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Abstract

This document discusses some requirements for the “cfn” stage of
the Yale Haskell compiler. This stage translates Haskell into a simple
subset of itself, with the intention of simplifying the remaining stages
of compilation. The most important task of the cfn processor is the
translation of definitions which use patterns to select cases, and this is

described in detail.
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1 Introduction

This document discusses some requirements for the “cfn” stage of the Yale
Haskell compiler. This stage translates Haskell into a simple subset of it-
self, with the intention of simplifying the remaining stages of compilation.
There has been some debate about the proper place for this processing to be
performed, and in previous versions of the compiler it has been performed
at an early stage, before typechecking , and even before scoping of variables
(known as the “alpha” phase). It is now planned to postpone cfn (which
stands for “context-free normalisation”) until later in the processing. This
has some advantage in that the typechecker will be processing a program
that closely resembles the original, so error reporting will be easier to under-
stand. The assumption that because typechecking has already been done,
and so necessarily “alpha” processing has also been done, so that variable
names are unique, simplifies the cfn processing.

The requirement that cfn processing is a Haskell to Haskell translation
is taken as fixed. There is, however, some reason for believing that some of
the translation would benefit from being from Haskell to some other code,
such as the code for an abstract stack machine. Some of the alternative
translations given attempt to indicate this by building tuples and selecting
from them, rather than creating separate definitions which provide for the
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extraction of each variable from a pattern. This approach would be similar
to the stack machine code if the tuples were exploded onto the stack. At
other times, scope considerations complicate the problem of sharing similar
code. Again, a lower level target language could simplify this by branching
to the appropriate label after ensuring the stack was consistently set up in
all possible paths to the code.

2 Assumptions

1. Variables names are unique. That is, variables have been scoped, and
a unique name associated with each distinct variable.

2. Sufficient type information is available. This does not necessarily im-
ply that type inference has been done, only that it is possible to list the
constructors of a type and their arities, given one of them. Even so,
type inference must be done before context free normalisation, since
function bindings are turned into pattern bindings in the translation,
and monomorphism properties are therefore changed.

3 Translation of Expressions

Lambda Expressions: The translation is invoked by treating the lambda
expression as an equation, and extracting the required result.

\ pl ... pn -> e translates to

res where
newvar = res is the translation of
newvar pl ... pn =-e

Case Expressions: The translation is invoked by treating the case expres-
sion as an equation, and extracting the required result. The result will
be a simplified case expression possibly qualified with definitions gen-
erated during the conversion.

case e of altl ... altm
translates to

case e’ of newaltl ... newaltm
where e’ is the translation of e

A dummy name newvarli is chosen, and each alt




pl g=->el ... where dl ..
is rewritten as the equation
newvarl p | g1 = el ... where di ...

and the resulting set of equations is translated. The result is of the
form

newvarl = \ newvar2 ->

let { auxdefs } in case newvar2 of newalts

which is folded to give the final translation.

The resulting case expression may be optimised. This is discussed
separately.

Arithmetic Sequences: The translation follows that given in the Report

[1].

List Comprehensions: The translation given in the Report is reasonable,
but it may be possible to do better. The problem with the translation
given is the repeated processing of lists, e.g the initial translation for

[Lelpt<-11, p2<-12]
is, together with a definition of ok
concat (map (\p1 -> [ e | p2 <- 12]) (filter ok 11))
and the number of cons operations generated by filter, map, and
concat is unnecessarily large.

It is probably better to define new higher-order functions to combine
these operations. The following is suggested.

Define

comperp f p [J = []

comperp f p (x:xs) = let { rest = comperp f p xs } in
if p x then f x ++ rest else rest

and

comperv f [] = [] comperv f (x:xs) = f x ++ comperp f xs

then

concat [e | v <- 1]

where v is a variable, can be rewritten as

comperv (\v -> e) 1

and
concat [e | \p <~ 1]

for a pattern p as



let {ok p = True; ok . = False} in comperp (\p -> e) ok 1

Where no concat is generated, the form

map (\p -> e) (filter ok 1)

can be rewritten as

mapfil (\p -> e) ok 1

or

map (\v -> e) 1

if the pattern is a variable, where

mapfil £ p [1 = []

mapfil f p (x:xs) = let { rest = mapfil f p xs} in
if p x then f x : rest else rest

Other expression types are translated by simply translating their compo-
nents.

