
We observe that solutions of a large class of highly oscillatory second order linear
ordinary differential equations can be approximated using nonoscillatory phase
functions. In addition, we describe numerical experiments which illustrate com-
putational implications of this fact. For example, many special functions of interest
— such as the Bessel functions Jν and Yν — can be evaluated accurately using a
number of operations which is Op1q in the order ν. The present paper is devoted to
the development of an analytical apparatus. Numerical aspects of this work will
be reported at a later date.
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1. Introduction

Given a differential equation

y2ptq ` λ2qptqyptq “ 0 for all 0 ď t ď 1, (1)

where λ is a real number and q : r0, 1s Ñ R is smooth and strictly positive, a sufficiently
smooth α : r0, 1s Ñ R is a phase function for (1) if the pair of functions u, v defined by the
formulas

uptq “
cospαptqq

|α1ptq|1{2
(2)

and

vptq “
sinpαptqq

|α1ptq|1{2
(3)

form a basis in the space of solutions of (1). Phase functions have been extensively studied:
they were first introduced in [9], play a key role in the theory of global transformations of
ordinary differential equations [3, 10], and are an important element in the theory of special
functions [16, 6, 11, 1].

Despite this long history, an important property of phase functions appears to have been
overlooked. Specifically, that when the function q is nonoscillatory, solutions of the equation
(1) can be accurately represented using a nonoscillatory phase function.

This is somewhat surprising since α is a phase function for (1) if and only if it satisfies the
third order nonlinear ordinary differential equation

pα1ptqq
2
“ λ2qptq ´

1

2

α3ptq

α1ptq
`

3

4

ˆ

α2ptq

α1ptq

˙2

for all 0 ď t ď 1. (4)

The equation (4) was introduced in [9], and and we will refer to it as Kummer’s equation.
The form of (4) and the appearance of λ in it suggests that its solutions will be oscillatory —
and most of them are. However, Bessel’s equation

y2ptq `

ˆ

1´
λ2 ´ 1{4

t2

˙

yptq “ 0 for all 0 ă t ă 8 (5)

furnishes a nontrivial example of an equation which admits a nonoscillatory phase function
regardless of the value of λ. If we define u, v by the formulas

uptq “

c

πt

2
Jλptq (6)

and

vptq “

c

πt

2
Yλptq, (7)

where Jλ and Yλ denote the Bessel functions of the first and second kinds of order λ, and let
α be defined by the relations (2),(3), then

α1ptq “
2

πt

1

J2
λptq ` Y

2
λ ptq

. (8)

It can be easily verified that (8) is a strictly negative, monotonically decreasing function of t
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on p0,8q. That this nonoscillatory phase function for Bessel’s equation exists is the basis of
several methods for the evaluation of Bessel functions of large orders and for the computation
of their zeros [6, 8, 15].

The general situation is not quite so favorable: there need not exist a nonoscillatory function α
such that (2) and (3) are exact solutions of (1). However, assuming that q is nonoscillatory and
λ is sufficiently large, there exists a nonoscillatory function α such that (2), (3) approximate
solutions of (1) with spectral accuracy (i.e., the approximation errors decay exponentially
with λ).

To see that this claim is plausible, we apply Newton’s method for the solution of nonlinear
equations to Kummer’s equation (4). In doing so, it will be convenient to move the setting of
our analysis from the interval r0, 1s to the real line so that we can use the Fourier transform
to quantity the notion of “nonoscillatory.” Suppose that the extension of q to the real line is
smooth and strictly positive, and that the Fourier transform of logpqq is smooth and decays
rapidly. Letting

pα1ptqq
2
“ λ2 expprptqq (9)

in (4) yields the logarithm form of Kummer’s equation:

r2ptq ´
1

4
pr1ptqq

2
` 4λ2 pexpprptqq ´ qptqq “ 0 for all t P R. (10)

We use trnu to denote the sequence of Newton iterates for the equation (10) obtained from
the initial guess

r0ptq “ logpqptqq. (11)

The function r0 corresponds to the first order WKB approximations for (1). That is to say that
if we insert the associated phase function

α0ptq “ λ

ż t

0

exp

ˆ

1

2
r0puq

˙

du “ λ

ż t

0

a

qpuqdu (12)

into (2),(3), then

uptq “ q´1{4ptq cos

ˆ

λ

ż t

0

a

qpuq du

˙

(13)

and

vptq “ q´1{4ptq sin

ˆ

λ

ż t

0

a

qpuq du

˙

. (14)

For each n ě 0, rn`1 is obtained from rn by solving the linearized equation

h2ptq ´
1

2
r1nptqh

1
ptq ` 4λ2 exp prnptqqhptq “ fnptq for all t P R, (15)

where

fnptq “ ´r
2
nptq `

1

4
pr1nptqq

2
´ 4λ2 pexp prnptqq ´ qptqq , (16)

and letting

rn`1ptq “ rnptq ` hptq. (17)
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By introducing the change of variables

xptq “

ż t

0

exp

ˆ

rnpuq

2

˙

du (18)

into (15), we transform it into the inhomogeneous Helmholtz equation

h2pxq ` 4λ2hpxq “ gnpxq for all x P R, (19)

where

gnpxq “ exp p´rnpxqq fnpxq. (20)

Suppose that pgn decays rapidly (when n “ 0, this is a consequence of our assumption that
logpqq has a rapidly decaying Fourier transform) and let h˚ be the solution of (19) whose
Fourier transform is

xh˚pξq “
pgnpξq

4λ2 ´ ξ2
. (21)

Since xh˚pξq is singular when ξ “ ˘2λ, h˚ will necessarily have a component which oscillates
at frequency 2λ. However, according to (21), the L8 pRq norm of that component is

pgnp2λq

4λ
. (22)

In fact, by rearranging (21) as

xh˚pξq “
1

4λ

ˆ

pgnpξq

2λ´ ξ
`

pgnpξq

2λ` ξ

˙

(23)

and decomposing each of the terms on the right-hand side of (23) as

pgnpξq

2λ˘ ξ
“

1

4λ

ˆ

pgnpξq ´ pgnp¯2λq exp p´p2λ˘ ξq2q

2λ˘ ξ
` pgnp¯2λq

exp p´p2λ˘ ξq2q

2λ˘ ξ

˙

, (24)

we obtain

h˚pxq “ h0pxq ` h1pxq, (25)

where h0 is defined by the formula

ph0pξq “
1

4λ

ˆ

pgnpξq ´ pgnp´2λq exp p´p2λ` ξq2q

2λ` ξ
`

pgnpξq ´ pgnp2λq exp p´p2λ´ ξq2q

2λ´ ξ

˙

, (26)

and h1 is defined by the formula

ph1pξq “
1

4λ

ˆ

pgnp´2λq
exp p´p2λ` ξq2q

2λ` ξ
` pgnp2λq

exp p´p2λ´ ξq2q

2λ´ ξ

˙

. (27)

Since the factor in the denominator in (26) has been canceled and both pgn and the Gaussian
function are smooth and rapidly decaying, ph0 is also smooth and rapidly decaying. Mean-
while, a straightforward calculation shows that the Fourier transform of

1

2i
erf

´x

2

¯

expp2λixq (28)

is
exp p´p2λ´ ξq2q

2λ´ ξ
, (29)
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so that (27) implies that

h1pxq “
1

4λ

ˆ

pgnp´2λq
1

2i
erf

´x

2

¯

expp2λixq ´ pgnp2λq
1

2i
erf

´x

2

¯

expp´2λixq

˙

. (30)

Since gn is real-valued, pgnp2λq “ pgnp´2λq. Inserting this into (30) yields

h1pxq “
pgp2λq

4λ
erf

´x

2

¯

sin p2λxq , (31)

which makes it clear that the L8 pRq norm of h1 is p4λq´1 pgnp2λq.

In (25), the solution of (19) is decomposed as the sum of a nonoscillatory function h0 and a
highly oscillatory function h1 of small magnitude. However, the solution of (15) is actually
given by the function

h˚pxptqq “ h0pxptqq ` h1pxptqq (32)

obtained by reversing the change of variables (18). But since xptq is nonoscillatory and the
Fourier transform of h0pxq decays rapidly, we expect that the composition h0pxptqq will also
have a rapidly decaying Fourier transform. The L8 pRq norm of h1pxptqq is, of course, the
same as that of h1pxq. So the solution of the linearized equation (15) can be written as the sum
of a nonoscillatory function h0pxptqq and a highly oscillatory function h1pxptqq of negligible
magnitude.

If, in each iteration of the Newton procedure, we approximate the solution of (15) by con-
structing h˚pxptqq and discarding the oscillatory term h1ptpxqq of small magnitude, then it is
plausible that we will arrive at an approximate solution rptq of the logarithm form of Kum-
mer’s equation which is nonoscillatory, assuming the Fourier transform of r0ptq “ logpqptqq
decays rapidly enough and λ is sufficiently large.

Most of the remainder of this paper is devoted to developing a rigorous argument to replace
the preceding heuristic discussion. In Section 2, we summarize a number of well-known
mathematical facts to be used throughout this article. In Section 3, we reformulate Kummer’s
equation as a nonlinear integral equation. Once that is accomplished, we are in a position to
state the principal result of the paper and discuss its implications; this is done in Section 4.
The proof of this principal result is contained in Sections 5, 6, 7 and 8. Section 9 contains an
elementary proof of a relevant error estimate for second order differential equations of the
form (1).

