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Abstract

During recent years, the number of commercially available parallel computer architectures
has increased dramatically. The number of processors in these systems varies, from a few pro-
cessors up to as many as 64k processors for the Connection Machine. In this paper, we discuss
some of the technology issues that are the underlying driving force and focus on a particular class
of parallel computer architectures. This class is often called Ensemble Architectures, and they
are interesting candidates for future high performance computing systems. The ensemble con-
figurations discussed here are linear arrays, 2-dimensional arrays, binary trees, shuffle-exchange
networks, Boolean cubes, and cube connected cycles. We discuss a few algorithms for arbitrary
data permutations, and some particular data permutation and distribution algorithms used in
standard matrix computations. Special attention is given to data routing. Distributed routing
algorithms in which elements with distinct origin and distinct destinations do not traverse the
same communication link make possible a maximum degree of pipelined communications. The
linear algebra computations discussed are: matrix transposition, matrix multiplication, dense
and general banded systems solvers, linear recurrence solvers, tridiagonal system solvers, fast
Poisson solvers, and very briefly, iterative methods.

1 Introduction

Advances in device technology have thus far been the primary factors in the evolution of high
performance computing. Switching times have decreased from 1 ps for vacuum tubes to around
0.1 — 0.05ns for MOS technologies, and an order of magnitude less for bipolar technologies.
Clock rates have increased from below 1 MHz to 10 — 40 MHz in MOS technologies, and 250
MHz for the CRAY-2 (bipolar). While switching speeds have increased by four to five orders
of magnitude (six for the CRAY-2), clock rates have increased by only two to three orders
of magnitude. The instruction issue rate has increased similarly to the clock rates, but the
amount of work carried out per instruction varies significantly. The rate at which floating-point
operations can be performed has increased from 0.1 — 1 kflops (floating-point operations per
second) to 10 — 20 Mflops for MOS technologies, and 250 Mflops per floating-point unit in a
CRAY-2.
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Chip 25mm? | Chip 50mm? 4” Wafer Clock
100M \? 200M )2 (50%) 166G \?
Dynamic RAM 1 Mbit 2 Mbit 160 Mbit
Static RAM 256 Kbit 512 Kbit 40 Mbit
16-bit proc. 40 80 6400 54 MHz
32-bit proc. 8 16 1280 36 MHz

Table 1: Chip and wafer level integration, 1u feature size

Of the improvement of five to six orders of magnitude in floating-point capability at most
three orders of magnitude are attributed to technological and low level design improvements.
Dedicated hardware for floating-point operations, extensive use of pipelining, and enhanced
algorithms contribute to the remainder. In current high performance systems, a floating-point
operation can be initiated every clock cycle. Silicon technologies are expected to offer about
one order of magnitude increased switching speed before fundamental limits are reached. Other
technologies, such as gallium arsenide, potentially offer a further five to ten fold increase in
switching speeds.

Further dramatic increases in performance must derive from architectural innovations that
exploit concurrency in computations. The critical path in most designs is determined by wire
delays rather

One cannot expect to reduce the number of switching delays per clock cycle by more than a
factor of 5 by comparing common microprocessor designs with a highly optimized design such as
the CRAY. Reducing the clock cycle through architectural means, i.e., decreasing the number
of switching delays per clock cycle, gets increasingly difficult because wire delays are ever more
significant as feature sizes are reduced. Wire delays do not scale well if the geometric aspect
ratios and the electric field in the gate region remain constant. While switching delays may be
reduced in proportion to the scaling, wire delays may either decrease slowly, remain constant,
or even increase depending on what factors (capacitive or resistive) govern the delay.

Replication of locally interconnected parts offers the highest promise for high performance
architectures. Intermingling storage and processing elements reduces the average area per pro-
cessing element, and increases the clock rate in synchronous (non-pipelined) designs. The in-
creased ratio of processing capability per unit of storage, and the increased clock rate, both
contribute to increasing the maximum size of the state that can change in a single clock cycle,
i.e., the rate of computation.

As feature sizes are reduced, the amount of storage and logic that fits on a single chip or
wafer becomes impressive. Tables 1 and 2 contain predictions for 1x and 0.254 feature sizes,
respectively. The basis for the storage predictions are that a 1-bit dynamic RAM cell requires
an area of 100A% and a 1-bit static RAM cell requires an area of 400\2. Processor estimates
are based on the Caltech Mosaic 16-bit processor, which is about 2.5M A2, excluding the pad
frame,[92], and the RISC and MIPS 32-bit processors, which are about 12M A2, excluding pad
frame [34,35,71].



Chip 25mm? | Chip 50mm? 4” Wafer Clock
1600M \? 3200MA? | (50%) 256G A2
Dynamic RAM 16 Mbit 32 Mbit 2660 Mbit
Static RAM 4 Mbit 8 Mbit 640 Mbit
16-bit proc. 640 1280 102400 216 MHz
32-bit proc. 128 256 20480 144 MHz

Table 2: Chip and wafer level integration, 0.25u feature size

160 Mbyte
32-bit RISC II processors 10240 processors

370 GIPS

160 Mbyte
16-bit MOSAIC processors 51200 processors

55 GFLOPS 32-bit add
12 GFLOPS 32-bit mult
256 Mbyte

Cosmic Cube nodes (140M \?) 2000 processors
(Intel 8086, 8087, 128kbyte) | 2 GFLOPS ("measured”)

Table 3: Wafer level integration, same area for processors and storage

At the 0.25u feature size level, a large number of processors fit on a single die. The estimates
in the tables are highly simplistic and ignore the area required for interprocessor communication
as well as processor-to-storage communication. communication in the form of a one- or two-
dimensional array of processors with local storage, the wiring area should not substantially alter
the estimates. With other interprocessor and /or processor-to-storage communication networks,
substantial area may be required for wiring. We obtain the figures in Table 3 by assuming bit-
serial communication and simple switching elements for an {l-network, or a Boolean cube, and
the design of [73] as a base case we obtain the figures in Table 3. The predictions for the Cosmic
Cube are based on an estimated processor area of 140M \2 [118], and measured performance on
existing hardware.

In any fabrication process it is expected that some of the processing cells will be defective.
In a two-dimensional array of cells on a wafer in which bad cells are arbitrarily distributed,
it may still be possible to use the wafer by configuring wires around the defective cells, for
example, by laser-restructuring techniques. It is desirable to design wafers so that live cells
can be configured in the desired pattern by “threading around” the dead cells. Independently,
Leiserson and Leighton, [85] and Greene and El Gamal[32] have investigated the problem of
configuring one- and two-dimensional arrays of processors on a faulty wafer. They show that
if the faulty nodes are randomly, and independently distributed, then the live nodes may be



connected into a smaller two-dimensional mesh with expected maximum edge length O(logN)
and a channel of width O(1), where N is the number of cells in the array. Simple regular
structures are not costly to assemble under the presence of faults.

1.1 Ensemble Architectures

Ensemble architectures [117] represent a low cost alternative to future high performance systems.
High nominal performance at a low cost is obtained by composing systems out of a large number
of parts. These parts are mass produced in state-of-the-art technology. The storage may be
entirely distributed among the processors, or part of the storage may be subdivided into storage
modules, each of which forms a node in a network. In the generic architecture, some of the
nodes in the network represent processors with storage. Others may represent storage alone.
Network topology in an ensemble architecture is sparse and regular. Control and data are
distributed. The notion of ensemble architectures is not neg. PEPE [47,48] is an early example
of an ensemble architecture of medium granularity; and cellular automata can be viewed as
ensemble architectures of fine granularity.

High performance requires a high rate of operand consumption and generation. With only
a few operations per operand high storage bandwidth is required. High storage bandwidth is
achieved in ensemble architectures through highly partitioned storage. Associative memory is
one extreme instance of this philosophy in that each storage cell is equipped with some processing
logic. Systolic architectures and the Connection Machine [37,38] are close to this extreme in that
there are only a few registers, or a limited amount of storage, per processing node. The storage
bandwidth of the Connection Machine model CM-I is 32 Gbytes/sec at 4 M Hz. Model CM-II
offers a peak bandwidth in excess of 50 Gbytes/sec. Intermediate levels of storage bandwidth
are obtained by a larger granularity of computations, as in the Cosmic Cube. Partitioning of
storage to yield storage bandwidth compatible to processor capacity is used in high performance
architectures such as the CRAY and CYBER series of computers, and was used already in early
computer designs [76]. The partitioning of the storage is much less than in, for instance, the
Connection Machine, and so is the storage bandwidth, which is 4 Gbytes/sec for the CRAY-2.

There are many considerations in choosing interconnection networks, processor designs, and
programming models for ensemble architectures. Manufacturability and scalability with re-
spect to performance and reduced feature sizes of the technology are assured by interconnecting
the processing elements sparsely and regularly. The interconnection network chosen represents
a tradeoff between communication bandwidth, fault-tolerance, and design and manufacturing
considerations. The global architecture (SIMD or MIMD), and the granularity of nodes and
their architectural features must be chosen so that high real performance can be achieved by
minimizing communication and computation time.

1.1.1 Interconnection Networks

The choice of interconnection network determines the rate at which processors can communicate.
While high bandwidth is desirable from the point of view of an algorithm designer, it may be
undesirable, and in fact infeasible, from the point of view of the hardware designer. High degree



of interconnect adversely affects scalability, area and volume requirements, and clock rate. One
of the most pressing problems in assembling large systems across many chips is caused by severe
pin restrictions — while the number of components per chip is expected to grow by up to two
orders of magnitude, the chip sizes are not expected to increase much. With pin sizes limited
by mechanical considerations, the bandwidth at the boundary of a chip will only increase if the
rate at which off-chip wires are driven is increased. Unless many communication channels are

multiplexed per pin, thereby making the system clock longer, high fanout systems simply cannot
be built.

There is an intimate relationship between processor design and the choice of interconnection
network. As the capacity of local storage grows, so does the interprocessor distance, and the
distance to the furthest location of local storage. With increased local storage it becomes
necessary to structure storage [93] to minimize access delay. In the capacitive model for wire
delays, the access time can be reduced to order logM and in the resistive model to order vM
for a storage of size M. Assume for the moment that the processors with local storage are
interconnected as a one- or two-dimensional array. Then, the interprocessor distance grows
as VM, and the minimum time to drive the interprocessor connection increases in proportion
to logM for the capacitive model and v/M for the resistive model. There is no qualitative
difference in the relative growths in local access time and interprocessor communication time.
Small local storage allows for short wires between processors, and potentially high clock rates.
For one- or two-dimensional arrays, it is desirable to keep the local storage small. Local storage
can increase performance, if arithmetic is parallel and communication serial, because with local
storage several such references are typically made for each remote reference.

Many interconnection networks with a small diameter, such as the shuffle-exchange, butterfly,
cube connected cycles and Boolean cube, require long interconnections when layed out in a two-
or three-dimensional space. Interprocessor communication will be slower than references to local
storage, even if the whole network were to fit on a single wafer in submicron technology. It is
important that such systems are self-timed in order for computations to make use of the higher
bandwidth between a processor and its local storage, than the bandwidth for remote references.
Note, that the access time for different remote references may differ. The fact that some of the
networks with a high wiring area do not make effective use of the area (silicon), may indeed
cause networks like a mesh to offer a higher total bandwidth than, for instance, a Boolean cube
[105].