4 Translation of Declarations

Only equations require any real work. These occur in Class and Instance
declarations, and directly in Modules. They also occur within expressions,
and the translation may be invoked from expression translation.

Syntactically, equations can be divided into pattern bindings and func-
tion bindings, and these are described separately.

4.1 Function Bindings

The translation of a function binding is to a binding of the function name
to a lambda definition with new bound variables replacing the argument
patterns. The right-hand-side is an expression, the structure of which is the
main topic of this section.

f pii...pin | gi1 = ell | ... | gik = elk where { declsi}
f pmi...pmn .

translates to

f=\vl... vn->exp

Here the vs are new variables and the expression exp is formed as de-
scribed below. The general form of the resulting code is a decision tree which
takes the function arguments and selects the appropriate function body.




The standard procedure is described by Wadler in Peyton Jones’ book
[2]. It covers constructor patterns and variables, but does not describe
the processing of literals, n + k patterns, or irrefutable (~p) patterns. An
alternative procedure is presented and discussed here, which has some per-
formance advantages, but which, unless some redundent evaluation is done,
is less strict than Wadler’s method, which conforms to the semantics given
in the Haskell Report.

4.1.1 Irrefutable Patterns

These are not described by Wadler, but the following transformation pro-
duces ‘an equivalent program without them, to which either procedure may
be applied.

The first stage of translation is to replace all irrefutable patterns defined
by ~p by new variables and defer the pattern match to the deepest level of
the expression.

~p... => e translates to

cee V... => let
X = (\p ->xX)v

y = O\p ->y)v
in e

where x...y are all the variables in p. The alternative algorithm actually
associates a value (Twiddle p v) with the expression e for later application
of the translation.

4.1.2 Selecting the Argument to Match On

Wadler’s method is to select the leftmost argument that is not a variable in
all equations of the current group. This produces non-optimal code, in that
tests may often be made more than once.

This method can be summarised as follows, (ignoring the processing of
numeric constant and n + k patterns):
Look at the first argument position and

o If it has a variable in all equations, drop it and continue with the next
argument position.

e If it has a constructor pattern in all equations, generate a case expres-
sion dispatching on the constructor, assign each equation to a group



associated with the appropriate constructor, preserving the order of
equations within each group, and process each group separately, drop-
ping the used argument position, but prefixing the remaining argu-
ments with the argument patterns of the constructor just matched.

e If it contains a mixture of constructor and variable patterns, parti-
tion the equations into groups that are all variable, or all constructor,
maintaining the order of equations. Then process each group in turn,
going to the next, or to error code in the case of the last group, when
matching fails.

The problem with this method is that, in the code generated, the result of
a test made in the course of checking one group will not be remembered in
checking a later group if the earlier group fails to match, and so tests may
be repeated unnecessarily.

The alternative algorithm attempts to achieve better performance by
remembering the results of past tests, in order to generate code which will
not repeat a test. It modifies the standard algorithm by not distinguishing
between the last two cases, that is, it dispatches on the constructor even
in the case where some of the equations have variables. Such equations
can match any constructor, so they appear in every group. The order of
equations in each group must be preserved.

The result of this is that a test which dispatches on the constructor of the
actual argument partitions the equations into groups which are still possible
matches given the result of the test, and further tests will be specialised
for each group. This constrasts with the standard algorithm, in which the
partitioning on a mixed argument position produces groups which have to
be tested sequentially.

Selection of the argument position to dispatch on in this method is also
different from the standard algorithm, in that the leftmost position that
is not a variable in the first equation of the group is chosen. The strict-
ness properties of this are at least as non-strict as the standard algorithm,
but may depart from the semantics of Haskell in being too lenient, unless
additional steps are taken.