In Section 10, we present the results of numerical experiments concerning the evaluation of
special functions. The details of our numerical algorithm will be reported at a later date.

We conclude with a few brief remarks in Section 11.

2. Preliminaries

2.1. Modified Bessel functions

The modified Bessel function Kνptq of the first kind of order ν is defined for t P R and ν P C
by the formula

Kνptq “

ż 8

0

exp p´t cosh ptqq coshpνtq dt. (33)
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The following bound on the ratio of Kν`1 to Kν can be found in [14].

Theorem 1. Suppose that t ą 0 and ν ą 0 are real numbers. Then

Kν`1ptq

Kνptq
ă
ν `

?
ν2 ` t2

t
ď

2ν

t
` 1. (34)

2.2. The binomial theorem

A proof of the following can be found in [13], as well as many other sources.

Theorem 2. Suppose that r is a real number, and that y is a real number such that |y| ă 1. Then

p1` yqr “
8
ÿ

k“0

Γpr ` 1q

Γpk ` 1qΓpr ´ k ` 1q
yk. (35)

2.3. The Lambert W function

The Lambert W function or product logarithm is the multiple-valued inverse of the function

fpzq “ z exppzq. (36)

We follow [5] in using W0 to denote the branch of W which is real-valued and greater than
or equal to ´1 on the interval r´1{e,´8q and W´1 to refer to the branch which is real-valued
and less than or equal to ´1 on r´1{e, 0q.

We will make use of the following elementary facts concerning W0 and W´1 (all of which can
be found in [5] and its references).

Theorem 3. Suppose that y ě ´1{e is a real number. Then

x exppxq ď y if and only if x ď W0pyq. (37)

Theorem 4. Suppose that 0 ă y ď 1{e is a real number. Then

x expp´xq ď y if and only if x ě ´W´1p´yq. (38)

Theorem 5. Suppose that 0 ď x ď 1 is a real number. Then
x

2
ď W0pxq ď x. (39)

Theorem 6. Suppose that x ą expp1q is a real number. Then

logpxq ď ´W´1

ˆ

´
1

x

˙

ď 2 logpxq. (40)
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2.4. Fréchet derivatives and the contraction mapping principle

Given Banach spaces X , Y and a mapping f : X Ñ Y between them, we say that f is Fréchet
differentiable at x P X if there exists a bounded linear operator X Ñ Y , denoted by f 1x, such
that

lim
hÑ0

}fpx` hq ´ fpxq ´ f 1x rhs}

}h}
“ 0. (41)

Theorem 7. Suppose that X and Y are a Banach spaces and that f : X Ñ Y is Fréchet differentiable
at every point of X . Suppose also that D is a convex subset of X , and that there exists a real number
M ą 0 such that

}f 1x} ďM (42)

for all x P D. Then

}fpxq ´ fpyq} ďM}x´ y} (43)

for all x and y in D.

Suppose that f : X Ñ X is a mapping of the Banach space X into itself. We say that f is
contractive on a subset D of X if there exists a real number 0 ă α ă 1 such that

}fpxq ´ fpyq} ď α}x´ y} (44)

for all x, y P D. Moreover, we say that txnu8n“0 is a sequence of fixed point iterates for f if
xn`1 “ fpxnq for all n ě 0.

Theorem 7 is often used to show that a mapping is contractive so that the following result
can be applied.

Theorem 8. (The Contraction Mapping Principle) Suppose that D is a closed subset of a Banach
space X . Suppose also that f : X Ñ X is contractive on D and fpDq Ă D. Then the equation

x “ fpxq (45)

has a unique solution σ˚ P D. Moreover, any sequence of fixed point iterates for the function f which
contains an element in D converges to σ˚.

A discussion of Fréchet derivatives and proofs of Theorems 7 and 8 can be found, for instance,
in [18].

2.5. Gronwall’s inequality

The following well-known inequality can be found in, for instance, [2].

Theorem 9. Suppose that f and g are continuous functions on the interval ra, bs such that

fptq ě 0 and gptq ě 0 for all a ď t ď b. (46)

Suppose further that there exists a real number C ą 0 such that

fptq ď C `

ż t

s

fpsqgpsq ds for all a ď t ď b. (47)
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Then

fptq ď C exp

ˆ
ż t

a

gpsq ds

˙

for all a ď t ď b. (48)

2.6. Schwarzian derivatives

The Schwarzian derivative of a smooth function f : RÑ R is

tf, tu “
f3ptq

f 1ptq
´

3

2

ˆ

f2ptq

f 1ptq

˙2

. (49)

If the function xptq is a diffeomorphism of the real line (that is, a smooth, invertible mapping
RÑ R), then the Schwarzian derivative of xptq can be related to the Schwarzian derivative of
its inverse tpxq; in particular,

tx, tu “ ´

ˆ

dx

dt

˙2

tt, xu. (50)

The identity (50) can be found, for instance, in Section 1.13 of [11].

3. Integral equation formulation

In this section, we reformulate Kummer’s equation

pα1ptqq
2
“ λ2qptq ´

1

2

α3ptq

α1ptq
`

3

4

ˆ

α2ptq

α1ptq

˙2

(51)

as a nonlinear integral equation. As in the introduction, we assume that the function q has
been extended to the real line and we seek a function α which satisfies (51) on the real line.

By letting

pα1ptqq
2
“ λ2 expprptqq (52)

in (51), we obtain the equation

r2ptq ´
1

4
pr1ptqq

2
` 4λ2 pexpprptqq ´ qptqq “ 0 for all t P R. (53)

We next take r to be of the form

rptq “ logpqptqq ` δptq, (54)

which results in

δ2ptq ´
1

2

q1ptq

qptq
δ1ptq ´

1

4
pδ1ptqq

2
` 4λ2qptq pexppδptqq ´ 1q “ qptqpptq, for all t P R, (55)

where p is defined by the formula

pptq “
1

qptq

˜

5

4

ˆ

q1ptq

qptq

˙2

´
q2ptq

qptq

¸

. (56)

Note that the function p appears in the standard error analysis of WKB approximations (see,
for instance, [12]). Expanding the exponential in a power series and rearranging terms yields
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the equation

δ2ptq´
1

2

q1ptq

qptq
δ1ptq`4λ2qptqδptq´

1

4
pδ1ptqq

2
`4λ2qptq

˜

pδptqq2

2
`
pδptqq3

3!
` ¨ ¨ ¨

¸

“ qptqpptq. (57)

Applying the change of variables

xptq “

ż t

0

a

qpuq du (58)

transforms (57) into

δ2pxq ` 4λ2δpxq ´
1

4
pδ1pxqq

2
` 4λ2

˜

pδpxqq2

2
`
pδpxqq3

3!
` ¨ ¨ ¨

¸

“ ppxq for all x P R. (59)

At first glance, the relationship between the function ppxq appearing in (59) and the coefficient
qptq in the ordinary differential equation (1) is complex. However, the function pptq defined
via (56) is related to the Schwarzian derivative (see Section 2.6) of the function xptq defined in
(58) via the formula

pptq “ ´
2

qptq
tx, tu “ ´2

ˆ

dt

dx

˙2

tx, tu . (60)

It follows from (60) and Formula (50) in Section 2.6 that

ppxq “ 2 tt, xu . (61)

That is to say: p, when viewed as a function of x, is simply twice the Schwarzian derivative
of t with respect to x.

It is also notable that the part of (59) which is linear in δ is a constant coefficient Helmholtz
equation. This suggests that we form an integral equation for (59) using a Green’s function
for the Helmholtz equation. To that end, we define the integral operator T for functions
f P L1 pRq via the formula

T rf s pxq “
1

4λ

ż 8

´8

sin p2λ |x´ y|q fpyq dy (62)

The following theorem summarizes the relevant properties of the operator T .

Theorem 10. Suppose that λ ą 0 is a real number, and that the operator T is defined as in (62).
Suppose also that f P L1 pRq X C pRq. Then:

1. T rf s pxq is an element of C2 pRq;

2. T rf s pxq is a solution of the ordinary differential equation

y2pxq ` 4λ2ypxq “ fpxq for all x P R; and

3. the Fourier transform of T rf s pxq is the principal value of

pfpξq

4λ2 ´ ξ2
“

1

4λ

˜

pfpξq

2λ´ ξ
`

pfpξq

2λ` ξ

¸

.
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Proof. We observe that

T rf s pxq “
1

4λ

ż x

´8

sin p2λ px´ yqq fpyq dy `
1

4λ

ż 8

x

sin p2λpy ´ xqq fpyq dy

“
1

4λ
sinp2λxq

ż x

´8

cosp2λyqfpyq dy ´
1

4λ
cosp2λxq

ż x

´8

sinp2λyqfpyq dy

`
1

4λ
cosp2λxq

ż 8

x

sinp2λyqfpyq dy ´
1

4λ
sinp2λxq

ż 8

x

cosp2λyqfpyq dy

(63)

for all x P R. We differentiate both sides of (63) with respect to x, apply the Lebesgue dom-
inated convergence theorem to each integral (this is permissible since the sine and cosine
functions are bounded and f P L1 pRq) and combine terms in order to conclude that T rf s is
differentiable everywhere and

d

dx
T rf s pxq “ “

1

2

ż 8

´8

cos p2λ |x´ y|q signpx´ yqfpyq dy (64)

for all x P R. In the same fashion, we conclude that
ˆ

d

dx

˙2

T rf s pxq “ fpxq ´ λ

ż 8

´8

sin p2λ |x´ y|q fpyq dy (65)

for all x P R. Since f is continuous by assumption and the second term appearing on the
right-hand side in (65) is a continuous function of x by the Lebesgue dominated convergence
theorem, we see from (65) that T rf s is twice continuously differentiable. By combining (65)
and (62), we conclude that T rf s is a solution of the ordinary differential equation

y2pxq ` 4λ2ypxq “ fpxq for all x P R. (66)

We now define the function g through the formula

pgpξq “
1

4λ

ˆ

1

2λ´ ξ
`

1

2λ` ξ

˙

. (67)

It is well known that the Fourier transform of the principal value of 1{x is the function

´iπ signpxq; (68)

see, for instance, [17] or [7]. It follows readily that the inverse Fourier transform of the prin-
cipal value of

1

2λ˘ ξ
(69)

is

˘
1

2i
exp p¯2λixq signpxq. (70)

From this and (67), we conclude that

gpxq “
1

4λ

ˆ

1

2i
exp p´2λixq signpxq ´

1

2i
exp p2λixq signpxq

˙

“
1

4λ
sin p2λ|x|q .

