We propose methods of both slow and rapid post-processing of signals for erasure
of artifacts that arise in the process of thresholding and quantization. We use
wavelets as tools to define constraints, and variational functionals as measures of
complexity of signals. The methods come from analyses of different possibilities
of blending variational calculus and wavelet multiresolution in ways that appear
to be natural. The methods allow extensions to Ritz-Galerkin type algorithms for
simulation of solutions to differential equations, which will be presented elsewhere.
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1 Introduction

Given an imperfectly described signal, it is often the case that a few of
its parameters are given with good precision whereas other parameters are
known only vaguely or are a priori essentially unknown. If one believes how-
ever that the unknown parameters are somehow correlated with the known
ones, then it is reasonable to try to extrapolate the unknown parameters
from the available ones. This involves exploitation of additional, external
principles of our choice — the ones that are believed to express relations
between the two groups of parameters.

A good example of such a problem is provided by the contemporary
wavelet and wavelet packet-based techniques for denoising and compression
of one- and two-dimensional signals. In one form or another, all these pro-
cedures use the following two steps. First, the signal is represented in some
wavelet packet basis. In the second step, the coefficients of the representa-
tion are purposefully altered either to suppress noise or compress the data,
or both. This is usually done by thresholding or quantization of coefficients.
Thresholding in its most basic form means setting those coefficients that
~are smaller in-absolute value thana certain-threshold to zero. Quantization
in its most basic form means rounding the coefficients off to the nearest
multiple of a chosen unit (the quanta).

Efficient as these methods can be, they will unavoidably introduce un-
desirable artifacts to the processed signals. The artifacts become more and
more manifest as the thresholding or quantization procedures get coarser.

Many methods of enhancement of noisy images using partial differen-
tial equations have been recently developed and tested. Among them, the
method of Perona and Malik, the method of Alvarez, Lions and Morel, and
the method of Rudin and Osher are perhaps representative (cf. [5] for a
review and further references). One common feature of all of these methods
is that they use (nonlinear) heat flows with the noisy image as the initial
condition. Since, generally speaking, one expects heat flow to be a regulariz-
ing, smoothing process, it is necessary to take special precautions to prevent
smoothing of the edges in the images. In order to achieve this, the authors
mentioned above design nonlinear terms, that enter the driving force sides
of their equations, to detect edges and slow down or stop dispersion in their
direct vicinity. Let us point out a few shortcomings of these methods.

e Heat flow is a slow process.




e Even if the methods converged very rapidly, so that it would suffice
to perform just a few steps in their discretized form, the nonlinearity
would cause each step to be computationally expensive.

e None of these methods is applicable to erasure of artifacts that arise
in the process of quantization or thresholding of images with the use
of singular wavelets. Indeed, these procedures introduce artifacts in
the form of edges. Therefore, any method of cleaning must have a way
of distinguishing between the edges that are features of the original
image and those that have been introduced artificially.

One approach to restoration of signals that have been subject to damage
by thresholding would be to devise a method for extrapolation of coefficients
below the threshold from those that remain unchanged above it. We will
present here two mathematical treatments of this problem. The first one
may be seen as a generalization of the method introduced by Y. Bobichon
and A. Bijaoui in their paper [2]. We believe that the second method is
entirely new. It is in principle based on detection of wavelets (which are
looked upon as “undercurrent” signals themselves) by matching with the
use of specially designed correlation measures.

Since the signals to which we want to apply these techniques are finite
dimensional, we will not discuss issues related to the infinite dimensional sit-
uation. We want to emphasize, however, that the scheme for minimization
of energy functionals suggested at the end of the next paragraph is interest-
ing as a tool for simulations of PDE’s and naturally “lifts” to the infinite
dimensions via the Galerkin method. Of course this poses many questions
that have to be resolved. We will elaborate on the subject elsewhere.