Network costs

Configuring processors as linear arrays and complete binary trees requires a total number
of interconnections equal to the number of processors. Both configurations scale in an excellent
way. With several processors on a single chip, the required bandwidth at the chip boundary
only grows at the rate of the clock frequency, regardless of the number of processors per chip
and the size of the machine being built [86]. The tree has the advantage over the linear array in
that its diameter (the distance between the processors that are furthest apart) is 2(logsN — 1)
compared to N (or £ N for an array with end-around connections). The diameter of the network
topology defines a lower bound for the speed of computation [29]. Global communication can
be accomplished faster in a complete binary tree than in a linear array. The required area for
the complete binary tree is of order O(N ) [93], if the nodes can be placed arbitrarily in the



Configuration Nodes Diam Fan-out Edges
Linear Array 2k 2k=1 2 28 —1
2-d mesh 2k 2(2%2 — 1) 4 2(2F — 25/2)
2-d mesh of trees | 3.2k —2.2% 2k 6 5.2k — 4.9k/2)
Tree of meshes (k + 1)2k 823 4 2(2F(4k — 1) + V2F+1)
Binary tree 28 — 1 2(k - 1) 3(1) 2% — 2
Boolean cube 2k k k k.25t
CCC k2% 2k — 1 3 3k - 251
Shuffle-exchange 2F 2k — 1 <3 ~1.5.2F

Table 4: Topological properties of some common networks

plane, in which case the maximum wire length is ﬁﬁﬁ [99,9]. Placing all the leaf nodes of
the complete binary tree along the boundary, yields an area requirement of order O(NlogaN)
[11], and a maximum wire length of order O( T%J\TN ).

Linear arrays and complete binary trees have a small bandwidth and present communication
bottlenecks for many important computations. The two-dimensional mesh and mesh of trees
[84] offers higher bandwidth and is preferable for many matrix computations. The first two
networks can be realized in small area on a wafer (O(NV) for the N node mesh and O(N log? N )
for the N node mesh of trees) with wire lengths O(1) for the mesh and O(W\/Nlog N) for
the mesh of trees. The advantage of the mesh of trees over the mesh is its logarithmic diameter
(2log N compared with 2¢/N for the mesh).

More sophisticated networks, such as the shuffle-exchange, )-networks, cube connected cycles
[101], and Boolean n-cube have also been proposed because of their ability to efficiently emulate
other important networks, or for high total bandwidths. They have been studied extensively in
the literature. All of these networks require a layout area almost quadratic in the number of
nodes, and wire lengths that grow almost linearly with the number of nodes. Correspondingly,
the cost per communication is extremely high and the clock rates are decreased. Currently, a
64 input one bit wide Q-network with simple switching elements, or 2 32-input Batcher sorting
networks, fits on a single chip [73].

Large systems must be partitioned across many chips and boards. Not all the networks
mentioned above are easily partitioned under the existing or predicted pin constraints. Tables
4 and 5 summarize the above discussion. The number of off-chip channels are stated in terms
of the number of processors per chip, M.

Nodes in a network may either be switching elements or complete processors. The two
alternatives yield architectures with slightly different properties. Multistage shuffle-exchange
networks, {)-networks, banyan networks, and butterfly networks are all closely related inter-
connection networks in which internal nodes typically are switching elements, possibly with a
queueing capacity. These networks are used in architectures such as the HEP [10], the Ultra-
computer [116,31], the RP3 [100], TRAC [119], CEDAR [78], and the BBN Butterfly [20]. In



Configuration Nodes Edge len. Area Pin Count
Linear Array 2% o(1) O(2%) 2
2-d mesh 2k o(1) O(2%) WM
2-d mesh of trees | K =3-2% — 2.23 | O(VKlogK [loglogK) O(Klog’K) ~ VM
Tree of meshes K = (k+1)2* O(k + logk) O(KlogK) kil
Binary tree 28 —1 O(2%72 k) O(2%) — 0(2% - k) 4
Boolean cube 2k 0(2%) O(2%F) M(k — logM)
CCC k2F 0(23) O(k222F) M —Miog, M
Shuffle-exchange 2" O(2% /k) O(2%% /&%)

Table 5: Layout properties of some common networks

some designs, processors with local storage are at both ends of the network. In other designs, the
processors have a negligible amount of storage and storage units, and processors are at opposite
sides of the network. At others again processors with a measurable amount of storage are at
one side of the network and a ”shared” storage at the other side. The CHiP architecture [121]
represents an “intermediate” form of architecture in that it uses a switch network for commu-
nication between processors with local storage. However, the switch network is novel and any

- path between a restricted pair of processors goes through a fixed number of switches, like 2 or 4.
The switch network yields a capability to reconfigure the ensemble into a large variety of com-
mon configurations. Recently, Leiserson has proposed the Fat-tree network [87] as a universal
hardware-efficient network that also uses switches, but with rebroadcasting instead of queues at
switching nodes.

Network capabilities

An attractive feature of a network is the ease and efficiency with which it can simulate
other networks. If the simulation does not require much overhead, and if the processors of
the network being simulated can be mapped automatically onto the existing network, then any
program written for the first network can be automatically compiled to run efficiently on the
second. The problem of finding a communication efficient algorithm for a specific network can
then be formulated as a problem of embedding one graph, the guest graph corresponding to
the communication needs of the algorithm in the graph describing the network, the host graph.
Typically, edges in the guest graph are mapped onto paths in the host, and the host may have a
larger set of nodes than the guest. The dilation of an edge is equal to the length of the path it is
mapped to in the host graph, and the ezpansion is the ratio of the number of nodes in the host
and guest graphs. The dilation of edges can cause a corresponding decrease in throughput (the
time between successive computations of a given kind), or just an increase in latency (additional
time for completion of the first computation in a set).

For elementary algorithms, common data structures and communication patterns are one-
to four-dimensional meshes, complete or arbitrary binary trees, the FFT butterfly network, and
the data manipulator network. As may be expected, hosts with a low connectivity and small
bisection width, such as one-dimensional arrays and trees, are not efficient universal networks.
Two-dimensional arrays of processors are better hosts. Thompson gives an embedding of the



FFT butterfly network in a two-dimensional mesh such that logN nodes of the butterfly are
mapped to one node in the mesh. The maximum edge dilation is v/N, and up to logN butterfly
edges are mapped onto one edge of the mesh.

The Boolean cube is an exceptionally versatile host graph. Multi-dimensional arrays can be
embedded with dilation 1 and expansion 1 in the Boolean cube, if the number of grid points in
each dimension of the array is a power of 2. It is also well known that the FFT butterfly network
can be embedded in the Boolean cube with logN butterfly nodes per cube node, such that the
dilation is 1 and there is a one-to-one correspondence between edges in the FFT network and
the cube. A static embedding allows a normal [129] algorithm (one that proceeds from input
to output without reversing direction) to execute in the same number of steps on the cube as
on the FFT butterfly network. However, the throughput of the cube is lower by a factor of
logN, since a cube node simulates logN FFT network nodes. Similarly, a dynamic embedding
of the FFT-butterfly network in a shuffle-exchange network yields a slowdown by a factor of 2
for normal algorithms. The throughput is degraded by a factor of 2logN. Similar results hold
for bitonic sorting networks, being recursively composed FFT networks. Recently, a number
of results have been obtained on the embedding of complete binary trees, multiple complete
binary trees, multiple binomial trees, balanced spanning trees, and arbitrary trees for the cube
[132,8,7,50,68]. It follows from [8], that the Boolean cube can efficiently simulate the mesh of
trees network. By construction of the tree of meshes network it is not difficult to see that the
Boolean cube can embed this network with dilation 1. The universality of the Boolean cube
follows from the fast implementation of sorting algorithms, and the randomized routing schemes
of Valiant [131].

Applications rarely consist of a single type of computation. Each component of the set of
“elementary” computations defining an application may have different ideal data structures.
Indeed, it may even be the case that different data structures are ideal for different phases of
an "elementary” algorithm, since the communication pattern may not be uniform throughout
the execution of the algorithm [58]. The need for data reallocations in order to minimize the
complexity of an algorithm decreases with the ability of the network to efficiently support dif-
ferent access patterns to a data structure. The Boolean cube can emulate, with low overhead,
many of the prototypical graphs that either represent particular data structures or data depen-
dency graphs for standard algorithms, or networks that have been proposed as VLSI computing
structures. A static embedding of a data structure can support many types of access schemes
without communication penalty, reducing the need for data reallocations.

For arbitrary computations one measure of the utility of a network is its total bandwidth,
which is proportional to the total number of edges. Hence, the bandwidth of a pipelined -
network, (for example, the NYU Ultracomputer [31]), is the same as the bandwidth of a Boolean
cube. However, there is a latency in the switch that grows logarithmically with the number of
processing elements. In the Boolean cube, the interprocessor communication time is nonuniform.
The minimum interprocessor communication time amounts to one routing. The maximum num-
ber of routing steps is logoN. Interprocessor communication in an Q-network includes 2log, N
links. If the communication width corresponds to a word, then this latency may be a signifi-
cant fraction of the communication time. With bit-serial communication the difference may be
negligible, and entirely dependent upon various implementation decisions. Moreover, whether
the nominal difference results in a real performance difference depends on the particular data



dependences of the computation, and the mapping of the computations on to the architecture.

2 Ensemble Architecture Algorithms

An ensemble architecture of extreme concurrency is similar to systolic architectures. However,
in ensemble architectures, data management is an even more predominant factor. In most cases,
but not all, systolic architectures data (input and output) is stored outside the array, and the
management of such data is generally ignored. In algorithms for ensemble architectures it is
generally assumed that initial data, as well as the results, are stored within the ensemble. Fur-
thermore, the number of nodes in the ensemble is, in general, insufficient to match characteristic
parameters of the problem. However, the amount of storage per node is significant. The granu-
larity of computations in ensemble architectures is often larger than in systolic architectures.

Time-space trade-offs are at the core of mapping algorithms onto ensemble architectures.
In general, data and control structures, synchronization and communication are, considerably
more complex in ensemble architectures than in systolic designs. The time-space trade-off in
ensemble architectures is often made in favor of minimizing data movement. Systolic designs
are of fine grain; and designs are often such that the communication time is comparable to
the time for logic or arithmetic operations. Most ensemble architectures are of a coarser grain,
and interprocessor communication is typically slower than the execution of arithmetic and logic
operations.

Algorithms are devised both in an ad hoc manner and systematically. The first approach
may lead to entirely new, efficient, algorithms. The second approach can be supported by algo-
rithm design tools. These provide the necessary insight to develop compilation techniques that
transform abstract representations of algorithms into efficient code for a variety of architectures.
In the systematic approach, which is followed in the description of sample algorithms below, a
computation graph defining the partial ordering of computations is created from the definition
of the computation in a suitable notation. Then, this computation graph is mapped on to the
ensemble. The computation graph has a level or stage for each sequential step of the algorithm.
Nodes of the graph represent computations, and the computations represented by the nodes at
a given level can all be performed concurrently. Arcs between nodes represent data transfer,
which with nodes of the computation graph mapped into different processors represent commu-
nication. In a sufficiently large ensemble, the mapping of the computation graph can be made
such that all nodes of a given level are assigned to distinct processors. The situation in this case
is similar to what is typical for systolic designs [69], [65], [17], [90], [96], [95], [102], [88], [19],
[22]. If there are fewer processors than the maximum number of nodes at any one level of the
computation graph, then different nodes have to be identified with the same processor. Two
such schemes are cyclic and consecutive identification [50] defined precisely later.

In the identification of multiple nodes of the computation graph with processors in a specific
ensemble architecture, several performance related issues arise that do not occur in designs of
the systolic type. For instance, in such a design it is often sufficient for maximum utilization of
resources that no two elements compete for the same communications link at the same stage in
the execution of the algorithm. However, in an ensemble architecture it may be required that for
maximum performance communications during different stages of the algorithm do not compete



for the same communication link. The ability to establish different communication paths with
a minimum number of shared edges becomes important. The size of the problem relative to
the size of the ensemble also affects the optimum embedding in other ways due to restricted
communication.