(71)
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In particular, T rf s is the convolution of f with g. As a consequence,

{T rf spξq “ pgpξq pfpξq “
1

4λ

˜

pfpξq

2λ´ ξ
`

pfpξq

2λ` ξ

¸

, (72)

which is the third and final conclusion of the theorem.

In light of Theorem 10, it is clear that introducing the representation

δpxq “ T rσ s pxq (73)

into (59) yields the nonlinear integral equation

σpxq “ S rT rσ ss pxq ` ppxq for all x P R, (74)

where S is the operator defined for functions f P C1 pRq by the formula

S rf s pxq “
pf 1pxqq2

4
´ 4λ2

˜

pfpxqq2

2!
`
pfpxqq3

3!
`
pfpxqq4

4!
` ¨ ¨ ¨

¸

. (75)

The following theorem is immediately apparent from the procedure used to transform Kum-
mer’s equation (51) into the nonlinear integral equation (74).

Theorem 11. Suppose that λ ą 0 is a real number, that q : R Ñ R is an infinitely differentiable,
strictly positive function, that xptq is defined by (58), and that ppxq is defined via (61). Suppose also
that σ P L1 pRq X C pRq is a solution of the integral equation (74), that δ is defined via the formula

δpxq “ T rσ s pxq “
1

4λ

ż 8

´8

sin p2λ |x´ y|qσpyq dy, (76)

and that the function α is defined by the formula

αptq “ λ

ż t

0

a

qpuq exp

ˆ

δpxpuqq

2

˙

du. (77)

Then:

1. δpxq is a twice continuously differentiable solution of (59);

2. δpxptqq is a twice continuously differentiable solution of of (57);

3. αptq is three times continuously differentiable solution of (51); and

4. αptq is a phase function for the ordinary differential equation

y2ptq ` λ2qptqyptq “ 0 for all 0 ď t ď 1. (78)

4. Overview and statement of the principal result

The composition operator S ˝T appearing in (74) does not map any Lebesgue space Lp pRq or
Hölder space Ck,αpRq to itself, which complicates the analysis of (74). Moreover, the integral
defining T rσ s only exists if either σ P L1 pRq or pσp˘2λq “ 0. Even if both of these conditions
are satisfied, it is not necessarily the case that S rT rσ ss ` p will satisfy either condition. This
casts doubts on whether (74) is solvable for arbitrary p.
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We avoid a detailed discussion of which spaces and in what sense (74) admits solutions and
instead show that, under mild conditions on p and λ, there exists a function pb which approx-
imates p and such that the equation

σpxq “ S rT rσ ss pxq ` pbpxq for all x P R (79)

admits a solution. Moreover, we prove that if p is nonoscillatory then the solution of (79) is
also nonoscillatory and }p ´ pb}8 decays exponentially in λ. The next theorem, which is the
principal result of this article, makes these statements precise. Its proof is given in Sections 5,
6, 7 and 8.

Theorem 12. Suppose that q P C8 pRq is a strictly positive, and that xptq is defined by the formula

xptq “

ż t

0

a

qpuq du. (80)

Suppose also that ppxq is defined via the formula

ppxq “ 2tt, xu; (81)

that is, ppxq is twice the Schwarzian derivative of the variable t with respect to the variable x defined
via (80). Suppose furthermore that there exist real numbers λ ą 0, Γ ą 0 and a ą 0 such that

λ ě 6 max

"

1

a
,Γ

*

(82)

and

|pppξq| ď Γ exp p´a |ξ|q for all ξ P R. (83)

Then there exist functions pb P C8 pRq and σb P L2 pRq X C8 pRq such that σb is a solution of (79),

| pσbpξq| ď 2Γ exp

ˆ

´
5

6
a|ξ|

˙

for all ξ P R, (84)

and

}p´ pb}8 ă
24Γ

5a
exp

ˆ

´
5

6
aλ

˙

. (85)

According to Theorem 11, if σ is a solution of the integral equation (74), then the function α
defined by (77) is a phase function for the differential equation (1). We define αb in analogy
with (77) using the solution σb of the modified equation (79). That is, we let δb be the function
defined by the formula

δbpxq “ T rσb s pxq “
1

4λ

ż 8

´8

sinp2λ|x´ y|qσbpyq dy, (86)

and then define αb via

αbptq “ λ

ż t

0

a

qpuq exp

ˆ

δbpxpuqq

2

˙

du. (87)

Obviously, αb is not a phase function for the equation (1). However, if we define qb : R Ñ R
by the formula

1

qbptq

˜

5

4

ˆ

q1bptq

qbptq

˙2

´
q2b ptq

qbptq

¸

“ pbptq, (88)
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then Theorem 11 implies that αb is a phase function for the differential equation

y2ptq ` λ2qbptqyptq “ 0 for all 0 ď t ď 1. (89)

Since }q´ qb}8 is bounded in terms of }p´ pb}8 and the solutions of (89) closely approximate
those of (1) when }q ´ qb}8 is small, the function αb can be used to approximation solutions
of (1) when }p´ pb}8 is small.

Theorem 13, which appears below, gives a relevant error estimate. Given ε ą 0, it specifies a
bound on }p ´ pb}8 which ensures that solutions of (89) approximate those of (1) to relative
precision ε. Its proof appears in Section 9.

Defintion 1. We say that α is an ε-approximate phase function for the ordinary differential equation
(1) if there exists a basis of solutions tru, rvu of (1) such that

|uptq ´ ruptq| ď ε sup
0ďtď1

|ruptq| for all 0 ď t ď 1 (90)

and

|vptq ´ rvptq| ď ε sup
0ďtď1

|rvptq| for all 0 ď t ď 1, (91)

where u, v are defined by

uptq “
sinpαptqq

|α1ptq|1{2
(92)

and

vptq “
cospαptqq

|α1ptq|1{2
. (93)

Theorem 13. Suppose that q P C8 pRq is strictly positive, that the function p is defined by the
formula (56), and that there exist real numbers 0 ă η1 ă η2 such that

η1 ď qptq ď η2 for all 0 ď t ď 1, (94)
ˇ

ˇ

ˇ

ˇ

q1ptq

qptq

ˇ

ˇ

ˇ

ˇ

ď η2 for all 0 ď t ď 1, (95)

and

|pptq| ď η2 for all 0 ď t ď 1. (96)

Suppose also that λ ą 0, ε ą 0 are real numbers such that

0 ă ε ă λ exp

˜

η
3{4
2

4

¸

, (97)

and that k is the real number defined by

k “ 20

ˆ

η2
η1

˙2

` 8η22 ` 10
η2
η1
` 1. (98)

Suppose furthermore that pb : RÑ R is an infinitely differentiable function such that

}p´ pb}8 ď
1

2

η1
λ

exp p´kq exp

˜

´
η
3{4
2

4

¸

ε. (99)

13



Then there exists a function qb : r0, 1s Ñ R such that (88) holds and any phase function for (89) is an
ε-approximate phase function for (1).

By combining Theorems 11, 12 and 13 we obtain the following.

Corollary 1. Suppose that q, xptq, p, η1, η2, λ, ε, k, Γ, a and η are as in the hypotheses of Theorem 12
and 13. Suppose that, in addition,

λ ě
6

5a

˜

k `
η
3{4
2

4
` log

ˆ

12Γ

η1a2
1

ε

˙

¸

. (100)

Then there exists a function σb P L2 pRq X C8 pRq such that

| pσbpξq| ď 2Γ exp

ˆ

´
5

6
a|ξ|

˙

for all ξ P R (101)

and the function αbptq defined by

αbptq “ λ

ż t

0

a

qpuq exp

ˆ

δbpxpuqq

2

˙

du, (102)

where δb is the function defined through the formula

δbpxq “
1

4λ

ż

sinp2λ|x´ y|qσbpyq dy, (103)

is an ε-approximate phase function for the ordinary differential equation (1).

Remark 1. The hypothesis (100) can be replaced with the weaker condition

λ ą
6

5a
W´1

˜

´
25

288

η1a
2

Γ
exp p´kq exp

˜

´
η
3{4
2

4

¸

ε

¸

, (104)

where W´1 denotes the branch of the Lambert W function which is real-valued and less than ´1 on
the interval r´1{e, 0q (see Section 2.3).