2 The two approaches.

The algorithms presented in this section are (in their most interesting ver-
sions) nonlinear, and as such usually quite slow. Because of this we will
limit our discussion to one-dimensional signals. We emphasize, however,
that two-dimensional extensions of these algorithms are straightforward and,
even though rather slow, they are still very interesting from the point of view
of many particular applications. In the next section we will present a rapid
algorithm that is a special version of algorithms presented here as the second

type.
Methods of the First Kind




Suppose now we are given two (topological) functional spaces B; and
Bs, and a (linear) transform T : By — B;. We do not specify any prop-
erties of T, By, By until later. However, we will think of this transform as
a wavelet (wavelet-packet) type transform. In addition, we think of B, as
the (physical) space of signals, and B; as the phase space. Furthermore, let
® : By — R be a (energy) functional defined over B; with some regularity
that will be requested later. Finally, let M € B, be a constraint (subset) in
B;. We are interested in the following problem: Find a ug € By such that

@ (ug) = minyep, P(u),

subject to the condition
Tuo € M.

Let, in addition, Pys : By — M denote the orthogonal projection into M. If
the functional ® is sufficiently regular to posses (at least formally) gradient
grad®, one might attempt to solve this problem by the steepest descent
method, i.e. by solving ‘
ow 1

i —PyTgrad® (T~ w),
for w € B, with the initial condition T™'w(0) = u; € T™'M. Let x[—g,qj
denote the characteristic function of the interval [—-@Q,Q]. In the case of
thresholding the formula we do actually convert into an algorithm is

ow -1

i —X[_Q,Q](w)PMTgradQ(T w), (1)
for w € By, T‘lw(O) =u; € T~'M. In the case of quantization, the formula
has to be modified to

ow _
ot

with the initial condition as above. The algorithms are as follows.

=X[-0,0)(w = Tuy)Tgrad®(T™'w), (2)

1. Choose an energy functional, say .

2. Pick T to be the wavelet (wavelet packet) transform according to what
basis has been used to threshold or quantize the image.

3. If repairing a thresholded image set M = span {; :< uy, 9; >= 0},
and let Pps denote the orthogonal projection into M.
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4. Chose @) to be equal either to half the quanta or the threshold.

5. Perform S steps of a discrete version of the evolution equation (1) in
the case of thresholding and (2) in the case of quantization. S is to be
chosen by experiment.

Remarks

e The algorithms presented above have one clear disadvantage. Since

- the gradient: of the functional ® does not-have-anything in"common
with the signal, the method of the steepest descent introduces its own
artifacts. One-dimensional signals are usually smoothed, but on the
other hand application of the algorithm can amplify the Gibbs phe-
nomenon. For images we will observe edge and corner smearing, but
also a propagation-of-textures kind of effect. All this depends heavily
on the choice of a particular functional ®, and the time of evolution.
Below is a typical result of evolution confined to a fixed scale.
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e In some cases improvement in quality of the enhanced image can be
obtained by replacing the wavelet transform by the undecimated (re-
dundant) wavelet transform.

e Furthermore, the method extends to other redundant descriptions as
well. For instance, interesting effects have been obtained by simulta-
neous use of several bases. In this case equation (1) has to be replaced
by a system of two (several) equations of the form

%L = —X[—QlyQﬂ(wl)PM1Tlgrad(I)(T2_1w2) (3)
2 = —X[-Q1,@2) (W2) Pas, Tograd® (T M wy),

with w; € Bg, T; : BIBQ, and Py, : B§ — M; for i = 1,2 are as
above, and the initial conditions 7, w;(0) = w3 € Ty M N Ty 1M are
consistent.

e Let us note that the effects of intertwining an elliptic differential op-
erator with integral transforms as in T'grad®T~! are far from trivial,
let alone the nonlinear multiplication by an expression of the type
X[-@,0)(w). Indeed, it is a very instructive exercise to show that in
the one-dimensional case with the discrete linear second derivative
(u"); = uiy1 — 2u; + u;—1 and T given by the Haar wavelet transform
at one level. In fact, it is easily seen that for w = wy + wg, where
wy (wg) are the low-pass (respectively high-pass) components of w,

we have
rirtoy) = (gon G )+ (o).

where * denotes the convolution, and
¢nn = (-1,2,-1),

¢HG = (laO,_l)a
¢GH = (_1a071)a
$ce = (=1,-6,-1).