In both algorithms, the following statement is true: “The argument
position tested is always the leftmost untested position which does not cor-
respond to a variable pattern in the first equation that has not already been
rejected.” The difference between the algorithms is that the new algorithm
rejects some equations earlier than does the standard algorithm, and so
may make fewer tests. The sequence of tests made by the new algorithm




is a sub-sequence of the tests made by the standard algorithm. The effect
on strictness is that the new algorithm may avoid bottom-producing eval-
uations made by the standard algorithm, but will never diverge when the
standard algorithm does not.

Unfortunately, the required semantics of Haskell are implemented by
the standard algorithm, and to make the new algorithm conform, some ad-
ditional argument evaluation may be necessary which does not contribute to
the decision process of pattern-matching. Fortunately, however, these eval-
uations can be deferred until matching is otherwise complete, that is, the
new algorithm can be used, noting for each outcome the additional compu-
tation required to be sufficiently strict, and performing this after matching.
A compiler may choose, perhaps optionally, to ignore this extra evaluation.

As an example of this, consider the definition

fx[00=et
£f [J (a:b) c = e2
fxyz-=e3

and the application f bottom [1 (p:q).

The standard algorithm will, in effect, do a naive first-to-last, left-to-right
sequential test, because it partitions the equations into three single equation
groups on the first argument. The actual sequence of tests will be

1. Match the second argument against [J, which succeeds

2. Match the third argument against [], which fails, eliminating the first
equation group

3. Begin testing the second group (the second equation) by matching the
first argument against [J, and this diverges

The new algorithm proceeds differently.

1. Dispatch on the second argument. The [] value eliminates the second
equation, leaving a possible group consisting of the first and third

2. Dispatch on the third argument. The p:q value eliminates the first
equation, leaving only the third, which has no untested refutable pat-
terns and is therefore matched

Here no test has been done on the first argument, because the only equation
for which such a test is significant is eliminated before it can be made.
To conform to Haskell semantics, an otherwise redundant test on the first




argument must be made. As noted above, this test can be made after
matching is completed without affecting the strictness requirement, although
forcing the evaluation implied by the test cannot readily be defined in Haskell
code.

For Wadler’s algorithm, no complications occur, as tests are performed
in a sequence dictated by the desired strictness properties. The following
sections describe the alternative algorithm.

4.1.3 Code Generation for the Dispatch - Constructor Patterns

The previous discussion has implicitly restricted itself to argument types
which are algebraic data types with all patterns taking the form of variables
or constructor plus component patterns. The introduction of constant or
n + k patterns is discussed in the next sections. In this section, the part of
the algorithm to be used for argument positions where no constant or n + k
patterns occur is described.

A case expression is constructed, dispatching on the new variable name
associated with the argument position, with an alternative for each con-
structor in the type of the argument.

Each alternative has

e a pattern consisting of a constructor and k new variables, where k is
the arity of the constructor

e an expression containing code derived from further matching on the
group of equations selected by the constructor

The equations in the group are those with the same constructor or an
irrefutable pattern in the argument position.

There are opportunities for optimisation here, as some special cases of
case expressions naturally translate to simpler code. This can be done once,
for all case expressions, in the function that actually generates the concrete
case expression code. A particular instance of this should be mentioned
here, to prevent readers from worrying about it. This arises when the pat-
tern is a tuple or other single constructor type. The code generated without
optimisation for matching the pattern
(p1,p2,...,pn)
in a position named as v will be
case v of(vi,v2,...,vn) -> case v1 of ...

This is entirely satisfactory, and can be translated later to



let vi = select ... v...vn = ...in case vi of ...

4.1.4 Code Generation for the Dispatch - Literals and n + k Pat-
terns

Should the selected position have a literal value, numeric constant, or n + k
pattern in any equation, the position is more complicated. The generated
code will include a conditional testing for equality of the argument to the
constant pattern or an ordering test for a n + k pattern. These tests use
the overloaded operations as defined for the type of the argument, and there
is no guarantee that these operations obey the normal axioms. For exam-
ple, if 0 and 1 occur as patterns, the matching tests to be generated for
an argument v are (ignoring polymorphism) equalT v fromInteger O and
equalT v fromInteger 1 where equalT is the equality function for the
type T of the argument. There is no guarantee that these cannot both
succeed, so assumptions used in the previous section to enable the elimina-
tion of equations which were known from information already obtained not
to match are no longer valid, and opportunities to improve generated code
quality are lost.

