We observe that solutions of a large class of highly oscillatory second order linear
ordinary differential equations can be approximated using nonoscillatory phase
functions. In addition, we describe numerical experiments which illustrate com-
putational implications of this fact. For example, many special functions of interest
— such as the Bessel functions J, and Y, — can be evaluated accurately using a
number of operations which is O(1) in the order v. The present paper is devoted to
the development of an analytical apparatus. Numerical aspects of this work will
be reported at a later date.
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1. Introduction

Given a differential equation
y'(t) + Nq(t)y(t) =0 forall 0 <t <1, (1)

where ) is a real number and ¢ : [0,1] — R is smooth and strictly positive, a sufficiently
smooth « : [0,1] — R is a phase function for (1) if the pair of functions u, v defined by the
formulas

cos(a(t))

u(t) = 2
NPT @
and
sin(a(t))
v(t) = ———=~ 3
(t) WO 3)

form a basis in the space of solutions of (1). Phase functions have been extensively studied:
they were first introduced in [9], play a key role in the theory of global transformations of
ordinary differential equations [3, 10], and are an important element in the theory of special
functions [16, 6, 11, 1].

Despite this long history, an important property of phase functions appears to have been
overlooked. Specifically, that when the function ¢ is nonoscillatory, solutions of the equation
(1) can be accurately represented using a nonoscillatory phase function.

This is somewhat surprising since « is a phase function for (1) if and only if it satisfies the
third order nonlinear ordinary differential equation

La”(t) 3 (a"(t))
/ 2 2
= - = - forall 0 <t<1 4
(@ O) = Nalt) - 5+ (a,(t) ora @
The equation (4) was introduced in [9], and and we will refer to it as Kummer’s equation.
The form of (4) and the appearance of ) in it suggests that its solutions will be oscillatory —
and most of them are. However, Bessel’s equation

2 _
y"(t) + (1 _A t21/4) y(t) =0 forall 0 <t < o)

furnishes a nontrivial example of an equation which admits a nonoscillatory phase function
regardless of the value of . If we define u, v by the formulas

u(t) = \@Jw) (6)
o(t) = \@m), 7)

where J, and Y, denote the Bessel functions of the first and second kinds of order )\, and let
a be defined by the relations (2),(3), then
2 1

t) = =7 8
= R YR ®)
It can be easily verified that (8) is a strictly negative, monotonically decreasing function of ¢

and



on (0,00). That this nonoscillatory phase function for Bessel’s equation exists is the basis of
several methods for the evaluation of Bessel functions of large orders and for the computation
of their zeros [6, 8, 15].

The general situation is not quite so favorable: there need not exist a nonoscillatory function «
such that (2) and (3) are exact solutions of (1). However, assuming that ¢ is nonoscillatory and
A is sufficiently large, there exists a nonoscillatory function « such that (2), (3) approximate
solutions of (1) with spectral accuracy (i.e., the approximation errors decay exponentially
with ).

To see that this claim is plausible, we apply Newton’s method for the solution of nonlinear
equations to Kummer’s equation (4). In doing so, it will be convenient to move the setting of
our analysis from the interval [0, 1] to the real line so that we can use the Fourier transform
to quantity the notion of “nonoscillatory.” Suppose that the extension of ¢ to the real line is
smooth and strictly positive, and that the Fourier transform of log(¢q) is smooth and decays
rapidly. Letting

(o'(1))" = N exp(r(1)) ©)
in (4) yields the logarithm form of Kummer’s equation:
r"(t) — }L (r'(£))? + 422 (exp(r(t)) — q(t)) = 0 forall t e R. (10)

We use {r,} to denote the sequence of Newton iterates for the equation (10) obtained from
the initial guess

ro(t) = log(q(t))- (11)
The function r, corresponds to the first order WKB approximations for (1). That is to say that
if we insert the associated phase function

ap(t) = A f t exp (%ro(u)> du = )\Lt Va(w)du (12)

0
into (2),(3), then

u(t) = ¢ 4(t) cos ()\ L t Va(u) du) (13)
and
v(t) = ¢ V4(t) sin ()\ L t NZTO) du) . (14)

For each n > 0, r,,41 is obtained from r,, by solving the linearized equation

B (1) — %r;(t)h'(t) + 402 exp (D) B(t) = fu(t) forall teR, (15)
where
Falt) = =r(0) + (4 (6)* = AN (exp (s (1)) — (). (16)
and letting
Fst () = 1a(t) + h(t). (17)



By introducing the change of variables

x(t) = Lt exp (rnéu)> du (18)
into (15), we transform it into the inhomogeneous Helmholtz equation
R"(x) + 4X*h(z) = g,(v) forall zeR, (19)
where
gn() = exp (=74(x)) fu(2). (20)

Suppose that ¢,, decays rapidly (when n = 0, this is a consequence of our assumption that
log(¢) has a rapidly decaying Fourier transform) and let 42* be the solution of (19) whose
Fourier transform is

ey Gn(§)
Since ﬁ;(é ) is singular when £ = +2), h* will necessarily have a component which oscillates
at frequency 2\. However, according to (21), the L* (R) norm of that component is

(2N

75 (22)
In fact, by rearranging (21) as
~ (@O | @l
(0= 5 (2)\—§+2)\+§) @3)
and decomposing each of the terms on the right-hand side of (23) as
9§ _ 1 (9O —gu(F2Nexp(-2A£8?) .\ P (=(2A+)?)
zAig_ﬁ( N Té (PN ¢ ) @4)
we obtain
where hy is defined by the formula
ey L (90 = Gu(=20) exp (=(2A+ §)%) | Gnl) = Gn(2A) exp (=(2A = §)?)
ho(f)*ﬁ( 2N+ & * 2A — & )> (26)
and h; is defined by the formula
~ 1 (. —(2A S A —(2X = ¢&)?
fi(e) = g5 (-2 GEE) gy = EE ) @)

Since the factor in the denominator in (26) has been canceled and both g, and the Gaussian
function are smooth and rapidly decaying, i, is also smooth and rapidly decaying. Mean-
while, a straightforward calculation shows that the Fourier transform of

1 x .

% erf <§> exp(2Xiz) (28)
is

exp (=(2A = §)°)
2X ¢

: (29)



so that (27) implies that

1 /. 1 x , ~ 1 x _
hi(z) = o (gn(_2)\)2_z' erf <§> exp(2\iz) — gn(2)\)2—i erf <§> exp(—QAm)) : (30)
Since g, is real-valued, g, (2A) = g,(—2)). Inserting this into (30) yields
_9@N) Ly 31
hy(z) = 5 erf <2> sin (2A\x) , (31)

which makes it clear that the L (R) norm of hy is (4)\) g, (2)).

In (25), the solution of (19) is decomposed as the sum of a nonoscillatory function hy and a
highly oscillatory function h; of small magnitude. However, the solution of (15) is actually
given by the function

W (x(t)) = ho(2(t)) + b (2(1)) (32)
obtained by reversing the change of variables (18). But since z(¢) is nonoscillatory and the
Fourier transform of hy(z) decays rapidly, we expect that the composition hg(z(t)) will also
have a rapidly decaying Fourier transform. The L* (R) norm of h,(x(t)) is, of course, the
same as that of h;(z). So the solution of the linearized equation (15) can be written as the sum

of a nonoscillatory function h(z(t)) and a highly oscillatory function h,(x(t)) of negligible
magnitude.

If, in each iteration of the Newton procedure, we approximate the solution of (15) by con-
structing h*(x(t)) and discarding the oscillatory term h;(¢(x)) of small magnitude, then it is
plausible that we will arrive at an approximate solution r(¢) of the logarithm form of Kum-
mer’s equation which is nonoscillatory, assuming the Fourier transform of r(¢) = log(q(t))
decays rapidly enough and ) is sufficiently large.