With larger granularity of computations operations are no longer occurring concurrently to
the extent disclosed by the computation graph. A parallel algorithm that minimizes the time for
arithmetic operations on an unbounded number of processors may have a higher total operations
count than an algorithm minimizing the number of arithmetic operations. Bitonic sort and odd-
even cyclic reduction are examples thereof. In order to minimize the required solution time on
an ensemble of finite size a combination of algorithms may be needed. In some instances, such
combinations can be obtained through algorithm transformations. Which algorithm minimizes
the execution time may also depend upon the number of problems to be solved in that some
algorithms are more amenable to pipelining than others.

We will describe some basic ensemble architecture algorithms for computational linear alge-
bra and sorting, and focus on the issues raised above. The ensemble architecture topologies used
as model architectures are linear arrays, 2-dimensional meshes, binary trees, shuffle-exchange,
Boolean cube, and cube connected cycles networks. The algorithms have communication topolo-
gies in the form of one- or multi-dimensional meshes, butterfly networks, data manipulator
networks, and spanning trees. We first describe the embeddings of these graphs in graphs rep-
resenting the topology of the ensemble architectures.

2.1 Graph Embeddings

The computation graph defines a partial ordering of the computations. Constraints on the real-
ization of the computation graph are imposed by the ensemble architecture, and are incorporated
in the mapping process. The computations corresponding to the nodes at a given level (order)
have to be spread over time if there is an insufficient number of nodes in the ensemble, or if the
communication implied by directed edges may require more than one communication step. This
situation occurs if the operands at the source and sink of the edge are located at nodes at a
distance greater than 1 in the ensemble. In the interest of conserving storage, nodes of the com-
putation graph are sometimes identified with a given storage location. Such a strategy results
in a variety of access schemes for the same data structure. If the storage has a latency, then
the latency may determine the rate of execution during some part of the algorithm as for FFT
and odd-even cyclic reduction [15] on vector architectures. The bank conflict problem in vector
processors is well known, and architectural solutions [13], [81], [83], [104], as well as solutions at
the application program level for particular algorithms [72], [46] have been proposed.

The situation is the same within a node in an ensemble architecture, however, the time of
accessing storage is not uniform. In a simplified model, the storage of nodes with which a given
node has direct connections can be accessed in 1 unit of time, the storage of the neighboring
nodes of the immediate neighbors in 2 units of time, etc. The larger the number of neighbors
— the larger the number of different access schemes that can be supported by a fixed data
structure at a given number of communication actions. Reconfigurability through switchable
interconnections gives the ensemble the same property.
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2.1.1 Complete Binary Tree Hosts

We first consider guest graphs in the form of one- and multi-dimensional arrays. Rosenberg and
Snyder [108] and Sekanina [120], have given a procedure for a prozimity preserving embedding
of a 2" — 1 node loop in a 2™ — 1 node binary tree. Let dr(i,7) be the distance between nodes
¢ and j in the loop, and ¢(¢) and ¢(j) be the indices of the tree nodes to which nodes i and
J are mapped. Then, dr(¢(3), #(i + 1)) < 3, Vi, where dr(i, ) is the distance between nodes
2 and j in the tree. They have also shown that 21.50—2 dr(#(¢),#(i + 1)) < 2(]L] = 1), i.e.,
the average distance between adjacent nodes is less than 2. |L| denotes the length of the loop.
For any embedding of 2-dimensional arrays of n by n nodes in the leaves of a complete binary
tree DeMillo, Eisenstat, and Lipton [23] have shown that there exist nodes (4, 7) and (i + 1, 5),
adjacent in the array, such that dr(é(i,5), (i + 1,5)) > logon — 3/2. Rosenberg and Snyder
[108] show that the average distance for the embedding of a 2-dimensional array in the leaves
of a binary tree is at most 7 — 2~ llogen]+1, Rosenberg and Snyder also consider the embedding
of d-dimensional arrays with n? nodes in the leaves of 2%-ary and binary trees. The average
distance between nodes adjacent in a d-dimensional array when embedded in a 24-ary tree is at
most 4 — 2-%92]. The bound for a binary tree is (4 — 2-los2nl)d. The maximum distance is
at most 2dlogyn for the binary tree embedding.

2.1.2 Boolean cube hosts

Nodes in a Boolean cube can be given addresses such that the addresses of adjacent nodes
differ in precisely 1 bit. Furthermore, the number of adjacent nodes for any node equals the
number of dimensions of the cube, i.e., the number of bits in the address. A loop embedding
that preserves proximity is easily obtained for |L| = 2" by encoding the indices of the nodes
in the loop in a binary-reflected Gray code [106]. Such Gray codes have several interesting
properties. For instance, it is easy to show that dc(Gis Giy2iymodan) = 2 for j > 0 [58]. This
property is important for algorithms such as the FFT, bitonic sort, and cyclic reduction. For
the FFT and bitonic sort, embedding according to a direct binary encoding of the indices of
the data elements is preferable. However, application programs typically include the use of
several different ”elementary” algorithms, and a Gray code embedding may be preferable for
other computations.

Another property of the binary-reflected Gray code is that for i even de(G;, G (i43)mod2n) = 1.
Any loop of length 2"~ + 2k, k = {1,2,...,2"2?} can be embedded in a n-dimensional cube (n-
cube) such that do(Gi, Git1ymoair)) = 1 for i = {0, 1,...,|L] — 1} [50]. For |L| odd there exists
a node ¢ in the loop such that dg(G;, G(i+1)modiL|) = 2. That the minimum maximum distance
must be 2 is easily proved by considering the number of bit complementations in a cycle. In the
following, we refer to binary-reflected Gray codes simply as Gray codes.

An embedding according to the binary encoding of node indices in a loop does not preserve
proximity. For ¢ even dc(4(3),¢(i+ 1)) = 1, but for ¢ odd dc(é(3), $(s + 1)) falls in the range
[2,n] (do(6(2%! — 1),4(2*1)) = n). A Gray code encoding G; = (gn-1,0n-2, ..., Jo) can be
rearranged to a binary encoding ¢ = (bn—1,bn—2, ..., bo) in 7 — 1 routing steps. The highest order
bit in the Gray code encoding of an integer, and the highest order bit in its binary encoding
coincide. The encodings of the last element, N — 1, differ in n — 1 bits. An element needs to
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Elem. | Proc. | Elem. | Proc. | Elem. | Proc. | Elem. | Proc.
index | index | index | index | index | index | index | index
0 | 0000 0 | 0000 0 | 0000 0 | 0000

1| 0001 1| 0001 1| 0001 1| 0001

2| 0011 2| 0011 2| 0011 3| 0011

3 | 0010 3 | 0010 3| 0010 2| 0010

4 | 0110 4 | 0110 71 0110 6 | 0110

51 0111 51 0111 6 | 0111 71 0111

6 | 0101 6 | 0101 5] 0101 5] 0101

71 0100 71 0100 4 { 0100 4 | 0100

8| 1100 15| 1100 12 | 1100 12 | 1100

9| 1101 14 | 1101 13 | 1101 13| 1101

10 | 1111 13 | 1111 14 | 1111 15 1111

11 { 1110 12 | 1110 15| 1110 14 | 1110

12 | 1010 11 | 1010 11 | 1010 10 | 1010

13 | 1011 10 | 1011 10 | 1011 11} 1011

14 | 1001 9| 1001 9| 1001 91| 1001

15 { 1000 8 | 1000 8 | 1000 8 | 1000

Table 6: Conversion of Gray code to binary code

be routed in dimension j if g; & b; = 1. Routing the elements such that successively lower (or
higher) order bits are correct yields paths that intersect at nodes only [50]. This form of routing
amounts to reflections around certain ”pivot” points in the Gray code. The pivot points are
defined by the transitions in the bit being subject to routing. Table 6 illustrates the sequence of
reflections that convert a 4-bit Gray code to binary code. A reflection consists of an exchange of
elements between a pair of processors. Since each dimension is routed only once, no two elements
traverse the same edge in the same direction during the entire process of data reallocation. If
there are multiple data per node, the routing of elements can be pipelined without conflict.

This property is important, if a processor can concurrently support communication on all of its
communication links.

The embedding of d-dimensional meshes with n4, nodes in dimension i is easily accom-
plished by partitioning the address space such that there are [logang;] bits (dimensions of the
cube) allocated for dimension d; of the array. For ng; = 2% for some k this simple embedding
is also efficient in the use of nodes in the cube. For meshes with sides that are not powers of 2

the embedding can be made such that the expansion is minimum and the maximum dilation is
equal to 2 [43].

For the FFT butterfly network, an identification of the corresponding nodes in different
ranks with a cube processor yields a dilation 1 embedding. If (2]y) is the address of a butterfly
node, where 2 is » bits and y is logan bits, i.e., z gives the address within a rank of the butterfly,
and y is the address of the rank, then all nodes with the same z are mapped into the same node
of the Boolean cube with the scheme just suggested. Each cube node performs the task of logas N
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butterfly nodes. Each butterfly communication between nodes is adjacent in the Boolean cube.
If a binary-reflected Gray code encoding is applied to z, then butterfly communications are
between nodes at distance two, except for the butterfly on the lowest order bit of z.

For the data manipulator network, an identification of nodes of the network in the same
way as for the FFT butterfly network does not yield communication between adjacent nodes,
since any node communicates with nodes i & 27. One of these two communications are with an
adjacent node, but the other is not. However, if a binary-reflected Gray code encoding is applied
to z, then proximity is preserved in that no communication is over a distance greater than two.

‘There exist many spanning graphs [68] in a Boolean cube. When buffer space is at a
premium a Hamiltonian path may be the only choice. If the data volume is low, then the
height may be more important, and a spanning binomial tree [27,3] may be the best choice. For
maximum utilization of the bandwidth 7, rotated and translated spanning binomial trees can
be used. Such edge-disjoint spanning binomial trees [68] are optimum for large data volumes. In
many instances several spanning trees are required concurrently, such as if all nodes broadcast
data to all other nodes. If communication can take place on only one port at a time, then the
spanning binomial tree routing is optimal. However, if communication can take place on all
ports concurrently, then routing according to Balanced Spanning n-trees, or Rotated Spanning
Binomial Trees, is optimum [68].

2.1.3 Aggregation of data Elements

For a P by P matrix and a 2n-cube with P? > 227, elements of the matrix have to be identified,
and stored in the same node of the ensemble. We consider two schemes of identifying matrix
elements with nodes of a 2® by 2" array. In consecutive storage, all elements (4,5)=40,1,..,P—

1} of a matrix A are identified and stored in processor (p, q)p = I'I-_E’:T_.IJ and ¢ = I‘f_fér—'lj

Each processor stores a submatrix of size -2}%. In cyclic storage, the matrix elements are stored
such that elements (3, j) are identified with node (p, q), p = imod2”, and ¢ = jmod2". In the
consecutive storage scheme, elements with the same least significant bits are identified with the
same processor; whereas, in the cyclic scheme the identification is made on the most significant
bits.

With the consecutive storage scheme, algorithms devised for the case of P = 2" can be
employed with the apparent change of granularity. Operations on single elements are replaced
by matrix operations. In the cyclic storage scheme the processing elements can be viewed as
forming a processing plane, and the submatrices as forming storage planes, also known as virtual
processors, Figure 1.