Another factor complicating code generation, is that equality or ordering
comparisons may not require full evaluation of the argument. This is also
true in the case of constructor patterns, but there only one test is required
to partition the equations into candidate groups. In the present case, more
than one test is often required. If the first test guaranteed the full evaluation
of the argument, subsequent tests could be carried out immediately without
violating the required strictness properties, but if not, it may be necessary
to look at other argument positions first. Consider
fx0[] =et
f[01y-=e2
fxyz-=e3
If the equality test for 1 requires evaluation of part of the argument value
not required for the equality test for 0, and that evaluation diverges, the
divergence may have been avoided by matching the first argument against
(] and failing. The semantics of Haskell require the less strict behaviour in
these circumstances.

Another consequence of incomplete evaluation in comparisions is that to
ensure correct strictness, the tests must be made in equation order, again
possibly preventing the generation of improved code.
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There are special cases where more is known about the behaviour of
equality, ordering and conversion (e.g. fromlInteger) operations, and this
knowledge can be used to avoid some of the difficulties.

Strings A string literal pattern is equivalent to a list of characters. An ar-
gument of string type can have literal or constructor patterns, but no
n + k patterns. There is a choice of either treating the literals as con-
stant lists, and so treating the argument as a list type and generating
code which begins with a case expression selecting Nil or Cons, or us-
ing equality tests on the literals. Pragmatically, the latter course may
be preferable, so that advantage can be taken of any optimised storage
and comparisons for strings that the implementation may provide.

For strings, the equality function is the standard equality for lists of
characters, and cannot be overridden, thus ensuring that static anal-
ysis can be used to eliminate equations with different literals if the
equality test succeeds, and with the same literal if it fails.

Equality testing does not necessarily fully evaluate arguments, so liter-
als must be tested in equation order, and allowance made for untested
refutable patterns to the left of the literal.

A viable alternative is to treat strings as a list type, so that the simple
case of constructor patterns without literals or n + k patterns can be
applied.

Character This type can have only constant and variable patterns, and an
equality test fully evaluates its arguments. Equality is well-behaved in
that two constant patterns representing different characters will not
be equal. Code generation should therefore first generate an equality
test between the argument and the constant in the first equation of
the remaining group. (There will be a constant pattern in the first
equation, since, if there were not, the position would not be matched
on at this stage.) The test divides the equation into two sub-groups,
those for which the test may return true are the first equation, any
others with the same constant, and those with variables. The second
group contains all equations with different constants and those with
variables. These two groups can then be processed independently by
the same method.

Should the character literals be closely spaced in the enumeration of
characters, it might be more efficient to generate a range test, with a
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case expression dispatching on the character value if it is in range, an
a subset of the above code if not.

Numeric Types These are the most difficult to handle. They will be de-
scribed in groups according to the kinds of problems that arise. Where
type inference or explicit type signatures narrow the range of possible
types for an argument position, the more specialised code can be used.
Otherwise, general and generally inefficient code must be generated.

Int and Integer These types have known equality and ordering pro-
porties that can be taken advantage of at compile time. Further-
more, testing requires full evaluation.

There are no constructor patterns for these types. In the absence
of n 4 k patterns, they may be processed as for type Char. If
the type is known, the constant values can be compiled directly
to the appropriate value, otherwise code must be generated to
convert the Integer constant to the appropriate type before it is
tested.

If there are any n 4+ k patterns in the argument position, ordering
tests must be generated. In addition, further code is generated
later to provide the correct binding for the variable in the pattern.
This is described below. Essentially, a new variable v is associated
with the pattern, and the generated test is

if v>=k then ...,

with the then part containing code to bind n to v-k.

A problem introduced by n + k patterns is that the ordering test
does not normally divide the equations into two (possibly over-
lapping) groups, those that match and those that do not. There
is usually a third group contining those equation that may match.
For example, testing the pattern n+2 creates a matching group
excluding an equation with a constant 1, including an equation
with a pattern n+1, but leaving uncertain equations with constant
patterns 3, or with n+3.