Most of the remainder of this paper is devoted to developing a rigorous argument to replace
the preceding heuristic discussion. In Section 2, we summarize a number of well-known
mathematical facts to be used throughout this article. In Section 3, we reformulate Kummer’s
equation as a nonlinear integral equation. Once that is accomplished, we are in a position to
state the principal result of the paper and discuss its implications; this is done in Section 4.
The proof of this principal result is contained in Sections 5, 6, 7 and 8. Section 9 contains an
elementary proof of a relevant error estimate for second order differential equations of the
form (1).

In Section 10, we present the results of numerical experiments concerning the evaluation of
special functions. The details of our numerical algorithm will be reported at a later date.

We conclude with a few brief remarks in Section 11.

2. Preliminaries

2.1. Modified Bessel functions

The modified Bessel function K, () of the first kind of order v is defined for t € Rand v € C
by the formula

K,(t) = f: exp (—t cosh (t)) cosh(vt) dt. (33)



The following bound on the ratio of K, ., to K, can be found in [14].

Theorem 1. Suppose that t > 0 and v > 0 are real numbers. Then

K,1(t) _ v+ U2+ 12 B 2v
K, (t) t Tt

+1. (34)

2.2. The binomial theorem

A proof of the following can be found in [13], as well as many other sources.

Theorem 2. Suppose that r is a real number, and that y is a real number such that |y| < 1. Then

r S F(T + 1) k
14 y) = . (35)
(1+y) g%nk+nnr—k+ny

2.3. The Lambert W function

The Lambert W function or product logarithm is the multiple-valued inverse of the function

f() = zexp(2). (36)
We follow [5] in using W} to denote the branch of W which is real-valued and greater than

or equal to —1 on the interval [—1/e, —c0) and W_; to refer to the branch which is real-valued
and less than or equal to —1 on [—1/e, 0).

We will make use of the following elementary facts concerning W, and W_; (all of which can
be found in [5] and its references).

Theorem 3. Suppose that y > —1/e is a real number. Then

zexp(x) <y ifand onlyif = < Wy(y). (37)

Theorem 4. Suppose that 0 < y < 1/e is a real number. Then

zexp(—z) <y ifandonlyif x> —-W_i(—y). (38)

Theorem 5. Suppose that 0 < x < 1 is a real number. Then

5 < Woa) <. (39)

Theorem 6. Suppose that x > exp(1) is a real number. Then

log(z) < —W_,4 (—i) < 2log(x). (40)



2.4. Fréchet derivatives and the contraction mapping principle

Given Banach spaces X, Y and a mapping f : X — Y between them, we say that f is Fréchet
differentiable at « € X if there exists a bounded linear operator X — Y/, denoted by f., such
that

it h) - f@) - 2
s 7] =0 D

Theorem 7. Suppose that X and Y are a Banach spaces and that f : X — Y is Fréchet differentiable
at every point of X. Suppose also that D is a convex subset of X, and that there exists a real number
M > 0 such that

If2l < M (42)

forall x € D. Then
|f(2) = )l < Mz —y] (43)

forall x and y in D.

Suppose that f : X — X is a mapping of the Banach space X into itself. We say that f is
contractive on a subset D of X if there exists a real number 0 < o < 1 such that

[f(x) = f(y)] < alz -yl (44)

for all z,y € D. Moreover, we say that {z,}_, is a sequence of fixed point iterates for f if
Tpi1 = f(z,) foralln = 0.

Theorem 7 is often used to show that a mapping is contractive so that the following result
can be applied.

Theorem 8. (The Contraction Mapping Principle) Suppose that D is a closed subset of a Banach
space X. Suppose also that f : X — X is contractive on D and f(D) < D. Then the equation

z = f(z) (45)
has a unique solution o* € D. Moreover, any sequence of fixed point iterates for the function f which
contains an element in D converges to o*.

A discussion of Fréchet derivatives and proofs of Theorems 7 and 8 can be found, for instance,
in [18].
2.5. Gronwall’s inequality

The following well-known inequality can be found in, for instance, [2].

Theorem 9. Suppose that f and g are continuous functions on the interval [a, b] such that
f(t) =0 and g(t) =0 forall a <t <b. (46)

Suppose further that there exists a real number C' > 0 such that

ft) <C+ Jt f(s)g(s)ds forall a <t <b. 47)



Then
f(t) < Cexp (J g(s) ds) forall a <t <b. (48)

a

2.6. Schwarzian derivatives

The Schwarzian derivative of a smooth function f : R — R is

B ///(t) _§ f”(t) 2
= =3 () - )

If the function z(t) is a diffeomorphism of the real line (that is, a smooth, invertible mapping

R — R), then the Schwarzian derivative of x(¢) can be related to the Schwarzian derivative of
its inverse t(z); in particular,

(2.t} = — (%)2 {t,z}. (50)

The identity (50) can be found, for instance, in Section 1.13 of [11].

3. Integral equation formulation

In this section, we reformulate Kummer’s equation
1a”(t) 3 ("))
o' (1) = Nq(t) — = += 51
as a nonlinear integral equation. As in the introduction, we assume that the function ¢ has
been extended to the real line and we seek a function o which satisfies (51) on the real line.

By letting
(/(8)" = A\ exp(r(t)) (52)
in (51), we obtain the equation
r(t) — i (r'(£))* + 422 (exp(r(t)) — q(t)) = 0 forall teR. (53)
We next take r to be of the form
r(t) =log(q(t)) + 6(t), (54)

which results in

5 () — %‘é((f)) 5(t) % (5(1)) + 4X%q(t) (exp(5(t)) — 1) = q(t)p(t), forall teR, (55

where p is defined by the formula

1 (5 d®m\ ¢
p“>‘q@)<4<qu>> qa>>' 0

Note that the function p appears in the standard error analysis of WKB approximations (see,
for instance, [12]). Expanding the exponential in a power series and rearranging terms yields




the equation

_1d(t)
2 q(t)
Applying the change of variables

8" (t) 8 () +4X%q(t)6(t)

) () ( .

£(t) = j Va(w) du (58)

transforms (57) into

§"(x) + 4N*(z) — i (0'(2))? + 42 <(6(§)>2 + (6<;))3 + - ) =p(z) forall zeR. (59)

At first glance, the relationship between the function p(z) appearing in (59) and the coefficient
q(t) in the ordinary differential equation (1) is complex. However, the function p(¢) defined
via (56) is related to the Schwarzian derivative (see Section 2.6) of the function z(¢) defined in
(58) via the formula

2 dt\’
p0) =~ 2wty = -2 () foth (60
It follows from (60) and Formula (50) in Section 2.6 that
p(a) = 2{t,}. (61)

That is to say: p, when viewed as a function of z, is simply twice the Schwarzian derivative
of t with respect to z.

It is also notable that the part of (59) which is linear in § is a constant coefficient Helmholtz
equation. This suggests that we form an integral equation for (59) using a Green’s function
for the Helmholtz equation. To that end, we define the integral operator 1" for functions
f € L' (R) via the formula

TUf) @) = 45 | s~y Flw) dy 62)

—00

The following theorem summarizes the relevant properties of the operator 7'.