This means that although the effect of T((T~!w)") will be just an
application of the second derivative to the low-pass component, it acts
on the high-pass component by convolution with a smoothing kernel.
In addition, there is some interaction between the channels. Similar




behavior is observed with other wavelets as well. Of course, we should
be aware of the fact that when grad® is nonlinear, the interaction
between channels is essentially beyond control.

e On the other hand the flow given by equation (1) can be identified as
the projection of an ordinary heat-flow to a (moving) subset. Indeed,
Let us denote u = T~ 'w, and let us apply T~! to both the sides of the
equation (1). If we denote R, =T 1o X[-,q](Tw) Pp o T, we obtain

Oou
ot
which is equivalent to the equation (1). We now check that R really
is a projection. Indeed, since X[Z_Q,Q] = X[-Q,q] and P2 = Py, we
obtain
R,oR, = T 'oxqqTu)PuoToT " oxqoTu)PyoT
= T 'oxg,q(Tu)PyoT =R,

—R; grad®(u), (4)

In addition, since Py, multiplication by X[-Q,Q](Tw), and for orthogo-
nal wavelets the projection Py are all self-adjoint, so is the projection
R,,ie. R} = R, for all u. Thus the flow (1), which is equivalent to
the flow (4) represents projection of the heat flow given by grad® to
a constraint subset in B;. We emphasize however that the constraint,
as well as the projection R,, depends on wu, so generically they will
change at every moment during the evolution. This sheds some light
on how tremendously complex these processes are.

e In essence, a method roughly of this type (with ®(u) = [ |Vu|?) was
investigated in [2]. There, the algorithm is additionally required to
proceed scale by scale and grad® is being evaluated not only in the
physical space but also in the phase space.

Below we present a few examples of results obtained with the algorithm
above. We will refer to the heat flow using ordinary second derivative as sim-
ply “heat flow”. By the L1 heat flow we understand a regularized nonlinear
parabolic flow determined by ®(u) = [ |Vu/, or more precisely

ou_(__w Y
ot (u’2+62)% ’

where ¢ is a small number. (To assure regular behaviour, one needs to
choose the time step unit less than at $5.) Of course the results depend on
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the stopping time, although, at least in principle, one expects convergence.
The original signal used throughout this article is displayed below.

The original signal used throughout




The thresholded signal, Haar basis,threshold = .2

Signal restored with the heat flow
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The thresholded signal, Daubechies4, threshold =.2

Signal restored, with the heat-flow
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The thresholded signal, Daubechies8, threshold =.2

Signal restored, with the heat-flow
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The thresholded signal, Daubechies8, threshold =.4

Signal restored, with the heat-flow
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The thresholded signal, Haar basis, threshold =.2

Signal restored, with the L1 heat-flow
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The thresholded signal, Daubechies4, threshold =.2

Signal restored, with the L1 heat-flow
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The thresholded signal, Daubechies8, threshold =.2

Signal restored, with the L1 heat-flow
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The thresholded signal, Daubechies8, threshold =.4

Signal restored, with the L1 heat-flow
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Methods of the Second Kind

The second method attempts to take advantage of the fact that artifacts
introduced by thresholding often resemble, in shape, wavelets themselves.
More strictly, given initial signal wg, both thresholding and quantization
will add a bunch of wavelets to it, and the resulting signal has the form
u1 = o+ a;9;. Our task then is defined as detection of the v;’s. Moreover,
we know that a; must satisfy constraints of the form |a;| < @, where Q either
does not depend on ¢ , or we know how it depends on 4. (The first possibility

* - holds-in the case of -quantization and then 2@ is-the quanta. The second

possibility holds in the case of thresholding and then @ equals the threshold
for those 7 for which < u3,%; >= 0, and @ = 0 otherwise.) We use many
distinct ways of detecting correlation of shapes, but in all the cases, we
proceed as follows.

1. Choose a measure of correlation, say C. C(f,g) is a (bilinear or not)
_ functional, which is asumed to measure how similar are (the shapes
of) the two signals f and g.