For these types, since it is known that testing requires full eval-
uation, the changing the order of testing patterns in the various
equations does not change the strictness properties. A possible
strategy is then first to perform the equality tests in any order,
and then the ordering tests in the order of largest k first. The
advantage of doing this is that each test divides the equations
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into two groups, the first, passing, group requiring no further
testing on the argument position, and the second group possi-
bly requiring further testing on the same position, but excluding
the equation containing the pattern on which the test was based,
thus simplifying the task of ensuring that the same test is not
repeated.

The justification of this strategy is as follows.

An equality test of v = ¢ divides the equations into a group
that matches if the test succeeds, containing equations with the
same constant c, equations with n + k patterns with k¥ < ¢, and
equations with variable patterns, and a group which may succeed
if the test fails, containing equations with different constants,
equations with n 4+ k patterns with k¥ > ¢, and equations with
variable patterns. For the first group, further testing passes to the
next argument, while for the second group, the same argument
may require further testing, but this group excludes equations
with the same constant ¢, so this test will not be repeated.

A test of v > k, arising from an n + k pattern, would divide
the equations into three groups: those with n + k’ patterns with
k' < k which match if the test succeeds, those with n+ &’ patterns
with k' > k or constant patterns ¢ with ¢ > k, which may match
if the test succeeds, but do not match if it fails, and those with
other constant patterns, which do not match if the test succeeds,
but may match if it fails. In addition, equations with variable
patterns belong to the first and third groups. Code generation
from this is messy, and it is desirable to eliminate the second

group. This is achieved by the suggested strategy.

Float or Double These types cannot have n+ k patterns, and so are
a simple special case of the above.

Ratio Although this is a constructed type, the constructor is not
exported from the Prelude, and so cannot appear in patterns.
Neither can there be n + k patterns for the type. What remains
is constant patterns and variables, which can be treated as for
Characters. For compiling the Prelude, constructor patterns are
also needed, so a full implementation will instead treat Ratios in
the same way as Complex.

Complex This types has constructor patterns, literals for which the
mapping into values of the type is well-defined, but no n + k
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patterns. In Haskell, both Ratio and Complex types have derived
equality, based on structure, so equality tests for literals can be
replaced by matching of constructor patterns, and matching for
these types can be simple constructor pattern matching.

Arbitrary Numeric Type When insufficient information is avail-

able at compile time to determine that the argument type is one
of the above types, the worst-case assumptions must be made.
There may be locally defined or imported algebraic types with
numeric instances, for which constant, n+k and constructor pat-
terns are all possible. Equality and order testing may not fully
evaluate arguments. The user-defined fromInteger or fromRa-
tional functions and equality and ordering functions may be such
that the normal laws are violated, so that, for example,
fromInteger 1 == fromInteger 2
has the value True, and
fromInteger 1 < fromInteger 2
has the value False.
With these possibilities, the appropriate strategy is to consider
the first equation separately. If it has a constant or n+ k pattern,
generate the appropriate equality or ordering test. In the then-
part of the conditional, evaluated if the pattern matches, generate
code to continue testing the first equation, but go on to test the
group consisting of all the remaining equations should the first
subsequentially fail, or match all argument patterns, but fail all
guards. The else part should contain the same code for testing
all remaining equations.

If the first equation has a constructor pattern, and any subse-
quent equation has a constant or n + k pattern, a conditional
should be generated to test the value of the top-level constructor.
This is not available in standard Haskell, but a special ifCon-
structor function may be provided to implement it. The rest of
the code is then as for constant or n + k patterns. If no re-
maining equations contain constant or n + k patterns, there is
a choice between generating the special conditional as above, or
generating a case expression dispatching on the constructors, as
for simple constructor pattern argument types. If the case ex-
pression is chosen, later optimisation may well replace it with a
series of conditionals if this is deemed more efficient, and so this
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is the simplest strategy.

It is important to note that splitting a group of equations into
the first and the rest, and continuing with the first until it fails,
although reminiscent of Wadler’s method, does not prevent ap-
plication of the alternative algorithm in processing the rest of the
equations.