Theorem 10. Suppose that X > 0 is a real number, and that the operator T is defined as in (62).
Suppose also that f € L' (R) n C (R). Then:

1. T[f] (x) is an element of C* (R);
2. T'[f](z) is a solution of the ordinary differential equation
y'(z) + 4N°y(z) = f(x) forall v € R; and

3. the Fourier transform of T' | f | () is the principal value of

e _1(je , J©
AN2— €2 AN\ 20 =€ 2A+¢€ )7




Proof. We observe that

T o0

T =55 | s =) f) dy+ 5 [ sin @A =) 1(0) dy

:% sin(2\x) foo cos(2\y) f(y) dy — ﬁ cos(2\x) fw sin(2\y) f(y) dy ~ (63)

1 “ 1 «
+ cos(2Ax) f sin(2Ay) f(y) dy — o sin(2\z) f cos(2\y) f(y) dy
for all x € R. We differentiate both sides of (63) with respect to =, apply the Lebesgue dom-
inated convergence theorem to each integral (this is permissible since the sine and cosine
functions are bounded and f € L' (R)) and combine terms in order to conclude that 7'[ f] is
differentiable everywhere and

ETU@ == 5 [ cosAlo =y signtz =) f(0) dy (64)
for all x € R. In the same fashion, we conclude that
() T = @) =2 [ sin@ale =) s dy (69

for all x € R. Since f is continuous by assumption and the second term appearing on the
right-hand side in (65) is a continuous function of = by the Lebesgue dominated convergence
theorem, we see from (65) that 7' f ] is twice continuously differentiable. By combining (65)
and (62), we conclude that 7' [ f] is a solution of the ordinary differential equation

y'(z) + 4\?y(z) = f(x) forallz € R. (66)
We now define the function g through the formula
1 1 1
5(6) = — . 7
98) = 33 <2)\—§+2)\+£) (67)
It is well known that the Fourier transform of the principal value of 1/x is the function
—imsign(z); (68)

see, for instance, [17] or [7]. It follows readily that the inverse Fourier transform of the prin-
cipal value of

1
2X ¢ (69)
is
1
iQ_i exp (F2\ix) sign(z). (70)
From this and (67), we conclude that
g(x) = L i exp (—2\ix) sign(z) — i exp (2 ix) sign(x)
AN \ 21 21 (71)
1.
= sin (2A[z]) .

10



In particular, T'[ f ] is the convolution of f with g. As a consequence,

- L fe | f©
TI71© - 37 - & (QA_f + mg) , 72)
which is the third and final conclusion of the theorem. O

In light of Theorem 10, it is clear that introducing the representation

d(z) = T[o](z) (73)
into (59) yields the nonlinear integral equation
o(x)=S[T|[o]](z) +p(z) forall zeR, (74)
where S is the operator defined for functions f € C* (R) by the formula
(f'(2))* (f(=)* | (f@)®  (f@)*
S[f](x)zT—él)\Q( T TR TR K (75)

The following theorem is immediately apparent from the procedure used to transform Kum-
mer’s equation (51) into the nonlinear integral equation (74).

Theorem 11. Suppose that X\ > 0 is a real number, that ¢ : R — R is an infinitely differentiable,
strictly positive function, that x(t) is defined by (58), and that p(z) is defined via (61). Suppose also
that o € L' (R) n C (R) is a solution of the integral equation (74), that ¢ is defined via the formula

ow) = Tla) (@) = 55 [ sin@Ale = uotu) 76

and that the function o is defined by the formula

alt) = A L t Va(u) exp (5(”@2(”))) du. (77)

1. 0(z) is a twice continuously differentiable solution of (59);
(

2
3. «a(t) is three times continuously differentiable solution of (51); and
4

)

. 0(x(t)) is a twice continuously differentiable solution of of (57);
(t)
. alt)

t) is a phase function for the ordinary differential equation
y'(t) + Nq(t)y(t) =0 forall 0 <t <1. (78)

4. Overview and statement of the principal result

The composition operator S o T' appearing in (74) does not map any Lebesgue space L” (R) or
Holder space C**(R) to itself, which complicates the analysis of (74). Moreover, the integral
defining T'[ o] only exists if either o € L' (R) or 5(+2\) = 0. Even if both of these conditions
are satisfied, it is not necessarily the case that S [7"[o || + p will satisfy either condition. This
casts doubts on whether (74) is solvable for arbitrary p.

11



We avoid a detailed discussion of which spaces and in what sense (74) admits solutions and
instead show that, under mild conditions on p and ), there exists a function p, which approx-
imates p and such that the equation

o(z) =S[T[co]](x)+pp(x) forall zeR (79)

admits a solution. Moreover, we prove that if p is nonoscillatory then the solution of (79) is
also nonoscillatory and |[p — ps| decays exponentially in A\. The next theorem, which is the
principal result of this article, makes these statements precise. Its proof is given in Sections 5,
6,7 and 8.

Theorem 12. Suppose that g € C* (R) is a strictly positive, and that x(t) is defined by the formula

t
x(t) = J v q(u) du. (80)
0
Suppose also that p(x) is defined via the formula
p(x) = 2{t, x}; (81)

that is, p(x) is twice the Schwarzian derivative of the variable t with respect to the variable x defined
via (80). Suppose furthermore that there exist real numbers A > 0, ' > 0 and a > 0 such that

AZGmax{é,P} (82)
and
P(E)] < Texp(—alt]) forall &eR. (83)
Then there exist functions p, € C* (R) and o, € L? (R) n C* (R) such that oy, is a solution of (79),
|b(€)] < 2T exp (—gaﬂ) forall €€ R, (84)
and
lp = oo < 254% exp (—%aA) : (85)

According to Theorem 11, if ¢ is a solution of the integral equation (74), then the function «
defined by (77) is a phase function for the differential equation (1). We define o, in analogy
with (77) using the solution oy, of the modified equation (79). That is, we let J, be the function
defined by the formula

0

(@) = Tl a) = 55 | sz = sl)only) . (86)

—o0

and then define o, via

a(t) = X L t Vaq(u) exp (M) du. (87)

Obviously, a4 is not a phase function for the equation (1). However, if we define ¢, : R — R

by the formula
L (5 (a® _a®) _

12




then Theorem 11 implies that o is a phase function for the differential equation
y'(t) + Nqp(t)y(t) =0 forall 0 <t <1. (89)
Since |¢ — |« is bounded in terms of |p — p, |« and the solutions of (89) closely approximate

those of (1) when |¢ — /| is small, the function a; can be used to approximation solutions
of (1) when |p — pp|« is small.

Theorem 13, which appears below, gives a relevant error estimate. Given € > 0, it specifies a
bound on |p — p,|« which ensures that solutions of (89) approximate those of (1) to relative
precision e. Its proof appears in Section 9.

Defintion 1. We say that « is an e-approximate phase function for the ordinary differential equation
(1) if there exists a basis of solutions {u, v} of (1) such that

lu(t) —u(t)| < e sup |a(t)| forall 0<t<1 (90)
and
lv(t) —0(t)| < e sup |0(t)| forall 0<t<1, (91)
0<t<1
where u, v are defined by
sin(a(t))
u(t) = ——% 92
(t) (O] (92)
and
cos(a(t))
u(t) = ———=. 93
(t) PO (93)

Theorem 13. Suppose that ¢ € C® (R) is strictly positive, that the function p is defined by the
formula (56), and that there exist real numbers 0 < 1, < 1y such that

m <q(t)<my forall 0<t<1, (94)
q(t) ‘
< orall 0 <t <1, 95)
] =" (
and
Ip(t)| < mp forall 0<t < 1. (96)
Suppose also that X\ > 0, € > 0 are real numbers such that
3/4
0<e<Aexp (%) , (97)
and that k is the real number defined by
2
k=20 (@> L8+ 1022 41 (98)
m m
Suppose furthermore that p, : R — R is an infinitely differentiable function such that
L "
Ip = polloo < 57 exp (=F) exp (—%) €. (99)

13



Then there exists a function g, : [0, 1] — R such that (88) holds and any phase function for (89) is an
e-approximate phase function for (1).