The proof of Theorem 12 is divided amongst Sections 5, 6, 7 and 8. The principal difficulty
lies in constructing a function pb which approximates p and for which (79) admits a solution.
We accomplish this by introducing a modified integral equation

σpxq “ S rTb rσ ss pxq ` ppxq, (105)

where Tb is a “band-limited” version of T . That is, Tb rf s is defined via the formula
{Tb rf spξq “{T rf spξqbpξq, (106)

where bpξq is a C8c pRq bump function. This modified integral equation is introduced in Sec-
tion 5.

In Section 6, we show that under mild conditions on p and λ, (105) admits a solution σ.
The argument proceeds by applying the Fourier transform to (105) and using the contraction
mapping principle to show that the resulting equation admits a solution.

In Section 7, we estimate the Fourier transform of the solution σ of (105) under the assumption
that pp is exponentially decaying. We show that pσ is also exponentially decaying, albeit at a
slightly slower rate.

14



In Section 8, we define a band-limited version σb of the solution σ of (105) via the formula

pσbpξq “ pσpξqbpξq. (107)

By combining the observation that Tb rσ s “ T rσb swith (105), we obtain

σpxq “ S rT rσb ss pxq ` ppxq. (108)

We then define pb by the formula

pbpxq “ ppxq ` σbpxq ´ σpxq (109)

and rearrange (108) as

σbpxq “ S rT rσb ss pxq ` pbpxq. (110)

The decay estimate on pσ is then used to bound }p´ pb}8 “ }σ ´ σb}8 ď }pσ ´ pσb}1.

5. Band-limited integral equation

In this section, we introduce a “band-limited” version of the operator T and use it to form an
alternative to the integral equation (74).

Let bpξq be any infinitely differentiable function such that

1. bpξq “ 1 for all |ξ| ď λ,

2. 0 ď bpξq ď 1 for all λ ď |ξ| ď
?

2λ, and

3. bpξq “ 0 for all |ξ| ě
?

2λ.

We define Tb rf s for functions f P L1 pRq via the formula

{Tb rf spξq “ pfpξq
bpξq

4λ2 ´ ξ2
(111)

We will refer to Tb as the band-limited version of the operator T and and we call the nonlinear
integral equation

σpxq “ S rTb rσ ss pxq ` ppxq for all x P R (112)

obtained by replacing T with Tb in (74) the “band-limited” version of (74).

Since Tb is a Fourier multiplier, it is convenient to analyze (112) in the Fourier domain rather
than the space domain. We now introduce notation which will allow us to write down the
equation obtained by applying the Fourier transform to both sides of (112).

We let Wb and ĂWb be the linear operators defined for f P L1 pRq via the formulas

Wb rf s pξq “ fpξq
bpξq

4λ2 ´ ξ2
(113)

and

ĂWb rf s pξq “ fpξq
bpξqiξ

4λ2 ´ ξ2
, (114)

where bpξq is the function used to define the operator Tb.

15



For functions f P L1 pRq, it is standard to denote the Fourier transform of the function
exppfpxqq by exp˚ rf s; that is,

exp˚ rf s pξq “ δpξq ` fpξq `
f ˚ fpξq

2!
`
f ˚ f ˚ fpξq

3!
` ¨ ¨ ¨ . (115)

In (115), δ defers to the delta distribution and f ˚ f ˚ ¨ ¨ ¨ ˚ f denotes repeated convolution of
the function f with itself. The Fourier transform of exppfpxqq never appears in this paper;
however, we will encounter the Fourier transforms of the functions

exppfpxqq ´ 1 (116)

and

exppfpxqq ´ fpxq ´ 1. (117)

So, in analogy with the definition (115), we define exp˚1 rf s for f P L1 pRq by the formula

exp˚1 rf s pξq “ fpξq `
f ˚ fpξq

2!
`
f ˚ f ˚ fpξq

3!
` ¨ ¨ ¨ , (118)

and we define exp˚2 rf s for f P L1 pRq via the formula

exp˚2 rf s pξq “
f ˚ fpξq

2!
`
f ˚ f ˚ fpξq

3!
` ¨ ¨ ¨ . (119)

That is, exp˚1 rf s is obtained by truncating the leading term of exp˚ rf s and exp˚2 rf s is obtained
by truncated the first two leading terms of exp˚ rf s.

Finally, we define functions ψpξq and vpξq using the formulas

ψpξq “ pσpξq (120)

and

vpξq “ pppξq. (121)

Applying the Fourier transform to both sides of (112) results in the nonlinear equation

ψpξq “ R rψs pξq, (122)

where R rf s is defined for f P L1 pRq by the formula

R rf s pξq “
1

4
ĂWb rf s ˚ĂWb rf s pξq ´ 4λ2 exp˚2 rWb rf s s pξq ` vpξq. (123)

6. Existence of solutions of the band-limited equation.

In this section, we give conditions under which the sequence tψnu8n“0 of fixed point iterates for
(122) obtained by using the function v defined by (121) as an initial approximation converges.
More explicitly, ψ0 is defined by the formula

ψ0pξq “ vpξq, (124)

and for each integer n ě 0, ψn`1 is obtained from ψn via

ψn`1pξq “ R rψns pξq. (125)
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Theorem 14. Suppose that λ ą 0 is a real number, and that v P L1 pRq such that

}v}1 ď
λ2

18
. (126)

Theen the sequence tψnu8n“0 defined by (124) and (125) converges in L1 pRq norm to a function ψ
which satisfies the equation (122) for almost all ξ P R.

Proof. We observe that the Fréchet derivative (see Section 2.4) of R at f is the linear operator
R1f : L1 pRq Ñ L1 pRq given by the formula

R1f rhs pξq “
ĂWb rf s ˚ĂWb rhs pξq

2
´ 4λ2 exp˚1 rWb rf ss ˚Wb rhs pξq. (127)

From formulas (113) and (114) and the definition of bpξqwe see that

}Wb rf s}1 ď
}f}1
2λ2

(128)

and
›

›

›

ĂWb rf s
›

›

›

1
ď
}f}1
?

2λ
(129)

for all f P L1 pRq. From (127), (128) and (129) we conclude that
›

›R1f rhs
›

›

1
ď

1

2

›

›

›

ĂWb rf s
›

›

›

1

›

›

›

ĂWb rhs
›

›

›

1
` 4λ2 }Wb rf s}1 exp p}Wb rf s}1q }Wb rhs|1

ď
}f}1}h}1

4λ2
` 4λ2

}f}1
2λ2

}h}1
2λ2

exp

ˆ

}f}1
2λ2

˙

ď

ˆ

}f}1
4λ2

`
}f}1
λ2

exp

ˆ

}f}1
2λ2

˙˙

}h}1

(130)

for all f and h in L1 pRq. Similarly, by combining (123), (128) and (129) we conclude that

}R rf s}1 ď
1

4

›

›

›

ĂWb rf s
›

›

›

2

1
` 4λ2 }Wb rf s}

2
1 exp p}Wb rf s}1q ` }v}1

ď
}f}21
8λ2

`
}f}21
λ2

exp

ˆ

}f}1
2λ2

˙

` }v}1

(131)

whenever f P L1 pRq.

Now we set r “ λ2{9 and let B denote the closed ball of radius r centered at 0 in L1 pRq. Since
1

9
ă W0

ˆ

1

8

˙

, (132)

where W0 denotes the branch of the Lambert W function which is real-valued and greater
than or equal to ´1 on the interval r´1{e,8q (see Section 2.3), we conclude that

r

λ2
exp

´ r

2λ2

¯

ă
1

4
. (133)

According to Theorem 5 of Section 2.3 and (132), it also the case that
r

λ2
ă

1

8
. (134)
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We combine (133), (134) with (130) to conclude that
›

›R1f rhs
›

›

1
ď

´ r

4λ2
`

r

λ2
exp

´ r

2λ2

¯¯

}h}1 ă

ˆ

1

32
`

1

4

˙

}h}1 ă
1

2
}h}1 (135)

for all h P L1 pRq and f P B. In other words, the L1 pRq Ñ L1 pRq operator norm of the linear
operator R1f is bounded by 1{2 whenever f is in the ball B.

Similarly, we insert (133), (134) and (126) into (131) to conclude that

}R rf s}1 ď
r2

8λ2
`
r2

λ2
exp

´ r

2λ2

¯

`
r

2

ď r

ˆ

r

8λ2
`

r

λ2
exp

´ r

2λ2

¯

`
1

2

˙

ď r

ˆ

1

64
`

1

4
`

1

2

˙

ď r

(136)

for all f P B.

Together with Theorem 7 of Section 2.4, formula (135) implies that the operator R is a con-
traction on the ball B while (136) says that it maps the ball B into itself. We now apply the
contraction mapping theorem (Theorem 8 in Section 2.4) to conclude that any sequence of
fixed point iterates for (122) which originates in B will converge to a solution of (122). Since
tψnu is such a sequence, we are done.

If ψ is a solution of (122) then the function σ defined by the formula

σpxq “

ż 8

´8

exppixξqψpξq dξ (137)

is clearly a solution of the band-limited integral equation (112). Note that because ψ P L1 pRq,
the integral in (137) is well-defined and σ is an element of the space C0 pRq of continuous
functions which vanish at infinity. We record this observation as follows:

Theorem 15. Suppose that λ ą 0 is a real number. Suppose also that p P L1 pRq such that pp P L1 pRq
and

}pp}1 ă
λ2

18
. (138)

Then there exists a function σ P C0 pRq which is a solution of the integral equation (112).

