ln4 n interactions with high probability.

7 Protocols for semilinear predicates

In this section we consider the problem of computing a semilinear predicate. We first show that a simple
improvement on the standard protocol of [AAD+04] reduces the expected number of interactions from
Θ(n2 log n) to Θ(n2), even without assuming a leader. If a leader is available, Theorem 11 can be used to
further reduce the number of interactions to O(n log4 n), both in expectation and with high probability.

The best previously known protocol for computing semilinear predicates in a probabilistic population
protocol is that of [AAD+04], which proceeds in two stages: (a) a coalescing stage equivalent to leader
election, where all agents start as candidate leaders and candidates drop out when they meet other candidates;
and (b) a broadcast stage where the last surviving leader personally informs all other agents of the outcome
of the protocol (which it computes based on data gathered during the coalescing stage). Since the expected
waiting time to eliminate one candidate given k candidates is n(n−1)

k(k−1) , the coalescing stage takes

n∑
k=2

n(n− 1)
k(k − 1)

= n(n− 1)
n∑

k=2

1
k(k − 1)

= n(n− 1) · n− 1
n

= (n− 1)2

interactions on average. But the broadcast stage is equivalent to coupon collector with a factor-of-n slow-
down (since interactions between non-leaders have no effect) and thus takes Θ(n2 log n) interactions.
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We can reduce the cost of the broadcast stage slightly by allowing non-leaders to recruit each other. The
resulting protocol, which we call random-walk broadcast, has state space {0, 1} × Y where 0 indicates a
non-leader, 1 a leader, and Y is the output alphabet ({0, 1} when computing a predicate). Its transitions are
given by

(b, y), (0, y′) 7→ (b, y), (0, y)

with all other transitions being no-ops. The intuition is that any interaction between two non-leaders with
different output values is equally likely to propagate one or the other, as each non-leader is equally likely to
be the initiator. If we map the output alphabet to correct and incorrect values, the number of correct values
is driven in a random walk by such interactions. But the leader cannot be persuaded by non-leaders and
produces a bias in the direction of the absorbing state in which all agents have the correct output.

Theorem 13 Starting from any initial configuration with a single leader, the random walk broadcast pro-
tocol converges to a configuration in which all agents have the same output value in an expected O(n2)
interactions.

Proof: The number of agents whose answers agree with a unique leader (including the leader) is a
Markov chain on 1, . . . , n, where n is the size of the population. We are interested in the maximum hitting
time of the chain to n.

Let Tn(k) be the hitting time where k is the number of agents that agree with the leader. Then we have
Tn(n) = 0 and the recurrence

Tn(k) =
n(n− 1)
2k(n− k)

+
k(n− k) + 1 · (n− k)

2k(n− k)
Tn(k + 1) +

k(n− k)− 1 · (n− k)
2k(n− k)

Tn(k − 1)

Tn(k) =
n(n− 1)
2k(n− k)

+
k + 1
2k

Tn(k + 1) +
k − 1
2k

Tn(k − 1)

2kTn(k)
n(n− 1)

=
1

n− k
+

k + 1
n(n− 1)

Tn(k + 1) +
k − 1

n(n− 1)
Tn(k − 1).

Let Un(k) := kTn(k)
n(n−1) . Then

2Un(k) =
1

n− k
+ Un(k + 1) + Un(k − 1).

The solution is

Un(k) = (n− k)
n∑

j=n−k+1

1
j
.
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Clearly, Un(0) = 0. We check the recurrence:

2Un(k) = 2(n− k)
n∑

j=n−k+1

1
j

= (n− (k + 1))
n∑

j=n−k+1

1
j

+ (n− (k − 1))
n∑

j=n−k+1

1
j

= Un(k + 1)− n− k − 1
n− k

+ Un(k − 1) +
n− k + 1
n− k + 1

=
1

n− k
+ Un(k + 1) + Un(k − 1).

Thus

Tn(k) =
n(n− 1)(n− k)

k

n∑
j=n−k+1

1
j

and Tn(k) ≤ Tn(1) = (n− 1)2.

Now let us consider what we can do with a leader. From [AAD+04] we have that it is sufficient to
be able to compute congruence modk, +, and < to compute any semilinear predicate. From Theorem 11
we have that all of these operations can be computed with a leader in O(n log4 n) interactions with high
probability. The final stage of broadcasting the result to all agents can also be performed in O(n log n)
interactions with high probability using an epidemic.