We find that the cyclic storage scheme enforces a greater insight into communication and
storage management issues. Elemental operations are of fine grain. For an ensemble architec-
ture with communication overhead that is nonzero, or that is not proportional to the number
of elements communicated, and that has pipelined arithmetic units, operations of fine grain
should, in general, be merged for optimum use. Conversely, if the consecutive storage scheme
is used it may be desirable to partition the elemental operations to increase the utilization of
the ensemble. For matrix multiplication of square matrices there is no difference in processor
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Figure 1: Processing and storage planes (virtual processors)

utilization for the two storage schemes. However, for an algorithm such as LU-decomposition
where the number of matrix elements involved in a step is decreasing throughout the computa-
tion, cyclic storage may be preferable. For LU-decomposition on a dense matrix it may yield
a performance improvement in the range 1.5 - 2 [24]. For the solution of tridiagonal systems
it yields a performance degradation [58]. The optimization of vector length, or communication
packet size does not affect the optimum allocation of data, or the choice of algorithm.

2.2 Data Permutations
2.2.1 Conversion between storage schemes

Rearrangement of consecutive to cyclic storage order (or vice versa) can be carried out in time
P/2" + n for P elements stored in a 2" processor Boolean cube [50]. For this communication
complexity, it is required that a processor can support communication on multiple ports, and
that the communication for successive stages can be pipelined. In the consecutive storage order
the partitioning of the address space is (ap_1an—3 .. .@g|bym—1...bo), where the n highest order
bits are processor addresses and the m lowest order bits are local addresses. In the cyclic
storage scheme, the bit fields are exchanged to (by,_; .. bolan—1an—2...a0). Clearly,if m = n
the storage conversion is equivalent to a matrix transposition. The exchange can be performed
as a sequence of shuffle operations, i.e., left cyclic shifts on the address, or unshuffle operations
through right cyclic shifts. Each such shuffle operation has a maximum path length of n edges.
Performing the shuffle operations one at a time results in a communication time proportional to
min(n, m)n. By performing a bit-wise exclusive-or operation on the addresses before and after
the conversion it is clear that the maximum distance an element needs to traverse is n. Since
each routing operation is an exchange operation and a dimension is only routed once, it follows
that the paths are edge disjoint.

The rearrangement can be made recursively by a sequence of exchanges (exclusive-or oper-
ations) on distinct bits. The order in which the bits are treated is immaterial. All exchanges
imply communication if m < n. An alternative implementation of the conversion algorithm
is to perform exchanges of elements between pairs of processors differing in successively lower
order address bits [50,41], and to perform local shuffle operations to make the elements that are

14



Figure 2: Recursive transposition of a matrix

being exchanged form a contiguous block. The processors with addresses in the lower half of
the processor address space exchange the elements of the upper half of their local address space
with the contents in the lower half of the local address space of their corresponding processors
in the upper half of the processor address space. The result is that the first half of the proces-
sors contain the first half of the elements. An unshuffle operation on local addresses (or shuffle
operation on the data) brings the first half of the data into row major order in the Processors
with addresses in the lower half of the address space, and the second half into row major order
in the second half of the set of processors. The procedure is repeated recursively for each half
independently, and concurrently.

Clearly, the local shuffle operation need not be carried out explicitly. Note, that exchanges
are always performed on half of the local address space, regardless of the recursion step, or the
number of rows or columns. This property is not true in forming the transpose of a rectangular
matrix.

Carrying out the recursion in reverse order transforms a consecutive storage order to a cyclic
storage order.

2.2.2 Matrix transpose

The formation of a matrix transpose is a particular permutation of data elements. With the
matrix elements stored consecutively the encoding is ("Pro—1"Pnr—2 - . .TPO|TVm,—1 . .. 70l ePn.~1
€Pno—2 - - CPo|CVpm 1 .. .cp), where rp denotes the row processor addresses and rv the local
addresses in the row direction (virtual row processors), cp the column processors and cv the
local addresses for the column Direction. The transposition corresponds to exchanging the row
and column bit fields. It can be carried out recursively [123,26,50,41] as illustrated in Figure 2
for n, + m, = n. + m..

In the first step of the recursive procedure illustrated in Figure 2, the interchange of data,
is performed on the highest order bit of the row index and the highest order bit of the column
index. In the second step the interchange is performed on the second highest order bit of the
row and column indices, for all combinations of the highest order bits (i.e., 4 combinations).
The number of index sets that differ in one bit of the row and column indices increases as the
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procedure progresses towards lower order bits.

For the consecutive storage scheme it is easily seen that with n, = n, = n, the first n steps
imply interprocessor communication; and with m, = m, = m the node. These last steps consist
of local address changes. (We presume here that the transpose is needed with some other data
in some computation). Otherwise, the first n steps could also be accomplished without data
movement by a suitable change of processor addresses.

With the cyclic storage scheme the situation is reversed. The first m steps amount to local
address changes, whereas the last n steps require interprocessor communication. After the first
m steps there are 22™ matrices of size 2" by 2" to transpose. All matrices are stored identically.

With n, = n, = n there is 2n dimensions to be routed. Indeed, all processors on the
main anti-diagonal have elements that require a routing distance equal to 2n. With row and
column dimensions taken pairwise, all communications are exchanges over a distance of 2. The
paths can be made edge-disjoint and communication pipelined. Moreover, constant storage per
node suffices [50,41]. The element transfer time is 22™ 4+ 2n — 1 accomplished by pipelining
the 22™ matrix transpositions, assuming that communication in both directions can take place
concurrently on all of the ports of a processor. With the consecutive storage model and using the
apparent granularity in the form of block operations the communication time is proportional to
2n X 2™ which for n large is considerably higher. The difference between the two expressions
is due to the pipelining of element transfers in the first case. The same complexity is also
attainable in the consecutive storage case by pipelining the transfers of elements of the blocks.
It is possible to reduce the time further by establishing additional paths [41].

With a Gray code embedding of the array, successive row and column indices are always lo-
cated in neighboring nodes of the cube. However, the communication required by the recursive
procedure on row and column indices is between nodes storing elements of rows and columns
whose binary encoding differs in successively higher or lower order bits. Each such communi-
cation requires the communication of elements in two dimensions, since complementing a bit in
the binary encoding complements 2 bits in the Gray code encoding (except in complementing
the least significant bit).

However, with G(7) and G(J) being the Gray code of the row index 7 and column index Jj the
transpose operation for the case with m, = m, = 0 is equivalent to the communication implied
by changing (G(4)|G(4)) to (G(4)|G(3)), which indeed is the same operation as in the binary
encoded case. Routing row/column dimensions in descending order implies that matrix elements
are subject to reflections around the main diagonal, and the anti-diagonal in alternating order.
The behavior of the algorithm is illustrated in Figure 3. The numbers on the diagonals indicate
the order of the reflection the submatrices are undergoing.

The application of the alternating descending order reflection algorithm to a 4-cube is illus-
trated in Figure 4. The routing algorithm can be made distributed.

Performing the transformation by a 2-dimensional mesh algorithm yields a considerably
higher number of routing steps [50], (22" + 1)(2"~! — 1)/2. The order of complexity of that
algorithm cannot be reduced since P(P —1)/2 elements have to pass through O(2") nodes, each
of which has 4 ports.

16



Figure 3: Transposing a matrix stored in a binary-reflected Gray code
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Figure 4: Routing paths in transposing a 4 by 4 matrix on a 4-cube
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The results presented for square matrices can be generalized to rectangular matrices [41].

2.2.3 Randomized Communication

Recently, several probabilistic algorithms of complexity O(logaN) for arbitrary permutations on
a Boolean n-cube and d-way shuffle networks have been devised. The probabilistic algorithms do
not guarantee an even distribution of elements during permutation. The probabilistic algorithms
have two phases. First, the elements are routed to a random location; then the elements are
routed to the final destination. The routing is deterministic.

During routing from the initial location to the final destination in either phase, several
elements may reach a node, then be delayed because of competition for a given communications
link, even in the case that there is precisely one element per node in the initial and final states.
Also, several elements may reside in a single node at the end of the first phase. Valiant and
Brebner [131] show that for a Boolean cube with one element per node initially, and after the
permutation, the queue length with high probability is at most of order O(logaN). Indeed,
for P/N elements per node they show that the probability that the permutation will require
more than (aP/N 4 1)log,N routing steps is less than (e/2a)*(P/N)iog:N They also establish
similar bounds for so called d-way shuffle networks (in- and out-degree of a node is d), which
also are considered by Upfal [130] and Aleliunas [4]. Tt is assumed that a processor can support
communication on all its ports currently. Valiant and Brebner also show that for a n-dimensional
mesh with M = m" nodes, the probability that at least one packet has not finished in time
(2n — 1)(m + am®4) is less than C*V™ for C < 1. This result compares favorably with the
complexity of Batcher’s bitonic sort or odd-even merge on meshes [128], [97], [79]. The Thompson
and Kung algorithm yields a complexity of approximately 6v/M for a 2-dimensional mesh, and
(3n% + n)M'/N for a n-dimensional mesh. Simulations that exhibit a behavior well within the
bounds for a variety of ensemble configurations are also presented.

2.2.4 Scan functions

Some operations apply to sets, such as broadcasting a value to a set of processors, finding the
maximum or minimum in a given set of variables, or adding all the values. Critical issues
in a system with distributed control (such as in a message passing system) are termination,
completeness and uniqueness, i.e., that all nodes have received the message precisely once upon
termination. Furthermore, local control of the distribution algorithm is desirable. In the Connec-
tion Machine, which is a bit-serial, synchronous, SIMD architecture, scan functions are available
as operators in the programming language. The scan function requires that a spanning tree
be generated for a specified set of processors. The encoding of the set of processors is most
convenient if the processors form a contiguous domain in some index space, such as, a one- or
multi-dimensional array. Encoding is particularly easy, if the processors correspond to a specific
bit-field. Such scans are known as segmented scans in the Connection Machine terminology [39].
The segments need not correspond to all possible addresses generated by a given bit-field, but
should be contiguous for ease of encoding.

Assume for simplicity that the set of processors for which the scan operation shall be per-
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Figure 5: Spanning Binomial Trees in a Boolean cube, with sources in sequential order

formed form a subcube of dimension k. Then, a spanning binomial tree for source node s is
generated by every node ¢ performing an exclusive or operation on its address and the source
node address and communicating with all its neighbors corresponding to leading zeroes of ¢ @ s.
An interesting property of this simple scan routing is the following [50,53]. If the integers are
embedded in the cube according to a binary-reflected Gray code, and the dimensions are routed
in the order in which they first appear in the Gray code going from i to i — 1 in increasing order
modulo the size of the subcube, then the order of arrival for every processor is the same as the
order of scan initiation, if a scan operation is started at successive processors every other cycle.
This situation occurs in Gaussian elimination with pivoting on the diagonal.

The order preserving property for a binary-reflected Gray code is established by observing
that the path ¢, ¢ 4+ 1, ¢ + 2, ... reaches into 2 dimensions after 2 steps, 3 dimensions after 3
or 4 steps depending on i, and 4 dimensions after a minimum of 5 steps. The behavior of the
algorithm for a 4-dimensional cube is shown in Figure 5.

2.3 Sorting
2.3.1 Combining sequential and bitonic sort on a Boolean cube

Stone [123] observed that the bitonic sort [5] maps well onto shuffle-exchange networks. From
Stone’s observations the implementation on a Boolean cube is immediate for one element per

node. We will describe two algorithms for sorting P evenly distributed elements on a N = 27
processor Boolean cube for P > N.