2. Pick €, consider u; +€v; and u; — e9p;. Consider all the 1; in the case
- of quantization and only those for which < u1,%; >= 0 in the case of
thresholding. Choose a threshold of correlation cor.

3. If C(uy, %) > cor update uy = uy + €9y, else if C(uy,—;) > cor
update u; = u; — €%, else do nothing at this 1;, consider the next
;. Try all the wavelets v; (or those which have been set to zero by
thresholding) to reconstruct one ¢ layer.

4. Repeat the previous step Q/e times, i.e. go through the total of Q/e
layers of reconstruction.

In the experiments whose results are presented below, we have used the
following measures of correlation. '

1. C1is given by
J < uy, ¥l >

Cl(ula "/’z) = - f l¢!|2 )

where (.)’ denotes the derivative.

2. C2 is given by
CQ(ul» ¢1) = /K'ul Kaiy
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where K denotes the geodesic curvature of f, i.e.

"
(1+ )3
Of course, depending on the specific application one can design functionals
other than those presented above.
Remarks

e The computational time required by the algorithm is C%N . Here v
is the number of 4;’s we need to consider, which is equal to the signal
length (or “area” for 2D) for quantization and smaller for threshold-
ing. The constant C' is basically the computational time required to
perform step 3, which depends only on the chosen ®.

e The signal one obtains in this way is quantized with the quanta equal
to e. A priori, the smaller ¢, the better the results, but in practice
exceeding exactness gives negligible improvement in quality of the sig-
nal.

e It has to be noted that the algorithm has built in preference for u, +ep
over uy — 9 or vice versa, depending on which is being tested first.
This affects the evolution of u; only at points where we are at a local
maximum or a saddlepoint of the functional ®. However, experiment
shows that the effects of this bias are completely negligible for signals
one encounters in practice. ’

e It is an attractive and convenient feature of this algorithm that it does
not require any regularity of the functional ®, since we do not need
to know its gradient. The shortcoming of this algorithm is that if one
attempts to use it actually to minimize the functional ®, one has to
successively refine the € quantization. This poses nontrivial (even in
finite dimensions) questions about convergence to the minimizer and,
needless to say, the answer will depend on the properties of ®. We
emphasize however that it is not our task in this paper to minimize
functionals, but to detect and erase artifacts of wavelet compression.
For our purposes here, the issues just raised are irrelevant. What is
more, the self-imposed limitations of this method are designed to play
to our advantage.
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e For our purposes, it always pays to choose the functional ® that will
in some sense emphasize the role of the building blocks ;. Below, we
present the results obtained by application of this algorithm with two
different energy functionals to one-dimensional signals.
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The thresholded signal, Haar basis, threshold =.2

[

Signal restored, C1, cor =.1
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The thresholded signal, Haar basis, threshold =.2

Signal restored, C1, cor =0
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The thresholded signal, Daubechies4, threshold =.2

Signal restored, C2, cor =.01
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The thresholded signal, Daubechies8, threshold =.4

Signal restored, C2, cor =.02
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It has to be mentioned that in the case of, say, the functional C1, it
is possible to use C1(u1, ;) itself as a good candidate for the amplitude
at 1;, and avoid the ¢ steps. We will explore this possibility in the next
section. Let us now remark that in fact, even if we deal with an expression
that is not bilinear, as for example C2, it is still possible to produce a
good candidate for the amplitude using the “nonlinear projection”, e.g. we
can use the minimizer of infy [ |ky,41y;|P. for some p > 1. It is, however,
more computationally expensive to minimize this nonlinear expression than
-« to perform -a.large number of ¢ steps.--Moreover, the -experiment shows no
improvement is achieved with this method.

3 A rapid algorithm for enhancement of wavelet
compressed images

Suppose we are given an N X N matrix u; representing an image. Although
the algorithm presented above computes in time proportional to N2, i.e. it
is technically a fast O(n)-algorithm, the constant is in practice too large to
make it useful for image enhancement in real time. We show below how to

- devise-a.really rapid.version of .this algorithm.that proves to be especially
effective for the Haar wavelet (making it a much more practical wavelet than
you may have thought).