By combining Theorems 11, 12 and 13 we obtain the following.

Corollary 1. Suppose that q, x(t), p, m, 12, A, €, k, L', a and n are as in the hypotheses of Theorem 12
and 13. Suppose that, in addition,

3/4
12" 1
Ao O (pe e (2EE1Y ) (100)
ba 4 ma? e
Then there exists a function o, € L* (R) n C* (R) such that
175(€)] < 2T exp (—%a\ﬁ) forall €€ R (101)

and the function o, (t) defined by

as(t) = \ L t Va(u) exp (5b(”2(“))> du, (102)

where 6y, is the function defined through the formula

5,(x) = ﬁ J sin(2\|z — y)ow(y) dy, (103)

is an e-approximate phase function for the ordinary differential equation (1).

Remark 1. The hypothesis (100) can be replaced with the weaker condition

9 2 3/4
A > EI/V_l (——5Mexp(—k) exp (—UQT el, (104)

where W_, denotes the branch of the Lambert W function which is real-valued and less than —1 on
the interval [—1/e, 0) (see Section 2.3).

The proof of Theorem 12 is divided amongst Sections 5, 6, 7 and 8. The principal difficulty
lies in constructing a function p, which approximates p and for which (79) admits a solution.
We accomplish this by introducing a modified integral equation

o(z) = S[Ty[o]] (z) + p(x), (105)
where T}, is a “band-limited” version of T'. That is, T, [ f ] is defined via the formula
L,1£1(©) = T[1EHE). (106)

where b(¢) is a CF (R) bump function. This modified integral equation is introduced in Sec-
tion 5.

In Section 6, we show that under mild conditions on p and A, (105) admits a solution o.
The argument proceeds by applying the Fourier transform to (105) and using the contraction
mapping principle to show that the resulting equation admits a solution.

In Section 7, we estimate the Fourier transform of the solution o of (105) under the assumption
that p is exponentially decaying. We show that & is also exponentially decaying, albeit at a
slightly slower rate.
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In Section 8, we define a band-limited version ¢, of the solution ¢ of (105) via the formula

5(€) = 3 (§)b(&). (107)
By combining the observation that 7, [¢ | = T [ 0, | with (105), we obtain
o(x) = S[T[op]](x) + p(z). (108)
We then define p, by the formula
po(x) = p(x) + ov(x) — o(x) (109)
and rearrange (108) as
op(x) = S[T[ov]] () + po(). (110)

The decay estimate on ¢ is then used to bound |p — py/|s = [|o — o[ < [T — Tp]1-

5. Band-limited integral equation

In this section, we introduce a “band-limited” version of the operator 7" and use it to form an
alternative to the integral equation (74).

Let b(¢) be any infinitely differentiable function such that
1. b(§) =1 forall |£| <A,

2. 0<b(€) <1 forall X <|¢] <2\, and

3. b(€) =0 forall |¢] =2
We define T, [ f] for functions f € L' (R) via the formula

ST e ey )

LI = F&) e & (111)
We will refer to 7}, as the band-limited version of the operator 7" and and we call the nonlinear
integral equation

o(z) =S[Ty[o]](x) +p(z) forall zeR (112)

obtained by replacing T" with T}, in (74) the “band-limited” version of (74).
Since T, is a Fourier multiplier, it is convenient to analyze (112) in the Fourier domain rather
than the space domain. We now introduce notation which will allow us to write down the
equation obtained by applying the Fourier transform to both sides of (112).

We let W, and W, be the linear operators defined for f € L' (R) via the formulas

WALF1(©) = 1€ s 113)
and
WAL = J6) s (114)

where b(¢) is the function used to define the operator 7.
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For functions f € L' (R), it is standard to denote the Fourier transform of the function

exp(f(z)) by exp* [f]; that is,
exp® [£](€) = 6(6) + F(€) + f*Qf@ . f*f3*!f<f> .

In (115), 6 defers to the delta distribution and f « f = - -- # f denotes repeated convolution of
the function f with itself. The Fourier transform of exp(f(x)) never appears in this paper;
however, we will encounter the Fourier transforms of the functions

(115)

exp(f(x)) - 1 (116)
and
exp(f(x)) = f(x) = 1. (117)
So, in analogy with the definition (115), we define expj [f] for f € L' (R) by the formula
ot [7](6) = f(g) + LI L LI TE m8)
and we define exp} [ f] for f € L' (R) via the formula
eng[f]@:f*f(5)+f*f*f(€)+”_ (119)

2! 3!
That is, exp} [ f] is obtained by truncating the leading term of exp* [ f] and exp} [ f] is obtained
by truncated the first two leading terms of exp* [ f].

Finally, we define functions ¢(£) and v(£) using the formulas

(&) =a(¢) (120)
and
v(§) = p(g)- (121)
Applying the Fourier transform to both sides of (112) results in the nonlinear equation
(&) = R[¥](§), (122)
where R|[f] is defined for f € L' (R) by the formula
RLFHE) = {Wolf 1+ W L£1(6) — 0 exp [ LF11(6) + w(6). (123)

6. Existence of solutions of the band-limited equation.

In this section, we give conditions under which the sequence {¢, };_, of fixed point iterates for
(122) obtained by using the function v defined by (121) as an initial approximation converges.
More explicitly, 1, is defined by the formula

Po(§) = v(8), (124)
and for each integer n > 0, 1,4 is obtained from 1, via
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Theorem 14. Suppose that X > 0 is a real number, and that v € L' (R) such that
)\2
<=
folh < 2
Theen the sequence {1, }>_, defined by (124) and (125) converges in L' (R) norm to a function
which satisfies the equation (122) for almost all £ € R.

(126)

Proof. We observe that the Fréchet derivative (see Section 2.4) of R at f is the linear operator
R} : L' (R) — L' (R) given by the formula

Wy [ ]+ Wy [h](€)

R [h](8) = 5 — AN expy [Wy [ f1] = W [R] (€). (127)
From formulas (113) and (114) and the definition of b(¢) we see that
f
w1, < L (128)
and
= | £l
WL < 5 (129)

forall f € L' (R). From (127), (128) and (129) we conclude that
1 [~ ~
2 1, < 5 Wa LA [Wa [h1| + 4X2 1905 L2 exo (15 L1 I3 L],
CLILlB oS el <||f1)

ST 9N IA2 3% (130)

LAl 1A ILf 1
<W 02 o 52 ) ) Ihh
forall f and hin L' (R). Similarly, by combining (123), (128) and (129) we conclude that

1~ 2
HR[f]H1<ZHWb H + A W LA exp (WL £11) + ol
2 2 (131)

whenever f € L' (R).

Now we set r = A\?/9 and let B denote the closed ball of radius r centered at 0 in L' (R). Since
1 1
—<Wyl = 132
5= (5). (132)

where W, denotes the branch of the Lambert W function which is real-valued and greater
than or equal to —1 on the interval [—1/e, ®0) (see Section 2.3), we conclude that

T r 1
According to Theorem 5 of Section 2.3 and (132), it also the case that
r 1
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We combine (133), (134) with (130) to conclude that

1 1 1
I 0, < (g + e (55)) Wl < (55 + 7 ) Dol < 5l 139

forall h e L' (R) and f € B. In other words, the L' (R) — L' (R) operator norm of the linear
operator R} is bounded by 1/2 whenever f is in the ball B.

Similarly, we insert (133), (134) and (126) into (131) to conclude that
2 2

r r r r
IRUAL < g + 5o (353) * 5

STee TP o) T (136)

forall f € B.