The bitonic sort merges sorted sequences recursively. With one element per node the al-
gorithm proceeds by comparison-exchange operations on elements that are located in nodes
differing in 1 address bit, say the lowest order bit. Then, two sorted sequences stored in two
1-cubes are merged into one sorted sequence in a 2-cube. The sorting order, nonascending or
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nondescending, is determined by a mask. The mask is a function of the processor address and
the length of the subsequences being merged. In all, logy P sequences are merged serially. The
number of sequences merged decreases from P/2 to 1. The final step merges two sequences
stored in separate n — 1-cubes into one sequence in an n-cube. The number of routing steps
is n(n 4+ 1)/2, independent of the data. Each routing is performed in only one dimension. An
algorithm for the bitonic sort expressed in pseudo code for P = 27 is as follows:

For::=1,2,...,ndo
Ifi<ndo
nodes @n_1, .., @41, @i, d;—1, .., G, @; = 1, set mask=1.
nodes a,_1, .., @iy1, @i, @1, .., Ao, @; = 0, set mask=0.
end
Forj:=i¢-1,i—2,...,0do
nodes a,_1,...,8j+1,1,a;-1, ..., ag, send their elements to
nodes @n_1,...,8j41,0,@;_1, ..., @9, which compare local
and received elements
nodes with mask=0 keep the smaller element and
nodes with mask=1 keeps the larger
rejected elements are sent to an_1, ..., @j41, 1, i1, ..., G0
end
end

For P = 2" the last merge operation involves two sequences of length P/2. The merge
is accomplished through a sequence of comparison-exchange operations on subsequences that
decrease in length by a factor of 2 for each step. If P > 27, then additional sequential steps are
necessary.

With the sorted sequence to be stored in cyclic order the first log,P—n comparison-exchange
operations of the final merge are local to a node, since the merge is performed recursively on
successively shorter sequences, i.e., from the high order bits to the low order bits, and the
higher order bits are local in the cyclic storage scheme. After these steps the result is %
bitonic sequences ordered with respect to each other. Each sequence has one element per node.
The last n steps are separately performed on each of those sequences. Carrying out the first
loga P — n local steps as a bitonic merge yields poor performance. The operational complexity is
O(%(loggP —n), compared to O(% +log2—11\37) for a sequential merge including bisection to find the
maximum /minimum of the local bitonic sequence. This merge can be carried out concurrently
in all processors [49]. The correctness of the algorithm can be proved by observing that the
first logo P — n steps, given the assumed storage order, realize N independent bitonic mergers,
each for 1% elements. The corresponding output elements from these mergers form a bitonic
sequence. The last n steps realize —11% bitonic mergers for sequences of length N. This situation
is a generalization of Batcher’s construction [5] of a 16-sorter out of 4-sorters, see Figure 2.3.1.

The sorting is accomplished by recursively building longer sorted sequences, starting from
the lowest order bits. The -11% local elements belong to different sequences for the first n merges,
each being a recursive merge. The time for cyclic sort by the algorithm outlined above is
T = %V—(n(2log2P —n+ 1)(4tc + tee)/2 + 2(logaP — n — 1)tce) + tee, where 2, is the time for
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communication of an element between a pair of processors, and %, is the time for a comparison
operation. If P > N then T is of order O((%)log;P), and if P ~ N, T is of order O(log2N).
The speed-up is O(N) for N « P and gradually changes to O(N/logaN).

With sorting into consecutive storage order and the elements initially stored consecutively,
the first loga P — n merges of the bitonic sort is local to a processor, with the merge sequence
progressing from low to high order bits. These first steps generate a local sorted sequence, that
is more efficiently created by a good sequential sort. The last n merges require interprocessor
communication, and involves sequences of % elements instead of single elements. This algorithm
is similar to the one proposed in [6]. The final log,P—n steps of each of the last n bitonic merges
are local to a processor and should be performed as a sequential merge. The communication
and comparison complexity is of the same order as for sorting in cyclic order [49].

A cyclic storage order is generated by building sorted sequences over an increasing number
of nodes. Then, when a sorted sequence extends over all nodes additional elements should be
included locally in the proper way. For the consecutive storage order the sorted sequences are
first built locally, then extended over the processors when all local elements are included.

The running time of bitonic sort does not depend on the data distribution. This property is
a drawback for nearly sorted sequences. The data movement in such instances can be reduced at
the expense of additional logic for determining what subsequences should be exchanged. Such
a modification can be made while preserving one advantage of bitonic sort, namely that the
number of elements per node is kept constant during the sorting process.

2.3.2 Distribution counting

Rank assignment in the context of distribution counting [74] with L counters, or "buckets”,
can be carried out in a time of [% + L +n—1J2t, + [L(1 — )3 + n)2t. for N < L, and
[E+L+n—1]2t, + [6(L —1)+5n—3loga L]t. for N > L, on a Boolean cube [49] (¢, is the time
for an arithmetic operation). For few processors and a large number of elements compared to the
number of buckets, the algorithm offers linear speed-up. If the number of buckets is comparable
to the number of elements to be sorted the speed-up is sublinear. For few buckets and few
elements per node the speed-up is of order O(N/log,N )- The rank assignment algorithm that
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Figure 7: Concurrent tree computations on a Boolean cube

yields the complexity estimates above is data independent, as are the algorithms based on bitonic
sort. The rank assignment algorithm is easily modified to deal only with non-empty buckets,
which is efficient if only a few buckets in each node are populated. For particular distributions
of elements the data dependent version will have a complexity of order O(logzL) in the number
of buckets, as in Hirschberg’s shared storage model [40).

In the rank assignment algorithm multiple binary tree like computations are carried out
concurrently. There are L binary trees with N leaf nodes each. The trees form subtrees of a
tree with a total of logo N L levels. Each node has a local copy of each bucket. To find the total
number of elements in any bucket the number of elements in each of all the different copies
of a bucket have to be added. This addition is carried out by the subtrees of loga N levels.
For the rank assignment, partial sums are distributed from the root of the trees to the leaves.
However, first an accumulation over all global bucket sums has to be performed. For each tree
the summation/rank assignment process is carried out by recursive doubling [75].

The recursive doubling process is carried out concurrently in all subtrees of height log, N,
by rooting the subtrees in different nodes of the ensemble. The global sums of different buckets
are contained in distinct nodes. The tree embedding is such that one node in the Boolean cube
contains loga N — 1 non-leaf nodes of a subtree, another cube node logs N — 2 non-leaf nodes of
the same subtree, yet 2 other nodes logy N — 3 non-leaf nodes of the same subtree, etc. After the
first step, half of the subtrees are treated by distinct halves of the cube. The divide-and-conquer
process is repeated recursively. The speed-up for the subtrees of height log,N is of order O(N)
for L of at least order O(logyN'). The top log, L levels of the tree are embedded similarly. Figure
7 illustrates the computations for N = I = 4.

2.4 Linear Algebra Computations

In this section we briefly describe a mesh algorithm by Cannon [16], which also is suitable
for Boolean n-cubes since a two-dimensional mesh can be embedded in a Boolean cube with
edge dilation one. We also briefly mention a few variations [50] of this algorithm. A recursive
algorithm [21] that maps directly to a Boolean cube is also discussed, in particular its routing
paths and pipelining properties. The multiplication of matrices of arbitrary shapes is treated
in [66]. We also discuss some of the concerns in solving dense, triangular, and banded and
tridiagonal systems on ensemble architectures. We conclude with a discussion on the relative
merits of FFT and tridiagonal solvers on such architectures.
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2.4.1 Matrix multiplication

Cannon [16] presents an algorithm for computing the product C of two /N by v N matri-
ces A and B stored in a 2-dimensional array of identical size. The algorithm requires %\/ N

communication steps, out of which [3/2—ﬁ'| steps are for a set-up phase, and v/N — 1 are for the
multiplication phase. The purpose of the set-up phase is to align elements from the two matrices
such that all nodes in the array can perform an inner product computation in every step in the
multiplication phase. The alignment is accomplished by # cyclic shifts of row i of A, and j cyclic
shifts of column j of B. This skewing operation is the same as the alignment seen in many
systolic algorithms [80,69].

The inner products defining the elements of C are accumulated in-place. Denote the stor-
age cells for A,B and C by E,F and G. In the set-up phase the shifting yields: E(i,7) «
E(i, (i + j)modv/N), F(i, ) — F((i + )ymodv/N, ), G « 0 for (i,5) € {0,1,2, .., VN — 1} X
{0,1,2,....,+/N — 1}. Clearly E(,7) x F(i,7) is a valid product for all ¢ and j. In the multi-
plication phase the following operations are carried out: G(i,5) « G(i,5) + E(3,5) x F(i,7),
E(i,5) = E(i, (j + DmodV/N), F(i,5) = F((i+1)modV, ), irj = {0,1,2, ., VN ~1}. With
A a P X @ matrix and B a @ X R matrix the multiplication can be accomplished in a time of

maa([ 221, TNV = Dt + [Z1 [ Z 1 LAV - 1)t + mas(ta,t.)) + 2t,).

A drawback of the algorithm by Cannon is that no computations are being performed during
the alignment process. Some elements make almost 2 full revolutions, should only unidirectional
communication be allowed. However, one revolution suffices, and algorithms can be devised
such that successive matrix multiplications can be initiated every VN ”cycles”. For instance,
using the outer product formulation [46] of a matrix product, and passing the columns of A,
along rows (one element per row) in order of increasing column indices, and rows of B along
columns in the direction of increasing row indices. The distribution of columns of A and rows
of B can start from the locations where the elements are stored [54]. The distribution can be
pipelined, and the initiation of the distribution of the different columns and rows can be spread
over time in order that no temporary storage be needed, other than for a pair of elements to
be multiplied. With unidirectional communication, and end-around connections, a total time of
5(v/N — 1) "cycles” is required for one matrix multiplication. The complexity of the algorithm
may be improved [50], but with unidirectional data movement pipelining is easy to visualize. The
data movement is similar to that of the dense matrix factorization algorithm (without partial
pivoting) described later.

The complexity of the algorithm can be reduced by a term v N — %n, if the alignment can
be accomplished in time n instead of v/N. For matrices of a size comparable to the number
of processors this difference is also significant relative to the total time. Dekel et. al. [21]
describes such an algorithm for v/N by v/N matrices embedded in a Boolean cube of N nodes
by a separate binary encoding of row and column indices. The algorithm has a set-up phase in
which A and B are arranged such that E(4,5) — A(4,i® j) and F(i,5) « B(i ® j,). Hence,
E(i,7) x F(i, ) are valid terms for C(3, ) for (i,5) € {0,...,v/N — 1} x {0, ..., /N — 1}. The
rearrangement requires exchanges of elements in the dimensions specified by i for A and by j
for B. Clearly, the set-up phase requires n steps, and no two elements traverse the same edge
in the same direction. The set-up phase for multiple multiplication operations can be pipelined
so that the total set-up time for P problems is P+ n — 1.
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Figure 8: The computational window at step j for computing C — AxB+C, A upper triangular,
or strict lower triangular

In the multiplication phase nodes exchange their content in an order determined by the
transition sequence of the bits in a binary-reflected Gray code [21]. It follows that the time
for multiplying a @ by R matrix B by an P by Q matrix A on a Boolean n-cube, with A, B
and C « A x B + C, embedded according to a separate binary encoding of row and column

indices, is at most ((I'%'I + [—\/—-}%])[Vow] + logaN — 1), + \/]VI'%] [\/—}%] [VQﬁ]maw(%a,tc).
The number of submatrices of size VN x VN is ([%1 + [\/%])[%] The number of block

matrix multiplications is I—\/'L;V-I I'%] [ %'] . Cannon’s matrix multiplication algorithm is devised
for SIMD architectures. For mesh or Boolean cube configured ensembles of the MIMD type
it is possible to devise algorithms with many different kinds of data flow and a complexity of
(I'%] [%1 [%1 VN —1)maz(2t,,t.) + ad + 2t,, where d denotes the diameter of the ensemble

configuration and a < 4 [54].