Here is how we go about it. First, if we want to construct a rapid
algorithm, we have to get rid of the £ and try to do whatever the calculations
we need simultaneously. This forces us to fix the amplitude of +; at the
optimal level once and for all. It seems natural to pick a; such that

<I>(u1 + ai@b,’) = iI/{f <I>(u1 + /\1/)1)

This can be identified as performing one step towards the minimization of
®(u) by the method of relaxation (cf. [3]). Secondly, in order to find the
number a; defined above numerically, we would usually have to spend a lot
~ of time doing it, so it must be possible to obtain an explicit formula for
a;. Thirdly, even if we succeed in obtaining such a formula, it still does not
guarantee that its numerical evaluation will be fast enough. If we want it to
be fast, the formula for a; can only depend on a few coefficients of u; and
;. All these conditions are met if we pick ®(u) = [|Vu|?. Indeed, then

0w+ 20) = [ 1Vuf+22 [ < Tuy, Vi > 132 [ |94,
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and the minimum is assumed for
f < VUI, V’lp,, >
[V

The constants [ |V4);|2 depend only on wavelets and can be precomputed.
Moreover, the constants depend only on “bands” in the multiresolution ta-
ble, which makes it possible to perform even this precomputation rather fast.
More important, the numerators in the formula above are easy to compute
if we integrate by parts to obtain

- f < Aul$¢i >
e Iz (5)

To justify integration by parts we make two remarks: First of all, we con-
sider the pictures as functions on a two-dimensional torus, which is a closed
manifold and therefore no boundary terms are present. We must add that
we a use periodic wavelet transform in the applications, so that ;s can be
thought of as functions on the torus, too. Second of all, this integration
by parts can be written down in the finitistic version with the surface in-
tegral replaced by a double sum. This makes it retain its meaning in the
digitized version. In summary, let u; be the image before processing, and
let ug denote the image after processing. Let WT and IWT denote respec-
tively the wavelet transform (inverse wavelet transform) in a fixed wavelet
(wavelet-packet) basis. The algorithm we propose consists of the following:

1. Find the wavelet coefficients ¢; = WT'(u1) =< uy, 9¥; >.

A=a;=—

2. Evaluate the finite difference Laplacian Au;.

3. Find the wavelet coefficients of the Laplacian a = WT(Au;) =<
Aul) ¢i >.

4. Rescale the coefficients a! according to the formula (5), dividing them
by pre-computed constants [ [V4;|2. Obtain a’.

5. Reset to zero those coefficients a} that do not satisfy the constraint.
It means that if we are repairing a quantized image, we will put

@ = ail {0
If on the other hand we are repairing a thresholded image, we will put
1
i = 611, g1 {ei=0)

where Ix is the characteristic function of the set X.
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6.

Define the restored image as

Ug = IWT(C; + a,-).

Remarks

All the transforms and other computations are periodic.

The computational cost of the algorithm is essentially the cost of ap-
plication of a filter corresponding to the Laplacian (see below) and
twice the wavelet (or waveletpacket) and the inverse wavelet (wavelet
packet) transform — once for the input signal u; and once for its
Laplacian Awu;. In addition every coefficient of the wavelet (wavelet
packet) transform of the Laplacian Awu; has to be rescaled exactly
once by a precomputed constant that depends only on the wavelets
used and does not depend on the signal itself.

In experiments we use with good results the simplest possible finite-
difference Laplacian, i.e. if U is a matrix then with the obvious nota-
tion

(AU)ij = Uit1,j + Uijr + Uinaj + Uicr i1 — 405
with the obvious periodic extension at the boundary.

Since the numbers we use for rescaling [ |V;|2 depend on the shape
of 1; and not their position, they are constant within a given scale (or
scale and band if wavelet-packets are used).