Together with Theorem 7 of Section 2.4, formula (135) implies that the operator R is a con-
traction on the ball B while (136) says that it maps the ball B into itself. We now apply the
contraction mapping theorem (Theorem 8 in Section 2.4) to conclude that any sequence of
fixed point iterates for (122) which originates in B will converge to a solution of (122). Since
{1,,} is such a sequence, we are done. O

If ¢ is a solution of (122) then the function o defined by the formula

o) = foo expliz€)(€) d (137)

—0

is clearly a solution of the band-limited integral equation (112). Note that because ¢) € L' (R),
the integral in (137) is well-defined and o is an element of the space C, (R) of continuous
functions which vanish at infinity. We record this observation as follows:

Theorem 15. Suppose that \ > 0 is a real number. Suppose also that p € L' (R) such that p € L* (R)
and

~ A2

Al < (138)

Then there exists a function o € Cy (R) which is a solution of the integral equation (112).

Remark 2. Since o is not necessarily in L' (R), the integral

o0
J exp(—izé)o(x) dx (139)
-
need not exist. Nor is the existence of the improper integral
R
lim exp(—iz)o(x) dx (140)
R—0 _R

guaranteed. However, when viewed as a tempered distribution, the Fourier transform of o exists and
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is 1); that is to say,

| s@r@ e~ [ o) do (141)

for all functions f € S(R).

In the next section we will prove that under additional assumptions on v, 1 lies in L* (R). This implies
that o € L* (R) and ensures the convergence of the improper Riemann integrals (140).

7. Fourier estimate

In this section, we derive a pointwise estimate on the solution ¢ of Equation (122) under
additional assumptions on the function v.

Lemma 1. Suppose that a and C are real numbers such that

0<C<a. (142)
Suppose also that f € L' (R), and that
[F(©)] < Cexp(—al¢]) forall &eR. (143)
Then
C? C C
w3 11(6)] < S expl-ale) M exp (2 ) exp (lel) forat cem qan

where exp} is the operator defined in (119).

Proof. Let

9(§) = Cexp(—alg]) (145)

and for each integer m > 0, denote by g,,, the m-fold convolution product of the function g.
That is to say that g; is defined via the formula

91(8§) = 9(§) (146)
and for each integer m > 0, g,,41 is defined in terms of g,,, by the formula
Im+1(8) = gm * 9(§). (147)
We observe that for each integer m > 0 and all £ € R,
A (CIEIN™TY? Kin1p2(al€])

where K, denotes the modified Bessel function of the second kind of order v (see Section 2.1).
By repeatedly applying Theorem 1 of Section 2.1, we conclude that for all integers m > 0 and
all real ¢,

t

Km_l/g(t> < Kl/g(t) nﬁ (M + 1)

(149)




We insert the identity

™
Kiplt) = 331 exp(—1) (150)
into (148) in order to conclude that for all integers m > 0 and all real numbers ¢ > 0,
NG AN I (&t +m—1)
Km—l/Q(t) < 7 5 exp(—t) }(%) . (151)

By combining (151) and (148) we conclude that

C m—1F<1+Ta|E‘+m—1>
) I'(m)l (HT(I'&‘)

for all integers m > 0 and all £ # 0. Moreover, the limit as £ — 0 of each side of (152) is finite
and the two limits are equal, so (152) in fact holds for all £ € R. We sum (152) overm = 2,3, ...
in order to conclude that

(152)

Ta

gm(€) < Cexp(—alé]) (

0 m—1 1+al¢] m —
expé[g](ﬁKCexp(—a\fDZ(2) F(F<2 fm1)

iy \Ta m + 1)T(m)T (”T'ﬁ') .
oy () w
- cen(-de) 3 (£) -
m=1 [(m+2)['(m + 1) ( =5
for all £ € R. Now we observe that
1 1\"
m < <§) for all m = 0,172,.... (154)
Inserting (154) into (153) yields
1+alé]
x93 1910 < Cospl—ale) 3, () (155)
i mZ‘l 2ra ) Tm 4+ 1)r (H5)

for all £ € R. Now we apply the binomial theorem (Theorem 2 of Section 2.2), which is
justified since C' < a, to conclude that

_1+alg]
exp3 [g] (€) < Cexp(—alé]) ((1 - i) - 1)

2ra

(156)
= Cexp(—al¢]) (exp <1 +2a|§| log ( ! & )) - 1)
2ra
for all £ € R. We observe that
exp(z) — 1 < zexp(z) forall x >0, (157)
and
1<10g<1ix><2x forall()éxé% (158)
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By combining (157) and (158) with (156) we conclude that

exp; [g] (§) < Cexp(— alﬁl) a’ﬂ log (1_;&) xXp <1+Ta|ﬂ log (1 jg))
2ma 2ma (159)

C? 1 C C
< & exp(-ale) *“’5’ e (5 oo (52161)

for all £ € R. Owing to (143),

lexp3 [f](§)] < exp; [g] (€) forall £eR. (160)
By combining this observation with (159), we obtain (144), which completes the proof. O

Remark 3. Kummer’s confluent hypergeometric function M (a, b, z) is defined by the series

az  (a)e2®  (a)3z®

M(a,b,z) =1+ 5 + 02 (0)53] e (161)
where (a),, is the Pochhammer symbol
(a)nz%—a(a+l)(a+2)...(a+n—l). (162)

By comparing the definition of M (a, b, z) with (153), we conclude that

lexps [f] (&)| < Cexp(—alé]) <M (1 + alg] ,2 —> - 1) forall £eR (163)

2 Ta

provided

1f(&)] < Cexp(—al|) forall £eR. (164)

The weaker bound (144) is sufficient for our immediate purposes, but formula (163) might serve as a
basis for improved estimates on solutions of Kummer’s equation.

The following lemma is a special case of Formula (148).

Lemma 2. Suppose that C = 0 and a > 0 are real numbers, and that f € L' (R) such that

|f(O] < Cexp(—al§]) forall {eR. (165)
Then

1+ F(©)] < €% exp(ale]) (“—'g') forall £ <R (166)

We will also make use of the following elementary observation.

Lemma 3. Suppose that a > 0 is a real number. Then

exp(—al¢])[¢] <

1
pp—cy forall £ eR. (167)

We combine Lemmas 1 and 2 with (128) and (129) in order to obtain the following key esti-
mate.
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Theorem 16. Suppose that I' > 0, A > 0, a > 0 and C > 0 are real numbers such that
0 <O < 2a)\ (168)
Suppose also that f € L' (R) such that
£ < Cexp(—alg]) forall ¢ < V2, (169)
and that v € L' (R) such that
[v(€)| < Texp(—al|) forall €€R. (170)
Suppose further that R is the operator defined via (123). Then

RLA1 1 < el (S5 (S (4 o (5 ) o (152¢1) ) +T) @7

forall € e R.
Proof. We define the operator R, via the formula
Ri[F1(©) = W [F1- W11 (172)
and R, by the formula
R [f1(8) = —4X% expy [W3 [ 1] (), (173)
where W, and Wb are defined as in Section 5. Then
R{f1(&) = Ry [f1(&) + R[] (§) + (&) (174)
for all £ € R. We observe that
‘Wb [f] (5)‘ < %exp(—a!ﬂ) for all ¢ e R. (175)
By combining Lemma 2 with (175) we obtain
02
RO < ggep-ae) () foral e 176)
Now we observe that
C
(W [F1(O)] < 535 exp(—al¢]) forall £eR. (177)

Combining Lemma 1 with (177) yields

R0 < s eo(ae) (S Yo (S Yoo ((5le) a7

for all £ € R. Note that (168) ensures that the hypothesis (142) in Lemma 1 is satistied. We
combine (176) with (178) and (170) in order to obtain (171), and by so doing we complete the
proof. O

Remark 4. Note that Theorem 16 only requires that f(£) satisfy a bound on the interval [—~/2), v/2)]
and not on the entire real line.