Remark 2. Since σ is not necessarily in L1 pRq, the integral
ż 8

´8

expp´ixξqσpxq dx (139)

need not exist. Nor is the existence of the improper integral

lim
RÑ8

ż R

´R

expp´ixξqσpxq dx (140)

guaranteed. However, when viewed as a tempered distribution, the Fourier transform of σ exists and
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is ψ; that is to say,
ż 8

´8

ψpxqfpxq dx “

ż 8

´8

σpxq pfpxq dx (141)

for all functions f P SpRq.

In the next section we will prove that under additional assumptions on v, ψ lies in L2 pRq. This implies
that σ P L2 pRq and ensures the convergence of the improper Riemann integrals (140).

7. Fourier estimate

In this section, we derive a pointwise estimate on the solution ψ of Equation (122) under
additional assumptions on the function v.

Lemma 1. Suppose that a and C are real numbers such that

0 ď C ă a. (142)

Suppose also that f P L1 pRq, and that

|fpξq| ď C expp´a|ξ|q for all ξ P R. (143)

Then

|exp˚2 rf s pξq| ď
C2

2π
expp´a|ξ|q

1` a|ξ|

a
exp

ˆ

C

2πa

˙

exp

ˆ

C

2π
|ξ|

˙

for all ξ P R, (144)

where exp˚2 is the operator defined in (119).

Proof. Let

gpξq “ C expp´a|ξ|q (145)

and for each integer m ą 0, denote by gm the m-fold convolution product of the function g.
That is to say that g1 is defined via the formula

g1pξq “ gpξq (146)

and for each integer m ą 0, gm`1 is defined in terms of gm by the formula

gm`1pξq “ gm ˚ gpξq. (147)

We observe that for each integer m ą 0 and all ξ P R,

gmpξq “ 2
?
aC

ˆ

C|ξ|

2π

˙m´1{2 Km´1{2pa|ξ|q

Γpmq
, (148)

whereKν denotes the modified Bessel function of the second kind of order ν (see Section 2.1).
By repeatedly applying Theorem 1 of Section 2.1, we conclude that for all integers m ą 0 and
all real t,

Km´1{2ptq ď K1{2ptq
m´1
ź

j“1

˜

2
`

j ´ 1
2

˘

t
` 1

¸

“ K1{2ptq

ˆ

2

t

˙m´1 Γ
`

1`t
2
`m´ 1

˘

Γ
`

1`t
2

˘ .

(149)
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We insert the identity

K1{2ptq “

c

π

2t
expp´tq (150)

into (148) in order to conclude that for all integers m ą 0 and all real numbers t ą 0,

Km´1{2ptq ď

?
π

2

ˆ

t

2

˙1{2´m

expp´tq
Γ
`

1`t
2
`m´ 1

˘

Γ
`

1`t
2

˘ . (151)

By combining (151) and (148) we conclude that

gmpξq ď C expp´a|ξ|q

ˆ

C

πa

˙m´1 Γ
´

1`a|ξ|
2
`m´ 1

¯

ΓpmqΓ
´

1`a|ξ|
2

¯ (152)

for all integers m ą 0 and all ξ ‰ 0. Moreover, the limit as ξ Ñ 0 of each side of (152) is finite
and the two limits are equal, so (152) in fact holds for all ξ P R. We sum (152) overm “ 2, 3, . . .
in order to conclude that

exp˚2 rgs pξq ď C expp´a|ξ|q
8
ÿ

m“2

ˆ

C

πa

˙m´1 Γ
´

1`a|ξ|
2
`m´ 1

¯

Γpm` 1qΓpmqΓ
´

1`a|ξ|
2

¯

“ C expp´a|ξ|q
8
ÿ

m“1

ˆ

C

πa

˙m Γ
´

1`a|ξ|
2
`m

¯

Γpm` 2qΓpm` 1qΓ
´

1`a|ξ|
2

¯

(153)

for all ξ P R. Now we observe that
1

Γpm` 2q
ď

ˆ

1

2

˙m

for all m “ 0, 1, 2, . . . . (154)

Inserting (154) into (153) yields

exp˚2 rgs pξq ď C expp´a|ξ|q
8
ÿ

m“1

ˆ

C

2πa

˙m Γ
´

1`a|ξ|
2
`m

¯

Γpm` 1qΓ
´

1`a|ξ|
2

¯ (155)

for all ξ P R. Now we apply the binomial theorem (Theorem 2 of Section 2.2), which is
justified since C ă a, to conclude that

exp˚2 rgs pξq ď C expp´a|ξ|q

˜

ˆ

1´
C

2πa

˙´
1`a|ξ|

2

´ 1

¸

“ C expp´a|ξ|q

˜

exp

˜

1` a|ξ|

2
log

˜

1

1´ C
2πa

¸¸

´ 1

¸ (156)

for all ξ P R. We observe that

exppxq ´ 1 ď x exppxq for all x ě 0, (157)

and

1 ď log

ˆ

1

1´ x

˙

ď 2x for all 0 ď x ď
1

2π
. (158)
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By combining (157) and (158) with (156) we conclude that

exp˚2 rgs pξq ď C expp´a|ξ|q
1` a|ξ|

2
log

˜

1

1´ C
2πa

¸

exp

˜

1` a|ξ|

2
log

˜

1

1´ C
2πa

¸¸

ď
C2

2π
expp´a|ξ|q

1` a|ξ|

a
exp

ˆ

C

2πa

˙

exp

ˆ

C

2π
|ξ|

˙

(159)

for all ξ P R. Owing to (143),

|exp˚2 rf s pξq| ď exp˚2 rgs pξq for all ξ P R. (160)

By combining this observation with (159), we obtain (144), which completes the proof.

Remark 3. Kummer’s confluent hypergeometric function Mpa, b, zq is defined by the series

Mpa, b, zq “ 1`
az

b
`
paq2z

2

pbq22!
`
paq3z

3

pbq33!
` ¨ ¨ ¨ , (161)

where paqn is the Pochhammer symbol

paqn “
Γpa` nq

Γpaq
“ apa` 1qpa` 2q . . . pa` n´ 1q. (162)

By comparing the definition of Mpa, b, zq with (153), we conclude that

|exp˚2 rf s pξq| ď C expp´a|ξ|q

ˆ

M

ˆ

1` a|ξ|

2
, 2,

C

πa

˙

´ 1

˙

for all ξ P R (163)

provided

|fpξq| ď C expp´a|ξ|q for all ξ P R. (164)

The weaker bound (144) is sufficient for our immediate purposes, but formula (163) might serve as a
basis for improved estimates on solutions of Kummer’s equation.

The following lemma is a special case of Formula (148).

Lemma 2. Suppose that C ě 0 and a ą 0 are real numbers, and that f P L1 pRq such that

|fpξq| ď C exp p´a|ξ|q for all ξ P R. (165)

Then

|f ˚ fpξq| ď C2 expp´a|ξ|q

ˆ

1` a|ξ|

a

˙

for all ξ P R. (166)

We will also make use of the following elementary observation.

Lemma 3. Suppose that a ą 0 is a real number. Then

expp´a|ξ|q|ξ| ď
1

a expp1q
for all ξ P R. (167)

We combine Lemmas 1 and 2 with (128) and (129) in order to obtain the following key esti-
mate.
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Theorem 16. Suppose that Γ ą 0, λ ą 0, a ą 0 and C ě 0 are real numbers such that

0 ď C ă 2aλ2. (168)

Suppose also that f P L1 pRq such that

|fpξq| ď C expp´a|ξ|q for all |ξ| ď
?

2λ, (169)

and that v P L1 pRq such that

|vpξq| ď Γ expp´a|ξ|q for all ξ P R. (170)

Suppose further that R is the operator defined via (123). Then

|R rf s pξq| ď expp´a|ξ|q

ˆ

C2

λ2

ˆ

1` a|ξ|

a

˙ˆ

1

8
`

1

2π
exp

ˆ

C

4πλ2a

˙

exp

ˆ

C

4πλ2
|ξ|

˙˙

` Γ

˙

(171)

for all ξ P R.

Proof. We define the operator R1 via the formula

R1 rf s pξq “
1

4
ĂWb rf s ˚ĂWb rf s pξq (172)

and R2 by the formula

R2 rf s pξq “ ´4λ2 exp˚2 rWb rf ss pξq, (173)

where Wb and ĂWb are defined as in Section 5. Then

R rf s pξq “ R1 rf s pξq `R2 rf s pξq ` vpξq (174)

for all ξ P R. We observe that
ˇ

ˇ

ˇ

ĂWb rf s pξq
ˇ

ˇ

ˇ
ď

C
?

2λ
expp´a|ξ|q for all ξ P R. (175)

By combining Lemma 2 with (175) we obtain

|R1 rf s pξq| ď
C2

8λ2
expp´a|ξ|q

ˆ

1` a|ξ|

a

˙

for all ξ P R. (176)

Now we observe that

|Wb rf s pξq| ď
C

2λ2
expp´a|ξ|q for all ξ P R. (177)

Combining Lemma 1 with (177) yields

|R2 rf s pξq| ď
C2

2πλ2
expp´a|ξ|q

ˆ

1` a|ξ|

a

˙

exp

ˆ

C

4πλ2a

˙

exp

ˆ

C

4πλ2
|ξ|

˙

(178)

for all ξ P R. Note that (168) ensures that the hypothesis (142) in Lemma 1 is satisfied. We
combine (176) with (178) and (170) in order to obtain (171), and by so doing we complete the
proof.