However, there is some chance of never converging to the correct answer if the protocol fails. To elim-
inate this possibility, we construct an optimistic hybrid protocol in which the fast but potentially inaccurate
O(n log4 n)-interaction protocol is supplemented by an O(n2) leaderless protocol, with the leader choosing
(in case of disagreement) to switch its output from that of the fast protocol to that of the slow protocol when
it is likely the slow protocol has finished. The resulting hybrid protocol converges to the correct answer in
all executions while still converging in O(n log4 n) interactions in expectation and with high probability.

Theorem 14 For any semilinear predicate P , and for any c > 0, there is a probabilistic population protocol
on a complete graph with a leader to compute P without error that converges in O(n log4 n) interactions
with probability at least 1− n−c and in expectation.

Proof: First apply Theorem 14 to evaluate P and broadcast the result in O(n log4 n) interactions with
probability of error at most 1− n−2c−7. To eliminate the error, we will in parallel run the O(n2) coalescing
protocol of [AAD+04] as modified to use random-walk broadcast. The output of the protocol will switch
from the fast algorithm to the slow one only when the second has converged with high probability; if the
fast algorithm is correct, this has no effect on the output and does not increase the convergence time. But
if the fast algorithm is incorrect, the slow algorithm saves it, by having the leader personally write the slow
algorithm output on each agent.

To simplify the analysis of the coalescing algorithm, we assume that the leader retains its candidate bit
even when interacting with another candidate. This enforces that the final remaining candidate will in fact
be the leader, and that its output value will converge to the correct value. Since no candidate survives an
encounter with the leader, once the leader meets every other agent it has the correct output value in the
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coalescing protocol. This is an instance of coupon collector—slowed down by a factor of n on average—
and so a simple application of Lemma 1 together with Chernoff bounds applied to the number of leader
interactions shows that there is a constant d such that the leader obtains the correct output after dn2 lnn < n3

interactions with probability at least 1− n−4c.
We now show how to switch from the possibly erroneous result (or results) of the epidemic-based pro-

tocol to the result of the coalescing protocol. Upon its first interaction as initiator, the leader recruits a
single marker agent which it uses to implement a probabilistic trigger following a technique suggested
in [AAD+03]: the trigger fires if the leader responds to the marker agent 2c + 5 interactions in a row
without any intervening interactions.

The trigger fires on any particular leader interaction with probability at most n−2c−5 and on any inter-
action with probability at most n−2c−6. The expected number of firings in the first n3 interactions is thus at
most n−2c−3 by linearity of expectation.

We now consider several possible cases, depending on whether the fast algorithm delivers the correct
output to all agents within O(n log4 n) interactions and whether the trigger fires before n3 interactions.

1. Fast algorithms works, trigger fires at n3 interactions or later. Here every agent has the correct out-
put after O(n log4 n) interactions, and they continue to have the correct output thereafter unless the
slow algorithm has not converged, which occurs with probability at most n−4c. Even conditioning
on failure to converge after n3 interactions, the slow algorithm runs at most an expected O(n2 log n)
additional interaction before converging, contributing O(n3n−4c) = o(1) to the total expected inter-
actions.

2. Fast algorithm works, trigger fires before n3 interactions. Here an unconverged slow algorithm may
produce bad outputs after O(n log4 n) time. This case occurs with probability at most n−2c−3. Since
the slow algorithm eventually converges in O(n3) expected interactions, this case also adds at most
n3n−2c−3 = o(1) to the total expected interactions.

3. Fast algorithm fails. This case occurs with probability at most n−2c−7. Here the expected time
is dominated by the waiting time for the trigger, which is O(n2c+6) interactions; this contributes
n2c+6n−2c−7 = o(1) to the expectation.

Summing the error probabilities gives n−4c+n−2c−3+n−2c−7 � n−c for sufficiently large n. Summing
the contributions of each case to the expectation gives O(n log4 n) + o(1) = O(n log4 n) expected total
interactions.

8 Open problems

For most of the paper, we have assumed that a unique leader agent is provided in the initial input. The most
pressing open problem is whether this assumption can be eliminated without drastically raising the cost of
our protocols.

One problem is the question of whether we can efficiently restart the phase clock after completing an
initial leader election phase. A proof of possibility can be obtained by observing that the leader can shut off
all other agents one at a time in O(n2 log n) interaction, and then restart them in the same time; however,
the leader may have to wait an additional large polynomial time to be confident that it has in fact reached all
agents. We believe, based on preliminary simulation results, that a modified version of our phase clock can
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be restarted much more efficiently by a newly-elected leader. This would allow us to use our LOGSPACE
simulator after an initial O(n2)-interaction leader election stage. But more work is still needed.

Even better would be a phase clock that required no leader at all. This would allow every agent to
independently simulate the single leader, eliminating both any initial leader election stage and the need to
disseminate instructions. Whether such a leaderless phase clock is possible is not clear.
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