If we were to look at this algorithm as a version of discrete heat flow
restricted to certain scales and possibly bands, we would have to point
out two distinctions. Firstly, there is only one step in (discrete) time.
The length of this step depends on the scale (band) and is given exactly
by the number ([ |V;]?)~1. We believe there is no way of justifying
this selection other than it has been done above by means of “relax-
ation” in the direction of wavelets.

Since multiplication of distributions is not well defined, the formula
J1V#i|? makes no sense for discontinuous Haar wavelets seen as func-
tions of real variables. It can, however, be evaluated in the discrete
version of wavelets, where V denotes the left or right directional finite
differences. (To avoid mistakes and resulting discrepancies between
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definitions of the Laplacian and the gradient, it is always safest to inte-
grate by parts and compute these numbers in the form [ < Ay, 9; >.)
The experiment shows that this works very well. In fact the existence
of singularities may account for the fact that this method is most ef-
ficient for detection of artifacts left by the Haar wavelet.

Had we kept adding the wavelets one after another, we would have been
sure that ®(uz) < ®(uy). However, we have only used the functional @
to compute the consecutive coefficients, and then we have added all the
wavelets simultaneously. There is no a priori abstract reason for the value of
the functional to go down. Below we prove that the L? variation will in fact
decrease. For clarity we will start with the one-dimensional version of the
algorithm. We will then show how to restate the theorem and refurnish its
proof to obtain the two-dimensional version of the algorithm. We emphasize
that the signals are considered to be defined on a circle (or a torus) and the
analysis is periodic. In what follows we will be concerned with wavelets in
a fixed band. More precisely, we consider a family of wavelets {¢;} which
are all shifts of a certain function ¢ € C? (the regularity condition can be
weakened), i.e.

bi(z) = (e — 1) (6)

fori=1,2,...,N with the convention that the shift is circular, i.e.
Yi(z) = Pn-i(z). (7)

Let us introduce the following notation. Let
f < V'ﬁ» V"bk >

M(k) = 8
W ="T1vep )
Below we will use the discrete Fourier transform and its basic properties.
. Here we just remind the definition. Let z = (z¢,1,...,2n-1) be a (com-

plex) vector. By its digital Fourier transform (DFT) we understand the
vector X = DFT(z) given by:

N-1
2/ —1lk
Xi = Z wlexp(——N—).
1=0

It is an (easy to verify) experimental fact that
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Experimental Fact 1 For all the (digitized periodic) compactly supported
orthogonal wavelets v, the vector M = (M(0), M(1),...M(N — 1)) satisfies

N-1
Z |M (k)| < 2
k=0

and a fortiori

DFT(M) < 2.

Its continuous variable counterpart would be the inequality
1) = ([ Ive) e 9o <2

We will show that this fact is equivalent to the property that the output
signal has lower L? variation than the input of the algorithm above (<f.
Theorem 1 below). In what follows, we will need the following lemma.

Lemma 1 The quadratic form
N .
O(z1,29,...,2N) = —me +2 Z ziz; M(j - 1),
i=1 1<i<j<N .
where M(j — i) is as defined above, is negative definite, i.e.
Q(11717:’:2»"‘7:1;]V) S 0
with equality if and only if 2, = z9=...=2ny = 0.

Proof. Let us define a matrix A given by:

1 M) M@ M@ ... M(N-1)
| oMo -1 M) M@ ... M(N-2)
MV —1) M(N -2 M(N - 3) MV—8 .

It suffices to show that all the eigenvalues of A are negative. We first note
that A is circulant. Indeed, since 3;’s are functions on a circle, we have

M(5) = M(N 1)
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foralli=1,2,...,N. Next, we use the well known fact that the eigenvalues
of a circulant matrix are given by the discrete Fourier transform of one of
its rows (cf. [4]). More precisely, if we denote the eigenvalues of A by Ay for
k=1,2,...,N, then

Ay = DFT(A; ;)

for k=1,2,...,N. Next we will use the fact that the entries A; ; are given
by
Avg = M(j) - 28,

for 7 =0,1,..., N — 1 where § denotes the Dirac delta supported on the
first component. We now use the fact that DFT(§,) = 1. Together with
Experimental Fact 1 mentioned above before the Lemma 1, this completes
the proof.