Some improvement can be made to the generated code if it is
known that the function cannot be used at any user-defined nu-
meric type. This requires that it is not exported and no such
types are defined in or imported into the current module. This
ensures that no violation of the normal laws of arithmetic, equal-
ity and ordering is possible. In this case, static analysis can be
used to exclude some equations from the groups carried along
with the first equation in the then part of the conditional, and
in the else part. This is similar to that described under Integer
types above, i.e. for an equality test for a constant ¢ excluding
equations with a different constant or with an n + k£ pattern with
k > ¢ from the then part, and equations with the same constant
c from the else part, and for an ordering test for a value v > k
excluding equations with constant ¢ < k from the then part and
constant ¢ > k from the else part.

A practical compiler may choose to make these improvements
even in the presence of user-defined numeric types, on the grounds
that efficiency should not be compromised in the vast majority of
cases by the remote possibility that someone has defined a type
with a numeric instance, and given it nonsensical behaviour. On
the other hand, the losses resulting from overloading make make
any such savings immaterial.

4.1.5 Choosing the Next Argument

At any point in the translation there will be a list of argument positions
not yet tested. Initially this will contain all arguments, and the number
of arguments will be the same for each equation. There will also be a
corresponding list of new variable names, one for each argument position.
Initially this will contain variable names of the arguments of the top level
lambda definition. The value of an item in the list of argument positions is
the vector of the patterns in the equations of the group occurring at that
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Conceptually, there is a pointer to the current argument position and
corresponding variable name. At any time, argument positions before the
pointer will not have been tested, but have been passed over. These will
have irrefutable patterns (which will have been replaced by variables if they
were originally ~p patterns) in the first equation of the group.

Choosing an argument to test involves advancing the pointer over ir-
refutable patterns in the first equation, and then generating code for the
first refutable pattern. This will lead to the formation of new sub-groups of
equations, which are then processed separately.

When a case expression is generated dispatching on the constructors of
the type a new sub-group is formed for each constructor. Further testing
involves matching the components of the matched constructor in the actual
argument against the corresponding components of the constructor in the
patterns. For each equation, these components are inserted into the remain-
ing pattern list in place of the original pattern. Where the original pattern
was a variable (standing for any irrefutable pattern) a list of variable names
is inserted instead, the same list for each such occurence. In the associ-
ated list of variable names, the name corresponding to the whole pattern
is deleted, and the same list of variable names inserted. This contains the
same variable names as were added to the constructor to form the left side
of the current alternative in the case expression generated for the argument
position test.

When a conditional is generated, two or possibly three subgroups are
formed. The first sub-group, the candidate equations if the test succeeds,
in the case of an equality or ordering test or an “ifConstructor” test of
a nullary constructor, require no further test on the same position. The
argument position matched on is dropped from the list of remaining patterns
for each equation in the group, and the corresponding variable name from
the associated list of variable names. For an “ifConstructor” test, if the arity
of the constructor is non-zero, the list updating is as for case expressions

The other sub-groups will require the same argument position to be
tested again, and no change is made to the lists.

The choice of next position to match requires a return to the beginning
of the remaining pattern list. The position just matched has in general not
fully evaluated the argument, and there may be positions to its left that have
not yet been full evaluated for which refutable patterns are now exposed.
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4.1.6 Termination

In the selection code generation described above, before conditional or case
expression code is executed, there is a group of equations which are still
possible candidates for evaluation of their right-hand-sides. After execution
of the conditional or case expression code, one of a number of possibly
overlapping sub-groups of equations becomes the new candidate group.

The generated code as described above always has one or both of the
following properties:

e The new candidate group is a proper subset of the old group,
o The argument position used for selection is not used again.

To see this, first observe that the only cases where the same argument
position is used again are the “reserve” group in the then-part of a condi-
tional, or in the else-part. In all cases, the condition tested is such that
the pattern giving rise to the test satisfies it, and so is excluded from these
candidate groups.

From this it is clear that in any path throught the selection code, a
point will be reached where either all the arguments have been used, or
the candidate group is empty. In either case, no further selection code is
generated.

4.1.7 Selection and Translation of Right-Hand-Sides

In the ideal case, the selection process will leave a single candidate equation
after testing all arguments. In this case, the right-hand-side of that equa-
tion will be evaluated. Should the candidate group be empty, error code is
generated.