The multiplication of rectangular matrices is treated in detail in [66]. Depending on the
shape of the matrices and the parameters of the machine, any matrix algorithm as outlined
above, or a matrix-vector algorithm as described below, or the computation of the transpose of
the product may be the optimum.

2.4.2 Multiplication of a full matrix by a triangular matrix

If A is an upper triangular (or lower triangular) N by N matrix, then only half of the arithmetic
operations N(N + 1)/2 are nontrivial. The alignment and multiplication phases of Cannon’s
algorithm can be interleaved such that computations start from one corner of the array and
progress towards the opposite corner. The total data movement is the same. In this variation
of Cannon’s algorithm it is convenient to use the notion of computational windows. A compu-
tational window is defined by the data elements processed concurrently by the ensemble nodes.
The computational window during step 5 for an upper triangular matrix A,a;; = 0 fori—j > 0,
is shown in Figure 8. It also shows the computational window for step 7, if A is a strict lower
triangular matrix, a;; = 0,45 < 0.

From Figure 8 it is obvious that the multiplication A X B and D x B, where A is upper
triangular and D strict lower triangular of dimension /N by VN, or A strict upper triangular
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and D lower triangular can be performed concurrently on a torus of dimension VN by +/N, or
a Boolean n-cube.

2.4.3 Matrix-vector Multiplication

The matrix multiplication algorithms described above can also be used for matrix-vector multi-
plication, ¥ = AX. However, the running time is independent of the number of columns of X ,
and the data movement is larger than necessary [54]. An algorithm on a Boolean cube that is of
a lower complexity than the algorithm by Cannon (adapted to a Boolean cube); or the algorithm
by Dekel et. al., for a single vector, or for a matrix X with few columns is obtained by making
A stationary, distributing the elements of X to the proper ensemble nodes, and accumulating
the partial products over space to yield C in the desired location.

To outline the algorithm assume A is a v/N x+/N matrix and z a /N vector with components
z;. Assume that the vector z is aligned with the first column of A. First z; is rotated i steps in
the direction of increasing column index for ¢ = {0, 1,...,4/N—1}; then each z-value is distributed
to all nodes in column ¢, and the products computed. Finally, the products are accumulated.
Each of these steps can be carried out in a time proportional to n. With the matrix embedded
by separately encoding row and column indices in a Gray code, the shifting is performed in
different subcubes, and no communication conflicts occur. The routing of elements for a given
shift s can be carried out by comparing the Gray codes of i and i + s and moving towards
the desired address by one dimension at a time in any order. A copy-scan can be used within
columns. A sum-scan can be used for the accumulation of inner products. Complexity estimates
for algorithms computing matrix-vector products by accumulating inner products in-space are
given in [54] for dense matrices, and in [55] for banded matrices.

2.4.4 Factorization of dense matrices

The algorithms for Gaussian elimination and Gauss-Jordan elimination described below can be
viewed as modifications of systolic algorithms [80], [52]. The modification of the symmetric
versions of Gaussian elimination such as Cholesky’s, Crout’s, and Doolittle’s methods can be
carried out in a similar way. Systolic algorithms for mesh configured ensembles for Cholesky’s
method are given in [2], [63], for Given’s rotations in [30], [33], [2], [59], and for Householder
transformations in [51]. Given’s and Householder’s methods make use of unitary transformations
and are numerically stable.

The factorization of a matrix A into a lower triangular matrix L and an upper triangular
matrix U, is carried out such that the product form of L~! is computed, L=! = Ly_1Ln_s...Ly.
A = LU and Uz = L7'y. The elements of the factors are stored in the same locations as the
elements of the matrix to be factored.

The non-trivial elements of a factor become known after the preceding factors have been
applied to A, i.e., l;, k = {7, ..., N~1} equals the corresponding elements of A; = L;_1A;_1, Ag =
A. The application of the factors can be pipelined, as is done in systolic algorithms. In Gauss-
Jordan elimination, the inverse is also expressed in product form, A~! = Jy_;Jn_s....Jo. The
non trivial column of J; is determined by the corresponding column of A4; = J;_1 A;_;.
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Figure 9: Storage and distribution of pivot row and column in dense matrix factorization

We assume that A is stored in a 2-dimensional array with one element per processor. We first
present algorithms for 2-dimensional arrays, then describe modifications that can take advantage’
of the added communication capability of a Boolean cube. In the application of L; to A; row i
(the pivot row) is distributed to rows k, k > 7, and column i to columns { , 4 > i. In Gauss-Jordan
elimination, the pivot row is distributed to all other rows. If the matrix is of the same dimension
as the array, i.e., there is only one matrix element per node, then Gauss-Jordan elimination can
be completed in the same time as Gaussian elimination. An increasing number of processors
become idle in Gaussian elimination.

For A large, compared to the array, only the diagonal blocks are diagonalized with A being
stored cyclicly. The storage of the pivot row and columns [54] and their distribution is illustrated
in Figure 9. Each application of a factor is similar to performing a column by row product in
the outer product matrix multiplication algorithm.

For each column elimination operation, a number of elements need to be distributed along
rows, and a number along columns. The number of elements distributed along rows equals the
number of submatrices on and below the diagonal. The number of elements distributed along
columns is equal to the number of blocks on, and to the right of the diagonal, including the right
hand sides.

A Boolean cube offers a capability of carrying out the distribution of the pivot row to other
rows, and the pivot column to other columns in less than linear time. For the factorization of
a matrix by Gaussian elimination without partial pivoting, this capability does not lower the
complexity of the elimination. However, it does in the event of partial pivoting. On the other
hand, in forward substitution on multiple right hand sides, and in Gauss-Jordan elimination
the communication capability of the Boolean cube can be used to reduce the complexity of the
propagation term. The order of the complexity is still linear in the size of the matrix, which
is intrinsic to Gaussian elimination without partial pivoting. Faster methods for band matrix
problems are described in the next section.

In performing the data distribution in Gaussian elimination, or Gauss-Jordan elimination,
without partial pivoting the source nodes are consecutively indexed. A correct result is guaran-
teed, if data arrives in the same order as its distribution is initiated. This condition is sufficient,
but not necessary for correctness. The scan algorithm described earlier guarantees the same
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Figure 10: Data movement in a linear recurrence algorithm on a torus

order of arrival as that of distribution [55). Note, that in Gaussian elimination the distribution
for the last several equations only needs to cover successively smaller cubes.

2.4.5 Solution of Triangular Systems

A number of methods for the solution of general linear recurrences Lz = ¥ (y and z are vectors,
L a lower triangular matrix) on architectures with global storage have been proposed. Their
complexity has been analyzed, assuming zero communication cost. Sameh [114] gives a survey
of such algorithms and their properties. We present an algorithm for mesh or Boolean cube
configured ensembles [50]. It is an adaptation of the binary tree algorithm by Johnsson [57],
which in turn is a particular instantiation of the column-sweep algorithm described by Kuck
[77]. We assume that the vectors y and z are stored in row major order, and L in column major
order (LT is stored in row major order). In the algorithm outlined below y and z are stationary,
L communicated along rows, and partial inner products along columns.

The elements of a column of L are passed along rows of the array. The elements of a column
are passed in order of increasing row index. The first element of a column of L is used to compute
a new component of z. Subsequent elements of a row of LT are multiplied by this z component,
added to the corresponding partial inner product passed along columns in direction of increasing
row indices, and the result passed to the next processor in the same column. The first partial
inner product that reaches a processor is used to update the right hand side, before a new z
is computed. Hence, a processor in row i when first activated computes z;, then computes the
product li;2;, adds this product to E};}J lkjz; received from the preceding row, and outputs the
result to the succeeding row.

This algorithm for solving linear recurrences progresses from one row to the next at the rate
4+ 2t,, ignoring communication time (¢4 is the time for division of two floating-point numbers).
For a 2-dimensional array of v/N by vN processors, the service of a processor is requested for
a new row every (tq + 2t,)v/N units of time. If L is a banded matrix with m nonzero diagonals,
then a processor needs a time of t; + 2(m — 1)t, to complete the computations for one column
of L. The time to solve the linear recurrence by this algorithm is approximately
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For banded systems a recurrence solver can also be based on the partitioning method [115].
This approach can further reduce the complexity of solving linear recurrences. The partitioning
method is discussed further in the next section.

2.4.6 Banded System Solvers

Tridiagonal systems

Irreducible tridiagonal systems of equations of order P can be solved in 2log, P steps using
O(P) arithmetic operations by odd-even cyclic reduction [15]. The method has been modified
by Hockney [46] to yield a solution in logy P steps, but at the expense of O(Plog,P) arithmetic
operations. For highly concurrent ensembles it is of interest to find mappings of the computation
graph onto the nodes of the ensemble such that the communication complexity is no higher, or
at least of the same order as the parallel arithmetic complexity. Binary trees, shuffle-exchange
networks, and Boolean cubes allow for global communication in a time proportional to p for
P = 2P — 1 and P = 2P processors respectively.

The solution of tridiagonal systems on binary trees is interesting not only for the importance
of efficient tridiagonal solvers, and the relative simplicity of constructing large tree ensembles, but
also from an algorithm design point of view. There exists a mapping of the computation graph
for cyclic reduction on P equations onto a binary tree of P nodes such that the communication
complexity is 3logs P [58]. A comparable communication complexity is also obtainable on shuffle-
exchange networks and Boolean cubes [58].

The computation graph of cyclic reduction is shown in Figure 11. For P = N mapping the
equations onto nodes in the tree in order for every level of the computation graph, yields a map
with the desired order of complexity. The first reduction step requires a time proportional to
n, the second a time proportional to 7 — 1, etc. However, the reduction steps can be pipelined,
and the total time is proportional to 3n [58], [28]. The inorder mapping is shown in Figure 12.

For P > N several equations must be identified with the same processor node. For load
balancing it is desirable to make the division as even as possible. For simplicity we assume here
that P = 2™N, i.e., that m address bits are required for the local address. The consecutive
storage scheme can be considered as forming a quotient graph from the computation graph by
combining a successively indexed node at each level of the computation graph into a node in
the quotient graph. This approach is similar to domain decomposition in the solution of partial
differential equations. The nodes at each level of the quotient graph are then mapped on to the
processor tree in inorder. The number of quotient nodes at the leaf level of the computation
graph with [—]I\;] equations is 2P™04n—1 which corresponds to a pmodn level binary tree. In the
formation of the quotient nodes the computation graph is effectively partitioned into ”vertical”
slices, with one quotient node per slice and level, for p — n levels starting with the leaf level.
The quotient graph approach provides the best possible computational balance.
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Figure 11: The computation graph for odd-even cyclic reduction

80,41, 22,13

Figure 12: Inorder mapping of cyclic reduction on to a binary tree

A critical observation in finding communication efficient mapping is that the communication
between some pairs of partitions alternates in direction for every level (reduction step) of the
computation graph. The efficiency of the inorder map relies on the fact that the communication
is unidirectional, and can be pipelined. Hence, odd-even cyclic reduction applied to this mapping
is not efficient, but by changing the elimination order to substructured elimination the mapping
is effective. Only one communication is required in the substructuring phase. The amount
of fill-in is approximately the same as in odd-even cyclic reduction, and so is the arithmetic
complexity. The reduced system is then solved by cyclic reduction using an inorder map. The
total complexity is of order O(£ + n) [58,62].