In the next theorem, we use Theorem 16 to bound the solution of (122) under an assumption
on the decay of v.
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Theorem 17. Suppose that A > 0, a > 0 and I" > 0 are real numbers such that

A= 6maX{F,l}. (179)
a
Suppose also that v € L' (R) such that
[v(€)| < Texp(—al|) forall €€R. (180)
Then there exists a solution of ¢ () of equation (122) such that
[(&)] < 2T exp (— (a - —) |§|> forall £ eR. (181)
Proof. Due to (179) and (180),
)\2
lolh < 5 (182)

It follows from Theorem 14 and (182) that a solution (&) of (122) is obtained as the limit of
the sequence of fixed point iterates {1, ({)} defined by the formula

Yo(§) = v(§) (183)

and the recurrence

Vni1(§) = R[¥n] (§). (184)

We now derive pointwise estimates on the iterates 1,,(§) in order to establish (181).

Let {5x}72, be the sequence of real numbers be generated by the recurrence relation

62
Br+1 = ot I (185)
with the initial value
By =1T. (186)

It can be established by induction that (179) implies that this sequence is bounded above
by 2I' and monotonically increasing, and hence 3, converges to a real number 3 such that
0<p <2l

Now suppose that n > 0 is an integer, and that

U (€)] < Buexp(—alé]) forall [ < V2. (187)

When n = 0, this is simply the assumption (180). The function ¢,,.;({) is obtained from ,, (&)
via the formula

Uni1(§) = R[$](8). (188)
We combine Theorem 16 with (188) and (187) to conclude that

asr(©] < exp(alel) (55 (P (L Lo (20 ) o (125506l) ) + 1) a9

for all £ € R. The application of Theorem 16 is justified: the hypothesis (168) is satisfied since
B, < 2I' < 2X%a (190)
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for all integers n > 0. We restrict £ to the interval [—1/2), v/2)\] in (189) and use the fact that
1 1
ar 6
which is a consequence of (179), in order to conclude that

[ (€)] < exp(—alé]) (52 (HZ[A) (8+2i P(f; ) (4632\“)) )

< exp(—al¢]) (52 (% + ﬁ) (% + %exp (%) exp (Mﬁ)) T r)

(191)

92)
for all |¢] < v/2)\. Now we combine (192) with the inequality
8, or 1
Po 28 1 19
NSN3 (195)

and the observation that

) e s o

in order to conclude that

ner(©) < enialeh (5 (5+2) (34 gm0 (52 ) e (o2 ) ) +7)

< (2 +1) expldle) (195)

2A
= Buy1exp(—alf])
for all |¢| < v/2)\. We conclude by induction that (187) holds for all integers n = 0.
The sequence {¢,,(£)} converges to ¢(¢) in L' (R) norm (and hence a subsequence of ,,(€)

converges to ¢(£) pointwise almost everywhere) and (187) holds for all integers n > 0. More-
over, for all integers n > 0, 8,11 < 2I'. From these observations we conclude that

[9(&)] < 2T exp(—al¢]) (196)
for almost all [¢] < v/2)\. We also observe that 1(¢) is a fixed point of the operator R, so that
¥(€) = R[] (E) (197)
for all £ € R. Clearly,
RIf1(€) = Rg](£) (198)

for all € € Rif f(&) = g(&) for almost all [£] < v/2), s0 (196) in fact holds for all |£] < v/2\.

We now apply Theorem 16 to the function ¢ (¢) (which is justified since 2I" < 2)?a) to conclude
that

o)l < exp-aie) (5 (FE) (54 g ew (53 ) o (k) ) +T) - 099

for all £ € R. Note the distinction between (187) and (199) is that the former only holds for all
¢ in the interval [—+/2), v/2)], while the later holds for all £ on the real line. It follows from
(179) that

(200)



We insert these bounds into (199) in order to conclude that

) < Tesp(-ale) (7 (S (S o (o oo (gl ) ) +1) com

for all £ € R. Now we observe that

1 1 1

which, when combined with (201), yields

L 2Ll
()] < Texp(— a|£\)(( 3)\) (8+6e <12 )\]§|>>+1> forall ¢ e R. (203)
By rearranging the right-hand side of (203) as

1 S
Fexp(—al¢]) <_+% (wmm) 128 Ty X (12 /\m) )

—Texp <_ (a _ —) |g|> exp <‘X|§’) -
(72 55 (eal) * 155~ o @ (2al) 1)

and applying Lemma 3, we arrive at the inequality

1 1 4
(&) < Texp (— (a— —) ]§|> < et Do) - Boxp(l) - 1) forall ¢eRR,
(204)
from which (181) follows immediately. [

Suppose that ¢ € L' (R) is a solution of (122). Then the function ¢ defined by the formula
Q0
o(o) = | explinule) de (205)

—00

is a solution of the integral equation (112). However, the Fourier transform of (205) might
only be defined in the sense of tempered distributions and not as a Lebesgue or improper
Riemann integral. If, however, we assume the function p appearing in (122) is an element
of L' (R) and impose the hypotheses of Theorem 18 on the Fourier transform of p, then ¢ €
L*(R), from which we conclude that o is also an element of L? (R). In this event, there is
no difficulty in defining the Fourier transform of 0. We record these observations in the
following theorem.

Theorem 18. Suppose that there exist real numbers A > 0, I' > 0 and a > 0 such that

A > 6maX{F,1}. (206)
a
Suppose also that p € L' (R) such that and
D(¢)] < Texp(—al]) forall €€R. (207)
Then there exists a solution o(x) of the integral equation (112) such that
|7(&)] < 2Texp (— (a - —> |§|> forall £eR (208)

25



Remark 5. The bound (208) implies that ¢ decays faster than any polynomial, from which we conclude
that o is infinitely differentiable.

8. Approximate solution of the original equation

We would like to insert the solution ¢ of (112) into the original equation (74). However, we
have no guarantee that o is in L' (R), nor do we expect that (+£2)) = 0. As a consequence,
the integrals defining 7" [ o | might not exist.

To remedy this problem, we define a “band-limited” version o, of o by the formula

(&) = 7 (£)b(¢), (209)
where b(¢) is the function used to define the operator 7;. We observe that there is no difficulty
in applying 7T to oy, since

Gy(£2)) = 0. (210)
Moreover, Ty, o] = T [ 03], so that
o(x) =S[T|[op]](x) +p(z) forall zeR. (211)
Rearranging (211), we obtain
op(x) = S[T[op]] (x) + pp(x) forall zeR, (212)
where p,(z) is defined the formula
po(z) = p(z) + op(x) — o (). (213)

Using (208) and (213), we conclude that under the hypotheses of Theorem 18,

Ip = Dol < o0 =l

4T 1 (214)
< a_%exp (— (G_X) )\)
24T 5
< —exp | —=aA
oa < 6 )

Together Theorem 18 and (214) imply Theorem 12.

9. Backwards error estimate

In this section, we prove Theorem 13.

Although both p and p, are defined on the real line, we are only concerned with solutions of
(1) on the interval [0, 1], and so we only require estimates there. Accordingly, throughout this
section we use | - || to denote the L* ([0, 1]) norm.
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We omit the proof of the following lemma, which is somewhat long and technical but entirely
elementary (it can be established with the techniques found in ordinary differential equation
textbooks; see, for instance, Chapter 1 of [4]).