Remark 4. Note that Theorem 16 only requires that fpξq satisfy a bound on the interval r´
?

2λ,
?

2λs
and not on the entire real line.

In the next theorem, we use Theorem 16 to bound the solution of (122) under an assumption
on the decay of v.
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Theorem 17. Suppose that λ ą 0, a ą 0 and Γ ě 0 are real numbers such that

λ ě 6 max

"

Γ,
1

a

*

. (179)

Suppose also that v P L1 pRq such that

|vpξq| ď Γ expp´a|ξ|q for all ξ P R. (180)

Then there exists a solution of ψpξq of equation (122) such that

|ψpξq| ď 2Γ exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙

for all ξ P R. (181)

Proof. Due to (179) and (180),

}v}1 ď
λ2

18
. (182)

It follows from Theorem 14 and (182) that a solution ψpξq of (122) is obtained as the limit of
the sequence of fixed point iterates tψnpξqu defined by the formula

ψ0pξq “ vpξq (183)

and the recurrence

ψn`1pξq “ R rψn s pξq. (184)

We now derive pointwise estimates on the iterates ψnpξq in order to establish (181).

Let tβku8k“0 be the sequence of real numbers be generated by the recurrence relation

βk`1 “
β2
k

2λ
` Γ (185)

with the initial value

β0 “ Γ. (186)

It can be established by induction that (179) implies that this sequence is bounded above
by 2Γ and monotonically increasing, and hence βk converges to a real number β such that
0 ď β ď 2Γ.

Now suppose that n ě 0 is an integer, and that

|ψnpξq| ď βn expp´a|ξ|q for all |ξ| ď
?

2λ. (187)

When n “ 0, this is simply the assumption (180). The function ψn`1pξq is obtained from ψnpξq
via the formula

ψn`1pξq “ R rψ s pξq. (188)

We combine Theorem 16 with (188) and (187) to conclude that

|ψn`1pξq| ď expp´a|ξ|q

ˆ

β2
n

λ2

ˆ

1` a|ξ|

a

˙ˆ

1

8
`

1

2π
exp

ˆ

βn
4πλ2a

˙

exp

ˆ

βn
4πλ2

|ξ|

˙˙

` Γ

˙

(189)

for all ξ P R. The application of Theorem 16 is justified: the hypothesis (168) is satisfied since

βn ď 2Γ ď 2λ2a (190)
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for all integers n ě 0. We restrict ξ to the interval r´
?

2λ,
?

2λs in (189) and use the fact that
1

aλ
ă

1

6
, (191)

which is a consequence of (179), in order to conclude that

|ψn`1pξq| ď expp´a|ξ|q

ˆ

β2
n

λ2

ˆ

1` a
?

2λ

a

˙ˆ

1

8
`

1

2π
exp

ˆ

βn
4πλ2a

˙

exp

ˆ

βn
4πλ2

?
2λ

˙˙

` Γ

˙

ď expp´a|ξ|q

ˆ

β2
n

λ

ˆ

1

6
`
?

2

˙ˆ

1

8
`

1

2π
exp

ˆ

βn
24πλ

˙

exp

ˆ

βn

2
?

2πλ

˙˙

` Γ

˙

(192)
for all |ξ| ď

?
2λ. Now we combine (192) with the inequality

βn
λ
ď

2Γ

λ
ă

1

3
(193)

and the observation that
ˆ

1

6
`
?

2

˙ˆ

1

8
`

1

2π
exp

ˆ

1

72π

˙

exp

ˆ

1

6
?

2π

˙˙

ď
1

2
(194)

in order to conclude that

|ψn`1pξq| ď expp´a|ξ|q

ˆ

β2
n

λ

ˆ

1

6
`
?

2

˙ˆ

1

8
`

1

2π
exp

ˆ

1

72π

˙

exp

ˆ

1

6
?

2π

˙˙

` Γ

˙

ď

ˆ

β2
n

2λ
` Γ

˙

expp´a|ξ|q

“ βn`1 expp´a|ξ|q

(195)

for all |ξ| ď
?

2λ. We conclude by induction that (187) holds for all integers n ě 0.

The sequence tψnpξqu converges to ψpξq in L1 pRq norm (and hence a subsequence of ψnpξq
converges to ψpξq pointwise almost everywhere) and (187) holds for all integers n ě 0. More-
over, for all integers n ě 0, βn`1 ď 2Γ. From these observations we conclude that

|ψpξq| ď 2Γ expp´a|ξ|q (196)

for almost all |ξ| ď
?

2λ. We also observe that ψpξq is a fixed point of the operator R, so that

ψpξq “ R rψ s pξq (197)

for all ξ P R. Clearly,

R rf s pξq “ R rgs pξq (198)

for all ξ P R if fpξq “ gpξq for almost all |ξ| ď
?

2λ, so (196) in fact holds for all |ξ| ď
?

2λ.

We now apply Theorem 16 to the functionψpξq (which is justified since 2Γ ă 2λ2a) to conclude
that

|ψpξq| ď expp´a|ξ|q

ˆ

4Γ2

λ2

ˆ

1` a|ξ|

a

˙ˆ

1

8
`

1

2π
exp

ˆ

2Γ

4πλ2a

˙

exp

ˆ

2Γ

4πλ2
|ξ|

˙˙

` Γ

˙

(199)

for all ξ P R. Note the distinction between (187) and (199) is that the former only holds for all
ξ in the interval r´

?
2λ,
?

2λs, while the later holds for all ξ on the real line. It follows from
(179) that

1

λa
ă

1

6
and

Γ

λ
ă

1

6
. (200)
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We insert these bounds into (199) in order to conclude that

|ψpξq| ď Γ expp´a|ξ|q

ˆ

2

3λ

ˆ

1` a|ξ|

a

˙ˆ

1

8
`

1

2π
exp

ˆ

1

72π

˙

exp

ˆ

1

12πλ
|ξ|

˙˙

` 1

˙

(201)

for all ξ P R. Now we observe that
1

2π
exp

ˆ

1

72π

˙

ă
1

6
, (202)

which, when combined with (201), yields

|ψpξq| ď Γ expp´a|ξ|q

ˆˆ

1

9
`

2|ξ|

3λ

˙ˆ

1

8
`

1

6
exp

ˆ

1

12πλ
|ξ|

˙˙

` 1

˙

for all ξ P R. (203)

By rearranging the right-hand side of (203) as

Γ expp´a|ξ|q

ˆ

1

72
`

1

56
exp

ˆ

1

12πλ
|ξ|

˙

`
|ξ|

12λ
`
|ξ|

9λ
exp

ˆ

1

12πλ
|ξ|

˙

` 1

˙

“ Γ exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙

exp

ˆ

´
1

λ
|ξ|

˙

¨

ˆ

1

72
`

1

56
exp

ˆ

1

12πλ
|ξ|

˙

`
|ξ|

12λ
`
|ξ|

9λ
exp

ˆ

1

12πλ
|ξ|

˙

` 1

˙

and applying Lemma 3, we arrive at the inequality

|ψpξq| ď Γ exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙ˆ

1

72
`

1

56
`

1

12 expp1q
`

4

33 expp1q
` 1

˙

for all ξ P R,

(204)
from which (181) follows immediately.

Suppose that ψ P L1 pRq is a solution of (122). Then the function σ defined by the formula

σpxq “

ż 8

´8

exppixξqψpξq dξ (205)

is a solution of the integral equation (112). However, the Fourier transform of (205) might
only be defined in the sense of tempered distributions and not as a Lebesgue or improper
Riemann integral. If, however, we assume the function p appearing in (122) is an element
of L1 pRq and impose the hypotheses of Theorem 18 on the Fourier transform of p, then ψ P
L2 pRq, from which we conclude that σ is also an element of L2 pRq. In this event, there is
no difficulty in defining the Fourier transform of σ. We record these observations in the
following theorem.

Theorem 18. Suppose that there exist real numbers λ ą 0, Γ ą 0 and a ą 0 such that

λ ą 6 max

"

Γ,
1

a

*

. (206)

Suppose also that p P L1 pRq such that and

|pppξq| ď Γ exp p´a|ξ|q for all ξ P R. (207)

Then there exists a solution σpxq of the integral equation (112) such that

|pσpξq| ď 2Γ exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙

for all ξ P R (208)
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Remark 5. The bound (208) implies that pσ decays faster than any polynomial, from which we conclude
that σ is infinitely differentiable.

8. Approximate solution of the original equation

We would like to insert the solution σ of (112) into the original equation (74). However, we
have no guarantee that σ is in L1 pRq, nor do we expect that pσp˘2λq “ 0. As a consequence,
the integrals defining T rσ smight not exist.