Now we can prove that the following theorem holds.

Theorem 1 In one dimension, the energies of the output ug and the input
uy of the algorithm. above in both the case of thresholding and quantization
(cf. point. 5 of the algorithm) satisfy the inequality

[1vuaf < [1vul,

and they are equal if and only if uy = u;.

Proof. First we perform an analysis with the assumption that all the wavelets
are taken from one scale (and band), so that the situation is as in the
equation (6) above. Suppose further that all the coefficients a; fall below
the threshold (or within the quantization limit), i.e. the output u; is given
by

Nr<n i > N f<v , Vb >

We apply V to both sides of this equation and obtain as a result

=1 =1
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JIVuwl? = [|Vu + Z a;Vi|* =

2 _ <Vu, Vi >2
SVl =23 %W

7 f<Vu1,V¢;>f<Vu1,V¢j >f<V¢i Vb >
Tt TTovF

> 2 <Vu,Vyi>?2 9)
JIVu]? - HW'
/ <Vuy V> [<Vu, V9> [ <V, 94>
+2,§, f [Vylt

fqu1|2+T|%/,F(—__ZI$?+2 > zEiM(j—1)),

1<i<j<N

where 2z; = [ < Vuy, V4); >. Thus the claim now follows from the Lemma
1. We will now examine what happens if some of the coefficients a; are ob-
tained by a nontrivial application of thresholding to the original correlation
coefficients, i.e. let

r f < Vuy, Vio; >

YT TTveE

and let
@i = 0il{ja;1<@H ei=0);
in the case of thresholding and

a; = ag[{laikQ},

in the case of quantization, both for a given threshold @ (respectively quanta
2Q). In both cases we denote y; = [ < Vuy, Vo) >, and z; = [ |Vih|2a;.
Below we are going to use the property that z;y; = z?. A calculation as
above shows that now

“va~QVmP=
TIéTP(—Q > Ty + Zwiij(j —1) =

f|v¢l2( 22290 + Lo (G —i) = (10)
T E o2 M=) <0

where the last inequality is justified as before, and again the equality holds
only if u and uy are identical. Finally, let us remark that if we perform
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the algorithm with wavelets at many different scales (bands), the analyses

can still be carried out in a scale-by-scale (or band-by-band) fashion. This

time one decomposes the difference [ |Vuy|?— [ |Vu;|? into a sum of several

quadratic forms and then estimates each one separately exactly as above.

The estimates hold as long as Experimental Fact 1 is satisfied for wavelets

(wavelet-packets) at those scales and bands. This concludes the proof.
Remarks ‘

e We emphasize that the theorems above do in fact depend on the prop-
erties of the wavelets used throughout. Indeed, consider the following
problem: Suppose

Uy = Uy + ¢ D uy (11)

for a certain constant ¢. Can ¢ be chosen independently of u; in such
a way that we would always have

/ IVus|? < / IV u|?? (12)

The answer is NO, which is easily seen if one plugs into equation (11)
the eigenfunctions of the Laplacian corresponding to higher and higher
eigenvalues. Next, it suffices to evaluate the integrals [|Vu;|? to see
that the constant ¢ will' have to decrease to zero as the eigenvalues
increase in order to guarantee that the above inequality holds. (The
reader unfamiliar with the general notions can try u; = sin(27kz) as
eigenfunctions on the unit circle to obtain that (12) is now equivalent
to ¢ < (2mk)~L)

We now present results of application of the fast algorithm above in a
few cases of thresholded one-dimensional signals. It is clear that the im-
provement is more spectacular when the artifacts are stronger, i.e.for less
regular wavelets. The same rule governs the case of images (cf. below).
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The thresholded signal, Haar basis, threshold =.2

Signal restored
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The thresholded signal, Daubechies4, threshold =.2

Signal restored
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The thresholded signal, Daubechies8, threshold =.2

Signal restored
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4 Applications

We will show applications of the algorithm presented above to enhancement
of images that have been thresholded or quantized, magnification of images,
and last but not least, deblocking of images compressed with JPG software.