Lemma 4. Suppose that q : R — R is infinitely differentiable and strictly positive, that p(t) is defined
by (56), and that there exist real numbers n, > 0 and 1y > 0 such that

m < q(t) <my forall 0<t<1, (215)
and
P, #)] <me forall 0<t <1 (216)
Let
2
k=20 (@) L2102 41 (217)
m m
and suppose also that € > 0 is a real number such that
€ < % (218)
Suppose furthermore that py : [0, 1] — R is an infinitely differential function such that
Ip — Pyl < €exp(—k). (219)
Then there exists an infinitely differentiable function g, : [0, 1] — R such that
L (5 qg(t>)2 a(t)
- — =p(t) forall 0 <t <1 220
o (4 (o) g ) =i (220)
and
lg — @bl < e (221)

We derive a bound on the change in solutions of the ordinary differential equation (1) when
the coefficient ¢(t) is perturbed.

Lemma 5. Suppose that A > 0, € > 0, 7y > 0 and ny > 0 are real numbers. Suppose also that
q : [0, 1] — R is a continuously differentiable function such that

m < q(t) <my forall 0<t <1, (222)
that p(t) is defined by the formula (56), and that
Ip(t)| < mp forall 0<t<1. (223)
Suppose furthermore that g, : [0, 1] — R is a continuously differentiable function such that
Lm my
lg(t) — q(t)] < 37 oXP <_T> € forall 0 <t<1. (224)
If z(t) is a solution of the ordinary differential equation
2'(t) + Nqt)z(t) =0 forall 0<t<1 (225)
and zy(t) is the unique solution of the ordinary differential equation
20(t) + Nqp(t)z0(t) =0 forall 0 <t <1 (226)

27



such that zy(0) = z(0) and z{(0) = 2'(0), then

HZ - ZOHOO < EHZHOC (227)

Proof. We start by observing that the function v¢(t) = zy(t) — z(¢) is the unique solution of the
initial value problem

W' () + Nq(t)(t) = N2 f(t) forall 0<t<1
{ $(0) = ¢/(0) = 0, (228)
where
f@&) = (a(t) = (®)) (L(t) + 2(1)) - (229)

We now apply the well-known Liouville-Green transformation to (228) in two steps. First,
we introduce the function

o(t) = (q(t)"* v(t), (230)

which is the solution of the initial value problem

" q/(t) / . 1/4 l
{cb 0= 5,7+ Na()o(t) = (a()) N f(t) = za@p(t)e(t) forall 0 <t <1 (231)
(0) = ¢'(0) = 0.
Next we introduce the change of variables
x(t) = Jo v q(u) du, (232)

which transforms (231) into

{¢%m+A%u»mm»3MVﬂmimwwm forall 0= <mr
6(0) = 9(0) =,
where

1 —L v/ q(u) du. (234)

We now use the Green’s function for the initial value problem (233) obtained from the Liouville-
Green transform to conclude that forall 0 < z < x4,

ote) = [ (a1 ) - J)otn)) o 235)

By inserting (229) into (235) and we obtain the inequality
A ‘ A
wmn<(M—%qr~+@)j|wwww+<mq—qmmdwfmauo<x<a. (236)
mo 4/ J ™
We apply Gronwall’s inequality (Theorem 9 in Section 2.5) to (236) in order to conclude that

A A
lo(z)| < 3—/4Hq — @)ool 2] 00 €xP (<|q - quoo??— + %) x) forall 0 <z <. (237)
U 1
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Combing (230), (237) and the observation that

1
1 — f V(@) du < 7Y (238)
0

yields the inequality
\ \ 3/4
[0t < —[a — gl exp (—q - qb|oo77§/2) exp (772—) |2]lco (239)
m m 4
forall0 <t < 1. Now
A\ \ 3/4
g — o]0 exp <—|q - qbooné/2> exp (772—) <e (240)
m Uit 4
if and only if
A 1 1/2 773/4
E%/ g — @l < Wo <€772/ exXp (%)) ) (241)

where W}, is the branch of the Lambert W function which is real-valued and greater than —1
on the interval [—1/e, ®0) (see Section 2.3). According to Theorem 5,

Aty gl < & (e (-2 (242)
™ 2 2 2 4 )
implies (241). We algebraically simplify (242) in order to conclude that
o= e < S (1 )
4 — bl 2\ exp 1 )€
implies (239). O

By combining Lemmas 4 and 5 we obtain Theorem 13.

10. Numerical experiments

In this section, we describe numerical experiments which, inter alia, illustrate one of the im-
portant consequences of the existence of nonoscillatory phase functions. Namely, that a large
class of special functions can be evaluated to high accuracy using a number of operations
which does not grow with order.

Although the proof of Theorem 12 suggests a numerical procedure for the construction of
nonoscillatory phase functions, we utilize a different procedure here. It has the advantage
that the coefficient ¢ in the ordinary differential equation (1) need not be extended outside of
the interval on which the nonoscillatory phase function is constructed. A paper describing
this work is in preparation.

The code we used for these calculations was written in Fortran and compiled with the Intel
Fortran Compiler version 12.1.3. All calculations were carried out in double precision arith-
metic on a desktop computer equipped with an Intel Xeon X5690 CPU running at 3.47 GHz.
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10.1. A nonoscillatory solution of the logarithm form of Kummer’s equation.

In this experiment, we illustrate Theorem 12 in Section 4. We first construct a nonoscillatory
solution r of the logarithm form of Kummer’s equation

(1)~ 3 () + AN (exp(r(1) — g(1)) = 0 (244)

on the interval [—1,1], where A = 1,000 and ¢ is the function [-1,1] — R defined by the
formula

q(t) = <3 + 1+110t2 +t° cos(5t)) : (245)

Then we compute the 500 leading Chebyshev coefficients of ¢ and 7.

We display the results of this experiment in Figures 1 and 2. Figure 1 contains plots of the
functions ¢ and r, while Figure 2 contains a plot of the base-10 logarithms of the absolute
values of the leading Chebyshev coefficients of ¢ and r.

We observe that, consistent with Theorem 12, the Chebyshev coefficients of both r and ¢
decay exponentially, although those of r decay at a slightly slower rate.

10.2. Evaluation of Legendre polynomials.

In this experiment, we compare the cost of evaluating Legendre polynomials of large order
using the standard recurrence relation with the cost of doing so with a nonoscillatory phase
function.

For any integer n > 0, the Legendre polynomial P, (x) of order n is a solution of the second
order differential equation

(1 —)y"(t) — 2ty (t) + n(n + Dy(t) = 0. (246)
Equation (246) can be put into the standard form
1+n—nt*—n?{t*—1)

v+ (P v — o e47)

by introducing the transformation

() = VI — 2 y(t). (248)
Legendre polynomials satisfy the well-known three term recurrence relation
(n+1)Pii(t) = 2n + 1)tP,(t) — nP,_1(1). (249)

See, for instance, [11] for a discussion of the these and other properties of Legendre polyno-
mials.

For each of 9 values of n, we proceed as follows. We sample 1000 random points

L1, ta2, .- s t1000 (250)
from the uniform distribution on the interval (—1, 1). Then we evaluate the Legendre polyno-
mial of order n using the recurrence relation (249) at each of the points ¢y, ts, ..., t1000. Next,

we construct a nonoscillatory phase function for the ordinary differential equation (247) and
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use it evaluate the Legendre polynomial of order n at each of the points ¢;,%,, ..., ti000. Fi-
nally, for each integer j = 1,...,1000, we compute the error in the approximation of F,(t;)
obtained from the nonoscillatory phase function by comparing it to the value obtained us-
ing the recurrence relation (we regard the recurrence relation as giving the more accurate
approximation).