To remedy this problem, we define a “band-limited” version σb of σ by the formula

pσbpξq “ pσpξqbpξq, (209)

where bpξq is the function used to define the operator Tb. We observe that there is no difficulty
in applying T to σb since

pσbp˘2λq “ 0. (210)

Moreover, Tb rσ s “ T rσb s, so that

σpxq “ S rT rσb ss pxq ` ppxq for all x P R. (211)

Rearranging (211), we obtain

σbpxq “ S rT rσb ss pxq ` pbpxq for all x P R, (212)

where pbpxq is defined the formula

pbpxq “ ppxq ` σbpxq ´ σpxq. (213)

Using (208) and (213), we conclude that under the hypotheses of Theorem 18,

}p´ pb}8 ď } pσb ´ pσ}1

ď 2Γ

ż

|ξ|ěλ

exp

ˆ

´

ˆ

a´
1

λ

˙

|ξ|

˙

dξ

ď
4Γ

a´ 1
λ

exp

ˆ

´

ˆ

a´
1

λ

˙

λ

˙

ď
24Γ

5a
exp

ˆ

´
5

6
aλ

˙

.

(214)

Together Theorem 18 and (214) imply Theorem 12.

9. Backwards error estimate

In this section, we prove Theorem 13.

Although both p and pb are defined on the real line, we are only concerned with solutions of
(1) on the interval r0, 1s, and so we only require estimates there. Accordingly, throughout this
section we use } ¨ }8 to denote the L8 pr0, 1sq norm.

26



We omit the proof of the following lemma, which is somewhat long and technical but entirely
elementary (it can be established with the techniques found in ordinary differential equation
textbooks; see, for instance, Chapter 1 of [4]).

Lemma 4. Suppose that q : RÑ R is infinitely differentiable and strictly positive, that pptq is defined
by (56), and that there exist real numbers η1 ą 0 and η2 ą 0 such that

η1 ď qptq ď η2 for all 0 ď t ď 1, (215)

and

|pptq| , |q1ptq| ď η2 for all 0 ď t ď 1. (216)

Let

k “ 20

ˆ

η2
η1

˙2

` 8η22 ` 10
η2
η1
` 1 (217)

and suppose also that ε ą 0 is a real number such that

ε ă
η1
2
. (218)

Suppose furthermore that pb : r0, 1s Ñ R is an infinitely differential function such that

}p´ pb}8 ď ε expp´kq. (219)

Then there exists an infinitely differentiable function qb : r0, 1s Ñ R such that

1

qbptq

˜

5

4

ˆ

q1bptq

qbptq

˙2

´
q2b ptq

qbptq

¸

“ pbptq for all 0 ď t ď 1 (220)

and

}q ´ qb}8 ď ε. (221)

We derive a bound on the change in solutions of the ordinary differential equation (1) when
the coefficient qptq is perturbed.

Lemma 5. Suppose that λ ą 0, ε ą 0, η1 ą 0 and η2 ą 0 are real numbers. Suppose also that
q : r0, 1s Ñ R is a continuously differentiable function such that

η1 ď qptq ď η2 for all 0 ď t ď 1, (222)

that pptq is defined by the formula (56), and that

|pptq| ď η2 for all 0 ď t ď 1. (223)

Suppose furthermore that qb : r0, 1s Ñ R is a continuously differentiable function such that

|qptq ´ qbptq| ď
1

2

η1
λ

exp

˜

´
η
3{4
2

4

¸

ε for all 0 ď t ď 1. (224)

If zptq is a solution of the ordinary differential equation

z2ptq ` λ2qptqzptq “ 0 for all 0 ď t ď 1 (225)

and z0ptq is the unique solution of the ordinary differential equation

z20ptq ` λ
2qbptqz0ptq “ 0 for all 0 ď t ď 1 (226)
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such that z0p0q “ zp0q and z10p0q “ z1p0q, then

}z ´ z0}8 ď ε}z}8. (227)

Proof. We start by observing that the function ψptq “ z0ptq ´ zptq is the unique solution of the
initial value problem

#

ψ2ptq ` λ2qptqψptq “ λ2fptq for all 0 ď t ď 1

ψp0q “ ψ1p0q “ 0,
(228)

where

fptq “ pqptq ´ q0ptqq pψptq ` zptqq . (229)

We now apply the well-known Liouville-Green transformation to (228) in two steps. First,
we introduce the function

φptq “ pqptqq1{4 ψptq, (230)

which is the solution of the initial value problem
$

&

%

φ2ptq ´
q1ptq

2qptq
φ1ptq ` λ2qptqφptq “ pqptqq1{4 λ2fptq ´

1

4
qptqpptqφptq for all 0 ď t ď 1

φp0q “ φ1p0q “ 0.

(231)

Next we introduce the change of variables

xptq “

ż t

0

a

qpuq du, (232)

which transforms (231) into
$

&

%

φ2pxq ` λ2φpxq “ pqpxqq´3{4 λ2fpxq ´
1

4
ppxqφpxq for all 0 ď x ď x1

φp0q “ φ1p0q “ 0,
(233)

where

x1 “

ż 1

0

a

qpuq du. (234)

We now use the Green’s function for the initial value problem (233) obtained from the Liouville-
Green transform to conclude that for all 0 ď x ď x1,

φpxq “

ż x

0

sinpλpx´ yqq

λ

ˆ

pqpyqq´3{4 λ2fpyq ´
1

4
ppyqφpyq

˙

dy. (235)

By inserting (229) into (235) and we obtain the inequality

|φpxq| ď

ˆ

}q ´ qb}8
λ

η1
`
η2
4

˙
ż x

0

|φpyq| dy `
λ

η
3{4
1

}q ´ qb}8}z}8 for all 0 ď x ď x1. (236)

We apply Gronwall’s inequality (Theorem 9 in Section 2.5) to (236) in order to conclude that

|φpxq| ď
λ

η
3{4
1

}q ´ qb}8}z}8 exp

ˆˆ

}q ´ qb}8
λ

η1
`
η2
4

˙

x

˙

for all 0 ď x ď x1. (237)
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Combing (230), (237) and the observation that

x1 “

ż 1

0

a

qpuq du ď η
1{2
2 (238)

yields the inequality

|φptq| ď
λ

η1
}q ´ qb}8 exp

ˆ

λ

η1
}q ´ qb}8η

1{2
2

˙

exp

˜

η
3{4
2

4

¸

}z}8 (239)

for all 0 ď t ď 1. Now

λ

η1
}q ´ qb}8 exp

ˆ

λ

η1
}q ´ qb}8η

1{2
2

˙

exp

˜

η
3{4
2

4

¸

ă ε (240)

if and only if

λ

η1
η
1{2
2 }q ´ qb}8 ă W0

˜

εη
1{2
2 exp

˜

´
η
3{4
2

4

¸¸

, (241)

where W0 is the branch of the Lambert W function which is real-valued and greater than ´1
on the interval r´1{e,8q (see Section 2.3). According to Theorem 5,

λ

η1
η
1{2
2 }q ´ qb}8 ă

1

2

˜

εη
1{2
2 exp

˜

´
η
3{4
2

4

¸¸

, (242)

implies (241). We algebraically simplify (242) in order to conclude that

}q ´ qb}8 ă
1

2

η1
λ

exp

˜

´
η
3{4
2

4

¸

ε (243)

implies (239).

By combining Lemmas 4 and 5 we obtain Theorem 13.

10. Numerical experiments

In this section, we describe numerical experiments which, inter alia, illustrate one of the im-
portant consequences of the existence of nonoscillatory phase functions. Namely, that a large
class of special functions can be evaluated to high accuracy using a number of operations
which does not grow with order.

Although the proof of Theorem 12 suggests a numerical procedure for the construction of
nonoscillatory phase functions, we utilize a different procedure here. It has the advantage
that the coefficient q in the ordinary differential equation (1) need not be extended outside of
the interval on which the nonoscillatory phase function is constructed. A paper describing
this work is in preparation.

The code we used for these calculations was written in Fortran and compiled with the Intel
Fortran Compiler version 12.1.3. All calculations were carried out in double precision arith-
metic on a desktop computer equipped with an Intel Xeon X5690 CPU running at 3.47 GHz.
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10.1. A nonoscillatory solution of the logarithm form of Kummer’s equation.

In this experiment, we illustrate Theorem 12 in Section 4. We first construct a nonoscillatory
solution r of the logarithm form of Kummer’s equation

r2ptq ´
1

4
pr1ptqq

2
` 4λ2 pexpprptqq ´ qptqq “ 0 (244)

on the interval r´1, 1s, where λ = 1,000 and q is the function r´1, 1s Ñ R defined by the
formula

qptq “

ˆ

3`
1

1` 10t2
` t3 cosp5tq

˙

. (245)

Then we compute the 500 leading Chebyshev coefficients of q and r.

We display the results of this experiment in Figures 1 and 2. Figure 1 contains plots of the
functions q and r, while Figure 2 contains a plot of the base-10 logarithms of the absolute
values of the leading Chebyshev coefficients of q and r.

We observe that, consistent with Theorem 12, the Chebyshev coefficients of both r and q
decay exponentially, although those of r decay at a slightly slower rate.

10.2. Evaluation of Legendre polynomials.

In this experiment, we compare the cost of evaluating Legendre polynomials of large order
using the standard recurrence relation with the cost of doing so with a nonoscillatory phase
function.

For any integer n ě 0, the Legendre polynomial Pnpxq of order n is a solution of the second
order differential equation

p1´ t2qy2ptq ´ 2ty1ptq ` npn` 1qyptq “ 0. (246)

Equation (246) can be put into the standard form

ψ2ptq `

ˆ

1` n´ nt2 ´ n2pt2 ´ 1q

p1´ t2q2

˙

ψptq “ 0 (247)

by introducing the transformation

ψptq “
?