The substructured algorithm is of minimum order of complexity, both with respect to com-
munication and arithmetic. For a diagonally dominant system the the diagonal dominance
increases during substructuring [107] and no or only a few reduction steps may be sufficient. If
a few cyclic reduction steps suffice, then a proximity preserving embedding [108] of the quotient
graph may be advantages. The reduction in computational complexity accomplished by trun-
cating the reduction process is relatively much more significant in a highly concurrent system
than in a single processor system. For P = N the running time is proportional to the reduction
steps executed, while on a single processor half of the total (untruncated) execution time is
spent in the first reduction step, a quarter in the second, etc. The speed-up for cyclic reduction
and P =N is O( To}l\fﬁ)’ but approaches O(N) if the reduction process can be terminated after
a fixed number of steps, as in strongly diagonally dominant systems.

On a Boolean cube, substructured elimination with odd-even cyclic reduction for the reduced
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Figure 13: Cyclic reduction on a Boolean cube

system has a communication complexity O(n). Each step of the cyclic reduction algorithm
involves 3 nodes of the computation graph. An embedding according to a binary encoding
would require communication across n edges for the first step of the algorithm, n — 1 edges
for the 2nd step, n — 2f for the 3rd step, etc. The binary-reflected Gray code also allows for
simple, distributed control. Each processor can determine with which neighboring processor
to communicate, and what information shall be transmitted/received from its address, and
the reduction step currently being executed [58,62]. Because of the properties of the binary-
reflected Gray code each step requires only 2 routing steps. One of these routing steps can be
carried out as an exchange operation (but need not be). In such a case, successive levels of
the computation graph are mapped into subcubes of monotonely decreasing dimensionality. For
P = N all processors participate in the first reduction step, about half of which only perform
communication. The equations participating in the second reduction step are moved to one half
of the cube, and the process is repeated recursively. Figure 13 illustrates a few steps in the
reduction process for P = N = 8.

Odd-even cyclic reduction has a higher arithmetic complexity than Gaussian elimination,
and it also requires more communications than if a transposition of the data is performed to
one processor, and the result distributed back to where the equations came from. Hence, for
certain combinations of arithmetic and communication capabilities it may be faster to use a
transposition and a sequential algorithm, and even to avoid substructuring [112,67].

If multiple independent tridiagonal systems are to be solved, then either all problems can
be distributed over the entire ensemble, or the ensemble can be logically partitioned such that
each problem is solved by a partition. For tridiagonal systems and the solution methods dis-
cussed here, it is always advantageous to partition the ensemble, even in the event of negligible
communication time [58].

A detailed experimental study of optimum methods for the solution of single and multiple
tridiagonal systems on the Intel iPSC is reported in [67].

General Banded Systems

The substructuring technique has also been applied to banded systems. Sameh and collabo-
rators [115,82,25] use partitioning to reduce banded systems of bandwidth 2m +1 to dense, block
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pentadiagonal, systems of order 2mN — 1 for N partitions. The blocks are of size m X m. The
solution of the reduced system by Gaussian elimination on a linear array is considered in [82],
and the solution by block-Jacobi and preconditioned conjugate gradient methods in [25]. Reiter
and Rodrigue [107], and Johnsson [61,60,24] analyze a slightly different substructuring that re-
duces the banded system to a dense, block tridiagonal system of order mN. Reiter and Rodrigue
give conditions under which diagonal dominance is preserved during the Gaussian elimination
part of the algorithm. Johnsson shows that the arithmetic complexity in deriving the tridiagonal
system is approximately 1/3 of that required in deriving the pentadiagonal system, and analyze
the complexity of solving the reduced system by Gaussian elimination and block cyclic reduction
on linear arrays, binary trees, shuffle-exchange networks and Boolean cubes.

The optimum number of partitions N,,; depends on m, P, and the ratio of the communication
and computation bandwidths. N, opt for Gaussian elimination on a linear array is of order O(y/ %)

and the corresponding complexity is of order O(m?2v/ Pm). Block cyclic reduction yields a lower
complexity under a variety of conditions, even on a linear array. The value of N,y falls in the
range O(VP) < N, < O(£), and the corresponding complexity is in the range O(m?v/P +
m3log, P) to O(m3 + m3log;—t—) [61]. For binary trees, shuffle-exchange networks, and Boolean
cubes, N,y is of order O(—S—) and the corresponding complexity of order O(m® + m3log2%).
For small matrix bandwidths this algorithm yields good speed-up, however, as the bandwidth
increases the speed-up becomes low.

The above results apply under the assumption that there is one processor per partition.
The number of partitions is constrained to be at most %. However, it is possible to exploit
concurrency in the operations also within the partitions, which for m of order O(P) is the main
source of concurrency. For instance, one can use N, < m? processors configured as a mesh or a
Boolean cube during the elimination of the elements in one column, as in systolic algorithms [80]
[52], but use the dual formulation in which the factors are computed in-place. The speed-up is
of order N.. The computations proceed in two phases: factorization with forward substitution,
and backsubstitution. The factorization can proceed from the first to the last column, or from
both ends concurrently. In the latter case an m by m dense system of equations must be solved
for the "middle” equations before backsubstitution takes place. A dense m by m system is also
solved in the 1-way elimination scheme (the last m equations). The backsubstitution consists of
solving a linear, banded recurrence. The technique discussed previously can be used. Figure 14
illustrates an intermediate state of the factorization process.

The scan algorithm can be used to reduce the propagation time for a Boolean cube, and
multiple right hand sides. The propagation time then becomes of lower order even in the case of
N. = m?, and P ~ m. The complexity of solving banded systems by this approach is 0(m2§c-)
(N = 1) [55]. For symmetric matrices, storage as well as time can be saved using a parallel
version of Cholesky’s method [2], [63].

The two methods can be combined such that N, processors are used for each partition.
Such a set of processors is referred to as a cluster. With Nﬂc clusters of N, processors each,
intracluster connections in the form of a 2-dimensional mesh (or torus) or Boolean cube, and
intercluster connections forming a binary tree, shuffle network, or Boolean cube, the minimum
time complexity is of order O(m + mloge L), and N,p; of order O(N.£), and N, of order

O(m?) [55]. Note that for a Boolean cube a subcube can be considered as a cluster.
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Figure 14: Band matrix factorization on a 2-dimensional array or Boolean cube

The combined algorithm degenerates to the simple band matrix algorithm proceeding along
the band from one corner to the other for m = P—1. For m = 1 it degenerates to the tridiagonal
solver described previously.

2.4.7 Fast Poisson Solvers

Fast Poisson solvers combine Fast Fourier Transforms (FFT) with tridiagonal system solvers,
and block cyclic reduction to achieve a minimum arithmetic complexity of order O(Plogzlog,P)
for a P x P grid [44], [45], [124]. Stone [123] observed that the FFT can be carried out in log, P
steps on a P-node shuffle-exchange network. The modification of Stone’s algorithm for a Boolean
cube is straightforward. Shuffle operations become unnecessary. The butterfly operations are
simply carried out on elements residing in processors adjacent in different dimensions. This
property holds for decimation-in-time (DIT) as well as decimation-in-frequency (DIF) FFT.

With multiple elements per processor the initial (and transformed) sequence can be stored
in either consecutive or cyclic storage order. In either case, and depending on whether a DIT
or a DIF FFT is used, the first, or the last, log2§ butterfly operations are local to a node.
The arithmetic complexity is of order O(Tlé—logzP) and the communication complexity is of order
O(%loggP). The speed-up is proportional to P. FFT algorithms for linear arrays are given in a
number of references [103], [69], [64]. An early description of a FFT on a 2-dimensional array is
given by Stevens [122]. An analysis of the area-time aspects of the FFT on a variety of ensemble
configurations is given in [127].

The solution of Poisson’s problem on a rectangle can be obtained by a 2-dimensional FFT,
by a number of 1-dimensional FFTs that decouple the equations into a set of independent tridi-
agonal systems, or by a combination of block cyclic reduction, FFT, and tridiagonal system
solvers, and the so called FACR method [44], [45], [15], [14], [124], [125], [126]. By exploiting
symmetries and using real transforms, the number of arithmetic operations per point is less than
2.5logyP in the FFT computation. Using Gaussian elimination with precomputed factors [125],
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the number of arithmetic operations per point for the tridiagonal solvers is 4, or approximately 4
if advantage is taken of the fast convergence of the elements of the factors [98]. Hence, the arith-
metic operations count is less for solving the tridiagonal systems by Gaussian elimination than
by FFT, solution of a diagonal system, and inverse FFT (IFFT). A cyclic reduction algorithm
could be used, but the operations count per point with precomputed factors is 6.

In a highly concurrent system the differences in complexity between the FFT and tridiag-
onal system solvers are much smaller. To amplify this issue, consider the case with P? nodes
in an ensemble configured as a Boolean cube. The solution of Poisson’s equation either by a
2-dimensional FFT, or by a combination of 1-dimensional FFT’s and tridiagonal system solvers
based on cyclic reduction, then requires a time of order O(logzP), including communication. For
this extreme case, Gaussian elimination is not of interest with respect to computational com-
plexity, since it is inherently sequential. The number of communications in the Boolean cube is
2logy P for odd-even cyclic reduction on P equations, which can be reduced to log, P for parallel
cyclic reduction [46]. Even though it seems preferable to use parallel cyclic reduction, this is not
necessarily true [56]. With a binary-reflected Gray code embedding of the equations each such
communication, but the first is over two edges. In a packet switched communication system the
number of communications is 4/ogo P and 2logp, respectively. It suffices with 4log, P communi-
cations even if the communication system only supports one send or one receive operation at a
time. In the case of the Poisson equation only the right hand side need to be transferred. The
number of real arithmetic operations is at most 7log P, which can be reduced to 6log, P with
precomputed factors.

With P2 processors a real FFT on P points requires 5loga P — const operations per point,
if the butterfly computations are split between two processors, otherwise 10log, P — const. In
the former case two exchanges are required per butterfly, otherwise one exchange suffice. If the
communication system only supports one send or one receive operation, then each exchange
requires two communications. With a binary encoding of the lattice all communications are
over single edges, but if the lattice is embedded by a binary-reflected Gray code embedding
then the communication is over two edges. Hence, an FFT and an inverse FFT on P points
require between 2log; P and 16log; P communications depending on the communication system,
the embedding, and the load balancing. Each communication involves a complex variable.

Using a tridiagonal solver instead of an FFT-IFFT saves at least 3logp to 4logy P arithmetic
operations and maybe also communication (depending upon the architecture). In the FFT-
IFFT approach all nodes are used in all steps, but in the cyclic reduction tridiagonal system
solver the number of active nodes decreases. Most of the tridiagonal systems are sufficiently
diagonally dominant so that the reduction process can be truncated. This property does not
reduce the total solution time in this extreme case (P? processors for P? lattice points). With
fewer processors it gives rise to an interesting load balancing problem.

Sameh [113] presents a method for the solution of the 2-dimensional Poisson equation on a
ring of processors, and for the solution of the 3-dimensional problem on a cylinder of processors.
In the 2-dimensional case FFT’s are performed on data local to a processor, and the tridiagonal
systems solved by a modification of the partitioning method [115]. The modification is made to
take advantage of the Toeplitz form of the tridiagonal matrices. The reduced systems are solved
by pipelined Gaussian elimination within the ring. In the 3-dimensional case, 1-dimensional
FFT’s are performed first local to a processor, then a new set of 1-dimensional FFT’s are
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performed within a ring, resulting in P? independent tridiagonal systems, with each tridiagonal
system spread across the rings. The tridiagonal systems are solved by Gaussian elimination.