The results of this experiment are shown in Table 1. There, each row correponds to value of
n. That value is listed n, as is the time required to compute each phase function for that value
of n, the average time required to evaluate the Legendre polynomial of order n using the
recurrence relation, the average cost of evaluating the Legendre polynomial of order n with
the nonoscillatory phase function, and the largest of the absolute errors in the approximations
of the quantities

Po(t1), Pa(t2), - -, Pultiooo)
obtained via the phase function method.

This experiment reveals that, as expected, the cost of evaluating P, (¢) using the recurrence
relation (249) grows as O(n) while the cost of doing so with nonoscillatory phase function is
independet of order.

However, it also exposes a limitation of phase functions. The values of P,(t) are obtained in
part by evaluating sine and cosine of a phase function whose magnitude is on the order of n.
This imposes limitations on the accuracy of the method due to the well-known difficulties in
evaluating periodic functions of large arguments.

Figure 3 contains a plot of the nonoscillatory phase function for the equation (247) when
n =1,000,000.

10.3. Evaluation of Bessel functions.

In this experiment, we compare the cost of evaluating Bessel functions of integer order via
the standard recurrence relation with that of doing so using a nonoscillatory phase function.

We will denote by J, the Bessel function of the first kind of order v. It is a solution of the
second order differential equation

2y () + 1y (1) + (¢ = *)y(t) = 0, (251)
which can be brought into the standard form
. A2 —1/4
w0+ (1= 258 vt —o (252
via the transformation
U(t) = Viy(t). (253)
An inspection of (252) reveals that J, is nonoscillatory on the interval
(O, %\/41/2 — 1) (254)
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and oscillatory on the interval

1
<§\/4y2 -1, oo) . (255)
The Bessel functions satisfy the three-term recurrence relation
2v
Jy+1<t> = TJlf(t) - Ju—l(t)' (256)

The recurrence (256) is numerically unstable in the forward direction; however, when evalu-
ated in the direction of decreasing index, it yields a stable mechanism for evaluating Bessel
functions of integer order (see, for instance, Chapter 3 of [11]).

For each of 9 values of n, we proceed as follows. First, we sample 1000 random points
t1,t2, .- ti000 (257)

from the uniform distribution on the interval [2n,3n]. We then use the recurrence relation
(256) to evaluate the Bessel function J,, of order n at the points ¢1,s,...,t1000. Next, we
construct a nonoscillatory phase function for the equation (253) on the interval [2n,3n]| and
use it to evaluate J, at the points ¢1,%,,...,t1000. Finally, for each integer j = 1,...,1000,
we compute the error in the approximation of J,(t;) obtained from the nonoscillatory phase
function by comparing it to the value obtained using the recurrence relation (once again we
regard the recurrence relation as giving the more accurate approximation).

The results of this experiment are displayed in Table 2. There, each row corresponds to one
value of n. In addition to that value of n, it lists the time required to compute the phase func-
tion at order n, the average cost of evaluating .J,, using the recurrence relation, the average
cost of evaluating it with the nonoscillatory phase function, and the largest of the absolute
errors in the approximations of the quantities

Jn(t1), Ju(ta), .-, Ju(ti000)
obtained via the phase function method.

We observe that while the cost of evaluating J,, using the recurrence relation (256) grows as
O(n), the time taken by the nonoscillatory phase function approach scales as O(1). We also
note that, as in the case of Legendre polynomials, there is some loss of accuracy with the
phase function method due to the difficulties of evaluating trigonometric functions of large
arguments.

11. Conclusions

We have shown that the solutions of a large class of second order differential equations can
be accurately represented using nonoscillatory phase functions.

We have also presented the results of numerical experiments which demonstrate one of the
applications of nonoscillatory phase functions: the evaluation of special functions at a cost
which is independent of order. An efficient algorithm for the evaluation of highly oscillatory
special functions will be reported at a later date.

A number of open issues and questions related to this work remain. Most obviously, a fur-
ther investigation of the integral equation (74) and the conditions under which it admits an
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exact solution is warranted. Moreover, there are applications of nonoscillatory phase func-
tions beyond the evaluation of special functions which should be explored. And, of course,
the generalization of these results to higher dimensions is of great interest. The authors are
vigorously pursuing these avenues of research.
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Figure 1: The function ¢ defined by formula (245) in Section 10.1 (solid line) and the corre-
sponding solution r of the logarithm form of Kummer’s equation (53) when A = 1,000 (dotted
line).
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Figure 2: The base-10 logarithms of the leading Chebyshev coefficients of the function ¢ de-
tined by formula (245) in Section 10.1 (solid line) and of the associated nonoscillatory solution
r of equation the logarithm form of Kummer’s equation (53) when A = 1,000 (dotted line).
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construction time

Phase function

evaluation time

Avg. phase function Avg. recurrence

Largest

evaluation time absolute error

100 1.55x107 ! secs 1.29x 107 secs 5.82x107% secs 516x10~14
10> 1.76x107! secs 1.29x107% secs 9.73x1077 secs 1.59x 10713
103 1.57x107! secs 1.29%x 1079 secs 1.03x10°secs  6.13x10713
10+ 1.55x107! secs 1.29x 107 secs 1.04x107* secs 1.20x 10712
105 1.56x107! secs 1.31x107% secs 1.04x1073secs  9.79x10712
105  1.58x107! secs 1.40x 1079 secs 9.81x103secs  2.40x107!!
107 1.65x107 ! secs 1.40x 107 secs 9.69x 1072 secs 8.59x 10~
108 1.87x107 ! secs 1.42x107% secs 9.68x107! secs 1.71x10710
10°  2.05x107! secs 1.34x107% secs 9.68x10 %secs  6.11x10719

Table 1: The evaluation of Legendre polynomials. A comparison of the time required to
evaluate the Legendre polynomial of order n using the standard recurrence relation and the
time necessary to evaluate it using a nonoscillatory phase function. The recurrence relation
approach scales as O(n) while the phase function approach scales as O(1).

2.0 x 100 - .
1.5 x 10° ¢ -
; /
1.0 x 106
500 000 / L o o o
0.0 0.2 0.4 0.6 0.8 1.0

t

Figure 3: A phase function for Legendre’s differential equation. A plot of the nonoscillatory
phase function associated with Legendre’s equation (246) at order n = 1,000,000. It is suffi-
cient to construct the phase function on the interval [0, 1) due to the symmetry properties of
Legendre’s differential equation.
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Phase function

construction time

evaluation time

Avg. phase function Avg. recurrence

Largest

evaluation time absolute error

100 5.23x107 ! secs 1.30x 1079 secs 1.99x107% secs 2.81x10~14
102 5.39x107! secs 1.31x107% secs 7.29x10 % secs  7.85x1071
103 5.36x107! secs 1.37x107% secs 4.87x107%secs  2.40x10713
10*  5.52x107! secs 1.33x107% secs 4.35%x107* secs 1.01x 10712
105  5.46x107! secs 1.49x107% secs 411x103secs  3.18x107!2
106  5.81x107! secs 1.44%x107% secs 424x107? secs  8.57x10712
107 6.41x107 ! secs 1.45x107% secs 4.36x107! secs 5.98x10~11
108 7.00x107! secs 1.35x107% secs 4.39x10™ secs 1.14x 10710
10°  1.26x10%° secs 1.41x107% secs 4.42x10* secs  2.43x1071°

Table 2: The evaluation of Bessel functions. A comparison of the time required to evaluate
the Bessel function J,, using the standard recurrence relation with that required to evaluate
it using a nonoscillatory phase function. All of the points at which J,, was evaluated were in
the interval [2n, 3n]. The recurrence relation approach scales as O(n) in the order n while the
time required by the phase function method is O(1).
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