1´ t2 yptq. (248)

Legendre polynomials satisfy the well-known three term recurrence relation

pn` 1qPn`1ptq “ p2n` 1qtPnptq ´ nPn´1ptq. (249)

See, for instance, [11] for a discussion of the these and other properties of Legendre polyno-
mials.

For each of 9 values of n, we proceed as follows. We sample 1000 random points

t1, t2, . . . , t1000 (250)

from the uniform distribution on the interval p´1, 1q. Then we evaluate the Legendre polyno-
mial of order n using the recurrence relation (249) at each of the points t1, t2, . . . , t1000. Next,
we construct a nonoscillatory phase function for the ordinary differential equation (247) and
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use it evaluate the Legendre polynomial of order n at each of the points t1, t2, . . . , t1000. Fi-
nally, for each integer j “ 1, . . . , 1000, we compute the error in the approximation of Pnptjq
obtained from the nonoscillatory phase function by comparing it to the value obtained us-
ing the recurrence relation (we regard the recurrence relation as giving the more accurate
approximation).

The results of this experiment are shown in Table 1. There, each row correponds to value of
n. That value is listed n, as is the time required to compute each phase function for that value
of n, the average time required to evaluate the Legendre polynomial of order n using the
recurrence relation, the average cost of evaluating the Legendre polynomial of order n with
the nonoscillatory phase function, and the largest of the absolute errors in the approximations
of the quantities

Pnpt1q, Pnpt2q, . . . , Pnpt1000q

obtained via the phase function method.

This experiment reveals that, as expected, the cost of evaluating Pnptq using the recurrence
relation (249) grows as Opnq while the cost of doing so with nonoscillatory phase function is
independet of order.

However, it also exposes a limitation of phase functions. The values of Pnptq are obtained in
part by evaluating sine and cosine of a phase function whose magnitude is on the order of n.
This imposes limitations on the accuracy of the method due to the well-known difficulties in
evaluating periodic functions of large arguments.

Figure 3 contains a plot of the nonoscillatory phase function for the equation (247) when
n “1,000,000.

10.3. Evaluation of Bessel functions.

In this experiment, we compare the cost of evaluating Bessel functions of integer order via
the standard recurrence relation with that of doing so using a nonoscillatory phase function.

We will denote by Jν the Bessel function of the first kind of order ν. It is a solution of the
second order differential equation

t2y2ptq ` ty1ptq ` pt2 ´ ν2qyptq “ 0, (251)

which can be brought into the standard form

ψ2ptq `

ˆ

1´
λ2 ´ 1{4

t2

˙

ψptq “ 0 (252)

via the transformation

ψptq “
?
t yptq. (253)

An inspection of (252) reveals that Jν is nonoscillatory on the interval
ˆ

0,
1

2

?
4ν2 ´ 1

˙

(254)
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and oscillatory on the interval
ˆ

1

2

?
4ν2 ´ 1,8

˙

. (255)

The Bessel functions satisfy the three-term recurrence relation

Jν`1ptq “
2ν

t
Jνptq ´ Jν´1ptq. (256)

The recurrence (256) is numerically unstable in the forward direction; however, when evalu-
ated in the direction of decreasing index, it yields a stable mechanism for evaluating Bessel
functions of integer order (see, for instance, Chapter 3 of [11]).

For each of 9 values of n, we proceed as follows. First, we sample 1000 random points

t1, t2, . . . , t1000 (257)

from the uniform distribution on the interval r2n, 3ns. We then use the recurrence relation
(256) to evaluate the Bessel function Jn of order n at the points t1, t2, . . . , t1000. Next, we
construct a nonoscillatory phase function for the equation (253) on the interval r2n, 3ns and
use it to evaluate Jn at the points t1, t2, . . . , t1000. Finally, for each integer j “ 1, . . . , 1000,
we compute the error in the approximation of Jnptjq obtained from the nonoscillatory phase
function by comparing it to the value obtained using the recurrence relation (once again we
regard the recurrence relation as giving the more accurate approximation).

The results of this experiment are displayed in Table 2. There, each row corresponds to one
value of n. In addition to that value of n, it lists the time required to compute the phase func-
tion at order n, the average cost of evaluating Jn using the recurrence relation, the average
cost of evaluating it with the nonoscillatory phase function, and the largest of the absolute
errors in the approximations of the quantities

Jnpt1q, Jnpt2q, . . . , Jnpt1000q

obtained via the phase function method.

We observe that while the cost of evaluating Jn using the recurrence relation (256) grows as
Opnq, the time taken by the nonoscillatory phase function approach scales as Op1q. We also
note that, as in the case of Legendre polynomials, there is some loss of accuracy with the
phase function method due to the difficulties of evaluating trigonometric functions of large
arguments.

11. Conclusions

We have shown that the solutions of a large class of second order differential equations can
be accurately represented using nonoscillatory phase functions.

We have also presented the results of numerical experiments which demonstrate one of the
applications of nonoscillatory phase functions: the evaluation of special functions at a cost
which is independent of order. An efficient algorithm for the evaluation of highly oscillatory
special functions will be reported at a later date.

A number of open issues and questions related to this work remain. Most obviously, a fur-
ther investigation of the integral equation (74) and the conditions under which it admits an
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exact solution is warranted. Moreover, there are applications of nonoscillatory phase func-
tions beyond the evaluation of special functions which should be explored. And, of course,
the generalization of these results to higher dimensions is of great interest. The authors are
vigorously pursuing these avenues of research.
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Figure 1: The function q defined by formula (245) in Section 10.1 (solid line) and the corre-
sponding solution r of the logarithm form of Kummer’s equation (53) when λ “ 1,000 (dotted
line).
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Figure 2: The base-10 logarithms of the leading Chebyshev coefficients of the function q de-
fined by formula (245) in Section 10.1 (solid line) and of the associated nonoscillatory solution
r of equation the logarithm form of Kummer’s equation (53) when λ = 1,000 (dotted line).
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n
Phase function Avg. phase function Avg. recurrence Largest

construction time evaluation time evaluation time absolute error

101 1.55ˆ10´1 secs 1.29ˆ10´6 secs 5.82ˆ10´8 secs 5.16ˆ10´14

102 1.76ˆ10´1 secs 1.29ˆ10´6 secs 9.73ˆ10´7 secs 1.59ˆ10´13

103 1.57ˆ10´1 secs 1.29ˆ10´6 secs 1.03ˆ10´5 secs 6.13ˆ10´13

104 1.55ˆ10´1 secs 1.29ˆ10´6 secs 1.04ˆ10´4 secs 1.20ˆ10´12

105 1.56ˆ10´1 secs 1.31ˆ10´6 secs 1.04ˆ10´3 secs 9.79ˆ10´12

106 1.58ˆ10´1 secs 1.40ˆ10´6 secs 9.81ˆ10´3 secs 2.40ˆ10´11

107 1.65ˆ10´1 secs 1.40ˆ10´6 secs 9.69ˆ10´2 secs 8.59ˆ10´11

108 1.87ˆ10´1 secs 1.42ˆ10´6 secs 9.68ˆ10´1 secs 1.71ˆ10´10

109 2.05ˆ10´1 secs 1.34ˆ10´6 secs 9.68ˆ10´0 secs 6.11ˆ10´10

Table 1: The evaluation of Legendre polynomials. A comparison of the time required to
evaluate the Legendre polynomial of order n using the standard recurrence relation and the
time necessary to evaluate it using a nonoscillatory phase function. The recurrence relation
approach scales as Opnqwhile the phase function approach scales as Op1q.
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Figure 3: A phase function for Legendre’s differential equation. A plot of the nonoscillatory
phase function associated with Legendre’s equation (246) at order n “ 1,000,000. It is suffi-
cient to construct the phase function on the interval r0, 1q due to the symmetry properties of
Legendre’s differential equation.
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n
Phase function Avg. phase function Avg. recurrence Largest

construction time evaluation time evaluation time absolute error

101 5.23ˆ10´1 secs 1.30ˆ10´6 secs 1.99ˆ10´6 secs 2.81ˆ10´14

102 5.39ˆ10´1 secs 1.31ˆ10´6 secs 7.29ˆ10´6 secs 7.85ˆ10´14

103 5.36ˆ10´1 secs 1.37ˆ10´6 secs 4.87ˆ10´5 secs 2.40ˆ10´13

104 5.52ˆ10´1 secs 1.33ˆ10´6 secs 4.35ˆ10´4 secs 1.01ˆ10´12

105 5.46ˆ10´1 secs 1.49ˆ10´6 secs 4.11ˆ10´3 secs 3.18ˆ10´12

106 5.81ˆ10´1 secs 1.44ˆ10´6 secs 4.24ˆ10´2 secs 8.57ˆ10´12

107 6.41ˆ10´1 secs 1.45ˆ10´6 secs 4.36ˆ10´1 secs 5.98ˆ10´11

108 7.00ˆ10´1 secs 1.35ˆ10´6 secs 4.39ˆ10`0 secs 1.14ˆ10´10

109 1.26ˆ10`0 secs 1.41ˆ10´6 secs 4.42ˆ10`1 secs 2.43ˆ10´10

Table 2: The evaluation of Bessel functions. A comparison of the time required to evaluate
the Bessel function Jn using the standard recurrence relation with that required to evaluate
it using a nonoscillatory phase function. All of the points at which Jn was evaluated were in
the interval r2n, 3ns. The recurrence relation approach scales as Opnq in the order n while the
time required by the phase function method is Op1q.

37