Where the candidate group still has more than one equation after testing
all arguments, the semantics specify that the first equation is selected. It is
possible that this equation has guards, and that all the guards may fail, in
which case the remaining equations are treated as a subgroup and tested,
returning the argument position pointer to the beginning of the list before
searching for the first argument to match. A similar situation arises when a
conditional test creates a “reserve” group.

Translation of a guarded right-hand-side is to a conditional expression
with the guard as the if-part, the right-hand-side as the then-part and the
translation of the remaining guarded right-hand-sides as the else-part. If the
guard is the constructor True, or an identifier known to be bound to True,
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or absent, no conditional is necessary and the code generated is simply the
code for the right-hand-side. In this case, any remaining guarded expressions
in the equation can be ignored.

The final else-part, should one be required, is the translation of the re-
maining equations in the group. This translation in general requires the
testing of arguments passed over in previous code because they were ir-
refutable in the first equation.

During the processing of pattern matching, some information is collected
which results in further transformation of the expression. This occurs in the
translation of ~p patterns and as-patterns, and from the loss of some original
variable names from patterns, which may occur in function bodies.

e For ~p patterns, the pattern is not to be matched until a variable
mentioned in the pattern is required in evaluation of the body, when
the whole pattern is matched. The translation is shown above. Note
that the result contains lambda definitions, which need to be processed
by the expression translator.

e For as-patterns, v@p, a new name v’ is introduced in the translation
for the value matching p, while the body may still refer to v.

e Variables in constructor patterns are also replaced by new variables.

e For n + k patterns,
f ... (n+k)... = e
becomes f ... v’... = (\ n ->e) (v’ - k)

Also, as function bodies may be reached from several paths in the pattern
matching decision tree, to avoid code replication, they are given names, the
names referred to in the decision tree and definitions of the form
name = body attached to the tree code. This moves the bodies out of scope
of the variable names defined in the case alternatives. There are thus two
problems: variables defined in patterns and occurring in the function bodies
have been renamed, and possibly renamed differently in different parts of
the decision tree code; and the bodies have been lifted out of the scope of
the definitions.

The solution to this is to complete the lifting by turning the bodies into
functions of the original pattern defined variables, and at each occurence of a
body at a leaf of the decision tree, applying the function to arguments which
refer to the new pattern variables. This is an unfortunate consequence of
generating pattern matching code in Haskell. A direct generation of code for

18



an abstract stack machine such as Cardelli’s Functional Abstract Machine
can avoid these problems.

For efficiency, only those pattern-defined variables ocurring in the body
need be defined. The information available, and the generated code, is

o For an irrefutable pattern ~p, a value Twiddle p v, giving the new
name v associated with the pattern, which will itself contain informa-
tion about further variable names. For each variable x occurring in
both ~p and the body, a formal parameter x is abstracted from the
body, and the argument value (\ p -> x) v is added, where v will
vary from occurence to occurence of the body. To maintain uniqueness
of variable names, a new variable, x’ is actually used instead of x as
the formal parameter, and x renamed to x’ in the body.

o For as-patterns and renamed variables, a value As v vi where v is
the name replaced by vi. If v occurs in the body, all occurrences are
replaced by a new variable name v’,which is also abstracted out as a
parameter. The actual parameter will be v1.

e For n + k patterns, a value Offset n k v . If n occurs in the body,
all occurrences are replaced by a new variable name n’,which is also
abstracted out as a parameter. The actual parameter will be v - k.

Finally, the modified body expression is translated as an expression.

4.2 Pattern Bindings
The binding

plgi=el; ... ;| gn=en whered
is first translated to
p = let d’ in if g1’ then el’ else ... else error

where the primes indicate that the values have been individually translated.
If a guard is absent, is the constructor True, or is an identifier known to
be bound to True, no conditional is generated and any remaining guarded
expressions or error expressions discarded.

Translation of the resulting definition produces a set of declarations
which may themsleves require translation. The process of translation is
continued until no further translation is required. Translation is defined as
follows
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o The as-pattern usage v@p = e translates to
y=e
x1 = (\p’->x1’) y

xn = (\p’->xn’) y

v=C~0Np>y) y

where the xi are the variables in p, p’ is p with all xi renamed to
xi’. Equations for those xi and v which do not occur in e need not
be generated.