Dethresholding and dequantization.

Below we present the result of application of the algorithm presented
above to a picture compressed using a few low-regularity wavelet bases. Ex-
periment shows that the quality of restoration does not depend on whether
the artifacts have been introduced by thresholding or quantization. The
method does not depend on whether we use wavelet bases or wavelet packet
bases, either. Similarily as in the case of one-dimensional signals, the im-
provement in quality of the image becomes less spectacular as the wavelets
used for compression become more regular and blocking artifacts are re-
placed by ringing phenomena. This suggests an application of this method
in processes that require high speed of computation (especially on the trans-
mitter side) with reasonable image quality.
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The image compressed in the Haar wavelet basis
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The image restored with the algorithm presented above
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The image compressed in the Haar best-wavelet-packet basis
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The image restored with the wavelet—packet version of the algorithm
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Compression in D4 best-WP basis
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Compression in D8 best-WP basis
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Restoration in D8 best-WP basis
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Compression in H basis, CR =72
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Restoration in H basis, CR = 72
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Magnification

For magnification of images, one takes the image as the low-pass of
the Haar wavelets. After having performed the magnification by the inverse
Haar transform, one applies the algorithm described above. No thresholding
is necessary. The image has to be renormalized to amplify the energy.
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Small image
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DE-JPG

By DE-JPG we understand an adaptation of our algorithm that allows
us to rapidly deblock images compressed with JPG software. In fact the
algorithm in this version:

o Performs three levels of the Haar transform (3 because the JPG blocks
have size 8-by-8).

e Assumes the low-pass coefficients as accurate (they are the average
values of the image inside the 8-by-8 blocks).

e Extrapolates new high-pass coefficients using the principle explained
in the previous section.

e Automatically estimates the appropriate threshold level for a given
image. (This is done using an empirical formula given in terms of the
level of quantization of the low-pass coefficients of the JPG compressed
image.)

e The newly extrapolated coefficients are thresholded using the above
estimate and are then added to the existing high-pass coefficients (but
only where the latter ones are originally below the threshold).

e The new image pixel values are reset between 1 and 255.

The automatic detection of the threshold can be optionally replaced by
manual selection of the threshold. Again, as seen in the theorem above, the
bigger the threshold the more smoothing should be expected.

The automatic threshold is set so that it increases PSNR of the image
in the known cases. Striking as it may seem at first, this claim can be sub-
stantiated theoretically. The JPG-compressed images that have been post-
processed with DE-JPG can be sharpened, e.g.using the standard sharpen-
ing tool in ‘xv’ software, without emphasizing the 8-by-8 grid. This is in
contrast to JPG compressed images, even for very low compression rates
(like, say, 4 for JPG quality approximately 90.) v

Below we present the results obtained in an application of the rapid de-
blocking algorithm DE-JPG. ‘Sx’ (the Pegasus-JPG-compressed image with
luminance quality equal to ‘x’) is the input, while ‘Sxdjp’ is the output of
the algorithm. This is the completely automatic version of the procedure
with default choice of the threshold (given as a function of the image).
The user can optimize the output further (either for the PSNR or other
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measures), by adjusting the threshold parameter manually. Large threshold

gives smoothing effects.

| Original and De-blocked |

Compression Ratio | Power Signal to Noise

S1 40.1 28.7431
S1djp 28.8353
S3 35.1 29.2821
S3djp 29.4355
S5 32.2 29.6247
S5djp 29.7802
510 27.6 30.1728
S10jp 30.3099
515 24.3 30.6373
S15djp 30.7585
520 21.7 31.0266
S20djp 31.1269
530 17.9 31.7030
S$30djp 31.7795
S40 14.8 32.3777
S40djp 32.4434
S50 122 33.0068
$50djp 33.1331
570 8.0 35.1843
S70djp 35.1997
580 6.0 36.9916
S80djp 37.0042
[S90 4.0 40.2701
S90djp 40.2825
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S10djp a fragment
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Sharpened S50
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Sharpened S50djp
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