Whether Gaussian elimination or cyclic reduction is preferable with respect to computational
complexity for the solution of the tridiagonal systems depends on the ensemble topology, N, P,
and the arithmetic rate, the communication rate, and the overhead in these operations. Gaus-
sian elimination requires 4%2- +2P + aV/N for a /N x v/N mesh, substructuring with Gaussian

elimination for the reduced system requires 9113—\,2- + 4% + (24 a)V/N, and substructuring with

cyclic reduction for the reduced system on a Boolean n-cube 9%1 + %(3 + 2a)logsN. Pre-
computed coefficients are assumed for these estimates. Cyclic reduction for the reduced system
becomes competitive for N approaching P on a Boolean cube configured ensemble [58,62]. On
a linear array the logarithmic term premultiplied by « is replaced by a term linear in v/N, as
for Gaussian elimination. Which method is preferable on a linear array is critically dependent
upon architectural parameters, N, and P. An accurate comparison should also account for the
truncation of the reduction process for a large fraction of the systems. With respect to per-
formance the benefit of truncating the reduction process is particularly large on linear arrays,
since the largest communication expense occurs in the last few reduction steps using an in-place
algorithm [58].

2.4.8 TIterative methods

Conjugate Gadient Methods

The conjugate gradient method [36] is a direct method for the solution of linear systems of
equations. However, it is often used as an iterative method, and combined with preconditioning
is an effective iterative technique, in particular for sparse systems. The conjugate gradient
method solves a linear system of P equations in P steps. Each step requires O(PZ) arithmetic
operations for a system Az = y in which A has PZ non-zero elements. Hence, the arithmetic
complexity is of the same order as for elimination methods, Given’s rotations, and Householder
transformations if the matrix A is dense. However, because of fill-in in those methods, the
conjugate gradient method often yields a lower complexity for sparse systems, in particular if
acceptable accuracy in the solution is obtained in less than P steps (possibly much fewer steps).

The minimum time per iteration is O(log2P) because of global communication in each step.
In each iteration an inner product including the entire state is computed, and used (distributed to
all processors) in the computation of the new state. Pipelining of successive steps is not possible.
The minimum parallel arithmetic complexity of the conjugate gradient method is O(Plog, P),
the same order as that of Householder’s method. Preconditioning that would allow the iterative
process to be terminated in less than 1-551;—_,, steps could possibly yield a lower complexity, but
the complexity of each step has to be included. With the original system matrix used as a
preconditioner one iteration suffices, but the original system of equations has to be solved in
that step.

So far very few studies have been carried out for parallel versions of the conjugate gradient
method. Adams [1] has investigated the convergence of various preconditioners, and in particular
their feasibility with respect to implementations on the Finite Element Machine. Saad and
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Sameh have investigated the conjugate gradient method on multiprocessors with shared global
storage [111], and linear arrays [110]. The implementation of the preconditioned conjugate
gradient method with various preconditioners has also been investigated by Kamath and Sameh
[70]. They consider the solution of 2-dimensional elliptic partial differential equations on a ring
of processors, and the solution of the 3-dimensional problem on a torus. The adaptation of
the conjugate gradient method to binary tree architectures is described by Johnsson [57]. The
effect of preconditioning on the computational complexity is analyzed. Van Rosendale [109] has
proposed a modification of the inner product computation in which it is computed recursively.
Only local computations are carried out in each step. However, global communication is still
required in each step.

Asynchronous methods

In classical iterative methods a number of matrix vector products are computed. Fach such
product requires global communication. In a highly concurrent system this global communica-
tion will limit the speed-up, unless several iteration steps can be pipelined. A large fraction of
the processors in the ensemble are idle. So called asynchronous iterative methods, or chaotic
relaxation, attempt to fully exploit the concurrency in multiprocessor systems by not enforcing
global synchronization between each step of the iterative process. Chazan and Miranker [18] give
necessary and sufficient conditions for convergence of chaotic relaxation applied to the solution
of linear systems of equations. The results are extended by Miranker [94]. Baudet [6] gives nec-
essary and sufficient conditions for convergence for nonlinear problems, and history dependent
iterations, and some bounds on the efficiency, as well as some experimental results obtained on
the C.mmp [133]. Recently, asynchronous iteration has also been studied by Lubachevsky and
Mitra [91].

3 Summary

The capacity of an ensemble configuration can be measured in several different ways. One
way is to measure the time required to perform arbitrary permutations. Such permutations of P
elements on a binary tree of P nodes may require a time proportional to P+0O(logyP). Arbitrary
permutations can be performed on a 2-dimensional mesh in time 6P [128], on the shuffle-
exchange network in time log, P(log, P — 1), and on the Boolean cube in time %lngP(l 0ga P +1)
using the deterministic algorithm of Batcher, or with high probability in clogaP time for ¢ a
small integer using a randomized algorithm. The cube connected cycles network has the same
capability of performing arbitrary permutations.

Another way to measure the capability of an ensemble configuration is to determine to what
extent one configuration can emulate another without a substantial increase in running time.
Of the networks discussed here, the Boolean cube and the Cube Connected Cycles networks are
the most powerful. The tree network is significantly less powerful in that the running time for
many algorithms is higher by more than a constant factor.

The diameter of a configuration gives a lower bound for the time required for a given op-
eration. Whether the diameter appears as an additive term or multiplicative factor in treating
"large” problems on ”small” ensembles depends on how communication paths with distinct ori-
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gins and destinations intersect. We illustrated this point by forming a matrix transpose on a
2-dimensional mesh with end-around connections and on a Boolean cube. The transpose of a
VN x /N matrix can be formed in %\/N — 1 routing steps on the mesh configured ensemble,
and log, N routing steps on the Boolean cube. This difference becomes significant first for fairly
large N. However, the transpose of a P x P matrix on a VN x VN mesh requires a time of at

least order %53, and at most %[—\}%‘]2 +1(1/2v/N —1) routing steps [50]. On the Boolean cube

the transpose can be performed in ([P overv/N]? + logs N — 1) routing steps, an improvement
by a factor of approximately v/N /4 over the mesh.

The finite communication capability of ensemble configurations affects the performance ad-
versely, sometimes significantly. The time for arithmetic operations decreases, but the time for
communication may increase with the ensemble size. For most ensemble configurations and
computations there exists an optimum size of the ensemble beyond which the performance de-
creases. For instance, in the case of the solution of tridiagonal systems of equations by combining
Gaussian elimination and cyclic reduction the optimum sizes and minimum solution times are as
follows for a few configurations: linear array Nop = ﬂ\/g and Tyin = vV P, 2-dimensional mesh

Nopt = B(P @)*/? and Tpin = vPY3, binary tree, shuffle-exchange, and Boolean cube networks
Nopt = BP[1+ o and Tpin = vlog, P, where « is the ratio between the arithmetic and com-
munication bandwidths [58]. For band matrix solvers based on the partitioning technique, the
optimum number of processors configured as a linear array is of order O(/P/m) for matrices
of bandwidth 2m + 1, and O(P/m) for binary tree, shuffle-exchange and Boolean cube net-
works. The corresponding solution times are of order O(m?/ Pm) and O(m?® + m3logy(P/m)),
respectively [54]. For ensembles configured as Boolean cubes, band matrix solvers of complexity
O(m + mlogy£) can be devised [58].

With an insufficient number of interconnections, or with inappropriate topology, different
embedding strategies may have to be applied not only for different problems, but also for dif-
ferent phases of a given algorithm. Of relevance for many computations is the embedding of
1-dimensional, or multidimensional arrays. Linear arrays can be embedded in binary trees pre-
serving proximity, but for d-dimensional arrays embedded in the leaves of the tree the average
distance between nodes adjacent in the mesh is (4 — 2= g2 )¢ when embedded in the tree.
The maximum distance is of order O(dlogzn). Both 1-dimensional and multidimensional arrays
can be embedded in Boolean cubes preserving proximity. If the number of elements in each
dimension is slightly less than or equal to a power of 2, then this embedding is also efficient in
terms of processor utilization. For the embedding of arbitrary meshes see [42,43]. The impact
of a given embedding on performance is in some instances determined by the average distance
between array nodes, whereas in others it is determined by the maximum distance.

Ensemble architecture algorithms can be obtained by first generating a computation graph
from a description of the computation in a conventional mathematical notation, and then map-
ping this graph onto the ensemble. This mapping process has many characteristics in common
with the mapping carried out in finding efficient systolic algorithms. But, there are also sev-
eral aspects of the mapping of computation graphs onto ensemble architectures that do not
require attention in the systolic case. One similarity is the need to treat temporal as well as
spatial aspects of computations, with a nonuniform access time to different parts of the stor-
age. Preserving locality is also important in both architectures. However, the embedding of

36



the computation graph in an ensemble architecture often has to satisfy additional criteria com-
pared to what is required in the systolic case in order to yield maximum processor utilization,
or minimum solution time. The need for different embedding strategies during different phases
of the execution of an algorithm may depend on the size of the problem relative to the size of
the ensemble, as in the case of cyclic reduction.

With the additional sequencing of operations caused by mapping several nodes of a given
level of the computation graph on to the same ensemble node, instead of distinct nodes as in the
systolic case, independence of communication paths becomes an issue. If communication paths
with distinct origins and destinations intersect at nodes only, and the processor can support
concurrent communication on all its ports, then communication actions can be pipelined to a
maximum extent. In effect, the ensemble is configured optimally for the desired operation. This
issue was illustrated by performing a matrix transpose on a Boolean cube.

Another difference compared to algorithms of extremely fine grain is that whereas in such
a case an efficient parallel algorithm may be ideal, in particular if it can be mapped onto an
ensemble with only local communications without loss of efficiency, this is not necessarily true
on an ensemble architecture. More operations are carried out in sequence, and the sequential
operations count may be higher for an algorithm of minimum parallel complexity than for a
sequential algorithm of minimum complexity. For instance, bitonic sort requires O(N logiN)
operations compared to O(NlogaN) operations for a good sequential sort. In the case of tridi-
agonal system solvers, cyclic reduction requires approximately twice the number of operations
needed by Gaussian elimination. A combination of algorithms may yield a lower complexity
than any single algorithm. In some instances, such as in the solution of tridiagonal systems
by elimination methods, it may be possible to obtain the combined algorithm by algorithm
transformation techniques. Elementary rules of ‘algebra may be used to reduce the number
of arithmetic operations carried out sequentially, as in mapping the computation of the Dis-
crete Fourier transform on to a linear array. The result is an FFT algorithm with defined data
and control structure [65]. However, the most interesting aspects of algorithm transformation
techniques is that a user may not have to worry about all the minute variations of algorithms
and architectural details, and that for ensemble architectures more efficient algorithms may be
discovered.

In the architectural model used here it is essential that the control of execution is distributed,
in order to prevent bottlenecks and avoid sources of limited scalability. All of the algorithms
presented here have local control, including the routing algorithms. The architecture allows
each node to execute a substantially different piece of code. However, in most of the concurrent
algorithms we know there is a high degree of regularity, not only in the communication pattern,
but also in the instruction streams being executed. Typically there are 3 - 4 different pieces of
code. In algorithms for 2-dimensional meshes boundary nodes often perform somewhat different
tasks, like computing rotation factors in the case of Given’s method. In binary tree algorithms,
the root, the leaves, and the intermediate level nodes often have their unique pieces of code
[12]. This characteristic also simplifies the problem of downloading code if the ensemble serves
as an attached processor. The code can be replicated within the ensemble [89], and thereby
considerably reduce the potential bottleneck caused by external input/output operations.

A large class of problems not discussed here is that of computations with data dependent
control flow. For data independent computations it is possible in principle to map the compu-
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tations on to the nodes in the multiprocessor system at ”compile time”. For simple problems,
mappings that are optimal with respect to some criteria, like time, can be found at a small
or moderate expense. However, finding optimal mappings for most problems is, in general, an
NP-complete problem. For data dependent computations good strategies for run time mappings
of computations on to processors are needed. To avoid potential bottlenecks it is desirable that
load balancing use only local information, and that global information is gathered through a
sequence of local communications.
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