An alternative translation is

yi = e

y2 = (\p -> (x1,x2,...,xn,y1)) e
. Xi = select i y2 ...

v = select (i+1) y2

The tradeoff between these two is that the first requires a full run-
time pattern match for every pattern variable occurring in e, while
the second requires only one match, and a simple selection from a
tuple for each needed variable, but builds the tuple.

o With definitions as before, the irrefutable pattern usage
~p = e
should translate to
y=e; ... xi=(\p’->xi’)y..
or
y= (p -> (x1,x2,...,xn)) e
xi = select iy ...
This is very similar to the as-pattern translation.

o With the same definitions, the constructor pattern usage

Cpl ... pm=e

translates to

yl = e

y2 = if ifConstructor C yi
then

(\p1...pm => (x1,...,xn)) (select 1 y1)...(select m yi)
else error
xi = select i y2 ...
In the case of a tuple or other single-constructor type, the conditional
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can be omitted, and the then-part alone, together with the selection
definitions, provides the translation.

A useful optimisation can be applied here if the sub-patterns

pi are all variables. The form

(\ pt...pm => (x1,...,xn)) (select 1 y1)...(select m y1)
reduces to

(\ xt...xm -> (x1,...,xm)) (select 1 y1)...(select m y1)
which is

((select 1 y1), ..., (select m y1))

and this tuple is only built to be selected from. Instead, the form

yl = e
y2 = if ifConstructor C yi
then y1

else error
xi = select i y2 ...
is equivalent. If the conditional is omitted as above, the definition of
y2 can be dropped and yl used instead.

The case expressions resulting from constructor patterns are candi-
dates for optimisation.

For Literal and n + k patterns we note that all the above cases are
applied only at the top level, and all subsequent processing of pattern
bindings, as opposed to variable bindings, is in the context of function
bindings. Consequently, we need consider literals and n + k patterns
at the top-level only.

Definitions with a literal left hand side may be ignored. Indeed, in all
of the above, a definition with no variables in the left hand side may
be ignored and dropped form the program. Such definitions bind no
variables and cannot contribute to any expression evaluation.

A definition of the form (n+k) = e has the translation
let {v=e;n=v-k} in if v >= k then v else error.

5 Optimisation of Case Expressions

There are a number of occasions when the case expression generated in a
translation may be better rendered by other concrete code.

One such time is when the case has only two alternatives. The obvious

code to generate in this case is an “if then else” conditional. When the case
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expression is a dispatch on the constructor of a value, the special construct
ifConstructor must be used in the if part, even if the constructor is nullary.
It is incorrect to test, for example if v == C1 then ... else ...,asthe
type of which C1 is a constructor may have user-defined equality which differs
from the structural matching normally associated with pattern matching and
implied by ifConstructor.

If the alternatives bind variables, auxiliary definitions must be intro-
duced. For example, the translation of
case v of { [1 -> el ; (x:p) -> e2 }
is
if ifConstructor v [] then el else
let { x = select 1 v ; vl = select 2 p} in case v1 of ...

If the expression has more than two alternatives, but all but one have
the same outcome, for example error code, then a similar conditional can
be generated. This will often arise from a pattern binding with a top level
constructor pattern. :

Sometimes the case expresion has only one alternative. Tuples are an ob-
vious example of how this can come about, although any single-constructor
type will also produce it. It differs from the previous case because there is
no error option, and no test on the constructor need be done. Omitting the
case expression loses the bindings of variables, and these must be replaced
by local definitions. Typically,
case v of { (vi,...,vn) -> e }
becomes let {vl = select 1 v ; ... } in e.

More generally, there is an efficiency tradeoff between a case expression
and cascaded conditionals. This is something that should be left to a later
stage of compilation where the characteristics of target machine code are
known. There are some obvious examples where jump table is practicable,
e.g. in a dispatch on constructor, or with a guarding range test when there
are a number of small integer constants and the type is known to have a sen-
sible equality definition, and these cases should obviously not be translated
to conditionals.
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